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Abstract

In just the last decade, a multitude of bio-technologies and software pipelines have emerged to revolutionize genomics. To
further their central goal, they aim to accelerate and improve the quality of de novo whole-genome assembly starting from
short DNA sequences/reads. However, the performance of each of these tools is contingent on the length and quality of the
sequencing data, the structure and complexity of the genome sequence, and the resolution and quality of long-range
information. Furthermore, in the absence of any metric that captures the most fundamental ‘‘features’’ of a high-quality
assembly, there is no obvious recipe for users to select the most desirable assembler/assembly. This situation has prompted
the scientific community to rely on crowd-sourcing through international competitions, such as Assemblathons or GAGE,
with the intention of identifying the best assembler(s) and their features. Somewhat circuitously, the only available approach
to gauge de novo assemblies and assemblers relies solely on the availability of a high-quality fully assembled reference
genome sequence. Still worse, reference-guided evaluations are often both difficult to analyze, leading to conclusions that
are difficult to interpret. In this paper, we circumvent many of these issues by relying upon a tool, dubbed FRCbam, which is
capable of evaluating de novo assemblies from the read-layouts even when no reference exists. We extend the FRCurve
approach to cases where lay-out information may have been obscured, as is true in many deBruijn-graph-based algorithms.
As a by-product, FRCurve now expands its applicability to a much wider class of assemblers – thus, identifying higher-
quality members of this group, their inter-relations as well as sensitivity to carefully selected features, with or without the
support of a reference sequence or layout for the reads. The paper concludes by reevaluating several recently conducted
assembly competitions and the datasets that have resulted from them.
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Introduction

The extraordinary advances in Next Generation Sequencing

(NGS) technologies over the last ten years have triggered an

exponential drop in sequencing cost, thus making it possible to

perform whole-genome shotgun (WGS) sequencing of almost

every organism in the biosphere. In particular, recent WGS

projects are distinctive by the way they have facilitated whole

genome sequencing at a high coverage (i.e., higher than 506),

albeit, composed of relatively short sequences (i.e., reads).

Despite this impressive progress, recent efforts have underlined

the difficulties in trading-off read length against read coverage. It is

now well recognized how the short reads have made the assembly

problem significantly harder [1] owing to the complexity involved

in resolving (i.e., span over) long repeats.

Nonetheless, this challenge has been confronted recently with

sophisticated and novel techniques, embedded in a diverse set of

tools all aiming to solve de novo assembly problem. Such tools (i.e.,

assemblers) are based on the simple assumption that if two reads

share a sufficiently long subsequence then they are likely to belong

to the same location in the genome. In order to represent and

efficiently use such information for myriads of short reads,

assemblers typically rely on compressed graph structures (often

de-Bruijn graphs but also string-graphs). Moreover, additional

heuristics are employed for error correction and read-culling.

More than twenty different assemblers have been designed to

tame the computational complexity of assembling NGS reads,

with the vast majority of them specifically targeting Illumina reads.

One of the main consequences of this proliferation in software

production is the difficulty in selecting one assembler over another,

which often makes a Buridan’s ass of a bioinformatics researcher:

Their effort spent on selecting the best assembler (i.e., the largest

haystack for the ass) ultimately diverts them from their real

objective of answering biological questions (i.e., leading to

a disoriented and starving ass).

Adding to the confusion, every new genome presents its own

sets of problems, e.g, ploidy, heterozigosity, repetitive structures, etc.

The available assemblers usually are able to efficiently solve only

some of these problems or are specifically designed for limited

datasets (e.g., bacterial genomes). A widely followed approach is to

use multiple assemblers, run with different parameters, producing

statistics that could point to the best among them. However, no

clear way to select the ‘‘best’’ assembler has yet made itself
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obvious. As noticed by Miller in [2] all new published assemblers

have been compared to the then-existing tools showing, every

time, their better performances on a specific dataset and on some

specific metrics. More often than not, only traditional metrics (i.e.,

contiguity-based metrics) are used in comparing assemblers’

performances (e.g., number of contigs, NG50, etc.) – a strategy

that suffers from the drawback of emphasizing only assembly size.

Moreover, in [3], NG50 (the most ‘‘abused’’ metric) has been

demonstrated to be a bad assembly quality predictor. In contrast,

more reliable results can be produced, when a reference sequence

is available, since contigs could be aligned against it in order to

judge the number of errors (i.e., reference-based metrics). Un-

fortunately, currently, no effort is usually made in weighting or

scoring qualitatively different types of errors, thus reducing this

approach to a simple error counting without accounting for subtle

differences among the different types of errors.

More recently, the focus has shifted from seeking just contiguity

to assembly precision. An earlier study [4] showed that in the

published and revised human genome [5] on average 10% of

assembled fragments were assigned the wrong orientation and

15% of fragments, placed in a wrong order. Recall that this draft

sequence of the Human Genome [5], which was released in 2001,

had taken several large teams more than five years to finish and

validate (but only at a genotypic level). With many projects left at

draft level, NGS technologies have worsened this situation even

further. Alkan in [6] criticized two of the major NGS achieve-

ments: the assembly of the Han Chinese and Yoruban individuals

[7] both sequenced with Illumina reads. Alkan identified 420 Mbp

of missing repeat sequences from the Yoruban assembly, and

estimated that in both assemblies almost 16% of the genome was

missing.

Despite these widely discussed and obvious problems, there still

persists a lack of standard procedures and methods to validate and

evaluate assemblies. Several projects have been initiated to explore

the parameter space of the assembly problem, in particular in the

context of short read sequencing [6,8,9].

Recently, a growing number of studies have aimed at

independently evaluating different assemblers or assembly pipe-

lines. Assemblathon 1 [10] and Assemblathon 2 sought to assess

assemblers’ performances on common datasets encouraging

a competition among researchers/users and assemblers’ devel-

opers. In its earliest version, the competition was performed on

a simulated dataset, leaving open to a criticism of the effectiveness

of its genome and read simulators [3]. Assemblathon 19s entries

were evaluated and ranked, based on a mixture of contiguity-

based and reference-based metrics. The final result is a large table

(see Table 3 in [10]) in which some assemblers perform well on

some metrics while behaving poorly on others, thus, leaving its

interpretation somewhat equivocal.

A similar but independent study, dubbed GAGE, has been

designed to critically evaluate and compare assemblers on four

different large-scale NGS projects [11]. The presence of an

already assembled reference sequence for three of the studied

genomes allowed the authors to assess assembly quality. One of the

main message of this study is that the same assembler can produce

utterly different qualities of results on different datasets. Moreover,

Salzberg and colleagues showed how assemblers’ performance is

affected by data quality: preprocessing used in read correction

seems fundamental to improve assemblers’ results. The main

conclusion of this study is that there is no universal ‘‘assembly

recipe’’ to be used for assembling new genomes. An assembler

working well on certain genomes may exhibit drastically poorer

performance when used to assemble even a fairly similar genome.

A fundamental criticism against GAGE is that each assembler was

tuned to maximize the resulting NG50 for each dataset. This was

done to mimic the behavior of typical users, but builds on an

extremal statistic which, as mentioned earlier, also happens to be

the worst quality predictor [3]. Only after this tuning step

assembly quality was measured by comparison to a reference. As

in Assemblathon 1, GAGE output is presented as a set of tables

with massive amount of–often hard-to-interpret–information.

This state of affairs is not completely surprising, given the

complexity of assembly evaluation, especially, when all errors

cannot be substantially eliminated. For instance, even after six

months since Assemblathon 29s competition, an official ranking

remains undisseminated (except for the one based on NG50).

Recently, Narzisi and Mishra in [12] proposed a new metric,

Feature Response Curve (FRCurve), capable of capturing the

trade-off between contigs’ contiguity and correctness. FRCurve is

based on the principle that the assembly precision can be predicted

by identifying on each contig a set of suspicious regions (i.e.,

features): contigs are then sorted from the longest to the shortest,

and for each feature threshold t only the longest contigs whose

total sum of features is less than t are used to compute the genome

coverage (i.e., a single point in the FRCurve). Such technique has

been extensively studied and evaluated in [3]. Despite its power

the main limitation of FRCurve is that it requires the so-called read

layout, a standard output of Sanger-based assemblers, but missing

in the vast majority of NGS assemblers. Such dependency restricts

FRCurve analysis tools to only OLC, overlap-layout-consensus

based assemblers and thus to a limited subset of NGS-based

studies.

In this paper, we present an enhanced tool, named FRCbam,

capable of computing FRCurve from the alignment of the reads to

the assembled contigs. In particular, we show that this method is

able to correctly and rigorously evaluate assemblers’ performance

and precision, even in the absence of a reference sequence, while

using a broad set of metrics, not just those based on assembly

contiguity. We begin by describing the set of implemented

features, and then evaluate our tool on the datasets used in the

three major assembly evaluations efforts: GAGE, Assemblathon 1

and Assemblathon 2.

Materials and Methods

Almost always, de novo assembly is carried out using more than

one library. In the Illumina scenario we typically have at least two

libraries: one paired-end library (PE), and one mated-pair library

(MP). The former provides paired reads in the standard

orientation (? /) with insert size that can vary between 150 bp

(overlapping fragments) and 1000 bp (standard PE). The latter

yields pairs of sequences in the opposite direction (/ ?) and the

insert size is much longer (usually in the range between 3 and

10 Kbp). Due to the different cost of the two protocols a typical

sequencing project consists of one high coverage PE library and

one low coverage MP library. The main advantage of MP reads is

to improve contiguity through scaffolding and gap-filling proce-

dures. However, the MP library is intrinsically more difficult to

obtain than standard PE libraries and are usually affected by

redundancy (PCR duplicates) and uneven genome representation.

After PE reads and MP reads are aligned against the assembly

itself, the ordered and indexed BAM files are input into FRCbam.

FRCbam needs at least one PE library and, if available, one MP

library. The user needs to provide a rough estimation of the insert

size and of the standard deviation for both libraries and an

estimation of the genome length. Read coverage and spanning

coverage are computed directly from the BAM files.

Assembly Evaluations with Feature Response Curves
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Several features are computed in order to identify problems

related to read coverage, mate pair happiness [8], and compres-

sion/expansion events (i.e., CE-statistics) [13]. As a consequence of

their different nature, PE reads and MP reads are used to compute

two different sets of features. The former is used to compute the

following features: LOW_COV_PE, HIGH_COV_PE, LOW_-

NORM_COV_PE, HIGH_NORM_COV_PE, COMPR_PE,

STRECH_PE, HIGH_SINGLE_PE, HIGH_SPAN_PE, and

HIGH_OUTIE_PE. The latter library is used to compute only

a subset of the features, similar to the ones in the previous set:

COMPR_MP, STRECH_MP, HIGH_SINGLE_MP, HIGH_-

SPAN_MP, and HIGH_OUTIE_MP. The main difference is due

to the fact that MP reads usually provide a low read coverage (i.e.,

vertical) but produce a high spanning coverage (i.e., horizontal).

Therefore MP reads are best used to compute features related to

long range information (see Table 1 and Document S1 for

a detailed description of features).

FRCbam outputs several files: (a) the FRCurve itself (to be

plotted), (b) the FRCurves for each individual feature, and finally,

(c) a position-by-position description of the feature (in GFF format).

This last file holds for each contig the identified features, together

with the start and end points.

Datasets
For comparative analysis of NGS assemblers, both GAGE and

Assemblathon studies offer state-of-the-art datasets, which could

also be re-purposed to evaluate reliability of the new FRCbam.

These datasets were of particular interest to us for several reasons,

falling into three categories: (i) datasets consist of state-of-the-art

sequences, with reads often belonging to several paired-end and

mate-pairs libraries; (ii) availability of already ‘‘optimized’’

assemblies; (iii) presence of a reference sequence for most of the

sequenced organism.

The first category allowed us to test FRCbam against state-of-

the-art datasets and to take advantage of different insert-types. The

second category enabled us to use assemblies that may be

considered as the ‘‘best’’ achievable, since they were obtained by de

novo assembly experts (i.e., GAGE) or by the same assemblers’

developers (i.e., Assemblathon). Specifically, the availability of

a reference sequence, allow us to measure assemblies’ correctness,

thus also demonstrating how FRCbam and the computed features

are able to effectively gauge assembly accuracies and to identify

suspicious regions (i.e., mis-assemblies).

In total, we tested FRCbam on five datasets: Staphylococcus aureus,

Rhodobacter sphaeroides, and Human chromosome 14 from GAGE,

data of simulated genomes from Assemblathon 1 competition, and

Boa constrictor (i.e., Snake) from Assemblathon 2 competition. All

five datasets are composed of high coverage (i.e., all exceeding

406) Illumina paired-end and mate-pair read-libraries. S. aureus

has been assembled with 7 different assemblers (see Table 2), R.

sphaeroides and Human chromosome 14 (hereafter Hc14) have been

assembled with 8 different assemblers (see Tables 3 and 4).

Assemblathon 1 and Assemblathon 2 comprise 59 and 12 entries

respectively. The large number of Assemblathon 1 entries is simply

a consequence of the rule to permit multiple submissions: we

decided to download only the best entry from each team, as

determined by the Assemblathon 1 ranking (refer to [10] for more

details), for a total of 17 entries. Summarizing, we tested FRCbam

on five extremely different datasets for a total of 43 assemblies.

For each dataset we selected one paired-end library and one

mate-pair library (see Document S1 for more details). These two

libraries were then aligned against the available assemblies using

rNA [3]. We aligned reads using also BWA [14] without detecting

any noticeable difference (see Document S1).

Using libraries with different insert sizes (i.e., paired-end and

mate-pair reads) enabled us to identify different features types. On

the one hand, paired-end reads, characterized by a short insert size

(i.e., usually less than 600 bp) are able to highlight local mis-

assemblies and relatively small insertions/deletions events. On the

other hand, mate-pairs, characterized by a larger insert size (i.e.,

usually more than 2 Kbp) are able to highlight larger insertion/

deletion events and larger mis-assemblies (e.g., scaffolding errors).

Results

Figure 1 shows FRCurves for the three GAGE genomes (S.

aureus Figure 1A, R. spheroides Figure 1B, and Hc14 Figure 1C) and

for Assemblathon 1 entries (Figure 1D). For each of the analyzed

Table 1. Description of implemented features.

Feature Description

LOW_COV_PE low read coverage areas (all aligned reads).

HIGH_COV_PE high read coverage areas (all aligned reads).

LOW_NORM_COV_PE low paired-read coverage areas (only properly aligned pairs).

HIGH_NORM_COV_PE high paired-read coverage areas (only properly aligned pairs).

COMPR_PE low CE-statistics computed on PE-reads.

STRECH_PE high CE-statistics computed on PE-reads.

HIGH_SINGLE_PE high number of PE reads with unmapped pair.

HIGH_SPAN_PE high number of PE reads with pair mapped in a different contig/scaffold.

HIGH_OUTIE_PE high number of mis-oriented or too distant PE reads.

COMPR_MP low CE-statistics computed on MP reads.

STRECH_MP high CE-statistics computed on MP reads.

HIGH_SINGLE_MP high number of MP reads with unmapped pair.

HIGH_SPAN_MP high number of MP reads with pair mapped in a different contig/scaffold.

HIGH_OUTIE_MP high number of mis-oriented or too distant MP reads.

The Table provides a brief description for each implemented feature.
doi:10.1371/journal.pone.0052210.t001

Assembly Evaluations with Feature Response Curves

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e52210



assemblies we aligned contigs against the reference genome. To

accomplish this task we employed the scripts available on GAGE

website [11]. Assembly statistics are reported in Tables 2, 3, 4, and

5.

The four tables (Tables 2, 3, 4, and 5) report for each assembly/

assembler the number of contigs/scaffolds produced (Ctg), the

NG50, the percentage of short (i.e., less than 200 bp) contigs (the

percentage is computed with respect to the real genome length),

the number of long (i.e., .5 bp) indels (Indels), and the number of

Misjoins (as reported by GAGE and Assemblaton 1). Moreover,

with access to dnadiff [8] we could identify regions of real mis-

assemblies, thus enabling us to compute sensitivity and specificity

of our features. Note that sensitivity is defined as the ratio between

true positives (i.e., positions marked as mis-assembled by dnadiff

and labelled by one or more features), and its sum with false

negatives (i.e., positions marked as mis-assembled by dnadiff but not

labelled by any feature). Specificity, in contrast, is the ratio

between true negatives (i.e., positions not marked as mis-assembled

by dnadiff and not labelled by any feature) and its sum with false

positives (i.e., positions not marked as mis-assembled by dnadiff but

labelled by one or more features). The first measure enables

FRCurve to identify problematic areas, while the latter measure

distinguishes non -problematic from problematic regions (e.g., if

a feature marks all position in an assembly the sensitivity will be 1,

however the specificity is likely to be close to 0).

GAGE
Figure 1A and Table 2 show the FRCurve and the reference

guided validation of S. aureus GAGE’s dataset respectively. From

Figure 1A MSR-CA and Allpaths-LG appear to be the best

performing assemblers on such datasets (i.e., the steepest curves).

These two assemblers are closely followed by SOAPdenovo,

Velvet, and Bambus2, while SGA and ABySS clearly show bad

performance. Both sensitivity and specificity of reported features

are high (last two columns of Table 2), thus demonstrating that

FRCbam (and therefore our features) is able to correctly identify

suspicious regions. Specificity is not particularly high only for

ABySS and SGA. However, in these two assemblies the

percentage of mis-assembled sequences identified by dnadiff are

20% and 8%, respectively, suggesting a high number of

problematic regions close to the real mis-assembly sequences.

Some remarks are warranted on the stepwise shape of some

curves (e.g., MSR-CA, Allpaths-LG and Bambus2). Such a shape

indicates the presence of contigs with a large number of features

that interrupts a smooth growth of the curve, which is particularly

discernible when the number of contigs is low. As an example,

consider the longest MSR-CA contig containing almost half of the

features identified in the entire assembly. The high sensitivity and

specificity reported in Table 2 show that these features represent

truly problematic regions. Let us focus on Allpaths-LG and MSR-

CA: in Figure 2 we present the alignment of the longest scaffold

produced by Allpaths-LG and MSR-CA against the reference

Table 2. Staphylococcus aureus (GAGE) assembly evaluation and features estimation.

assembler Ctg (Kbp) NG50 Chaff (%) Indels Misjoins Inv Reloc Sens Spec

ABySS 246 34 6.66 10 6 4 2 99.25 62.70

Allpaths-LG 12 1,092 0.03 12 4 0 4 84.79 89.97

Bambus2 17 1,084 0.00 215 14 2 12 97.14 83.51

MSR-CA 17 2,412 0.00 14 15 9 6 88.12 92.89

SGA 546 208 0.00 4 4 1 3 95.48 63.71

SOAPdenovo 99 3312 0.35 36 25 2 23 95.32 86.69

Velvet 45 762 0.41 16 31 10 21 96.83 84.26

For each assembler we report the number of contigs/scaffolds produced (Ctg), the NG50, the percentage of short (Chaff) contigs (the percentage is computed with
respect to the real genome length), the number of long (i.e., .5 bp) indels (Indels), the number of Misjoins, the number of inversions (Inv), the number of relocations
(Rel), the features sensitivity (Sens), and the features specificity (Spec).
doi:10.1371/journal.pone.0052210.t002

Table 3. Rhodobacter sphaeroides (GAGE) assembly evaluation and features estimation.

assembler Ctg (Kbp) NG50 Chaff (%) Indels Misjoins Inv Reloc Sens Spec

ABySS 1701 9 1.59 38 24 2 22 98.92 37.26

Allpaths-LG 34 3,192 0.01 37 6 0 6 90.73 93.36

Bambus2 92 2,439 0.00 378 5 0 7 75.84 82.76

CABOG 130 66 0.00 24 15 5 10 89.04 82.51

MSR-CA 43 2,976 0.00 31 15 3 12 87.87 93.92

SGA 2096 51 0.00 4 4 0 4 96.66 62.89

SOAPdenovo 166 660 0.44 431 11 1 10 92.90 86.62

Velvet 178 353 0.48 27 21 6 15 92.04 83.33

For each assembler we report the number of contigs/scaffolds produced (Ctg), the NG50, the percentage of short (Chaff) contigs (the percentage is computed with
respect to the real genome length), the number of long (i.e., .5 bp) indels (Indels), the number of Misjoins, the number of inversions (Inv), the number of relocations
(Rel), the features sensitivity (Sens), and the features specificity (Spec).
doi:10.1371/journal.pone.0052210.t003
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genome. From Figure 2B it is clear that the stepwise shape of

MSR-CA’s FRCurve is a consequence of wrong choices made by

the assembler. The situation is different in the Allpaths-LG case:

Figure 2A shows a correctly reconstructed scaffold, therefore there

is apparently no reason to justify the stepwise curve of Allpaths-

LG. Puzzled by this anomaly, we plotted the FRCurve for each

single feature (see Document S1). With this analysis, we discovered

that Allpaths-LG has the best curve in the majority of the cases.

However, there are two exceptions: STRECH_MP and

COMPR_MP features, which are representative of compression

or expansion events. Areas characterized by these features

coincide with the circles in the dotplot (see Figure 2A): these

Table 4. Human chromosome 14 (GAGE) assembly evaluation and features estimation.

assembler Ctg (Kbp) NG50 Chaff (%) Indels Misjoins Inv Reloc Sens Spec

ABySS 51301 2,1 34.78 762 22 15 7 95.83 18.79

Allpaths-LG 225 81,647 0.02 2575 146 44 102 68.46 96.79

Bambus2 1792 324 0.00 5651 3409 1759 1650 86.26 55.04

CABOG 479 393 0.00 2894 746 435 311 62.19 95.92

MSR-CA 1425 893 0.01 3097 2311 83 1439 86.10 84.71

SGA 30975 83 0.00 681 150 90 60 92.13 65.38

SOAPdenovo 13501 455 3.09 3902 1529 537 992 90.59 73.10

Velvet 3565 1,190 4.23 4172 9525 4023 5502 91.60 67.55

For each assembler we report the number of contigs/scaffolds produced (Ctg), the NG50, the percentage of short (Chaff) contigs (the percentage is computed with
respect to the real genome length), the number of long (i.e., .5 bp) indels (Indels), the number of Misjoins, the number of inversions (Inv), the number of relocations
(Rel), the features sensitivity (Sens), and the features specificity (Spec).
doi:10.1371/journal.pone.0052210.t004

Figure 1. FRCurve computed on the three GAGE datasets and on Assemblathon 1 entries. Figures A, B, and C show the FRCurves
computed on the three GAGE datasets (Staphylococcus aureus, Rhodobacter sphaeroides, and Human chromosome 14). Figure D shows the FRCurves
computed on Assemblathon 1 entries.
doi:10.1371/journal.pone.0052210.g001
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areas involve small mis-joins (i.e., less than 50 bases) or scaffold

junctions (i.e., sequences of Ns). A likely explanation is that such

small mis-joins are able to ‘‘attract’’ reads that are responsible for

the features. Moreover, STRECH_MP and COMPR MP features

depend on CE statistics [13] and therefore on the choice of two

thresholds, often estimated sub-optimally – note that, despite the

availability of a reference sequence, these thresholds were

estimated without it. MSR-CA is the assembly characterized by

the largest number of areas composed of large numbers of mis-

oriented mate/paired reads (i.e., HIGH_OUTIE_PE and

HIGH_OUTIE_MP), as a consequence of the large inversions

and translocations present in the first scaffold. Other hints about

MSR-CA’s problems come from the FRCurve obtained from the

contigs (see Document S1): MSR-CA’s FRCurve is not as good as

those of Allpaths-LG, SOAPdenovo and Bambus2.

This situation demonstrates that assembly evaluation is

extremely difficult. With the help of a reference sequence it is

clear that MSR-CA suffers from a large number of errors (see

Table 2). However, in its absence, many users might have chosen

MSR-CA over others, since it seemed to be able to reconstruct

almost the whole genome with a single scaffold. FRCurve, without

the use of a reference, was able to raise doubts about MSR-CA

(i.e., the only assembler with a high number of HIGH_-

OUTIE_PE and HIGH_OUTIE_MP features), thus suggesting

a more careful manual validation on Allpaths-LG.

According to the FRCurve analysis, SGA (together with ABySS)

is one of the worst performing assemblers. Although GAGE

analysis concludes that SGA introduces relatively fewer errors, it is

also the most fragmented one, consisting of 456 scaffolds (and

1252 contigs). This kind of assemblies, despite its low error-rate,

tends to accumulate features related to copy number variation

problems (e.g., LOW_COV_PE) and features like HIGH_-

SPAN_MP suggesting problems in the scaffolding (i.e., either

errors in the scaffolding or a failure in establishing contig

connections).

Similar analyses can be carried out for R. sphaeroides and Hc14

datasets whose FRCurves are represented in Figures 1B and 1C.

In R. sphaeroides dataset Allpaths-LG and MSR-CA again appear

to be the two best performing assemblers, though SOAPdenovo,

Velvet, and Bambus2 are not too far behind. The longest Allpaths-

LG scaffold practically reconstructs the longest Rhodobacter

chromosome: such scaffold contains only 100 features most of

them suggesting the presence of regions affected by low paired

read coverage (i.e., LOW_NORM_COV_PE and LOW_-

COV_PE). Such features affect all others assemblers similarly.

From FRCurve analysis one may conclude that Allpaths-LG is the

best performing tool. The alignments of Allpaths-LG assembly

against the reference further confirm this conclusion (see

Document S1).

Bambus2 is characterized by a long (correct) scaffold that

contains almost one third of its features. This situation is

a consequence of regions composed of a large number of singleton

reads (e.g., HIGH_SINGLE_MP) and of areas suggesting the

presence of compression events (e.g., COMPR_MP). Similarly to

the analysis of the S. aureus, these features seem to coincide with

small gaps (as seen from the alignment of the longest Bambus2

scaffold against the reference sequence, see Document S1).

From Figure 1B CABOG appears not to be a very well

performing assembler. Such situation is confirmed by Figure 3 that

shows the dotplot for CABOG’s longest scaffolds. The green

columns at the bottom of the dotplot indicate the position where

one or more features have been found by FRCbam. This plot shows

how features are able to highlight problematic regions in the

assembly, as the majority of them coincide with the mis-

assemblies.

In the Hc14 case (see Figure 1C) Allpaths-LG and CABOG are

clearly the best two assemblers. Allpaths-LG is the only assembler

able to assemble almost all the sequences in a single scaffold

containing, practically, all the features. The total number of

features identified on this long scaffold is lower than the total

amount of features identified in the 400 longest CABOG scaffolds.

When we consider the FRCurves for each individual feature (see

Document S1), we notice that Allpaths-LG longest contig is

characterized by a large number of features suggesting coverage

problems (e.g, LOW_NORM_COV_PE, LOW_COV_PE,

HIGH_NORM_COV_PE, and HIGH_COV_PE features) and

mated/paired read orientation problems (e.g., HIGH_OU-

TIE_PE, and HIGH_OUTIE_MP features). As far as the

coverage features are concerned, Allpaths-LG has almost always

a lower number of such features than the other assemblers.

Moreover, LOW_NORM_COV_PE feature is often the conse-

quence of Allpaths-LG’s ability to correctly resolve repeated

regions (pairs are not correctly aligned as a consequence of

a repeat, see Document S1). Less straightforward is the

explanation for the large number of features suggesting the

presence of a large number of mis-oriented pairs (in this case

Allpaths-LG being one of the worst assemblers). Such features are

indicative of inversions and insertions events, although the dotplot

shows an almost contiguous scaffold that reconstructs the

Chromosome 14 without any particular problem (see Document

S1). After a closer inspection, we discovered that such long scaffold

is affected by a large number of small mis-joins as suggested by the

circles in the main dotplot diagonal (see Document S1). We tested

10 different areas subject to such mis-joins and in all cases we

discovered either a scaffold joint is too large or a scaffold joint has

Table 5. Assemblathon 1 assembly evaluation and features
estimation.

assemblerCtg (Kbp)NG50 Chaff (%) Indels Misjoins Sens Spec

BROAD 989 8,396 0.00 903 236 92.99 93.88

BGI 1897 1,716 0.26 994 656 81.39 97.48

WTSI-S 1380 2,874 0.00 132 197 95.10 96.55

DOEJGI 771 9,073 0.03 163 181 94.32 96.80

CSHL 1842 3,254 3.05 3704 733 90.76 95.18

CRACS 6165 2,712 0.00 319 990 96.59 83.27

BCCGSC 3314 825 2.92 488 636 96.69 88.97

EBI 2173 959 0.39 674 1021 78.66 94.24

IoBUGA 467 1,801 0.18 3596 1249 71.65 94.16

RHUL 4999 43 0.00 336 1040 91.70 95.88

WTSI-P 1448 502 0.00 4121 2389 93.53 89.94

DCSISU 4790 315 0.00 1284 2366 90.14 79.60

IRISA 3539 1,406 0.05 2518 350 95.28 76.90

ASTR 6228 57 0.00 336 2265 91.79 69.97

UCSF 14821 22 0.00 12131 5127 93.85 66.19

GACWT 24297 9 0.00 2197 1487 94.10 49.36

CIUoC 14993 6 0.00 3215 1889 77.09 67.29

For each assembler we report the number of contigs/scaffolds produced (Ctg),
the NG50, the percentage of short (Chaff) contigs (the percentage is computed
with respect to the real genome length), the number of long (i.e., .5 bp) indels
(Indels), the number of Misjoins, the features sensitivity (Sens), and the features
specificity (Spec).
doi:10.1371/journal.pone.0052210.t005
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Figure 2. Dotplot validation of the longest scaffolds produced by Allpaths-LG and MSR-CA on Staphylococcus a. dataset. Figures A
and B show the dotplot of the longest scaffolds produced by Allpaths-LG and MSR-CA against the reference genome.
doi:10.1371/journal.pone.0052210.g002

Figure 3. Dotplot validation of the longest scaffolds produced by CABOG on Rhodobacter s. dataset. Dotplot validation of the longest
scaffold produced by CABOG on Rhodobacter dataset. The green lines represent the Features identified by FRCbam .
doi:10.1371/journal.pone.0052210.g003
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a short chimeric sequence in the middle, thus explaining the

presence of a feature. The presence of these small mis-joins has

been reported also in GAGE analysis: in the Hc14 dataset, the

NG50 was close to 81 Mbp while the corrected-NG50 was 20

times shorter (the corrected-NG50 is the NG50 computed after

breaking contigs at mis-assembled positions identified by the

reference sequence). The low number of compression/expansion

features (i.e., CE statistics), as well as the low number of high-

spanning and high-single reads related features in Allpaths-LG

assembly (see FRCurves plots in Document S1) suggests that

Allpaths-LG is able to return an assembly that is highly and

correctly connected. However, the relatively large number of

paired-end related features suggests the presence of small local

mis-assemblies. On the other hand, CABOG produced a more

fragmented assembly characterized by a small number of features.

CABOG’s most frequent features (i.e., HIGH_SPAN_PE and

HIGH_SPAN_MP) suggest a systematic failure during the

scaffolding phase in correctly merging contigs and inferring their

order.

From FRCurve analysis alone, it is much harder to decide

between the top two assemblers: Allpaths-LG and CABOG,

though when the reference sequence is available, it is evident that

Allpaths-LG suffers less from errors than CABOG (see Table 4).

When considering only contigs (see Document S1) CABOG and

Allpaths-LG still outperform other assemblers, as clearly proved by

GAGE analysis (longest NG50).

With almost 30,000 features MSR-CA is the third ranking

assembler as determined by the FRCurve analysis. MSR-CA is

closely followed by SOAPdenovo and SGA. It is again difficult to

fully ascertain such ranking, and even the reference guided

validation in Table 4 does not lead to a clear and conclusive

opinion. The majority of SGA’s features are a consequence of the

highly fragmented assembly (see HIGH_SINGLE_MP FRCurve

in Document S1). However the small number of errors (see

Table 4) demonstrates that the final sequences are correct.

SOAPdenovo is slightly better than MSR-CA as far as the

number of errors is concerned, notwithstanding the fact that

SOAPdenovo is more fragmented than MSR-CA. SOAPdenovo is

particularly affected by the presence of mis-oriented paired reads

(i.e., HIGH_OUTIE_PE feature).

In all the three GAGE datasets the sensitivity of the FRCbam is

almost always higher than 90% (CABOG is an exception, but it

must be noted that the percentage of mis-assembled sequences is

less than 1.4% of the genome length). Specificity is in general high,

with the exception of assemblies characterized by high errors rates

(e.g., more than 40% of Velvet assembly is marked as suspicious by

dnadiff on Hc14).

Assemblathon 1
Assemblathon 1 dataset differs from that of GAGE mainly in

two ways: it is much larger and it is obtained solely by simulation.

Figure 1D and Table 5 summarize the analysis performed on such

datasets. It is of particular interest to compare FRCurve assembly

evaluation with Assemblathon 1 paper evaluation [10]. The order

of the entries in Table 5 and of the legend in Figures 1D follows

the Assemblathon 1 ranking.

Despite the presence of some outliers, the FRCurve analysis is

close to the ranking obtained by Earl et al. BGI, WTSI-S, DOEGI,

and CSHL were found by the FRCurve analysis to be better

performing assemblers. They, together with Broad Institute’s (i.e.,

Allpaths-LG), were the five best assemblers according to Assem-

blathon 1 ranking. A similar analysis could determine the worst

performing assemblers. CIUoC, GACWT, UCSF, ASTR, and

IRISA are clearly characterized by undesirable FRCurves

(CIUoC’s long contigs contain few errors, even though the

assembly contains only a fraction of the whole genome and small

contigs contain many features).

There are some clear differences, for example Broad’s Allpaths-

LG, the best assembler in Assemblathon 1 ranking is clearly

among the best ones also in our FRCurve-based analysis, but has

a high number of features suggesting problems with paired reads

(i.e., LOW_NORM_COV_PE and HIGH_SPAN_PE features).

We discovered that these two features are highly correlated: in all

the analyzed cases we discovered the presence of a small contig

perfectly (or almost perfectly) aligning against a larger contig,

probably the result of a wrong copy number estimation or of an

unresolved allele splitting event. This observation is consistent with

the analysis by Eearl et al., as, for instance, Broad’s entry ranks

11th for copy number statistics.

Another clear difference is CRACS, the 6th ranking assembler

in Assemblathon 1 evaluation, but an average performing

assembler according to FRCurve analysis. The poor performance

of this assembler is observed in a series of long contigs all

exhibiting an extremely high coverage (i.e., HIGH_COV_PE).

This is clearly reflected also in the ranking given by Assemblathon

1: CRACS has clear problems in inferring copy number variation

(12th ranking tool) and it reconstructs only 96% of the genome

(14th ranking tool). FRCurve analysis suggests two possible

solutions: either discard contigs strongly affected by this feature,

or have CRACS developers reimplement an improved copy

number variation estimation.

The last two assemblers we considered are RHUL and

IoBUGA. Also in this case, these assemblers have FRCurves

comparable to the best assemblers, but have been ranked below

the median in Assemblathon-19s evaluation. According to

Assemblathon-19s evaluation, RHUL has an acceptable number

of substitutions (5th ranking tool); it is able to assemble sequences

in the right copy number (5th ranking tool); and it is able to

reconstruct (cover) the large part of the reference (4th ranking tool).

However, it lacks good connectivity (13th ranking tool). FRCurve

shows this assembler to contain most of its features in the longest

scaffolds, while the short ones contain a small number of features.

Note that the longest of RHUL ’s scaffolds generates a curve

similar to ASTR’s. IoBUGA offers a similar story. Assemblathon-

19s ranking is difficult to interpret (15th ranking tool for

substitutions and gene coverage but 3 rd ranking tool for copy

number variation). This situation reemphasizes that reference

guided validations are extremely difficult to interpret, especially

when a tool exhibits contradicting performance. It should also be

pointed out that IoBuga has the lowest sensitivity (see Table 5). It is

clear that new features may be added in order to improve the

effectiveness of FRCbam and FRCurve analysis. In this case, the

availability of RNA-seq data may allow design of new features,

capable of capturing assemblers’ ability to reconstruct gene

expressions, splicing variants and intron-exon boundaries.

Assemblathon 2
As shown earlier, the GAGE datasets were sufficient for testing

the performance of FRCbam using only relatively small datasets.

But with access to reference sequences, some of the limitations of

the analysis became evident: only S. aureus and R. spaeroides are

realistic datasets, while Hc14 has been partially simulated (reads

have been aligned and extracted, see [11] for more details).

Moreover, S. aureus and R. spaeroides datasets are extremely small in

size and, to some extent, represent fairly easy-to-assemble genomes

(i.e., no heterozygosity or high ploidy). With access to Assembla-

thon 1 data, we further tested the FRCbam against a larger dataset

that was previously analyzed and ranked. The main limitation of
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this dataset stemmed from the use of simulated reads, which often

diverged from any reasonable model of reality.

In order to show the applicability of our method to larger

sequencing projects we tested the FRCbam on all Assemblathon 2

entries for the Snake dataset (Boa constrictor). Results are shown in

Figure 4. Surprisingly, when all features are considered all

together, their FRCurves coincide closely with each other (see

Figure 4A) suggesting that Assemblathon 2 participants, or the

tools used by them, are converging to common results. We can

identify two teams (assemblers) that are doing better than the

others: SGA and Meraculous. There is a dense conglomerate of

similarly behaving assemblers consisting of ABySS, Phusion,

SOAPdenovo, CRACS, and Ray. Other assemblers appear less

promising, though, except for the sole example of PRICE, none of

them show unacceptably bad performance. The good perfor-

mance of CRACS on this dataset brings to mind how drastically

differently the same assembler could behave on different datasets.

Results are different if we concentrate on one feature at a time

(see Figure 4B and Document S1). As an example, by inspecting

the plot for the HIGH_SPAN_PE feature, we observe that GAM

outperforms all the other assemblers. Meraculous and SGA show

good performance too, together with Curtain, Symbiose, and

BCM-HGSC. HIGH_SPAN_PE feature indicates presence of

mis-joins, as often presumably close-by pairs are found in different

contigs/scaffolds.

Particularly interesting is the FRCurve plot describing the

presence of areas composed mainly of single ended reads (i.e,

HIGH_SINGLE_MP feature, see Document S1). All assemblers

are strongly affected by this feature demonstrating a general failure

of all tools. A likely explanation is in a systematic failure in

correctly assembling heterozygous loci, which generates holes in

the assemblies, thus confounding the assemblers attempting to

place both reads of mate-pairs. Note that this behavior is not

present in the HIGH_SINGLE_PE features. A feature like

HIGH_SINGLE_MP is clearly not informative in this dataset

and may be ignored without affecting the analysis.

Discussion

Limitations of de novo Assembly Evaluation
The rapidly growing set of new assemblers aims to address the

need for assembly tools capable of handling the vast amount of

data produced by NGS (e.g., Illumina) sequencers. This growth in

data and tools, however, has led to another unmet need: a rigorous

comparative study of these assemblers, which so far has only been

carried out in a rather naı̈ve way. Developers have focused more

on performance (e.g., RAM and CPU time) and connectivity (e.g.,

contig number and NG50) rather than on correctness.

A commonly employed approach, currently being used to

validate and gauge assemblies, is based on a plethora of standard

validation metrics. We can identify four main groups: length-based

statistics, reference-based statistics, simulation-based statistics, and

long-range-information (LRI) based statistics.

Length-based statistics take into account only the size of the

assembler output. These statistics comprise mean contig length,

maximum contig length, and NG50. NG50, in principle, gives an

idea of assemblies’ connectivity level. All length-based statistics are

not linked to assembly correctness and emphasize only length: an

assembler that eagerly merges together contigs can produce

assemblies characterized by a large NG50 and by few long contigs.

However, these long contigs are of no use if they contain too many

misassemblies. NG50 has been shown in [3] to be a bad quality

predictor. Nevertheless, length-based statistics are the basic, and

some times the only, method used to judge assemblers perfor-

mances, especially when the assembly tools are new [15,16].

Assembly analysis would trivialize if the genome to be

assembled was already available, which would make it possible

to compare assemblers using only the reference-based statistics.

The strategy would be to resequence an organism with an already

available fully finished whole genome reference sequence. This

approach would enable comparing assemblers from the computed

real number of errors. The underlying premise is that good

performances of an assembler on one dataset should reflect

behavior on a wider range of datasets. However, studies like

GAGE has shown that the same assembler can produce utterly

different results on different genomes and different datasets – thus

dashing any hope of generalizing the performance of a tool on the

basis of a single dataset. Moreover, reference-metrics are in

general difficult to interpret or, at least, are open to several

interpretations: as an example reference-based metrics have been

used both to demonstrate the high quality assembly of two human

individuals in [7] as well as to demonstrate the opposite (their poor

quality) in [6].

Simulation-based statistics face even more extreme hurdles:

reads are simulated from a reference sequence and subsequently

assembled. Vezzi et al. showed in [3] that simulated reads are likely

to produce unrealistic contigs that cannot be used to judge

Figure 4. FRCurve computed on Assemblathon 2 entries. Figure A shows FRCurves for all the features, while Figure B shows the FRCurves
plotted on a single feature (i.e., High Spanning Paired Ends).
doi:10.1371/journal.pone.0052210.g004
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assemblers’ performance. Despite these shortcomings, competi-

tions like Assemblathon 1 have continued to use a simulation-

based approach.

A more reasonable way to assess assembly correctness consists in

the use of long range information. Second Generation Technol-

ogies are able to produce mate-pairs, that are pairs of reads at

a mean distance of 2–8 Kbp. Mate-pairs play a crucial role in

contig scaffolding, but they can be also used to gauge the assembly

correctness: pairs should map on the assembly at the estimated

distance and with the right orientation (depending on the

sequencing technology being used). If such data is not used at

assembly time it can be used as an external proof of correctness. A

similar approach has already been applied with success in [8] (i.e.,

mate-pair happiness). Other two commonly used LRI-methods are

physical maps [17] and optical maps [18,19]. Both rely on the relative

locations of different genes and other DNA sequences of interest in

the genome. Third Generation Sequencing Technologies (also

known as Single Molecule Sequencing Technologies) and dilution-

based sub-genomic sampling can also be used in the near future to

estimate assembly correctness. The main drawback of LRI

statistics is the fact that they require the production of new and

often expensive data. Moreover, apart from the simple counting, it

remains unclear how such information should be used to rank

different assemblies that currently exist.

FRCurve
The aim of this work is to present a new simple tool able to

accurately evaluate assemblies and assemblers’ performance even

in the absence of a reference sequence. Features have been first

introduced in [8] to identify possible mis-assemblies. Narzisi and

Mishra [9] used such features to compute the so called Feature

Response Curve (FRCurve). FRCurve is closely connected to the

standard receiver operating characteristic (ROC) curve: the

Feature-Response curve characterizes the sensitivity (coverage) of

the sequence assembler output (contigs) as a function of its

discrimination threshold (number of features/errors). Given a set

of features, the response (quality) of the assembler output is then

analyzed as a function of the maximum number of possible errors

(features) allowed in the contigs. More specifically, for a fixed

feature threshold t, the contigs are sorted by size and, starting

from the longest, only those contigs are tallied, if their sum of

features is less than t. For this set of contigs, the corresponding

approximate genome coverage is computed, leading to a single

point of the Feature-Response curve.

Vezzi et al. [3] analyzed Feature space using multivariate

techniques (i.e., PCA and ICA) in order to study features’

interactions and to use these to select the most important ones.

Such study, however, highlighted one of the main weak points of

FRCurve: the need of a layout file, that is, a file describing the

positions and orientations of each read (and therefore, each pair).

While this file had been standard with old Sanger-based

assemblers, only a small fraction of NGS-based assemblers provide

such information (i.e., Velvet, Ray, Sutta). Another relevant

problem, deeply connected to the first, is the fact that features

were computed by amosvalidate. Such features are commonly

available for Sanger reads, clearly characterized by widely-varying

insert-size distributions and expected coverages.

Results summarized in this paper clearly show that t is able to

effectively detect mis-assemblies and that it is able to rank

assembler performances. The tool achieves high sensitivity and

high specificity thus demonstrating that the implemented features

are able to capture the large majority of the problems. Currently 9

features are computed using reads from paired-end libraries, while

other 5 are computed using reads from a mate-pair library.

FRCurve is computed using all of them, however the user is free to

concentrate only on a subset of them (PCA can be used as shown

in [3] to study features, see Document S1). New forensics features

can be easily added to the program in order to highlight new

problematic regions: small indels can be identified using reads

aligned with gaps (i.e., reads aligned with Smith-Waterman-like

algorithm), problems in reconstructing gene space can be

identified using RNA-seq reads, physical-maps or long single-

molecule-sequences can be used to compute features, highlighting

scaffolders’ performance.

Mapping reads back to the assembly provides only a rough

approximation of the layout generation, especially in presence of

repeat-structures: in such cases, reads that belong to correctly (or

incorrectly) reconstructed duplicated regions can only be mapped

randomly on one of the possible occurrences, thus, jeopardizing

the hope of obtaining a correct layout. FRCurve’s ability to detect

mis-assemblies is clearly limited by the presence of non-uniquely

aligning reads (i.e., reads aligning optimally in two or more

positions). Thus, as the repetitive structures in a genome increase,

which complicates the assembly problem, so does the difficulty in

providing valid assembly evaluation. As the read-lengths increase

or mate-pairs of different lengths become feasible, not only does

the assembly problem become more tractable, but also new

features enable better identification of problematic regions.

Despite the severe limitations imposed by the strategy of

approximating read layout with read alignment, the present trend

suggests that assemblers may continue to avoid producing layout

files. Thus, it is believed that FRCbam and, more in general,

forensics features, will need to be computed by mapping reads

back to the assembled sequence. The approach to approximate the

layout by mapping reads back to the assembly has several

advantages: (i) to potentially scale to any genome size (FRCbam is

currently being used to evaluate Spruce genome assembly, which

will produce a reference genome of length 20 Gbp); (ii) to possibly

compute new forensics features; (iii) and finally, to study relation-

ships among features in a more uniform way.

Thanks to the feature-by-feature analysis, the FRCurve is often

able to express and explain the current limitations of different

assemblers. In many situations it is straight-forward to rank the

assemblers simply by inspecting the FRC curves. Even when the

scenario is unclear, FRCurve is still useful to highlight advantages

and disadvantages of one assembler over the other (e.g., an

assembler that presents good long range connectivity but makes

many mistakes in the small contigs, versus an assembler that has

low connectivity but does not present local mis-assemblies). It is

important to recall that, currently, none of the standard de novo

evaluation metrics is able to capture these situations in the absence

of a reference sequence.

We believe that features-based analysis will guide efforts aimed

at de novo assembly evaluation and de novo assembler design. Our

results clearly show that FRCurve can easily separate the best

assemblies from the worst ones. By comparing feature-specific

curves one can evaluate strong and weak points of each assembler

and choose the system that best fits one’s objective. It is hoped

that, in future, assembler-developers will be guided by the features-

based analysis to improve these tools – at the core of the current

genomic revolution.

Software and Data Availability

The sequencing data used in this study is publicly available on

the GAGE website and on the Assemblathon website (details are

available in Document S1). FRCbam source code can be down-

loaded from https://github.com/vezzi/FRC_align.git.
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Supporting Information

Document S1 Supplementary material. This document

contains the supplementary material and a detailed description to

how reproduce results presented in the paper.

(PDF)
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