
Homework 8

Michael Overton, Numerical Computing, Spring 2017

April 27, 2017

Please remember that you are supposed to do your own work. So, while it is fine
to consult together with other students, as long as this is acknowledged, you are
not supposed to be submitting multiple copies of collaborative work!

1. Any three of the five QR exercises in my notes: Eigenvalues, Singular
Values and QR. Use the notation in the notes.

2. Download the file WallOfWindows.jpg on the course web page and read
it into Matlab using A=imread(WallOfWindows.jpg,’jpg’). Display it
with image(A). If you type whos A you will see that A is a 3456×4608×3
three-dimensional “matrix” (or tensor) of unsigned 8-bit integers. Split
these into red, green and blue components, each a 3456× 4608 matrix of
unsigned integers, via A_red=A(:,:,1), etc, and convert these to double
precision matrices using double. Then compute the economy-sized SVD
of each component matrix separately. (If you like you can transpose the
component matrix first so it has more rows than columns, as in the notes,
but this is actually not necessary; we made this assumption only for con-
venience.) Then, for each component matrix, compute its nearest rank
r approximation (see p. 6 of the notes Eigenvalues, Singular Values and
QR), for r = 10, 20, 30 and 100. Recombine them into the 3456×4608×3
format, and then display the resulting four pictures using image, labelling
them appropriately.

This scheme allows us to store low rank approximations to pictures by
saving only the relevant left and right singular vectors and values: state
how much storage is required for rank r. However, computing the SVD
of such big matrices takes a long time. So, write another code to obtain
approximate singular values and left and right singular vectors instead, us-
ing the block power method and exploiting the eigenvector-singular vector
equivalences you found in HW5, either using those in question 5 (a) and
(b) or the one in question 6. If you use the equivalences in question 5,
avoid computing ATA and AAT explicitly since this is also expensive for
such large matrices, which is possible since you can compute products such
as (ATA)X via A’*(A*X), where X has just r columns. If you use the
equivalence in question 6, you can also do the relevant products efficiently.
We don’t need to compute the singular values and vectors to high accu-
racy, so you don’t need to run many iterations of the block power method:
ideally, we want to get pictures that are as good as the previous ones but
that are computed faster than using svd. State whether you are able to
accomplish this or not, for r = 10, 20, 30 and 100 separately, displaying
the resulting images as before.
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3. Consider the footnote at the bottom of p. 86 of A&G. Here ti = ih for
i = 1, 2, . . . and a fixed small number h. So, writing x = ti, we have
ti+1 = (i+ 1)h = x+ h. Hence the formula states that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2).

Assuming that f is four times continuously differentiable, i.e., that the
fourth derivative f ′′′′ exists and is continuous, prove that this formula for
f ′′ is correct as follows:

• write down a formula for f(x+ h) in terms of h, f(x), f ′(x), f ′′(x),
f ′′′(x) and f ′′′′(ξ1) for some ξ1 ∈ [x, x+ h], using the Taylor formula
on p. 5 of A&G

• write down another similar formula for f(x − h), with a remainder
term f ′′′′(ξ2) for some ξ2 ∈ [x− h, x]

• combine these formulas by either adding them or subtracting them
(one will work, one will not) and divide through by h2 to obtain the
desired result.

This derivation also tells you the constant in the O(h2) (this involves the
two remainder terms). What is it? Although ξ1 6= ξ2, by continuity of
f ′′′′, you can combine these two remainder terms to obtain just one term,
using the intermediate value theorem on p. 10 of A&G.

4. Write a Matlab function findroot to find a root of a function f of one
variable using a hybrid of the bisection method and Newton’s method. The
inputs should be two numbers a and b with a < b and f(a)f(b) ≤ 0 and two
“anonymous functions” f and fderiv, which are to be used to evaluate
f and its derivative f ′ (see below for an example of anonymous function
usage). Your findroot should return an output r, which is supposed to be
a root of f with the highest accuracy you can find, with a ≤ r ≤ b, along
with a vector iterates of all the iterates xk where f was evaluated,
(excluding the inputs a and b), each of which is either a Newton
iterate xN or a bisection iterate xB, with the last iterate equaling
r, as well as another vector info with components set to 0 when the
corresponding iterate xk was computed by bisection or 1 when it was
computed by Newton.

• Start by evaluating f(a) and f(b), quitting with r set to a or b re-
spectively if f(a) or f(b) is exactly zero, or quitting with r set to nan

if f(a)f(b) > 0.

• Your program should update the left end point a and the
right end point b so that they always satisfy a < b and
f(a)f(b) < 0, and it should save the values f(a) and f(b) so f
does not have to be evaluated at any point more than once.
Also keep track of whether f was evaluated most recently
at a or at b: initially, let’s say this is a.

• At each iteration, start by computing the Newton update
xN = x− f(x)/f ′(x), where x is the latest point where f was
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evaluated (either a or b). Reject xN if it lies outside the
interval [a, b] and replace it with the bisection point xB =
(a+ b)/2 instead. Evaluate f at the new point xN (if it lies in
[a, b]) or xB (otherwise) and, depending on the sign of f at
the new point, update either a or b (not both!) to this new
point, so that f still has opposite signs on a and b. Notice that
in the computation of xN , you don’t have to check whether f ′(x) is
zero since, if it is zero, the Newton step will be ±∞ which will be
rejected.

• Eventually, the function should be taking only Newton steps, and
you should see quadratic convergence if you print the iterates (more
on this below).

• Quit when findroot is no longer making any significant change to
the current x. You could just check to see if the new x, say xk+1,
is the same floating point number as xk, but this might result in an
infinite loop. So, it’s better to check whether |xk+1 − xk|/|xk| ≤ τ ,
where τ is a little bigger than the machine epsilon: try 10−15 and
make it larger if necessary. Since xk could be zero, a better test
might be |xk+1 − xk|/max(1, |xk|) ≤ τ , but for the examples below
it should not make much difference.

• Use a maximum iteration count to ensure your code does not have
an infinite loop, but try to ensure that this is never reached.

An example of anonymous function usage is:

f = @(x)sin(x)

fderiv = @(x)cos(x)

Test findroot on:

(a) f(x) = x3 − 2, [a, b] = [1, 2]

(b) f(x) = exp(x)− 2, [a, b] = [−10, 10]

(c) f(x) = 2 cosh(x/4)− x, [a, b] = [2, 4] (see A&G, p. 40 and 48)

(d) f(x) = 2 cosh(x/4)− x, [a, b] = [8, 10]

(e) f(x) = sin(x), [a, b] = [2π + 10−4, 3π + 10−4] (get π from pi)

Make sure you use the correct formula for the derivative! If you get this
wrong, findroot should still work because of the bisection steps but it
will be slow. To make sure you have the right formula, check it (before
calling findroot) against the finite difference formula (f(x+h)−f(x))/h
(see p. 72 of my book).

For each of these five cases:

• Print all the iterates, along with a B for iterates obtained by bisec-
tion or N for Newton. Eventually, all the iterates should be Newton
iterates: if not, you probably have a bug in your code. With a pen,
underline the digits that are correct compared to the true answer x∗.
You can easily compute x∗ via a formula for cases (a), (b) and (e),
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but you will have to set x∗ to your final computed answer r for (c)
and (d) (these are given, but only to 9 digits, on A&G p. 48). Do
you observe quadratic convergence, with the number of correct dig-
its approximately double the number of correct digits for the previous
iterate towards the end?

• Then, for k = 1, 2, . . ., print the ratios

|xk+1 − x∗|
|xk − x∗|2

noting that this ratio may be meaningless for the final one or two
iterates because of rounding errors. Discarding these, does this ratio
converge, and if so, does it converge to

M =
|f ′′(x∗)|
2|f ′(x∗)|

as it should according to the quadratic convergence theory? Clearly
answer this question for each of the five examples, also printing the
value of M , for which you will need to use the formula for f ′′.

Finally, test findroot on other examples that you make up, and once you
are satisfied it is working, send an email to s70421g2@cs.nyu.edu with
findroot.m attached. The grader will test it some more on functions
unknown to you.

5. Consider the five-point Laplacian matrix with the column-wise ordering
on p.170-172. This matrix can be computed by:

% G is an N+2 by N+2 full matrix with border entries set to zero

G = numgrid(’S’,N+2); % ’S’ means square with columnwise ordering

% A is the n by n five-point Laplacian sparse matrix, where n=N^2

A = delsq(G); % "del-squared" is a common term for the Laplacian

(a) For some value of N that you choose, between 10 and 100, compute
G and A and view the nonzeros of A with spy(A,’bx’), using the
zoom tool if necessary, verifying that the structure is as claimed on
p. 171-172. Also compute its lower triangular Cholesky factor via
L=chol(A,’lower’) and superimpose its nonzeros on the same plot,
via hold on, spy(L,’ro’). Observe how much L is filled in com-
pared to A. The number of nonzeros is shown at the bottom of the
spy plot, but you can also compute this directly with nnz. What are:

• the number of nonzeros in A, as an approximate formula in terms
of N? This is easy, just looking at the definition or at the spy
plot. You don’t need to give an exact formula.

• the number of nonzeros in L as an approximate formula in terms
of N? You can estimate this from the spy plot. Again, you don’t
need to give an exact formula.

(b) Reduce the fill-in in L by using ichol to compute the incomplete
Cholesky factorization of A (see p. 188–189 of A&G). Experiment
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with opts.type=’ict’, opts.droptol=......, L=ichol(A,opts).
For N = 100, generate a log-log plot with the drop tolerance on the
x-axis (e.g., 10−6, 10−5, . . . , 1), showing both

• the number of nonzeros in the incomplete Cholesky factor L

• the norm of the “discrepancy” LLT−A, which would be zero if L
were the true Cholesky factor of A (since this is a sparse matrix,
use the 1-norm; computing the 2-norm of a sparse matrix is more
difficult to do efficiently, since it is the maximum singular value).

6. Implement the Conjugate Gradient (CG) method as described in A&G,
p. 184. Notice that the termination criterion in the while loop compares
the square of the residual norm, δk = rTk rk = ‖rk‖2, to the square of tol.
Also include a max iteration count to make sure your code does not go into
an infinite loop. The denominator of the formula for αk is 〈pk, sk〉 which
means pTk sk. Add a test to make sure that αk is positive, terminating the
iteration with an error if it is not. If αk is not positive, what does this
imply about the matrix A and why? Test your code on:

(a) A randomly generated symmetric positive definite 10 by 10 matrix A,
computed by B=randn(10);A=B’*B; and a random right-hand-side
b. If it does not terminate with a residual that is close to zero in
exactly 10 iterations, you have a bug in your code.

(b) The discrete Laplacian matrix A in the previous question, with N =
100, with the right-hand side b set to the vector of all ones. Try
setting the tolerance to 10−8 at first but if this takes too long, try
increasing it to 10−7 or 10−6. Pass the computed residual norms,√
δk, out of the CG code and plot them using semilogy against

the iteration number. Obtain the running time with tic...toc or
timeit and compare this with the time to compute L=chol(A) and
the time for x=A\b. Since backslash uses Cholesky factorization, you
would expect these last two to be about the same, but they may not
be because backslash may be using pivoting to reduce fill-in which
chol does not do by default. Also, plot the solution obtained by CG
and the one obtained by backslash by “reshaping” the solutions from
a vector of length n = N2 to an N ×N matrix and using mesh. They
should look identical: do they?

(c) Now we consider the matrix

A = I +K−1BBTK−1

where K is the discrete Laplacian called A earlier, I is the identity
matrix of the same dimension, and B is an N2×r matrix, with r much
less than N2, randomly generated by sprand(N^2,r,1). The final
argument 1 to sprand implies that B is quite dense, and therefore
probably has rank r.

• Explain why this new A is positive definite.

• Let µj , j = 1, . . . , N2, denote the eigenvalues of K−1BBTK−1.
Assuming B has rank r, how many of the µj are nonzero? (One
way to answer this is to first consider the rank of C = K−1B,
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assuming B has rank r, and then consider the rank of CCT ,
remembering that eigenvalues and singular values are the same
thing for symmetric positive definite matrices.) What does this
tell you about the eigenvalues of A, and, in particular, how many
distinct eigenvalues A has?

• For large enough N , it will be impossible to compute the matrix
A explicitly because you will run out of memory. However, we
can still efficiently use the Conjugate Gradient method on this
matrix, since all we need are matrix vector products Av, which
can be computed efficiently using the \ operator along with * and
+, along with plenty of parentheses to make sure the operations
are carried out in the right order. Rewrite your CG code so that,
instead of an input parameter A, it accepts an anonymous func-
tion Avmult that computes Av. After testing to make sure this is
working properly, solve the new problem for N = 100 and r = 50,
setting b to the vector of all ones and the tolerance as previously
(or larger, if this takes too long). Because of the favorable eigen-
value distribution of A, CG should not require many iterations
(the theoretical number is given in the middle of p. 187, namely,
the number of distinct eigenvalues of A, but rounding errors may
increase this substantially). Plot the computed residual norms
as previously, as well as the computed solution using reshape

and mesh.

• Then, experiment with how large you can make N , setting r =
N/2, and still have CG terminate with a reasonable tolerance in
a reasonable amount of time. (The definition of “reasonable” is
entirely up to you!)

(d) Finally, replace I in the definition of A by a random positive diagonal
matrix D generated by D=sprand(speye(N^2)). This destroys the
favorable eigenvalue structure of A. Does this result in CG taking
much longer to run? If so, try speeding it up by using D as a pre-
conditioner P : see the preconditioned CG algorithm on p. 188. Does
this make much difference, and if so, why?

Acknowledgment: the definition of A in (c) was suggested by Prof. Georg
Stadler. It arises in connection with inverse problems in PDEs.
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