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Abstract

This paper investigates the Santa Fe (El
Farol) bar problem (SFBP) from the point
of view of rational learning. It is argued
that rationality together with belief-based
learning (e.g., Bayesian updating) yields un-
stable behavior in this game. More specif-
ically, two conditions sufficient for conver-
gence to Nash equilibrium, namely rational-
ity and predictivity, are shown to be incom-
patible. Low-rationality learning algorithms,
however, which are are known in theory to
converge to correlated equilibrium, in fact
converge to the symmetric Nash equilibrium
in srBP. Efficiency is suboptimal, however,
even at Nash equilibrium. Thus, this pa-
per also proposes a simple modification to
SFBP, whereby agents that attend the bar are
charged an entry fee that is divided equally
among those agents who do not attend the
bar. In this modified scenario, low-rationality
algorithms, which learn Nash equilibrium
strategies, also learn Pareto-optimal behav-
ior: i.e., individual rationality coincides with
collective rationality.

1. Introduction

The Santa Fe bar problem (SFBP) was introduced by
Brian Arthur [1], an economist at the Santa Fe Insti-
tute, in the study of bounded rationality and inductive
learning. Here is the scenario:

N [(say, 100)] people decide independently
each week whether to go to a bar that offers
entertainment on a certain night ...Space
is limited, and the evening is enjoyable if
things are not too crowded — especially, if

fewer than 60 [or, some fized but perhaps un-
known capacity c] percent of the possible 100
are present . . . a person or agent goes (deems
it worth going) if he expects fewer than 60
to show up or stays home if he expects more
than 60 to go. Choices are unaffected by pre-
vious wisits; there is no collusion or prior
communication among the agents; and the
only information available is the number who
came in past weeks.

We motivate our negative results with the following in-
tuitive analysis of SFBP under the standard economic
assumption of rationality. Define an uncrowded bar
as one in which attendance is less than or equal to ¢,
and define a crowded bar as one in which attendance
is strictly greater than c¢. Let the utility of going to
an uncrowded bar be 1/2 and the utility of going to a
crowded bar be —1/2; in addition, the utility of stay-
ing at home is 0, regardless of the state of the bar. If
an agent predicts that the bar will be uncrowded with
probability p, then his rational (i.e., best) reply is to
go to the bar if p > 1/2 and to stay home if p < 1/2.
(In the case where p = 1/2, the agents are indifferent
between attending the bar and staying home and may
behave arbitrarily.) Now, if the agents indeed learn to
predict probability p accurately, then their predictions
eventually come to match the actual probability that
the bar is uncrowded, as it is determined by their (pos-
sibly randomized) strategic best-replies. Herein lies a
contradiction. If the agents learn to predict that the
bar will be uncrowded with probability p < 1/2, then,
in fact the bar will be empty with probability 1; on
the other hand, if the agents learn to predict that the
bar will be uncrowded with probability p > 1/2, then
the bar will be empty with probability 0. We conclude
that rational agents cannot learn to make accurate pre-
dictions. Rationality precludes learning.



1.1 Logical Implications

This paradoxical outcome in SFBP is arrived at via a
diagonalization process in the spirit of Russell’s para-
dox [15]. Russell’s set is the set of all sets that are
not elements of themselves: i.e., R = {X|X ¢ X}.
Thus, R € R iff R € R. Just as the truth of being in
Russell’s set depends on the fact of (not) being in the
set, the value of going to the bar depends on the act
of going (or not going) to the bar. For the sake of ar-
gument, consider a bar of capacity 1/2 in a world of a
single agent.! If the agent does not go to the bar, then
the bar is uncrowded, in which case her best-reply is
to go to the bar. But now the bar is crowded, and
so her best-reply is to stay at home. Thus rationality
dictates that this agent should go to the bar if and
only if she should not go to the bar.

The aforementioned paradox similarly arises in the
two-player game of matching pennies, where player 1
aims to match player 2, while player 2 aims to mis-
match player 1. In fact, matching pennies can be
viewed as a variant of SFBP: if player 1 prefers to go to
the bar only when player 2 attends as well, while player
2 prefers to go to the bar only when player 1 stays at
home, then player 1 is the matcher while player 2 is the
mismatcher. In matching pennies, if player 1 prefers
heads, then player 2 prefers tails, but then player 1
prefers tails, at which point player 2 actually prefers
heads, and finally, player 1 prefers heads once again. It
follows that player 1 prefers heads iff player 1 prefers
tails. Similarly, for player 2.

The logical conflict that arises in the game of matching
pennies is closely related to the fact that the game
has no pure strategy Nash equilibria [13]; similarly,
SFBP has no symmetric pure strategy Nash equilibria,
except in degenerate cases. In order to resolve these
paradoxes, game-theorists introduce mixed strategies.
The unique Nash equilibrium in matching pennies is
for both players to play each of heads and tails with
probability 1/2; a mixed strategy Nash equilibrium in
SFBP is for all agents to go to the bar with probability
p = c/N and to stay at home with probability 1 — p.2

1.2 Game-Theoretic Implications

This paper presents negative results on convergence to
Nash equilibrium in SFBP which formalizes the above
diagonalization argument. Two sufficient conditions

!Similarly, one could consider a bar of capacity 1 and a
married couple who act in unison.

*Technically, this symmetric Nash equilibrium is the
solution p to the equation Z;:o (J:)p”(l —p)N-®

ZLV:CH (];’)p”(l —p)V~®, which is approximately c/N.

for convergence to Nash equilibrium are rationality
and predictivity. By rationality, we mean that play-
ers play best-replies to their beliefs. Predictivity is
one way in which to capture the notion of learning:
a player is said to be predictive if that player’s be-
liefs eventually coincide with (or approach) the truth
of what he is predicting. If players learn to predict
(i.e., if beliefs indeed converge to other players’ ac-
tual strategies), then best-replies to beliefs constitute
a Nash equilibrium. In what follows, we argue that
if the players employ predictive learning algorithms,
assuming rationality, play does not converge to Nash
equilibrium in SFBP. Equivalently, if play converges to
Nash equilibrium, then either play is not rational or
play is not learned.

In a seminal work by Kalai and Lehrer [10], sufficient
conditions are presented for predictivity—specifically,
an absolute continuity assumption—which suggests
that convergence to Nash equilibrium is at least pos-
sible. Our negative results complement the work of
Nachbar [12] and Foster and Young [6], who argue that
the conditions sufficient for prediction are unlikely to
ever hold. Nachbar shows that unless players’ initial
beliefs somehow magically coincide with Nash equi-
librium, repeated play of strategic form games among
Bayesian rational players does not converge to Nash
equilibrium. Similarly, Foster and Young prove that
in two-player games of incomplete information with
unique mixed strategy Nash equilibria, rationality is
not compatible with predictivity. Our theorems argue
in a similar vein that unless certain strict regularity
conditions are satisfied, no means of rational learning
converges to Nash equilibrium in SFBP.

1.3 Computer Science Implications

SFBP and its natural extensions (e.g., multiple bars)
serve as abstractions of various congestion control
problems that arise in networking. Many authors
(e.g., [16]) who capitalize on the potential for the
theory of repeated games as a model of networking
environments do so because of the difficulty to en-
force cooperation in large-scale networks; instead, it
is more realistic and more general to assume non-
cooperative networks. This generality is modeled in
repeated games by assuming that agents are rational.
Those same authors who study networking games as-
suming rationality often also assume that the network
operating point is a Nash equilibrium. One might
hope to justify this assumption on the grounds that
Nash equilibrium is the outcome of rational learning.
It is the conclusion of this study, however, that Nash
equilibrium is not the outcome of rational learning in
games that model networking environments.



In light of the suite of negative theoretical results, the
second part of this paper aims to resolve the para-
doxes of the first via simulation experiments in com-
putational learning. Apparently, it is necessary to re-
lax one or more of the usual economic assumptions in
order to approach equilibrium behavior. More specif-
ically, we can relax either rationality or the implicit
assumption that beliefs are deterministic. Foster and
Young [6] take the latter approach. In this paper, it
is shown that low-rationality learning yields equilib-
rium behavior. Similarly, in Arthur’s original paper,
he demonstrated via simulations that boundedly ratio-
nal agents are capable of generating collective atten-
dance centered around the capacity of the bar. In con-
trast to Arthur’s approach, which is based on complex
modeling of cognitive aspects of inductive reasoning,
the algorithms of interest in this study are simple and
straightforward, and are therefore more apt for use
in networking applications. While (highly) rational
learning does not validate the assumption that Nash
equilibrium describes the solution of network games,
low-rationality learning indeed yields Nash equilibrium
behavior.

1.4 Economic Implications

Thus far, we have considered rational and low-
rationality learning from the point of view of individ-
ual agents. Now let us shift our attention to collective
behavioral issues. Observe that the symmetric Nash
equilibrium in SFBP is not efficient. If all agents go
to the bar with probability ¢/N, then half the time
the bar is uncrowded, yielding positive utilities for the
agents, but half the time the bar is crowded, yielding
negative utilities for the agents. Therefore, the ex-
pected utility of the collective is zero. But, the max-
imum utility, achieved when exactly NV agents attend
the bar, is ¢N/2! A simple solution to this problem
(advocated by Bell, et al. [3]) is to devise algorithms
by which agents learn pure strategy Nash equilibrium:
i.e., ¢ agents go to the bar and IV — ¢ agents stay home,
forever. This solution, albeit efficient, is unfair, since
some agents learn to never attend the bar.

In this paper, we introduce a fair market mechanism
that rectifies the inherent inefficiency in the symmet-
ric equilibria of SFBP. We propose to charge those
agents who attend the bar an entry fee, which is di-
vided equally among those agents who remain at home.
This idea is related to many in the economic literature
on user fees and public goods (e.g., Varian [17]). For
example, like gasoline taxes which negatively impact
drivers only, our bar entry fee negatively impacts only
those agents that attend the bar; also like European
gasoline taxes, which are converted into subsidies for

public transportation systems, bar entry fees are dis-
tributed among those agents that do not attend. This
market mechanism does not change the Nash equilib-
ria of SFBP. Therefore, low-rationality learning algo-
rithms, which learn the symmetric Nash equilibrium
in SFBP, generate fair and efficient collective behavior.

2. Formalization

The Santa Fe bar problem is a repeated game of neg-
ative externalities.> We now formally define both the
one-shot strategic form game, and the corresponding
repeated game. The players are the inhabitants of
Santa Fe; notation N' = {1,...,N}, with n € N.
For player n, the strategy set S, = {0,1}, where 1
corresponds to go to the bar while 0 corresponds to
stay home. Let @), denote the set of probability dis-
tributions over S,,, with mixed strategy ¢, € @,. The
expected payoffs obtained by player n depend on the
particular strategic choice taken by player n, the value
to player n of attending the bar, and a negative exter-
nality, which are defined as follows.

Let s, denote the realization of mixed strategy g, of
player n; thus, s = >/ s is the realized attendance
at the bar. In addition, let ¢ € {0,..., N} denote the
capacity of the bar. The externality £ depends on s
and c¢ as follows: if the bar is uncrowded (i.e., s < ¢),
then E(s) = 0; on the other hand, if the bar is crowded
(i.e., s > ¢), then E(s) = 1. Let 0 < a, < 1 denote
the value to player n of attending the bar, and without
loss of generality assume a,, < a,y1.* Now the payoff
function for player n is given by:

_ an, — E(s) ifs,=1
n(sn,8) = { 0 otherwise
= splan — E(s)]

As usual, the expected payoffs E,, [7,(sn, s)] obtained
by player n via mixed strategy ¢, are given by
By, [Tn(sn,8)] = 2o, cs. @n(Sn)Tn(sn,s). SFBP is a
discretization of an ordered externality game in the
sense of Friedman [7].

The one-shot strategic form SFBP is described by the
tuple T' = (N, (Sn,Tn)nen,c), and the infinitely re-
peated SFBP is given by T'™. A history h! of length
t € N is defined to be a sequence of t outcomes
drawn from the set S = {0,1,...,N}; the history

3An externality is a third-party effect. An example of a
negative externality is pollution; an example of a positive
externality is standardization. Although externalities are
typically external to a game, it is natural to view payoffs in
terms of externalities when the numbers of players is large.

4The results in this paper are restricted to the uniform
SFBP in which a, = a,, for all players n,m € N.



ht = (st,...,st) indicates the number of players who
attended the bar during periods 1 through ¢. Let h°
denote the null history, let H? denote the set of all
histories of length ¢, and let H = |Jg~ H".

A Dbelief-based learning algorithm is a function from
the set of all possible histories to the set of possi-
ble beliefs. We assume that beliefs in the repeated
SFBP take the form of a subjective probability over the
space of possible externality effects £ = {uncrowded,
crowded}. Recall that the event uncrowded obtains at
time t whenever st < ¢; otherwise, the event crowded
obtains. Let A(E) be the set of probability distribu-
tions over the set £. Formally, a belief-based learning
algorithm for player n is a function f, : H — A(£).°
Since the event space £ is of cardinality 2, the sequence
of beliefs { f{ (h%)} = {(ptF!, 1 —ptt1)} is denoted sim-
ply {p4t'}, where pLt! is the probability that player n
attributes to the bar being uncrowded at time ¢ + 1.

The expected payoff for player n at time ¢ is computed
in terms of the beliefs that player n holds at time ¢:
¢ ¢ :

_f phan—(1-ph)1—a,) ifs,=1
B, [rn(sn, 8)] = { 0 otherwise
Let p}, = 1 — a,. Player n is indifferent between his
two pure strategies whenever p!, = pf, since this im-
plies EL [7,(1, )] = EL [7,(0, s)] = 0. The actual (i.e.,
objective) probability that the bar is uncrowded at
time ¢ is denoted by p§. The existence of such prob-
abilities is implied by the assumption that in general

players employ mixed strategies: i.e., p§ can be com-
puted directly from the players’ strategies ¢t,.

Definition 2.1 SFBP is uniform iff for all n,m € N,
Qn = Oy = a, and thus, pf = p}, = p*.

3. An Example: Best-Reply Dynamics

We now show that best-reply dynamics, a learning al-
gorithm for which Cournot proved convergence to pure
strategy Nash equilibrium in models of duopoly [5],
yield oscillatory behavior in SFBP. Note that since
best-reply dynamics is one method of belief-based
learning the result presented in this section follows as
an immediate corollary of the more general results de-
rived in later sections. We begin by reminding the
reader of the definition of best-reply dynamics.

Definition 3.1 A strategy ¢!, € @, is said
to be a best-reply for player n at time ¢ iff

>The given definition precludes any notion of correlated
beliefs, in which players might attempt to correlate the
behavior of an individual, such as oneself, with attendance
at the bar.

¢¢, € argmaxg,cq, ™(dn,ph): e, m(gh,ph) >

maXg, eQn, Tn (qn, p%)

Definition 3.2 A given player n is said to employ
best-reply dynamics in SFBP iff for all times ¢, player n
assumes that pttl = 1 if s* < ¢, and pit! = 0 other-
wise, and moreover, player n plays only best-replies to
these beliefs. In other words, if player n utilizes best-
reply dynamics, then ¢, € argmax,, cq,. Tn(qn, st).

Assume that all players employ best-reply dynamics.
If at time ¢, st < ¢, then pLr! = 1 for all n, to which the
best response at time ¢ + 1 is pure strategy stn+1 =1.
But then s'*! > ¢, so that ptt? = 0 for all n, to
which the best response at time ¢ + 2 is pure strategy
st+2 = 0. Now, it follows that s'*2 < ¢ and pLF3 =
1. This pattern repeats itself indefinitely, generating
oscillatory behavior that is far from equilibrium. A
similar argument arises in the case in which s* > c.
The following remark captures this intuition.

Remark 3.3 In the wuniform repeated SFBP,
best-reply dynamics do not converge: i.e., Vn,
limy ¢ oo | DL, — Ph | # 0 and limg ¢ o0 | 8¢ — 8¢ | # 0.

4. A Preliminary Result

In what follows, we generalize our observation pertain-
ing to best-reply dynamics. Specifically, we argue that
if players are rational and if they learn according to
Bayes’ rule, their strategies do not converge to equi-
librium behavior. In fact, this result is not contin-
gent on the assumption of Bayesian learning and is
readily applicable to any predictive belief-based learn-
ing mechanism. We arrive at this negative result by
first deriving a seemingly positive result, namely that
beliefs can sometimes converge to Nash equilibrium,
assuming rationality and predictivity. Later we show
that in practice sometimes amounts to almost never.

Definition 4.1 A learning algorithm is said to be pre-
dictive iff it generates a sequence of beliefs {p}} for
player n s.t. lim;,o | pf, — p§| = 0.

In words, if player n utilizes a predictive learning algo-
rithm, then the difference between player n’s subjec-
tive beliefs pt, and the objective probabilities pf con-
verges to zero. This definition does not require that
the objective probabilities themselves converge, only
that player n’s subjective beliefs approach the objec-
tive probabilities.

Definition 4.2 A set of players A is said to reach
consensus iff for all n,m € N, lim;_,o | pt, — pt, | = 0.



Lemma 4.3 If all players within set N are predictive,
then they reach consensus.

Proof 4.4 By the triangle inequality, |pf, — pt,| <
|pt, —pb| + | ph — pL, |, for all n,m € N, and for all ¢.
Taking limits and applying the definition of predictiv-
ity, it follows that lim; . |pl, — pf, | = 0. O

Definition 4.5 A player n is rational iff he plays only
best-replies to his beliefs pf,.

The following theorem states that in the uniform ver-
sion of the repeated SFBP, whenever players exhibit
rationality and predictivity, beliefs converge to p*. It
follows by predictivity that the objective probabilities,
which correspond to the players’ joint strategies, must
converge to p* as well. Thus, rational players who play
best-replies to their beliefs, ultimately play best-replies
to actual strategies: i.e., play converges to Nash equi-
librium. This seemingly positive result is contested in
later sections.

Theorem 4.6 In the uniform repeated SFBP, if play-
ers are rational and predictive, lim;_, | pt, — p*| = 0.

Proof 4.7 Suppose not. Two cases arise. First sup-
pose 3¢ > 0 s.t. p!, > p* + € infinitely often (i.0.). It
follows by Lemma 4.3 that for all m, p{, > p* + ¢
i.o., for all 0 < § < e. Now by rationality, all play-
ers play best-replies, which for such ¢ is to go to the
bar: i.e., for all n, s{, = 1 io.. This ensures that
the bar will be crowded with probability 1, yielding
py = 0 < p* +e€ < pt io., which implies that
pt, —pb > € i.0., contradicting predictivity. The argu-
ment in the second case is analogous. O

It follows immediately from Theorem 4.6 and the def-
inition of predictivity that whenever players are ratio-
nal and predictive, strategies (objective probabilities),
as well as beliefs, must converge to p*. The question
now arises as to whether p* can indeed be the actual
objective probability, for if not, players cannot be both
rational and predictive.

5. A First Negative Result

We now present our first negative result, namely
that no mechanism of rational, predictive, belief-based
learning (including Bayesian updating) gives rise to
objective probabilities that converge to p*, except in
rare circumstances. Before making any general claims,
we construct an example of one such special p* for
which convergence is possible. We assume that indif-
ferent players (i.e., those players n for which pf, = p*)
flip a fair coin; for if, on the contrary, players were

to flip a biased coin favoring one strategy or another,
they would not be truly indifferent between the two
alternatives.

Example 5.1 Let f(t) — 0 be a monotonically de-
creasing function of ¢: e.g., f(t) = 1/t.

e Suppose G players (the optimists) hold beliefs
p* + f(t). These players’ beliefs converge to p*.
By rationality, these players always go to the bar.

e Let H players (the pessimists) hold beliefs p* —
f(t). These players’ beliefs also converge to p*.
By rationality, these players never go to the bar.

e Let I players (the realists) hold beliefs exactly p*
at all times ¢. These players are indifferent be-
tween going to the bar and not going. They flip
a fair coin.

Given that players’ beliefs converge to p*, we now con-
sider the conditions under which the players’ strategies
(i.e., actual probabilities) also converge to p*. Let the
excess capacity of the bar d = ¢—G for the [ indifferent
players, after accommodating the G players who go to
the bar in every period. Suppose indifferent players
go to the bar iff their coin flips show heads. In this
scenario, the probability p that the bar is uncrowded
is the probability that with I flips of a fair coin,® at
most d heads appear:

0 if d <0
p=4 1 ifd>1 2)
21_1 > 7=0 (;) otherwise

Now as t — oo, p!, — p* and p§ — p (in fact, p§ =
p, for all t). Thus, if p* = p, then both beliefs and
strategies converge to p*. O

Using the layout of Example 5.1, it is possible to de-
scribe all possible values of p in Equation 2. At fixed
time ¢, let G denote the number of players who defi-
nitely go to the bar; let H denote the number of players
who definitely stay at home; and let I denote the num-
ber of players who are indifferent and therefore flip a

5Mathematically, this result holds in the more general

case when players flip a coin of bias ¢. In particular, Equa-
tion 2 becomes

0 ifd<0
p= 1 ifd>1T 1)

Yise (e -a'

‘We do not present this case, however, since this assumption
is more difficult to justify.

otherwise



fair coin in deciding whether or not to attend the bar.
The following set F' describes all the realizable proba-
bilities under these circumstances: F = {p|3G, H,I €
{0,...,N} s.t. pis defined by Equation 2}. F is a fi-
nite set since there are only finitely many possible val-
ues of G, H, and I. The next theorem states that ob-
jective probabilities cannot converge to p*, if p* & F.

Theorem 5.2 In the uniform repeated SFBP, given
rational and predictive players, lim;_, | py — p*| # 0,
if p* € F, provided indifferent players flip a fair coin.

In sFBP, assuming a bar of capacity ¢, if players are
rational and predictive, then strategies can only con-
verge to p* if p* happens to be an element of the finite
set F. Thus, it is only on rare occasions that play-
ers exhibit both rationality and predictivity, such that
both beliefs and strategies converge to p*: i.e., play
converges to Nash equilibrium. In general, play does
not converge to Nash equilibrium in SFBP.

Example 5.3 Consider an instance of SFBP in which
players are both rational and predictive. Let N =1 =
10, and assume ¢ = 6. In other words, there are 10
players, all of whom are indifferent and flip a fair coin.
According to Equation 2, there exists p* ~ .828 such
that the players’ strategies (i.e., actual probabilities)
converge to p*. By Theorem 4.6, beliefs also converge
to p*. Thus, in this particular instance of SFBP, if by
chance @ = 1—p* = .172, then play converges to Nash
equilibrium. O

As Theorems 4.6 and 5.2 yield contradictory conclu-
sions in all but finitely many cases, we deduce that
together the assumptions of rationality and predictiv-
ity are inconsistent: in general, there is no rational
learning in SFBP.

Corollary 5.4 In the uniform repeated SFBP, players
cannot be both rational and predictive, unless p* € F.

This concludes the discussion of our first negative re-
sult. It was argued that two conditions which to-
gether are sufficient for convergence to Nash equilib-
rium, namely rationality and predictivity, are incom-
patible in SFBP. A similar analysis appeared in Green-
wald [8]. In the next section, a second negative result
is derived, which is based on the work of Mishra [11].

6. A Second Negative Result

The negative result presented in the previous section
is contingent on the fact that in SFBP rational best-
replies are in general deterministic. At fixed time ¢, if
pt, < p*, then player n believes that the bar is crowded,

so his best-reply is to stay home, or go to the bar with
probability 0; on the other hand, if p{, > p*, then
player n believes that the bar is uncrowded, so his best-
reply is to go to the bar with probability 1. Although
Theorem 4.6 ensures that players’ beliefs converge to
p*, only when beliefs exactly coincide with p* is player
n indifferent between going to the bar and staying at
home; at this point, player n may play any mixed strat-
egy ¢%. The step function that represents these deter-
ministic best-replies is depicted in Figure 1(a). Beliefs
pt are plotted along the z-axis, and rational strategies
q¢%, are plotted along the y-axis.

Rational Strategies
3 —Rational Strategies

pr+8

P

o Beliefs 1 o Beliefs P 1

Rationality d-Rationality

Figure 1. (a) Rationality. (b) §-Rationality.

This section describes a second negative result based
on the following slightly weaker notion of rationality.
Here, players’ behavior near p* is not so clear-cut, but
rather it is unspecified, encouraging players to per-
haps experiment with randomized strategies anywhere
in the range (p* —§, p* +9), as depicted in Figure 1(b).

Definition 6.1 Let 6 > 0. A player n is J-rational
iff he plays only best-replies to his beliefs in the range
[0,p%, — 8] and [pt, + §,1], but plays arbitrarily in the
range (pt, — 6, pt, + 9).

The proof of Theorem 4.6 is easily extended to show
that if players are §-rational and predictive, then their
beliefs converge to near p*. But §-rationality allows
for the possibility that players experiment with non-
deterministic strategies not only when beliefs precisely
equal p*, but even when beliefs are in the neighbor-
hood of p*. In other words, é-rationality and predic-
tivity imply d-indifference.

The next theorem states that no means of d-rational,
predictive learning gives rise to objective probabilities
that converge to p*, unless the capacity of the bar for-
tuitously lies between N/2 — k1vVN and N /24 k2 VN,
for certain ky, ko > 0, provided that §-indifferent play-
ers flip a fair coin. This result is explained intuitively
as follows. By Theorem 4.6 (extended to the case of



o-rational players), beliefs converge to p*: i.e., play-
ers are eventually d-indifferent. By assumption, the
players flip a fair coin. Thus, attendance at the bar is
likely to be near N/2. The theorem states that unless
the capacity of the bar also happens to be near N/2,
é-rational learning is also ineffectual in SFBP.

Theorem 6.2 Let0 < § < min{(1—a)—(1-a)/e,a—
a/e}. In the uniform repeated SFBP, assuming players
are §-rational and predictive, lim;_, o | ph — p*| > 6,
provided that §-indifferent players flip a fair coin,” and
¢ < N/2 — kivV/N where ky = 1 +1n(1/(1 — a)), or
¢> N/2+ kov/N where ky = [3+ 31In(1/a)]/2.

Proof 6.3 Theorem 4.6 (in the case of §-rational play-
ers) states that beliefs converge to within & of p*.
Thus, all players are eventually d-indifferent, from
which point on they flip a fair coin. It follows that
attendance at the bar is eventually binomially dis-
tributed ~ S(N,1/2). Two distinct cases arise, de-
pending on the capacity of the bar. This proof utilizes
the multiplicative variant of the Chernoff bound [4].

Case 6.3.1 Assume ¢ < N/2 — kivV/N = N/2 —
Vv[1+1n(1/(1 — a))]N. In this case,

pl = Pr[S(N,1/2) < ]
< Pr[S(N,1/2) < (N/2){1—
V[4+41n(1/(1 - a))]/N}]

e~ ([4+41In(1/(1-a))]/2N)(N/2)

= (1-a)/e
< l—a-4,sinced<(l—a)—(1-a)/e
= p*—6

Therefore, p* — ply > 6. Contradiction.

Case 6.3.2 Assume ¢ > N/2 + k2v/N = N/2 +

V/[3 +31In(1/a)][N/2]. This case is analogous. O

This theorem shows that even for é-rational players,
unless the capacity of the bar is near N/2, rational
and predictive (i.e., Nash) behavior is impossible.

7. A Positive Result

We now study learning among computational agents
that are not highly rational; on the contrary, they

"Mathematically, this result holds for arbitrary proba-
bilities pn, pm $.t. |Pn —Pm | < €, for small values of € > 0,
where p, and p,, denote the probabilities that players n
and m, respectively, go to the bar. We do not present this
case since this assumption is more difficult to justify.

exhibit low-rationality (i.e., non-Bayesian) learning.
Low-rationality learning algorithms do not maintain
belief-based models over the space of opponents’
strategies or payoff structures. Instead, they specify
that agents explore their own strategy space by play-
ing all strategies with some non-zero probability, and
exploit successful strategies by increasing the proba-
bility of employing those strategies that generate high
payoffs. Simple reinforcement techniques of this na-
ture are advantageous because unlike Bayesian learn-
ing, they do not depend on any complex modeling of
prior probabilities over possible states of the world.
Also, unlike Arthur’s approach, they are are not based
on inherently complex models of human cognition.

Freund and Schapire [2] study a low-rationality learn-
ing algorithm based on an exponential updating
scheme.® Let Pi(s,) denote the cumulative payoffs
obtained by agent n through time ¢ via strategy s,:
i, PL(sn) = Yoy Tn($n,5%). The weight assigned
to strategy s, at time ¢ 4+ 1, for g > 0, is given by:

(14 )"l
Yo cs, (L+ B)Fa(en)

qijl (8n) =

(3)

We simulated SFBP assuming a bar of capacity 60 and
100 computational agents learning according to the al-
gorithm of Freund and Schapire, with g = 0.01. Fig-
ure 2 plots attendance at the bar over time. Note
that attendance centers around 60—the capacity of
the bar. Specifically, the mean attendance is 60.04 and
the variance is 5.11. Learning via this and other low-
rationality algorithms, which do not necessitate per-
fectly rational behavior, yield equilibrium outcomes in
SFBP. Moreover, these results are robust in the sense
that the agents readily adapt if ever the capacity of
the bar changes.

Best-Reply Dynamics One-bar Problem
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Figure 2. Rational vs. low-rationality learning.

8This algorithm depends on the cumulative payoffs
achieved by all strategies including the surmised payoffs of
strategies which are not in fact played. Techniques exist,
however, by which to convert this algorithm to an algo-
rithm that depends only on the payoffs of those strategies
that are in fact employed (see Greenwald, et al. [9]).



8. A Fair and Efficient Mechanism

We now consider the collective behavior of agents in
SFBP. As noted earlier, the symmetric Nash equilib-
rium learned by low-rationality algorithms is not effi-
cient. The collective utility of a set of low-rationality
learners is zero, since half the time the bar is un-
crowded, yielding positive utilities for the agents, but
half the time the bar is crowded, yielding negative util-
ities for the agents. In this section, we introduce a
market mechanism based on user fees by which low-
rationality learning leads to fair and efficient outcomes.

Our proposed mechanism is straightforward: charge
agents that attend the bar a user fee, say z, and dis-
tribute the proceeds evenly among those agents that
do not attend the bar. Suppose A agents go to the bar.
The payoffs to those A agents are now a — z, if the bar
is uncrowded, and ao—1 — z, if the bar is crowded. The
payoffs to those N — X\ agents that do not go to the
bar is now Az /(N — A). Note that this mechanism does
not change the symmetric Nash equilibrium of SFBP.

Figure 3 plots efficiency (total utility obtained by all
agents divided by the bar’s capacity) as a function of
the value of the fee z, for « = 1, N € {10,100, 1000},
and ¢ = 0.6N. Note that as N — oo, the optimal
value of x approaches 0.4 and efficiency approaches
100%. The value x = 0.4 equates the payoffs of those
agents that go (1—0.4 = 0.6) with the payoffs of those
agents that stay home (24/40), whenever precisely 60
agents go to the bar (i.e., efficiency equals 100%).

Fee Mechanism
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Figure 3. Efficiency vs. fee: as N — oo, optimal fee ap-
proaches 0.4 and efficiency approaches 100%.

9. Conclusion

This paper studied learning dynamics in the Santa
Fe bar problem. Specifically, we investigated whether
Nash equilibrium could arise the outcome of learn-
ing. We reported two negative results—neither ratio-
nal nor approximately rational learning lead to Nash
equilibrium behavior—and one positive result—low-
rationality learning, a simple form of reinforcement
learning, indeed converges to Nash equilibrium.

We also took a close look at the Nash equilibria of
SFBP. The pure strategy asymmetric Nash equilibria
are efficient, but unfair. The mixed strategy symmet-
ric Nash equilibrium are fair, but inefficient. Thus,
we proposed an alternative SFBP mechanism for which
the symmetric Nash equilibrium is efficient. Under
this mechanism, individually low-rationality learning,
which generates Nash behavior, yields an outcome that
collectively is both fair and efficient.
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