%MV BoYD BT /‘% - f/ wm/ e sl w%“ PgL

2

Precursors

In this section, we briefly review two optimization algorithms that are
precursors to the alternating direction method of multipliers. While
we will not use this material in the sequel, it provides some useful
background and motivation.

2.1 Dual Ascent

Consider the equality-constrained convex optlmizatlon problem

T hinimize | f (;3) Z
{ subject to Az =b, 21)

with variable z € R®?, whele Ace Rmxn fmd f:R" = R is convex.
The Lagrangian for ploblem (2 1) s
[) = 1)+ 4 s =) ol

Ao i i A

and the dual functmn s [—

k”'—"’""‘" "
9(y) = me(a y) =~ f(~ATy) - b7y,

where y is the dual variable or Lagrange multiplier, and f* is the convex
conjugate of f; see [20, §3.3] or [140, §12] for background. The dual

7

8 Precursors

problem is

[— v

/

/ maximize g¢(y),
with variable ¥y € R™. Assuming that strong duality holds, the optimal

values of the primal and dual problems are the same. We can recover
a primal optimal point x* flom) dual Optmnl int y* as

Aryt = algmmL{m TR

i

I
provided there is only ome minimizer of L{z,y*). (This is the case

if, e.q., f is strictly convex.) In the sequel, we will use the notation
argmin, F'(z) to denote eny minimizer of F, even when F' does not

have a unique minimizer.
In the dualascent meﬂ od we soive the dual paoblem using gradient

. evaluatd as follows We first .ﬁnd zt = agmm Lz, y); then we have
MWW

4 e j;j Vg(y) - b, which is the residual for the equality constraint. The

Mjﬁ o dual ascent method c01lslsmphmmmg1eWes
3 (,M .

FER- L ¥ = argmin Lz, ") ! (2.2)
\ -

" (f yk+l — yk + ak(A$k+1 _ b), f (2 3)

where o > 0is a ;:ché"ﬁ size, and the supelscupt ig the iteration counter.
The first step (2.2) is an z-minimization step, and the second step (2.3)
is a dual variable update. The dual variable y can be interpreted as
a vector of prices, and the y-update is then called a price update or
price adjustment step. This algorithm is called dual ascent since, with
appropriate choice of o, the dual function increases in each step, i.e.,
a(y*) > gy*).

The dual ascent ~method can be used even in some cases when g is.

n not dlf’felentlable In i;hls case, the T 1851dual TAZFL — b is not the gladl-

1F &" 15 chosen appmpua,tely “and seve1a1 other assumpttons hold
then z* converges to an optimal point and y converges to an optimal

2.2 Dual Decomposition 9

dual point. However, these assumptions do not hold in many applica-
tions, so dual ascent often cannot be used. As an example, if f is a
nonzero affine function of any component of z, then the z-update (2.2}
fails, since L is unbounded below in z for most ¥.

2.2 Dual Decompos;tlon

The 111a301 beneﬁt of the dual ascent method is that it can lead to a

ob]ectwe fis sepamble (Wsth respect to a paat:tlon or sphttmg of the
variable nto subvectors), meaning that

5'3) Z.fz $1

where £ = (z1,...,zx) and the variables x; € R™ are subvectors of z.
Partitioning the matrix A confoxma,bly as _

sojAr = ET 5 Ay, fqlhe Laglanglan can be written as
P N ””_‘“\
< (z,y) = ZL Toy) = Folws) + 57 As — (N,)

7

i=1

o

e 2 i

which is dlSO separabie in z. This means that the z- minimization

/me = argminLi(mi,y’“) (2.4)
f e
/ Y= gF o af (AT -). (2.5)

The z-minimization step (2.4) is carried out independently, in parallel,
for each i =1,...,N. In this case, we refer to the dual ascent method
as dual decomposatmn

“Tn the general case, each iteration of the dual decomposition method
requires a broadeast and a gather operation. In the dual uwpdate

step (2.5), the equality constraint residual contributions A; :c”l are

10 Precursars

collected (gathered) in order to compute the residual AzF+! — b, Once
the (global) dual variable y**! is computed, it must be distributed
(broadcast) to the processors that carry out the N individual @; mini-
mization steps (2.4).

Dual decomposition is an old idea in optimization, and traces back
at least to the early 1960s. Related ideas appear in well known worl
by Dantzig and Wolfe [44] and Benders [13] on large-scale linear pro-
gramming, as well as in Dantzig's seminal book [43]. The general idea
of dual decomposition appears to be originally due to Everett [69],
and is explored in many early references {107, 84, 117, 14]. The use
of nondifferentiable optimization, such as the subgradient method, to
solve the dual problem is discussed by Shor [152]. Good references on
dual methods and decomposition include the book by Bertsekas [16,
chapter 6] and the survey by Nedi¢ and Ozdaglar [131] on distributed
optimization, which discusses dual decomposition methods and con-
sensus problems. A number of papers also discuss variants on standard
dual decomposition, such as {129].

More generally, decentralized optimization has been an active topic
of research since the 1980s. For instance, Tsitsiklis and his co-authors
worked on a number of decentralized detection and consensus problems
involving the minimization of a smooth function f known to multi-
ple agents [160, 161, 17]. Some good reference books on parallel opti-
mization include those by Bertsekas and Tsitsiklis {17} and Censor and
Zenios [31]. There has also been some recent work on problems where
each agent has its own convex, potentially nondifferentiable, objective
function [130]. See [54] for a recent discussion of distributed methods
for graph-structured optimization problems,

2.3 Augmented Lagranglans and the Method of Multipliers

Augmented Lagkanglan methods were developed in part to bring
robustness to the dual ascent method, and in particular, to yield con-
vergence without assumptions like strict convexity or finiteness of f.
The augmented Lagrangion for (2.1) is

e et PR AR 185 e o R T i v-—».ﬂ,k'

L) = @) + 3 (A:c—b +<p/z lae - b3,) (26)

2.3 Augmented [.agrangians and the Method of Multipliers 11

where p >0 is called the penalty parameter. (Note that Lo is the
standard L‘tglangxan for the problem.) The augmented Lagrangian
can be viewed as the (unaugmented) Lagrangian associated with the
pioblem —

minimize | £(2) + (/2)|EA:U _ b||2
sub;ect to A:L = b _____ _

Tor any y Teasible = the term added to therobjectlve is zero. The assoc&ated 7

dual function is gp(y) = infy La(z,y).
he bcne t of meluding the penalty teml is that gp can be shown to

et

;‘H = algmmLp(a:,y) (2.7)
i

(Y=gt 4 p(AP —),

J—

(2.8) . ""“Z;!
which is known as The method Efmnxeaftcpl?ers for sotving (2.1). This is (@wj ﬁvag/ﬂg, o ;Aﬁ/
the same as standard dual ascent, except that the z-minimization step

uses the augmented Lagrangian, and the penalty parameter p is used
as the step size o®. The method of multipliers converges under far more
geneml condltlons than dual ascent, m(.ludmg cases when f takes on

e e e R e T s ST T S,

tsaizﬂlf: though this is not 1equned for the algouthm to wmk The ij
oprclmalxty conditions for (2 E} are pumal and dual feasibility, i.e., “ M yoss P

’fy

A “b=0, Vf(=*)+ ATy*—O%_w Kw, T 27
\,_‘._,. T
respectively. By deﬁmtion a:‘H'l minimizes Ly(z,y) / -
0 = VoL, (2", ") Vo %ézf\%j__/@ (A\'\(‘_é’}
_ v f{mj‘__l_l) 4 AT (y 4 p(Amk_H[_ b)) % AT KQ w_ e el e
_ ktty o AT kL .

{} Yj) wa W;’?f/

T .,

ot MLF j Pl

=

e

-

Ay
2 o f@inﬁ g

A Y |

3

12 Precursors

We see that by using p as the step size in the dual update, the iterate
(a1 4541 is dual feasible. As the method of multipliers proceeds, the
primal residual AzF+! — b converges to zero, yiclding optimality, .-

The greatly improved convergence properties of the method of mul-
tipliers over dual ascent comes at a cost. When f is separable, the aug-
mented Lagrangian L, is not separable, so the z-minimization step (2.7)
cannot be carried out separately in paralle! for each «;. This means that
the basic method of multipliers cannot he used for decomposition. We
will see how to address this issue next.

Augmented Lagrangians and the method of multipliers for con-
strained optimization were first proposed in the late 1960s by Hestenes
[97, 98] and Powell [138]. Many of the early numerical experiments on
the method of multipliers are due to Miele et al. [124, 125, 126]. Much
of the early work is consolidated in a monograph by Bertsekas (15],
who also discusses similarities to older approaches using Lagrangians
and penalty functions [6, 5, 71], as well as a number of generalizations.

7 fee
vt &;‘z»{é”m]
—

3

Alternating Direction Method of Multipliers

3.1 Algorithm

ADMM is an algorithm that is intended io blend the decompogability

of dual ascent with the superior conver gepce properties of the method m_:k’
of multipliers. The algorithm solves plobkems in the form K Z & k\
gl SN ><l6~

e o

@mm + Qm

3 A
subject to Az + Bz=c¢ | (3.1)

e T vt (,.__»')
with (variables z ¢ R” and z € Rm herezéfdw and
c € RP. We will that f and g are convex; more specific assump-
tions will be discussed in §3.2. TThe only difference from the general

linear equality-constrained p10blern (2.1) is that the variable, called z
thele, has been spht into two palts caﬂed T and z hele With the. objec—

problem (3.1} will be denoted by

[77 =i + (e | Ao + Br=h)

- i =

bt R sttt W

Ag in the method of multlphem we form the augmented Lagrangian

Fp(es) = @) = 9(2) + 4" (Ae + Bz = ¢) + (o/2)| Az + B iﬂ’;j

it

e p—

13

14 Alternating Direction Method of Multipliers 274““
¥ - !

"

y ﬁsj

ADMM ¢onsists of the iterations A 7 ‘ . L
i T . ""w—h.\‘ “;; : / I{.’VS ’ /) MTI‘?’{;;/{} J—
bt = argminLP(m,zk,yk) 5 (3.2)
x .
A= argmin L (zMY, 2,9%) 5 (3.3)
z
yk+1 = yk + p(A:L‘k—'—l + sz+l . C),\ (34)

where p >0, The algorithm is very similar to dual ascent and the
method of multipliers: it consists of an z-minimization step (3.2), a
z-minimization step (3.3), and a dual variable update (3.4). As in the
method of multipliers, the dual variable update uses a step size equal
to the augmented Lagrangian parameter p.
N The method of multlphels for {3.1) has the form

X P e s ———.
2
i :?,;47/{)‘? ($Aw+1 ’ Zk+1) = m.gmian(w’ z’yk) e
’é‘l// 4
§

y® o+ plAchtt + Bz"i—’_cb\

Here the augmented Lagrangian is minimized jointly with respect to
the two primal variables. In ADMM, on the other hand, x and z are
updated in an alternating or sequential fashion, which accounts for the
term alternating direction. ADMM can be viewed as a version of the
method of multipliers where a single Gauss-Seidel_pass {90, §10.1] over
x and z is used instead of the usual joint minimization. Separating the
minimization over z and z into two steps is precisely what allows for
decomposition when f or g are separable.

The algorithm state in A ADMM consists o of 2 z and "".oIn other words,

(z H"l) is a function of (z y’”) The vaua,bl 15 jnot jpart of the
state; 1t 18 an intermediate result computed ftom thé previous state
(zk—i ykﬁl)'

If we switch (re-label) = and 2z, f and g, and A and B in the prob-
lem (3.1), we obtain a variation on ADMM with the order of the z-
update step (3.2) and z-update step (3.3} reversed. The roles of z and
z are almost symmetric, but not quite, since the dual update is done
after the z-update but before the z-update.

£

~sed T urlF

[w L

'@:}Lﬁ'w? fj Lw

- 2
. } - N 2 2 iU 5 T
[,fﬂﬁD = {la] + s o+ byl

——a

&

-

= 3.2 Convergence

4 S b sr-%ﬂm: €. i 1y e

3.1.1 Scaled Form

ADMM can be written in a slightly different form, which is often
more convenient, by combining the linear and quadratic terms in the
augmented Lagrangian and scaling the dual variable. Definine the resid- \
%‘ Az + Bz — ¢, we have o

P a4

ual
M%

S e
K7™ e =l - /2l
;} ’ Al (- s oo a1 e s s i . S T - -
¢ ’ \V}.IGIOWS the scaled dual mmabﬂ,’e Usmg the scaled dual vari-
able, we can express ADMM as L (B 2t é o }

) \) 2 = argmin (g(z) + (p/2)||Az*Tt + Bz — ¢+ u*"”z) (3.6)
z R —

B b 4 At 4 BM e ﬁ«f”‘“{;hy%&ri/) (3.7) {\.

(11 = augmin (7(0) + (/D)1 A + B — S+¥E) (55) 5‘%
ﬁ

are clea.lly equlva.lent, but the formutas in the scaled form of ADMM
are often shorter than in the unscaled form, so we will use the sca}ed

3.2 Convergence

There are many convergence results for ADMM discussed in the liter-
ature; here, we limit ourselves to a basic but still very general result
that applies to all of the examples we will consider. We will make one

> 7

o/l + (1 /ol ~ W20 T =€ {Juel]

P tva{a'

£ ﬂbuJ{,

)

T s <
¥, F0O > =28
16 Alternating Direction Method of Multipliers

assumption about the functions f and g, and one jbssumption about
problem (3.1). /

Assumption 1, The (extended-real-valued) fu hions FR* 3 RU
{+00} and g: R™ — R U {00} are closed, proper, and convex,

This assumption can be expressed compactly using the epigraphs of
the functions: The function f satisfies assumpsion 1 if and only if its
epigraph

epif = {(z,t) e R" x R} f(z) <t}

is a closed nonempty convex set.

(3. 2) and z-update (3. 3) are solvable, 1.e., there exist @ and 7, not neces- .

garily unique (without further assu}ﬁptlons on A and B), thaﬁ mininize
“the angmertéd Lagrangian. It is important to note that assumption 1

allows f and g to he nondifferentiable aud to assume the value +oo.

e

nonempty convex sef C ie, flz)=0forze C and j() +oo othel—

“wise, In this case, the z-minimization step (3.2) will involve solvin ving a

constrained quadratic pr oglam over C the effective domain of I

T P

Assumption 2. The unaugmented Lagrangian Ly has a saddle point. { {

Explicitly, there exist (z*,2*,%*), not necessarily unique, for which .
o Y P

[i

S —
L Lo((L‘*,Z*,y) < Lg(m*,z*,y*) < L0($,Z=y*) .

holds for all =, z, ¥.
By assgg;gmlon 1, it follows that Lg(z*,7*,y") is finite for any sad sad-..

dle point (z*,2*,y"). Mjmmxplmgim ,2%) 18 a solutlon‘tg_m

i

”so Ax* o Az + | B7 = ¢ and f{:::*) < 00, g(z*) < co. It also implies that y

1S a1e equal e, that stlogg gluahgzh lds Note that we make no
assumptlons “about A B, or ¢, except 1mphcltly through assumption 2;
in particular, neither A nor B is required to be full rack.

3.2 Convergence 17

3.2.1 <Convergence

Under assumptions 1 and 2, the ADMM iterates satisfy the following:

® Residual convergence. v* =0 as k — oo, i.e., the iterates
approach feasibility.

o Objective convergence. f(zF) + g(zF) = p* as k— o0, de,
the objective function of the iterates approaches the optimal

value.

o Dual variable convergence. y* — y* as k — oo, where y*
dual optimal point,

A proof of the residual and objcctive convergence results is given in
appendix A. Note that z* and z need not converge to optlmal values,

although such Tesults can “be shown under additional assumphonb

3.2.2 Convergence in Practice

Slmple exampies show that; ADMM can be e very slow to converge to

modest accur a.cy——suﬂiment for many applications—within a few tens
of iterations. This behavior makes ADMM similar to algorithms like
the conjugate gradient method, for example, in that a few tens of iter-
ations will often produce acceptable results of practical use. However,
the slow convergence of ADMM also distinguishes it from algorithms

such‘ as Newton] mothod (01 for constlalned ploblems interior-point
of time. Wﬁlle in some cases it is possible to combme ADMM with
a method for producing a high accuracy solution from a low accu-
racy solution {64], in the general case ADMM will be practically uscful .

moatly in cases when modest accuracy is sufficient. Fortunately, this
is usually the case for the kinds of large- sca,ie plnablems we consider.
Also, In the he case of statistical and machine learning problems, solving
a parameter estimation problem to very high accuracy often yields lit-
tle to no improvement in actual prediction performance, the real metric

of interest in applications,

//' EQ Z’“““é fl e w}:? WS e w{; L(}&; ';)””' %'{x $a {@
E joo % | ‘%W‘j?/}}{%,gz »9

b,«‘ﬁf 2t

i
4

e :@x Z 4?% Z } ZQ% &"3) /Ji j S o

18 Alternating Direction Method of Multipliers "; {;3’11} + *}L//fé %" L{LJ %
3.3 Optimality Conditions and Stopping Criterion e 7{{

The necessary and sufficient optimality conditions for the ADMM prob-
lem (3.1) are primal feasibility,

Az* + Bz — ¢ =10, (3.8)

-and dual feasibility, o
: /’ Te 07" + ATy N\ (3.9)
0 € dg(z) + BTy*, (3.10)

Here, @ denotes the subdifferential operator; see, e.g., {140, 19, 99].
{When f and g are differentiable, the subdifferentials f and dg can
be replaced by the gradients Vf and Vg, and € can be replaced by =.}
Since zFt! minimizes L (2", z,4%) by definition, we have that
0 € 9g(z"t1) + BTy + pBT(Aa**! 4+ B2FT —¢)

= dg(z*+) + BTyF 4 pBT Pk

= Bg(#*1) + BTy, /
This means that 287! and y**1 always satisfy (3.10), so attaining opti-

mality comes down to satisfying (3.8) and (3.9). This phenomenon is
analogous to the iterates of the method of multipliers always being dual

feasil?}e; se:', page 11. 1T
Sintee z**t! minimizes L,(z, 2% 4*) by definition, we have thdt
1. 0 € af(EFTY) + ATy + pAT (AxbH +BQ
— 8f (e + AT(y* + bl pB(F — L+1})
— 0f(aFY) + ATy 4 pATB(ZF — 244,
or equivalently,
t(pATB(Z %) € f(ab) + ATyt
This means that the quantity
l = pAT BT — ¥y

can be viewed as a residual for the dual feasibility condition (3.9).
We will refer to 5% as the dual residual at iteration k -+ 1, and to
PRl = Agftt 4 BzR* — ¢ as the primal residucl at iteration & + 1.

3.3 Optimality Conditions and Stopping Criterion 19

In summary, the optimality conditions for the ADMM problem con-
sist of three conditions, (3.8-3.10). The last condition (3.10) always
holds for (zF!, 28+ 4#+1); the residuals for the other two, (3.8) and
{3.9), are the primal and dual residuals 7*** and sF¥1 respectively.
These two residuals converge to zero as ADMM proceeds. (In fact, the
convergence proof in appendix A shows B (z’”‘1 - zf"‘) converges to zero,
which implies s* converges to zero.)

R . S . :

3.8.1 ! Stopping Criteria E Q‘“?\,\j

The residuals of the optimality conditions can be related to a bound on
the objective suboptimality of the current point, i.e., f (%) + g(z*) —
p*. As shown in the convergence proof in appendix A, we have

F@®) + g(#*) ~ p* < ="t 4 (@F —)T (3.11)

This shows that when the residuals r* and s* are small, the objective
suboptimality also must be small. We cannot use this inequality directly
in a stopping criterion, however, since we do not know z*. But if we
guess or estimate that ||z* — z*||s < d, we have that

k) + g(2") = p* < =M rF 4 dllst 2 < iy ilallrtla + dlis®la.

The middle or righthand terms can be used as an approximate bound
on the objective suboptimality (which depends on our guess of d).

This suggests that a reasonable termination criterion is that the
primal and dual residuals must be small, ¢.e.,

[rFllz < e and [ls¥]p < <29, (3.12)

where ¢! > 0 and "8l > § are feasibility tolerances for the primal and
dua!l feasibility conditions (3.8) and (3.9), respectively. These tolerances
can be chosen using an absolute and relative criterion, such as

& = /p ™™ + e max{| Azt{ja, | B2z llella},
Edual — \/ﬁﬁabs + ErclE!A’l‘ykuz’

where 2P > 0 is an absolute tolerance and €%l > 0 is a relative toler-
ance. (The factors \/p and \/n account for the fact that the £, norms are
in R? and R™, respectively.) A reasonable value for the relative stopping

ey 22

4

General Patterns

Structure in f, g, A, and B can often be exploited to carry out the
z- and z-updates more efficiently. Here we consider three general cases
that we will encounter repeatedly in the sequel: quadratic objective
terms, separable objective and constraints, and smooth objective terms.
Our discussion will be written for the z-update but applies to the z-
update by symmetry. We express the z-update step as

@(ﬂm) + (p/2) Az — @ (@a@» [3*}3)3

where v = =Bz + ¢ — u is a known constant vector for the purposes of
the xz-update.

4.1 Proximity Operator

First, consider the simple case where (A = If which appears frequently
in the examples. Then the xz-update is

ot :-arginin (f(z) + (p/2)|jz — vli3) .

As a function of v, the righthand side is denoted prox; ,(v) and is
called the prozimity operator of f with penalty p [127}. In variational

e

25

26 CGeneral Patterns

analysis,

Flo) =inf (£(z) + (/2] — v]5)

is known as the Moreau envelope or Moreau- Yosida regularization of f,
and is connected to the theory of the proximal point algorithm [144].
The z-minimization in the proximity operator is generally referred to
as proximal minimization. While these observations do not by them-
selves allow us to improve the efficiency of ADMM, it does tie the

z-minimization step to other well known ideas. T"f \{QC"
o

When the function f is simple enongh, the z-update (i.c., the prox-
imity operator) can be evaluated analytically; see [41] for many exam- ;?_ Q K)d; o Q{ ?‘\&
ples. For instance, if f is the indicator function of a closed nonempty
convex set C, then the z-updateds,

2" = argmin (F(z) + (p/2)

|z - vl|3) = He{v),

sesramtimigzdir

independently 6f"the choice of p. As an example, if f is the indicator
function of the nonnegative orthant R%, we have 2 = (v),, the vector
obtained by taking the nonnegative part of each component of v.

4.2 Quadratic Objective Terms otk i
Jop

Suppose f is given by the {convex) quadratic function Py Lt

-~ o T

flz)=(1/2)z" Pz + ¢"x %@’”

where P € 8%, the set of symmetric positive semidefinite n x n matzi-
ces, This includes the cases when f is linear or constant, by setting P,
or both P and g, to zero. Then, assuming P + pAT A is invertible, z™*
is an affine function of v given by

= at = (P + pAT A (pATv — q). (4.1)

/'/ In other words, computing the z-update amounts to solving a linear

// system with positive definite coefficient matrix P + pAT A and right-

d hand side pATv — ¢. As we show below, an appropriate use of numerical
2

linear algebra can exploit this fact and substantially improve perfor-
mance. For general background on mmerical linear algebra, see [47] or
190}; see |20, appendix C] for & short overview of direct methods.

. r 1 — s o ‘N’mz: ‘ ; ;
Goo K MY fn -'_xi R(+ ‘@JY‘ * % @ K= ”3’{> Mi?’i”‘"l’} ot

S a‘éefjﬁﬁ/uﬁﬁé wnl o,

i

4.2 Quadratic Objective Terms 27

4.2.1 Direct Methods

‘We assume here that a direct method is used to carry out the z-update;
the case when an iterative method is used is discussed in §4.3. Direct
methods for solving a linear gystem Fix = g arve based on first facioring
F = F\Fy. . Fy, into a product of simpler matrices, and then computing
z = F~1b by solving a sequence of problems of the form Fiz; = z;_1,
where z; = F['g and z = 2. The solve step is sometimes also called
a back-solve. The computational cost of factorization and back-solve
operations depends on the sparsity pattern and other properties of ¥,
The cost of solving Fx = g is the sum of the cost of factoring ' and
the cost of the back-solve.

In our case, the coefficient matrix is F = P + pAT A and the right-
hand side is g = pATv — ¢, where P € S and A € RP*", Suppose we
exploit no structure in A or P, i.e., we use generic methods that work
for any matrix. We can form F = P + pAT A at a cost of O(pn?) flops
(floating point operations). We then carry out a Cholesky factorization
of F at & cost of O(n?) flops; the back-solve cost is O(n?). (The cost of
forming g is negligible compared to the costs listed above.) When p is
on the order of, or more than n, the overall cost is O{prn*). (When p is
less than n in order, the matrix inversion lemma described below can
be used to carry out the update in O(p*n) flops.)

4.2.2 E=xploiting Sparsity

When A and P are such that F ig sparse (i.e., has enough zero entries
to be worth exploiting), much more efficient factorization and back-
solve routines can be employed. As an extreme case, if P and A are
diagonal n x n matrices, then both the factor and solve costs are
O(n). If P and A are banded, then so is F. If F' is banded with
bandwidth k, the factorization cost is O(nk?) and the back-solve cost
is O{nk). In this case, the z-update can be carried ocut at a cost
O{(nk?), plus the cost of forming F. The same approach works when
P+ pAT A has a more general sparsity pattern; in this case, a permuted
Cholesky factorization can be used, with permutations chosen to reduce
fili-in.

28 General Patterns

4.2.3 Caching Factorizations

Now suppose we need to solve multiple linear systems, say, Fa® = g,
i=1,..., ¥, with the same coeflicient matrix but different righthand
sides. This occurs in ADMM when the parameter p is not changed. In
this case, the factorization of the coeflicient matrix F' can be computed
once and then back-solves can be carried out for each righthand side.
If £ is the factorization cost and s is the back-solve cost, then the total
cost becomes ¢ + Ns instead of N(¢ + s), which would be the cost if
we were to factor ' each iteration. As long as p does not change, we
can factor P + pATA once, and then use this cached factorization in
subsequent solve steps. For example, if we do not exploit any structure
and use the standard Cholesky factorization, the xz-update steps can
be carried out a factor n more efficiently than a naive implementation,
in which we solve the equations from scratch in each iteration.

When structure is exploited, the ratio between t and s ig typically
less than n but often still significant, so here too there are performance
gains. However, in this case, there is less benefit to p not changing, so
we can weigh the benefit of varying p against the benefit of not recom-
puting the factorization of P 4 pAT A. In general, an implementation
should cache the factorization of P+ pAT A and then only recompute
it if and when p changes.

4,2.4 Matrix Inversion Lemma

‘We can also exploit structure using the matriz tnversion {emma, which
states that the identity

(P+pATA) V=P — pP7 L AT(I + pAPT1ATY 1 AP

holds when all the inverses exist. This means that if linear systems
with coefficient matrix P can be solved efficiently, and p is small, or
at least no larger than n in order, then the z-update can he computed
efficiently as well. The same trick as above can alsc be used to obtain
an efficient method for computing muttiple updates: The factorization
of I + pAP *A” can be cached and cheaper back-solves can be used
in computing the updates,

4.2 Quadratic Objective Terms 28

As an example, suppose that P is diagonal and that p <n. A naive
method for computing the update costs O(n3) flops in the first itera-
tion and O(n?) flops in subsequent iterations, if we store the factors of
P + pAT A, Using the matrix inversion lemma (i.e., using the righthand
side above) to compute the z-update costs O(np?) flops, an improve-
ment by a factor of (rn/p)? over the naive method. In this case, the
dominant cost is forming AP~1AT, The factors of I + pAP71AT can
be saved after the first update, so subsequent iterations can be car-
ried out at cost Of{np} flops, & savings of a factor of p over the first
update.

Using the matrix inversion lemma to compute zt can also make
it less costly to vary p in each iteration. When P is diagonal, for
example, we can compute AP 1AT once, and then form and factor
I+ pPAP1AT in iteration k at a cost of O(p®) flops. In other words,
the update costs an additional O{np) flops, so if p? is less than or equal
to n in order, there is no additional cost {in order) to carrying out

updates with p varying in each iteration. W%

7~ The same comments hold for the slightly more complex case of afonvex
quadratic function restricted to an affine set:

4.2.5 Quadratic Function Restricted to an Affine Set

flz) = /Dt Pr + ¢tz + 7, dom [= {z | Fz = g}. -~ Q @W

- Here, z7 is still an affine function of v, and the update involves solving
the KKT (Karush-Kuhn-Tucker) system

ot e ()

P+ pl FT Praans
F 0 v

All of the comments above hold here as well: Factorizations can be
cached to carry out additional updates more efliciently, and struciure
in the matrices can be exploited to improve the efficiency of the factor-
ization and back-solve steps.

&"‘ﬁM 2 Bergx +E e —2 4w = kb -
<T. Fx=4.

WY a4 Q}L@(“"} 4 Fly =

ve. BT + 4+ {3>< 'i‘ﬁ{wz—%“%) +F =0

Fx =3

0 aeﬂ pone Y E tﬁé (, .

30 deneral Patterns

4.3 Smooth Objective Terms

4.3.1 Iterative Solvers

When f is smooth, general iterative methods can be used to carry .
Wst%Of particular interest are methods that
only require the ability to compute V f{z) for a given z, to multiply a
vector by A, and to multiply a vector by AT, Such methods can scale
to relatively large problems. Examples include the standard gradient |
method, the (nonlinear) conjugate gradient method, and the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [113,
26}; see {135] for further details.

The convergence of these methods depends on the conditioning of
the function to be minimized. The presence of the quadratic penalty
term (p/2)|| Az — vi3 tends to improve the conditioning of the problem

and thus improve the performance of an iterative method for updating
x. Indeed, one method for adiusting the parameter p from iteration to-

iteration is to increase it until the iterati used to carry out

the updates converges quickly enough.

4,3.2 Early Termination

A standard technique to speed up the algorithm is to terminate the
iterative method used to carry out the z-update (or z-update) early,
i.e., before the gradient of f(z) + (p/2)||Az — v}i3 is very small. This
technique is justified by the convergence results for ADMM with inexact
niinimization in the z- and z-update steps. In this case, the required
accuracy should be low in the initial iterations of ADMM and then
repeatedly increased in each iteration. Farly termination in the z- or
z-updates can result in more ADMM iterations, but much lower cost
pet iteration, giving an overall improvement in efficiency.

4.3.3 Warm Start

Another standard trick is to initialize the iterative method used in
the z-update at the solution ¥ obtained in the previous iteration.
This is called a warm start. The previous ADMM iterate often gives
a good enough approximation to result in far fewer iterations {of the

4.4 Decomposition 31

iterative method used to compute the update x*1) than if the iterative
method were started at zero or some other default initialization. This
is especially the case when ADMM has almost converged, in whick case
the updates will not change significantly from their previous values.

4.3.4 Quadratic Objective Terms

Even when f is quadratic, it may be worth using an iterative method
rather than a direct method for the z-update. In this case, we can use
a standard (possibly preconditioned) conjugate gradient method. This
approach makes sense when direct methods do not work (e.g., because
they require too much memory) ot when A is dense but a fast method
is available for multiplying a vector by A or AT, This is the case, for
example, when A represents the discrete Fourier transform {90}

4.4 Decomposition

4.4.1 Block Separability

Suppose © = (1,...,2x) is a partition of the variable x into subvectors
and that f is separable with respect to this partition, t.e.,

J@) = flzr) + - + fnlawn),
where z; € R™ and Ef‘;lni = N. If the quadratic term {Az||3 is also
scparable with respect fo the partition, 4.e., AT A is block diagonal
conformably with the partition, then the augmented Lagrangian L, is
separable. This means that the z-update can be carvied out in parallel,
with the subvectors z; updated by N separate minimizations.

4.4.2 Component Separability

In some cases, the decomposition extends all the way to individual
components of , i.e.,

f(@) = filz1) + - + fulon),
where f;: R — R, and AT A4 is diagonal. The z-minimization step can
then be carried out via n scelar minimizations, which can in some
cases be expressed analytically (but in any case can be computed very
efficiently). We will call this component separability.

32 General Patterns

4.4.3 Soft Thresholding

For an example that will come up often in the sequel, consider f (z) = w’{‘é
Mzl (with A > 0) and A = I. In this case the (scalar) z;-update is w mf [
@} = argmin (A|zi| + (p/2)(zs — 1:)?). &
T4
ﬁ k&\}
Even though the first term is not differentiable, we can easily compute o

a simple closed-form solution to this problem by using subdifferentiai
calculus; see [140, §23] for background. Explicitly, the solution is

where the soft thresholding operator S is defined as

zF = il
; S)\/p(.) :: ‘i&w ' 5/{ (a")

or equivalently,

&,ﬁé)(x) = A
W o e éib (Xg} ‘

L/e 2ee
oe ol {c«:} Yo

%Vi:”%;a@?f X =

ﬁj;v{‘/{w“%/é ; 2ot xm%+?\/®< o

W ékffb) %K}f} J{'u}(‘*-"'% =0

Vg“k‘,{é >0

Su(a) = (a = k)4 — (-a~

Yet another formula, which shows that the soft thresholding operator
ig a shrinkage operator (i.e., moves a point toward zero), is

Sula) = (1 - n/ial)+a (4.2)

(for a +# 0). We refer to updates that reduce to this form as_element-
wise soft thresholding. In the language of §4.1, soft thresholding is the
proximity operator of the £; norm.

. U.)
v S Vi, W xg = AHMEER] b

W bare 31 (0) xA] —en

anid Q(&/ {)f}%(x) +PX =P
b X# 0O -
Wd‘;)\/ﬁ /W}{,»C?*j

\\)"'

5

Constrained Convex Optimization

The generic constrained convex optimization problem is

minimize f(z)

5.1
subject to x €C, (5.1)

with variable x € R", where f and C are convex. This problem can be
rewritten in ADMM form (3.1} as

minimize f{z) + g{z)
subject to =z —z2=1,

where g is the indicator function of C.
The augmented Lagrangian (using the scaled dual variable) is

Ly(z,2,u) = f(z) + 9{z) + (p/2)]l& — = + ull3,
so the scaled form of ADMM for this problem is

Pt = argmin (f(ﬂf) +(p/2)|z — 2" + “ki@)

B L (L ok
M el
Zk+1 @ k—f»lj)k+l. W ,}Mg_(g) Q/

U :muk+.ﬁc 4

33 e+l le ‘ ’

34 Constrained Convex Optimization

The z-update involves minimizing f plus a convex quadratic function,
i.e., evaluation of the proximal operator associated with f. The z-
update is Euclidean projection onto C. The objective f need not be
smooth here; indeed, we can include additional constraints {4.e., beyond
those represented by z € C) by defining f to be +-co where they are vio-
lated. In this case, the z-update becomes a constrained optimization
problem over dom f = {z | f(z) < oo},

As with all problems where the constraint is — z = 0, the primal
and dual residuals take the simple form

=gk - ok s = —p(zF — 7). [%ﬁ f”/'\‘/;,/f?)

In the following sections we give some more specific examples.

5.1 Convex Feasibility
5.1.1 Alternating Projections

A classic problem is to find a point in the intersection of two closed

nonempty convex sets. The classical method, which dates back to the

1930s, is von Neumann's alternating projections algorithm {166, 36, 21]:
FoRTT) .

ZkJrl = Hp(mk+1),

where IIp and Ilp are Euclean prjection onto the sets C and D,
regpectively.
In ADMM form, the problem can be written as

minimize f(z) + g{z)

subject to =z — 2 =0,
where f is the indicator function of € and ¢ is the indicator function
of P. The scaled form of ADMM is then
= Hc(zk — 'uk)
Zk+1 = Hp($k+1 _’_u.'\:)
= of bt zkﬂ,

(5.2)

50 both the z and z steps involve projection onto a convex set, as in
the classical method. This is exactly Dykstra’s alternating projections

5.1 Convex Feasibility 35

method [56, 9], which is far more efficient than the classical method
that does not se the dual varlable wu. o
Here, the norm of the primal residual ||z — z*{|; has a nice inter-
pretation. Since ¥ € € and z* € D, ||a* — 2*ll5 is an upper bound on
dist(C,D), the Euclidean distance between C and 7. If we terminate
with [[7¥|jz < ¢P'l, then we have found a pair of points, one in C and
one in D, that are no more than ¢ far apart. Alternatively, the point
(1/2)(z* + z*) is no more than a distance ™ /2 from both C and D.

5.1,2 Parallel Projections

This method can be applied to the problem of finding a peint in the
intersection of N closed convex sets Ay,...,./Ay in R™ by running the
algorithm in R™ with

C=A1 x-+x Ay, D= {(ml,...,a:N) c R™Y i$1 m;z:zz---:a;N}_
If £ = (z1,...,2ZN) c R, then projection onto C is

HC('E) = {HAl(ml)s e 3H.AN (SCN)),
and projection onto D is
IIp{r) = (Z,7,...,T},

where T = (1/N) Z,‘:\}:l x; is the average of z1,...,zxy. Thus, each step
of ADMM can be carried out by projecting points onto each of the sets
A; in parallel and then averaging the results:

ot = T, (25— uf)

N
1
K k-1 k
2= i E 1(::31-+ ~+ uf)
=

k+1

k1
; .

kel
‘Ui z

= ui‘ 4
Here the first and third steps are carried out in parallel, for i =1,..., N.
(The description above involves a small abuse of notation in dropping
the index i from z;, since they are all the same.) This can be viewed as a
special case of constrained optimization, as described in §4.4, where the
indicator function of ,A; N +-+ N A splits into the sum of the indicator
functions of each A;.

36 Constrained Convex Optimization

We note for later reference a simplification of the ADMM algorithm
above. Taking the average (over) of the last equation we obtain

ahtl _ gk g gttt - gk

combined with z8+! =71 + 7% (from the second equation) we see
that m*7! = 0. So after the first step, the average of u; is zero. This
means that zFt1 reduces to 78, Using these simplifications, we arrive
at the simple algorithm

b1 —k 3
aFtl = T, (z" - uf)
uf“ =l 4 (2t - ALY,

This shows that ui‘ is the running sum of the the ‘discrepancies’ mf — T

k
(assuming u® = 0). The first step is a parallel projection onto the sets
C;; the second involves averaging the projected points.

There is a large literature on successive projection algorithms and
their many applications; see the survey by Bauschke and Borwein [10]
for a general overview, Combettes [39] for applications to image pro-
cessing, and Censor and Zenios [31, §5] for a discussion in the context
of parallel optimization.

5.2 Linear and Quadratic Programming
The standard form quadratic program (QP) is

minimize (1/2)2T Pz + ¢* =
subject to Az =050, x>0
with variable z € R®; we assume that P € 8. When P =0, this

reduces to the standard form linear program (LP).
We express it in ADMM form as

(5.3)

minimize f{z} + g(z)
subject to =z — z2=0,

where
flz)=(1/2)2T Pz + ¢'z, domf = {z|Az=b}

is the original objective with restricted domain and g is the indicator
function of the nonnegative orthant R .

P

5.2 Linear and Quadratic Programming 37

T £o
The scaled form of ADMM consists of the iterations i f’fﬁ’{ cl

= argrpin (f(a:} + (/2| — 2F + u’”tl%)
AL (P k), E—PpoTECTION onh ﬁ?«g_ :

uk+1 = 'u,k + mk+1 - zk"'l.

N

As deseribed in §4.2.5, the z-update is an equality-constrained least
squares problem with optimality conditions

Pipl AT gkl + g — p(z" — u®) _0
A 0 v -b '

All of the comments on efficient computation from §4.2, such as storing
factorizations so that subsequent iterations can be carried out cheaply,
also apply here. For example, if P is diagonal, possibly zero, the first
z-update can be carried out at a cost of O(np?®) flops, where p is the
number of equality constraints in the original quadratic program. Sub-
sequent updates only cost O(np) flops.

5.2.1 Linear and Quadratic Cone Programming

More generally, any conic constraint & € K can be used in place of the
constraint x > 0, in which case the standard quadratic program (5.3)
becomes a quadratic conic program. The ounly change to ADMM is in
the z-update, which then involves projection onto K. For example, we

can solve a semidefinite program with x € 81 by projecting gkt gk
onto S" using an eigenvalue decomposition.

wﬂm"ﬁ
pox =t

6

£1-Norm Problems

The problems addressed in this section will help illustrate why ADNMM
is a natural fit for machine learning and statistical problems in particu-
lar. The reason is that, unlike dual ascent or the method of multipliers,
ADMM explicitly targets problems that split into two distinct parts, f
and g, that can then be handled separately. Problems of this form are
pervasive in machine learning, because a significant number of learning
problems involve minimizing a loss function together with a regulariza-
tion term or side constraints. In other cases, these side constraints are
introduced through problem transformations like putting the problem
in consensus form, as will be discussed in §7.1.

This section contains a variety of simple but important problems
involying £y norms. There is widespread current interest in many of these
problems across statistics, machine learning, and signal processing, and
applying ADMM yields interesting algorithms that are state-of-the-art,
or closely related to state-of-the-art methods. We will see that ADMM
naturally lets us decouple the nonsmooth £; term from the smooth loss
term, which is computationally advantageous. In this section, we focus on
the non-distributed versions of these problems for simplicity; the problem
of distributed model fitting will be treated in the sequel.

38

A,

@

i

L

\;;‘7\"’:;{-'
ol

6.1 Least Absolute Deviations 39

The idea of £; regularization is decades old, and traces back to
Huber’s [100] work on robust statistics and a paper of Claerbout [38]
in geophysics. There is a vast literature, but some important modern
papers are those on total variation denoising [145], soft thresholding
[49], the lasso [156], basis pursuit [34], compressed sensing [50, 28, 29},
and structure learning of sparse graphical models [123).

Because of the now widespread use of models incorporating an £;
penalty, there has also been considerable research on optimization algo-
rithms for such problems. A recent survey by Yang et al. [173] com-
pares and benchmarks a number of representative algorithms, inciud-
ing gradient projection [73, 102], homotopy methods {52], iterative
shrinkage-thresholding [45], proximal gradient {132, 133, 11, 12], aug-
mented Lagrangian methods [175], and interior-point methods [103].
There are other approaches as well, such as Bregman iterative algo-
rithms [176] and iterative thresholding algorithms (51} implementable
in a message-passing framework.

6.1 Least Absolute Deviations

A simple variant on least squares fitting is least absolute deviations,

in which we minimize || Az — b||; instead of |lAx — bll3. Least absolute

deviations provides a more robust fit than least squares when the data

contains large outliers, and has been used extensively in statistics and

econometrics. See, for example, [95, §10.6], {171, §9.6], and (20, §6.1.2}.
In ADMM form, the problem can be written as

i mlmmlzém ﬂz“l ST f ‘ - Z/ i)
. subject to Az —2=1b, e o
me«f-wmﬁam\ U
f= -0 and g =1 - l1.t Exploiting the special form of f and g, and
assuming ATA s invertible, ADMM can be expressed as
2= (ATAYTLAT (b + 55 - uP)

2 = Sl/p(A$k+1 — b+ uk)
wFtl = b ARt — PR g
where the soft thresholding operator is interpreted elementwise. As in

§4.2. the matrix AT A can be factored once; the factors are then used
in cheaper back-solves in subsequent z-updates.

40 £,-Norm Problems

The z-update step is the same as carrying out a least squares fit
with coefficient matrix A and righthand side b + 2 — u¥, Thus ADMM
can be interpreted as a method for solving a least absolute deviations
problem by iteratively solving the associated least squares problem with
a modified righthand side; the modification is then updated using soff
thresholding. With factorization caching, the cost of subsequent least
squares iterations is much smaller than the initial one, often making
the time required to carry out least absolute deviations very nearly the
same as the time required to carry out least squares.

6.1.1 Huber Fitting

A problem that lies in between least squares and least absolute devia-
tions is Huber function fitting,

minimize ¢™P(Az — b),
where the Huber penalty function g™ is quadratic for small arguments
and transitions to an absolute value for larger values. For scalar o, it
is given by

hub _ CL?‘/Q |CLE <1
g o) = {|a| —1/2 lal>1

and extends to vector arguments as the sum of the Huber functions
of the components. (For simplicity, we consider the standard Huber
function, which transitions from quadratic to absolute value at the
level 1.)

This can be put into ADMM form as above, and the ADMM algo-
rithm is the same except that the z-update involves the proximity oper-
ator of the Huber function rather than that of the £; norm:

1
1+p

AR P (A:z:"sz — b+ uk) +

s k
- s Sty1/0(Az 4).

When the least squares fit z' = (AT A) b satisfies |x®| < 1 for all 4, it
is also the Huber fit. In this case, ADMM terminates in two steps.

6.2 Basis Pursuit 41

Basis pursuit is the equalityaconstrainéd ¢1 minimization problem

| minimize ||=[];

bbject to Az =10, i
with variable € R?, data A € R™*", b ¢ R™, with m < n. Basis pur-
suit is often used as a heuristic for finding a sparse solution to an
underdetermined system of linear equations. It plays a central role in
modern statistical signal processing, particularly the theory of com-

pressed sensing; see [24] for a recent survey.
In ADMM form, basis pursuit can be written as

mnaize Flz) + |zlh

&subject to z—2z=0,
whcrewmior function of {z € R [Ix = b}y The ADMM
algorithm 15 then _ B

ML= (z""‘ — uky

Zk—}—l - Sl/p($k+l + uk‘-)
kbl . uk 1+ karl _ Zk+1, |

x

mﬁg@-

where II is projection onto {@ € R" | Az = b}, The z-update, which
involves solving a linearly-constrained minimum Fuclidean norm prob-
lem, can be written explicitly as

b= (T — AT(AATY T A) (2" — ub) + AT(AAT) b,

Again, the comments on efficient computation from £4.2 apply; by
caching a factorization of AAT, subsequent projections are mmch
cheaper than the first one. We can interpret ADMM for basis pur-
suit as reducing the solution of a least £; norm problem to solving a

sequence of minimum Fuclidean norm problems. For a discussion of
similar algorithms for related problems in image processing, see [2].

A vecent class of algorithms called Bregman iterative methods have
attracted considerable interest for solving ¢; problems kike basis pursuit.
For basis pursuit and related problems, Bregman iterative regularization
[176] is equivalent to the method of multipliers, and the split Bregman
method [88] is equivalent to ADMM [68].

42 ¢;-Norm Problems

6.3 General £; Regularized Loss Minimization

Consider the generic problem
minimize {{z) + Aljz|1, (6.1)

where [is any convex logs function,
Tn ADMM form, this problem can be written as

minimize {(x) + g(z)
subject to z — z=0,

where g{z) = Aliz|l1. The algorithm is

ghtl = a,rg;nin (l(:c) + (p/2|lx — 2 + uk||§)

2= 8y (P + u®)

wFHl = oF 4 g AL

The z-update is a proximal operator evaluation. If [is smooth, this can
be done by any standard method, such as Newton’s method, a quasi-
Newton method such as L-BFGS, or the conjugate gradient method.
If [is quadratic, the z-minimization can be carried out by solving lin-
ear equations, as in §4.2, In general, we can interpret ADMM for €,
regularized loss minimization as reducing it to solving a sequence of &
(squared) regularized loss minimization problems.

A very wide variety of models can be represented with the loss
function I, including generalized linear models {122] and generalized
additive models [94]. In particular, generalized lincar models subsume
linear regression, logistic regression, softmax regression, and Poisson
regression, since they allow for any exponential family distribution. For
general background on models like £ regularized logistic regression, see,
e.g., |95, §4.4.4].

In order to use a regularizer g(z} other than [}z]|;, we simply replace
the soft thresholding operator in the z-update with the proximity oper-
ator of g, as in §4.1.

6.4 Lasso 43

An important special case of {6.1) is ¢; regularized linear regression,
also called the lasso [156]. This involves solving

jn'mize (1/2)|ACU — bﬁ + n,}g!il, (6.2)

where A > 0 is a scalar regularization parameter that is usually cho-
gen by cross-validation. In typical applications, there are many more
features than training examples, and the goal is to find a parsimo-
nious model for the data. For general background on the lasso, sce [95,
§3.4.2]. The lasso has been widely applied, particularly in the analy-
sis of biological data, where only a small fraction of a huge number of
possible factors are actually predictive of some outcome of interest; see
(05, §18.4] for a representative case study.
In ADMM form, the lasso problem can be written asg

minimize J z) + g(z)
| subject to z—2z=0, &

where f(z) = (1/2)]|Az — b||? and g(z) = A|z|1. By §4.2 and §4.4,
ADMM becomes
P A (ATA + pI)—l(ATb+ ,O(Zk _ uk))

E+1 o, k41 k
+ S,\/p(x + u)
— ,uk‘ + 5\,:k+1 . Zk-H.

z

Note that ATA + pl is always invertible, since p > 0. The z-update
is essentially a ridge regression (i.e., quadratically regularized least
squares) computation, so ADMM can be interpreted as a method for
solving the lasso problem by iteratively carrying out ridge regression.

When using a direct method, we can cache an initial factorization to
make subsequent iterations much cheaper. See [1] for an example of an
application in image processing.

6.4.1 Generalized Lasso

The lasso problem can be generalized to

minimize {1/2)|Az — b|% + Al|Fz|:, (6.3)

44 ¢,-Norm Problems

where I is an arbitrary Hnear transformation. An important special
case is when F € R("1)*7 ig the difference matrix,

1 j7=:4+1
Fy={ -1 j=i
0 otherwise,

and A = I, in which case the generalization reduces to
minimize (1/2)||x — bl|% + ,\El-:ll |Zit1 — 4] (6.4)

The second term is the total variation of z. This problem is often called
total variation denoising [145], and has applications in signal process-
ing. When A =T and F is a second difference matrix, the problem (6.3)
is called ¢; trend filtering {101].

In ADMM form, the problem (6.3) can be written as

minimize (1/2)||4z — bl|2 + Miz|s
subject to Fzr — 2 =0,

which yields the ADMM algorithm

= (AT A+ pFT)y~ HATh + pFT(ZF — uk))
oL SA/p(F$k+1 -{"uk)
S O A s
For the special case of total variation denoising (6.4), ATA + pFTF
is tridiagonal, so the z-update can be carried out in O(n) flops {90, §4.3].
For ¢; trend fltering, the matrix is pentadiagonal, so the z-update is
still O(n) flops.

6.4.2 Group Lasso

As another example, consider replacing the regularizer [zl with
2%11 |z:]|2, where = = (z1,...,zx), with z; € R™. When n; =1 and
N = n, this reduces to the £; regularized problem (6.1). Here the reg-
ularizer is separable with respect to the partition z1,...,xy but not
fully separable. This extension of ¢; norm regularization is called the
group lasso [177] or, more generally, sum-of-norms reqularization [136].

6.5 Sparse Inverse Covariance Selection 45

ADMM for this problem is the same as above with the z-update
replaced with block soft thresholding

zf-l—l ISA/p($§+l 4 u"")} i=1,...,N,

where the vector soft thresholding operator S, : R™ —+ R™ is

Sx(a) = (1 = &/ |al2)+a,

with 8,(0) = 0. This formula reduces to the scalar soft threshold-
ing operator when a is a scalar, and generalizes the expression given
in (4.2).

This can be extended further to handle overlapping groups, which
is often useful in bioinformatics and other applications (181, 118]. In
this case, we have N potentially overlapping groups G; C {1,...,n} of
variables, and the objective is

N
(L/2)| Az — BlI3 + A Mzl
=1
where z¢, is the subvector of = with entries in (. Because the groups
can overlap, this kind of objective is difficult to optimize with many
standard methods, but it is straightforward with ADMM. To use
ADMM, introduce N new variables z; € RI!%! and consider the problem

minimize (1/2)||Az — bj|3 + /\Z?’;l lzifiz
subject to @y — 2 =0, i=1,...,N,

with local variables z; and global variable z. Here, % is the global
variable z's idea of what the local variable x; should be, and is given
by a linear function of z. This follows the notation for general form
consensus optimization outlined in full detail in §7.2; the overlapping
group lasso problem above is a special case.

6.5 Sparse Inverse Covariance Selection

Given a dataset consisting of samples from a zero mean Gaussian dis-
tribution in R",

a; ~N{(0,%), i=1,...,N,

46 ¢£,-Norm Problems

consider the task of estimating the covariance matrix £ under the prior
assumption that 5! is sparse, Since (X71);; is zero if and only if
the ith and jth components of the random variable are conditionally
independent, given the other variables, this problem is equivalent to the
structure learning problem of estimating the topology of the undirected
graphical model representation of the Gaussian [104]. Determining the
sparsity pattern of the inverse covariance matrix £1 is also called the
covariance selection problem.

For n very small, it ig feasible to search over all sparsity patterns
in &~ since for a fixed sparsity patlern, determining the maximum
likelihood estimate of X is a tractable {convex optimization) problem.
A good heuristic that scales to much larger values of n is to minimize
the negative log-likelihood (with respect to the parameter X =¥1)
with an £; regularization term to promote sparsity of the estimated
inverse covariance matrix [7]. If § is the empirical covariance matrix
(1/N)S>¥, asal, then the estimation problem can be written as

minimize Tr(SX) — logdet X + A||X|j1,

with variable X € 8%, where || - ||; is defined elementwise, d.e., as the
sum of the absolute values of the entries, and the domain of logdet is
S, the set of symmetric positive definite n x n matrices. This is a
special case of the general £; regularized problem (6.1) with (convex)
loss function [(X) = Tr{SX) — logdet X.

The idea of covariance selection is originally due to Dempster [48]
and was first studied in the sparse, high-dimensional regime hy Mein-
shausen and Biithlmann [123]. The form of the problem above is due to
Banerjee et al, [7]. Some other recent papers on this problem include
Friedman et al.’s grephical lasso [79], Duchi et al. [55], Lu [115], Yuan
1178], and Scheinberg et al. [148], the last of which shows that ADMM
outperforms state-of-the-art methods for this problem.

The ADMM algorithm for sparse Inverse covariance selection is

X*+ .= argmin (’I‘r(SX) —logdet X + (p/2)}X — zk Uk“?n‘)
X

Zk+l .

I

wganin (A2 + (/21X ~ 2 + UM}

gL = gk xR gt

6.5 Sparse Inverse Covariance Selection 47

where || - [Ir is the Frobenius norm, 4.e., the square root of the sum of
the squares of the entries.

This algorithm can be simplified much further. The Z-minimization
step is elementwise soft thresholding,

Z%+1 = SA/p(X,;-':';+1 + U.g-),

and the X-minimization also turns out to have an analytical solution.
The first-order optimality condition is that the gradient should vanish,

S—X""4p(X —ZF 4 UMY =0,
together with the implicit constraint X > 0. Rewriting, this is
pX — X~V =p(ZF - U% — 8. (6.5)

We will construct a matrix X that satisfies this condition and thus min-
imizes the X -minimization objective. First, take the orthogonal eigen-
value decomposition of the righthand side,

p(Z% — U*) — 8 = QAQT,

where A = diag(Ay,...,A,), and @QTQ = QQT =I. Multiplying (6.5)
by Q7 on the left and by @ on the right gives

pX — X1 =A,

where X = QT X(Q. We can now construct a diagonal solution of this
equation, 1.e., find positive numbers Xy; that satisfy pXy — 1/ Xy = A

By the quadratic formula,
Ai + 1,:‘/\% + 4p
L PR

1

whicl are always positive since p > 0. It follows that X = QXQT sat-
isfies the optimality condition {6.5), so this is the solution to the X-
minimizatior. The computational effort of the X-update is that of an
eigenvalue decomposition of a symmetric matrix.

