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Google uses a famous scheme, PageRank, to rank web pages. We start with
an n X n adjacency matric M, corresponding to a web of n pages, with M;; =1
if page j has a link to page ¢ and M;; = 0 otherwise. Let N; be the number of
pages that page j points to. Then, as long as N; > 0, column j of a matrix A
is set according to the following rule (see A&G p. 224)

1. _
J 0 otherwise.

By construction, the jth column of A sums up to one. However, if V; = 0, which
happens when page j does not point anywhere (the “dangling node” case), this
does not work, so instead we set (see A&G p. 225)

1
Ajj=—foralli=1,...,n.
n

Then the jth column of A sums to one in this case too.
The “Google matrix” is then defined to be (see A&G, p. 226)

1
G=0aA+(1-a)—ee”
n
where « is a “damping parameter” satisfying 0 < o < 1 and e = [1,...,1]T.
Let us denote the eigenvalues of G by Aq,..., A, where

A1l > A2 = [Ag] = -+ > A

that is, ordered by “complex modulus” or “complex magnitude” (see A&G,
p. 71).

1. Show that each column of G also sums to one, and therefore |G|y = 1.

2. On p. 226 of A&G it says we could use any vector u instead of (1/n)e in
the equation for G, but if we did that, the columns of G might not sum
to one. What condition on u would we need to make sure the columns of
G still sum to one? (We will stick with (1/n)e in the definition of G.)

3. Show that e, the vector of all ones, is an eigenvector of the transpose of
the Google matrix corresponding to the eigenvalue one. (Equivalently,
el is a “left eigenvector” of G corresponding to the eigenvalue one, since
eTG = eT'.) Since the eigenvalues of G and G7 are the same, this means
that G also has an eigenvalue one, but we do not know the corresponding
ergenvector x. This is what PageRank computes, using the power method.



4.

Look at the bottom of p. 77 in A&G. This defines the spectral radius of
a matrix B, denoted p(B), which is the maximum of the eigenvalues of
B measured in complex modulus. Thus, using the ordering of \; given
above, p(G) = |A1|. The last line on p. 77 explains that, by definition of an
induced norm, the spectral radius of B is always less than or equal to || B||
for any induced norm. What does this tell you about all the eigenvalues
of G7

The matrix G is a “nonnegative” matrix, in the sense that all its entries
Gi; > 0 (this is not the same as being positive semidefinite; in fact, G is not a
symmetric matrix). The remarkable theory of nonnegative matrices says that
only one eigenvalue of G, namely A;, equals one, and that the eigenvector x
corresponding to the eigenvalue one is also nonnegative (or nonpositive, since
we can always scale it by —1, but it’s more convenient to take it as nonnegative).
It also says that all the other eigenvalues of G, A, j = 2, ..., n, satisfy |\;| < L.

5.

Show that this last conclusion is not true if we allow o = 1. In particular,
could all the eigenvalues of G be equal to one? What would this say about
the page links in the web?

What are the eigenvalues of G when o = 07

Write a function whose input is the adjacency matrix M as a sparse ma-
trix, and the damping parameter «, that computes the matrices A and G
and the eigenvalues of G using eig. This routine requires its input matrix
to be full, not sparse, and anyway although A is sparse, G is completely
full. Load the adjacency matrix M for the Google 500 graph (see the
course web page) which is small enough that the full format for G is not a
problem and eig is fast. Setting o = 0.85, compute the eigenvectors and
eigenvalues of G with [X,Lambdal = eig(G), and plot all the eigenval-
ues as complex numbers in the complex plane: lambda=diag(Lambda) ;
plot(real(lambda),imag(lambda),’rx’), axis equal (this plots red
crosses). Repeat for o = 0.5 and « = 0.25, using different colors and
symbols. Show them all on the same plot and also plot circles of radius
« in compatible colors. Use legend to show what’s what. What do you
notice about the eigenvalues?

Again for each of @« = 0.85, 0.5 and 0.25, set = to the column of X
corresponding to the eigenvalue one in lambda (the eigenvalues may not
be delivered in sorted order), normalize it so ||z|[y = 1, and double
check that it is a positive vector (multiplying by —1 if it is a nega-
tive vector; if it has mixed signs you have a bug). Sort its compo-
nents with [xsort,index]=sort(x,’descend’), and print the largest 10
components along with the corresponding URL names in url, namely
url(index(1:10)). These are the highest 10 ranked web pages in the
Google 500 graph (the result may depend on «).

Now write a function to implement the power method for computing the
desired page rank vector z, which requires matriz-vector products using the
formula for G: do not store the full matrix G. A key point is that you can
multiply (1/n)ee? onto a vector v to give you (1/n)ee’v = (1/n)(efv)e



without computing or storing ee”. For the same reason, do not explicitly
replace the zero columns of A by the vectors (1/n)e; you just need to
remember to include these in the matrix vector product.

Set the inital vector to (1/n)e. Since G has column sums equal to one,
you can omit the normalization step in the power method: the vector
should always have 1-norm equal to one. Since we know the eigenvalue is
one, instead of the Rayleigh quotient we can use the eigenvector residual
norm u = ||Gv — v||1 as a termination criterion (but compute Gv only
once, not twice, in the loop). Test your code on the Google 500 matrix
with a = 0.85, running it until p is “sufficiently small”, and make sure
that the final v is reasonably close to the normalized z found by eig; if
not, you have a bug. Output a vector of all the residuals p and plot it
against the iteration count. What is the “rate of convergence”, that is, by
approximately what factor is the residual reduced each step in the final
stages of the iteration? How does this relate to |A\2|, the second largest
eigenvalue delivered by eig? (You can use sort(lambda,’descend’) to
sort the eigenvalues, since it sorts complex numbers by complex modulus,
as desired). Repeat for the other two values of «, namely, 0.5 and 0.25.

10. Once you are sure your power method code is working correctly, load the
Purdue 77587 graph which gives A directly, not the adjacency matrix M.
The column sums of A are already one and there are no zero columns.
It is no problem to store the very sparse matrix A, but storing G would
result in running out of memory. The power method should still work very
efficiently. If it is too slow for a = 0.85, focus on a@ = 0.5 and a = 0.25.
Plot the p values, and print the top 10 page ranks and corresponding
URLs. Estimate the modulus of the second largest eigenvalue, |\2|, based
on the convergence rate of i and your previous observations.

11. Extend your power method code to implement “subspace iteration”, de-
fined on A&G p. 339, which I prefer to call the “block power” method.
The orthogonalization step, computed by [Vnew,R]=qr (V,0), is essential;
without it, all the columns of V' will converge to the eigenvector x. Now
the idea is that the columns of the n X m matrix V' should converge to the
first m Schur vectors in the Schur decomposition of A, with eigenvalues
ordered by complex modulus. To be efficient, m must be small, and to
converge, we need to ensure |A;,| > |Apn41]. For this reason, m = 2 is a
bad choice: explain why. Try m = 3. Then, hopefully, the eigenvalues of
the final 3 x 3 matrix VT AV will approximate the eigenvalues A\; = 1, X,
Az of G. Try this first on the Google 500 matrix, for the three values of «,
comparing what you get from subspace iteration with the A2, A3 obtained
from eig. Then, if that works, try the Purdue 77587 graph and report
what you get from subspace iteration with your estimated |A2| reported
in the previous question.

Credits: I collected the Google graph data using Cleve Moler’s surfer.m. The
Purdue graph dates from 2001 and was taken from

http://www.cs.purdue.edu/homes/dgleich/cs515-2015/homeworks/purdue_web.mat



