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The Setting
Towards the state-of-the-art

Theory
Numerical Results

Four Fundamental Transparent(?) Unproved Statements:

All computational mathematics is essentially linear.

First derivatives characterise optima.

The derivative of a quadratic is linear

So we need only talk about quadratic problems to understand
optimization.
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

Characterisation of Optimality: Unconstrained Case.

f ′(x) = 0
∇f (x) = 0

Note: the (first-order) characterisation for a min or max is the same.
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

Characterisation of Optimality: Constrained Case.

maxx c
T x subject to aTi x ≤ bi

∇g0(x) =
∑

i λi∇gi (x), λi ≥ 0

Furthermore the characterisation is purely local.
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

Characterisation of Optimality: Constrained Case.

minx |gi (x)≤0 g0(x) optimal if ∇g0(x) =
∑

i λi∇gi (x), λi ≤ 0

Equivalent to a stationary point of the Lagrangian
L(x , λ) = g0(x)−

∑
i λigi (x)
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

Characterisation of Optimality: Constrained Case.

We note that the characterisation

∇f (x) =
∑

i λi∇ci (x)

should not be disturbed by the constraints being quadratic.

Although it suggests the Lagrangian is only locally meaningful!
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

Characterisation of Optimality: Constrained Case.

One issue is that the stationary point of the Lagrangian of interest
is a saddle-point

We are not very good at designing algorithms to find saddle points

8



The Setting
Towards the state-of-the-art

Theory
Numerical Results

Background

The intuitive idea of penalty functions:
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The Augmented Lagrangian

∇L(x , λ, µ) =

∇f (x) +
∑

i∈{1,...,m} λi∇ci (x) + 2.0 µ
∑

j∈{1,...,m} cj(x) ∇cj(x)

which looking at the terms in ∇cj(x) suggests the update formula,

λ+
j = λj + 2.0 µcj(x)

If not sufficiently feasible µ alone is increased, otherwise the λs
alone are updated

and one can prove that eventually µ is never increased.

Perhaps the best known implementation is LANCELOT
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and then

µ < µ∗ implies that x(µ) = x∗

The disadvantage: Function is not differentiable (non-smooth)

Consequently considered to only be of theoretical interest
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Projection onto a Hyperplane

Assume that the columns of A, ai , j ∈ {1, . . . ,m} are a basis of
normals for the hyperplane in question

Define the projection operator P by

P = I − A(A>A)−1A>

Note that, assuming that A>N = 0,

PA = 0 and PN = N,

where the columns of N are the generators for the hyperplane.

So Px projects x on to the hyperplane.

In practise one uses the orthogonal decomposition, QR, to
compute the projection
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Numerical Results

Making an Exact Penalty Function Practical

Basic idea was my Ph.D thesis [1971]

Consider minx∈Rn f (x) subject to cj(x) ≤ 0, j ∈ I .

The penalty function p(x , µ) = f (x) +µ
∑

j∈I max{cj(x), 0} is only
non-differentiable in the neighbourhood of active constraints

Define Aε = {j ∈ I : |ckj (x)| ≤ ε} and Vε = {j ∈ I : ckj (x) > ε}

So the idea is to define r(x , µ) = f (x) + µ
∑

j∈I\Aε max{cj(x), 0}

or equivalently r(x , µ) = f (x) + µ
∑

j∈Vε cj(x),

which is locally differentiable.
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

A Practical First-Order Method
Base the search direction on r(x , µ) by projecting orthogonal to
the space spanned by ∇ci (x), i ∈ Aε

In other words, we have completely accurate information about the
change in p if we take our fundamental subproblem as
mind∈Rn r(x + d , µ) subject to cj(x + d) = cj(x), j ∈ Aε.

So, up to first-order define d = −P∇r(x , µ) orthogonal to the
space spanned by ∇cj(x), j ∈ Aε.

Important Observation 1: If −P∇r(x , µ) is small then
∇r(x , µ) ≈

∑
j∈Aε λj∇cj(x) and we can obtain a good estimate

for the λ’s. ( which connects up with the ”local” issue)

This tells us if and how we can obtain descent by releasing a single
activity and gives us optimality conditions.

Observation 2: Eventually make ε-active constraints active
17
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

A Practical First-Order Method
Suppose ∇r(x , µ) =

∑
j∈Aε λj∇cj(x).

Consider dropping one activity, j say, from the projection and
projecting −∇r(x , µ)

So, d = −Pj∇r(x , µ) = −λjPj∇cj(x) and

d>∇r(x , µ) = −∇r(x , µ)>Pj∇r(x , µ) = −‖Pj∇r(x , µ)‖2.

Also d>∇cj(x) = −λj‖Pj∇cj(x)‖2 = − 1
λj
‖Pj∇r(x , µ)‖2.

So d increases (violates) the activity cj if and only if λj < 0
and then decreases the penalty function if and only if

−1− µ
λj
< 0 i.e λj < −µ

or alternatively (i.e. without violation) if and only if λj > 0
18
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

A Practical Second-Order Exact Penalty Function

Now, the subproblem we really wish to solve is

min
d∈Rn

∇x r(x̃ , µ)>d +
1

2
d>∇xx r(x̃ , µ)d

subject to ∇cj(x̃)>d + 1
2d
>∇2cj(x̃)d = 0, j ∈ Aε.

In other words, we have completely accurate information about the
change in p up to second order

We can improve the activity values via

JAε(x̃)>v = −φAε(x̃ + d)

with φAε(x) = [cj(x)]j∈Aε and JAε(x) = [∇cj(x)]j∈Aε .

19
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

A Practical Second-Order Method:Observations

We know how to solve

min
d∈Rn

∇x r(x̃ , µ)>d +
1

2
d>∇xx r(x̃ , µ)d

subject to ∇cj(x̃)>d = 0, j ∈ Aε.

Claim: If −P∇r(x , µ) is large then we can ignore the constraint
curvature

We already observed that if −P∇r(x , µ) is small then we can
obtain a good estimate for the λ’s in.

∇r(x , µ) ≈
∑

j∈Aε λj∇cj(x).

What if we cannot ignore the constraint curvature?

20
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The Setting
Towards the state-of-the-art

Theory
Numerical Results

A Practical Second-Order Exact Penalty Function
Consider the KKT conditions for

min
d∈Rn

∇x r(x̃ , µ)>d + 1
2d
>∇xx r(x̃ , µ)d

subject to ∇cj(x̃)>d + 1
2d
>∇2cj(x̃)d = 0, j ∈ Aε.

We need
∇x r(x̃ , µ) +∇xx r(x̃ , µ)d =

∑
j∈Aε

λj {∇cj(x̃) +∇xxcj(x̃ , µ)d}

Or using our good lambda estimate, λ̂

∇x r(x̃ , µ) +∇xx r(x̃ , µ)d ≈
∑

j∈Aε

{
λj∇cj(x̃) + λ̂j∇xxc

k
j (x̃ , µ)d

}
.

Compare with KKT for

min
d∈Rn

∇x r(x̃ , µ)>d +
1

2
d>
(
∇xx r(x̃ , µ)− λ̂∇xxc

k
j (x̃ , µ)

)
d

subject to ∇cj(x̃)>d = 0, j ∈ Aε.

21
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∇x r(x̃ , µ) +∇xx r(x̃ , µ)d =

∑
j∈Aε

λj {∇cj(x̃) +∇xxcj(x̃ , µ)d}

Or using our good lambda estimate, λ̂

∇x r(x̃ , µ) +∇xx r(x̃ , µ)d ≈
∑

j∈Aε

{
λj∇cj(x̃) + λ̂j∇xxc

k
j (x̃ , µ)d

}
.

Compare with KKT for

min
d∈Rn

∇x r(x̃ , µ)>d +
1

2
d>
(
∇xx r(x̃ , µ)− λ̂∇xxc

k
j (x̃ , µ)

)
d

subject to ∇cj(x̃)>d = 0, j ∈ Aε.
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An l1 augmented Lagrangian?

Remark
The usual (l2)-Augmented Lagrangian is a combination of the
(inexact) quadratic penalty with the Lagrangian which is motivated
as a means to prevent the necessity of requiring the penalty
parameter for the quadratic penalty to tend to infinity

Thus it seems eccentric to augment an exact penalty function

But one can obtain a better estimate of the multipliers

I hope to convince you that there are significant advantages for our
approach, although, for very large problems, per iteration, there
can be clear computational disadvantages because of the required
projections.

But this is true for all active set methods; including the simplex method22
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The l1 augmented Lagrangian

It is just a small step to define an l1-analogue to the augmented
Lagrangian

minx∈Rn L1(x , λ, µ) =

f (x)−
∑

i λici (x) + µ
∑

j∈{1,...,m}max{cj(x), 0}

and again only one of µ and the λs needs to be updated

Furthermore, the ”gradient” of the augmented Lagrange compared
with the Lagrangian gives the λ update.

Where ”gradient” is interpreted via first-order conditions in that it
is those that we are trying to drive to zero.
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The l1 augmented Lagrangian λ updates

∇L1(x l+1, λ, µ) =

∇f (x l+1)−
m∑
j=1

λj∇cj(x l+1) + µ
∑
j∈Vε
∇cj(x l+1)−

∑
j∈Aε

λ̄j∇cj(x l+1) = 0.

where λ̄ are (least square) estimates.

Comparing coefficients of ∇cj(x) suggests the update formula,

λ+
i = λj + λ̄j , if j ∈ Aε

= λj − µ, if j ∈ Vε
= λj , if j 6∈ Aε ∪ Vε

Optimality conditions come from the gradient of the Lagrangian
with the updated multipliers, which is indeed differentiable

24
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The l1 augmented Lagrangian subproblem

Now, the subproblem we wish to solve for a second-order method is

min
d∈Rn

∇xD(x l , λl , µl)>d +
1

2
d>∇xxD(x l , λl , µl)d

subject to ∇cj(x l)>d + 1
2d
>∇2cj(x

l)d = 0, j ∈ Aε.

where D(x , λ, µ) = f (x)−
m∑
j=1

λjcj(x) + µ
∑
j∈Vε

cj(x)

is locally differentiable

and we already know how to do that appropriately.
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Model Problem Observation

As already stated, the model based upon a quadratic objective
function and quadratic constraints should be the paradigm
optimization problem

If solved via the quadratic penalty function or (l2-)augmented
Lagrangian it is more complex than quadratic (i.e. quartic)

If solved via an l1-penalty function or an l1-augmented Lagrangian
it is piecewise quadratic

We claim that this is a significant advantage.
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An l1 augmented Lagrangian for equality constraints

For simplicity assume all general constraints are equality
constraints and now

The l1-exact penalty is f (x) + µ
me∑
j=1
|cj(x)|,

The l1-augmented Lagrangian is f k(x) +
me∑
j=1

λjcj(x) + µ
me∑
j=1
|cj(x)|,

The multiplier update rule is

λk+1
j =


λkj − λ̂j , if j ∈ Aε
λkj + σkj µ

(k), if j ∈ Vε
λkj , if j 6∈ Aε ∪ Vε

,

where σj is the sign of cj(x).
The optimality conditions are that, for all j ∈ Aε

−µ(k) ≤ λ̂(k)
j ≤ 0, if σkj = 1, or

0 ≤ λ̂(k)
j ≤ µ(k), if σkj = −1.
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Adding simple bounds to the l1 augmented Lagrangian

For bounds we need an additional (trivial) projection, PB
In other words we deal with them directly. If we have just

x ≥ 0
For any x (k), we have two possibilities for each component:

Dominated (i) 0 ≤ x
(k)
i ≤

(
∇x LkD(xk , λ(k), µ(k), λ̂(k))

)
i
, or

Floating (ii)
(
∇x LkD(xk , λ(k), µ(k), λ̂(k))

)
i
< x

(k)
i , where

LD(x , λ(k), µ(k), λ̂(k)) = Dk(x , λ(k), µ(k))−
∑

j∈Aε λ̂
(k)
j ckj (x) and

Dk(x , λ(k), µ(k)) = f (x) +
me∑
j=1

λ
(k)
j ckj (x) + µ(k)

∑
j∈Vε

σkj c
k
j (x)

The algorithm forces , PB(x , ∇x LkD(xk , λ(k), µ(k), λ̂(k))) to zero
as k increases.
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as k increases.
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The Algorithm
Step 1:Initializations: λ(0) and positive constants η0, µ0, ω0, τ > 1, γ1 < 1, ω∗ << 1, η∗ < 1,
αω, βω, αη, and βη < 1 are given.

Set µ(O) = µ0, α
(O) = min(µ(O), γ1), ω(O) = ω0(α(O)))αω , η(O) = ηO (α(O))αη , and k = 0.

Step 2:Inner iteration. Find x(k) ∈ Rn such that x(k) is ω(k)-critical.

In other words, −µ(k) ≤ λ̂(k)
j ≤ 0, if σk

j = 1, or 0 ≤ λ̂(k)
j ≤ µ

(k), if σk
j = −1, for all j ∈ Aε and

‖LkD (x(k), λ(k), µ(k), λ̂(k))‖ ≤ ω(k),

where λ̂(k) is a (least squares) estimate for

∇x Dk (x(k), λ(k), µ(k)) =
∑

j∈Aε
λ̂

(k)
j ∇x c

k
j (x(k)).

If ‖c(x(k)‖ ≤ η(k) execute Step 3. Otherwise execute Step 4.
Step 3:Test for convergence and update Lagrange multiplier estimates.

If ‖LkD (xk , λ(k), µ(k), λ̂(k))‖ ≤ ω∗ and ‖c(x(k)‖ ≤ η∗ stop. Otherwise, set

λ(k+1) = λ̄(x(k), λ(k), µ(k)), µ(k+1) = µ(k),

α(k+1) = min(µ(k+1), γl ),

ω(k+1) = ω(k)(α(k+1))βω ,

η(k+1) = η(k)(α(k+1))βη .

increment k by one and go to Step 2.
Step 4:Increase the penalty parameter. Set

λ(k+1) = λ(k+1),

µ(k+1) = τ µ(k),

α(k+1) = min(µ(k+1), γl ),

ω(k+1) = ω(k)(α(k+1))αω ,

η(k+1) = η(k)(α(k+1))αη .
increment k by one and go to Step 2.
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What can we prove? Essentially the same as LANCELOT

x∗ is any limit of the sequence {x (k)} generated by our Algorithm:

Assume: The functions and constraints are twice continuously
differentiable, the iterates x (k) lie in a closed, bounded domain and
the Jacobian matrix of active constraints, Â(x∗), has full column
rank at any limit point, x∗, of the sequences x (k),
Let K be the indices of an infinite subsequence of x (k) with limit
x∗.

Then

(i) There are positive constants a1, a2 and an integer k0 such that

‖λ̄(x (k), λ(k), µ(k))− λ∗‖ ≤ a1ω
(k) + a2‖x (k) − x∗‖,

and
‖λ(x (k))− λ∗‖ ≤ a2‖x (k) − x∗‖,

for all k ≥ k0, (k ∈ K ).
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What can we prove?

Furthermore, suppose, in addition, that c(x∗) = 0. Then
(ii ) The point x∗ is a Karush-Kuhn-Tucker point for the problem

min
x∈B

f (x)

subject to cj(x) = 0, j ∈ E = {1, · · · ,me},
(1)

where B = {x ∈ Rn | x ≥ 0}, λ∗ is the corresponding vector
of Lagrange multipliers, and the sequences
{λ̄(x (k), λ(k), µ(k))} and {λ(x (k))} converges to λ∗ for k ∈ K ,

(iii) The gradient ∇x LkD(xk , λ(k), µ(k), λ̂(k)) converges so that

gL
(
xk , λ(k+1)

)
= ∇f k(xk) +

{
me∑
j=1

λj −
∑
j∈Aε

λ̂
(k)
j

}
∇xc

k
j (xk) = 0,

and gL(x∗, λ∗) = 0, for k ∈ K , where gL is the gradient with
respect to x of the Lagrangian corresponding to (1).
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What can we prove?

Suppose further that the iterates {x (k)} converges to a single limit
point x∗, then there is a constant µ > 0 such that µ(k) ≤ µ for all k .

Suppose strict complementary slackness holds.
Then for k sufficiently large, the set of floating variables are
precisely those which lie away from their bounds at x∗.

The iterates xk and the Lagrange multiplier estimates are at least
R-linearly convergent

For all exterior penalty function methods, it is possible to converge
to a non-feasible stationary point; usually easily rectified.

Moreover the inner iterations are superlinearly/quadratically
convergent if one uses a second-order method.
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Numerical results with MADS implemented as Nomad:Thanks to Nadir Amaioua

MADS is a well-known derivative-free direct search optimization
method.

The search step of MADS uses a model trust region approach.

It naturally uses quadratic models for the objective and the
constraints when doing the search step.

So it naturally would like to solve quadratic problems with
quadratic constraints.
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Numerical results with MADS implemented as Nomad

These results are on 20 constrained problems, with the largest
having 20 variables and 15 constraints, and 4 simulation problems,
with the largest having 10 variables and 10 constraints.

The comparisons are made with the QPQC subproblems solved by:

MADS,

the exact penalty function,

the usual augmented Lagrangian,

the l1-augmented Lagrangian, and

IPOPT,

The latter is a well-known smooth penalty function approach that
uses the log barrier with a linesearch
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MADS on constrained problems in brief:

Fraction of problems you were less than α as bad as the best
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The Aircraft Range simulation problem: 50 instances

10 variables and 10 constraints Simulation in days
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The Simplified Wing simulation problem: 50 instances

7 variables and 3 constraints Simulation in days
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200 instances of the 4 simulation-based applications

Almost 3 weeks of simulation
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MADS on constrained problems in brief (data profiles)

Fraction of problems that can be solved with α function evaluations
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Lockwood simulation problem: 50 instances:data profile
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Lockwood simulation problem: 50 instances:data profile

Fraction of problems solved with α function evaluations
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The Welded simulation problem:

Just in case you think we always win: 4 variables and 6 constraints
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What next?

Is it better to handle inequalities directly?

Consider adaptive strategies for updating the penalty parameter.

How does it compare with other QPQC techniques like semidefinite
programming, second-order cone programming, generalized
eigen-decomposition, SCIP (Solving Constraint Integer Programs)
and using the reformulation-linearization technique for discrete
optimization problems?
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