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The determination of feature maps, such as STSs, SNPs or RFLPs maps, for each
chromosome copy or haplotype in an individual has important potential applica-
tions to association studies. We present a method to recover RFLP feature maps
for each haplotype starting from genotype data which is an ambiguous superposi-
tion of all haplotypes’ data. Our method is an inference method which is able to
interpret data in two key ways: 1) We determine when a feature expresses polymor-
phic diversity across the haplotypes, 2) We co-associate the alternatives of each
pair of polymorphic feature thereby partitioning the genotype feature map into
haplotype feature maps. We design an expectation maximization (EM) algorithm
to detect the polymorphic markers. Secondly, we design an efficient algorithm to
rapidly determine the co-associations of alternatives for each pair of polymorphic
features: This process is called the phasing of polymorphims. The problem of op-
timizing existing methods of SNP (single nucleotide polymorphism) phasing have
been investigated in 2 and found to be NP-hard. In contrast, using the RFLP
(restriction fragment length polymorphism) markers, we show that our algorithm
can produce marker phasing and hence haplotypes, when the genome-wide ordered
restriction site data are produced by an available technology such as optical map-
ping . A prior model of the data, comprising a set of restriction fragment lengths,
allows us to analyze the proposed algorithm and provide a probabilistic guarantee
for its correctness. Our algorithm can be suitably modified for a wide class of hap-
lotyping problems, relying on unrelated markers and technologies. Independently,
as a significant fraction of RFLP markers are directly caused by SNP’s, the RFLP
phasing may be an important tool for reducing the complexity of the SNP-phasing
problem.

1 Introduction and Related Literature

A diploid organism contains two very similar copies of each chromosome, with
the exception of sex-chromosomes. We call the pair of copies haplotypes, and
refer to them individually as “Haplotype I” and “Haplotype IT”. In this paper,
we discuss a restriction-enzyme-based experiment and algorithms capable of
uncovering the diversity across the haplotypes.

A restriction enzyme (e.g., BamH I) cuts double-stranded DNA at specific
recognition sites (e.g. ‘ggatcc’) with high specificity. Thus, slight positional
variations of these restriction sites on the mostly similar copies of a chromo-
some can potentially separate and identify the haplotypes. For instance, a
segmental insertion or deletion between two consecutive restriction sites on
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one copy of the chromosome will be observed as a difference in the two restric-
tion fragment lengths. This event represents one of two distinct causes that
result in the underlying restriction site marker patterns on two haplotypes to
differ—the other being an “in-del” or substitution of a nucleotide within the
actual restriction site. Thus the second kinds of RFLPs represent a significant
subset of SNP’s (single nucleotide polymorphisms). While RFLPs have not re-
ceived as wide an attention as SNPs, they also hold the same kinds of promise
as SNPs for association studies and classification of genetic diseases—most
likely for a significantly lower cost.

The base-pair length between two consecutive restriction sites are called
restriction fragment lengths and are modeled as random variables, studied in !.
When the homologous regions on the two haplotypes contain different lengths
between consecutive restriction sites, they are said to result in a ‘restriction
fragment length polymorphism’ (abbreviated, RFLP). These RFL’s are sub-
ject to measurement errors (e.g., sizing error, partial restriction digestion and
false positive site errors) and locally confound length-based polymorphism
detection. Making haplotype maps directly is much more difficult than mak-
ing genotype maps. Nonetheless, if a group of ordered restriction fragments
can be sampled from either haplotype, a large number of such samples allows
first to identify RFLPs, and then determine how these RFLPs co-associate
locally. Furthermore, with the increase in the number of such samples and
the increase in expected number of markers in each sample, it is possible to
improve the accuracy and resolution of the haplotype maps in spite of the sta-
tistical errors alluded to. Note that, at the end of this process, the result can
be interpreted as two haplotype ordered restriction maps, further annotated
with the location of the RFLPs.

Similar haplotyping or ‘the phasing problem’ has been investigated in 27,
but with a different data model. Of particular interest are the results of
NP-hardness in 2 of a SNP phasing problem. Detailed statistical treatments
of Optical mapping are found in !. The paper is organized as follow: In
section 2, we reviews Optical Mapping. Section 3, discusses the recognition of
polymorphic sites from data using an EM-Algorithm for parameter estimation
for a mixture distribution. In section 4, we discuss the phasing problem
mathematically. We provide simulations in section 6.

In the full paper we give an analysis for the approximate algorithm, and
detailed mathematical proofs for the propositions whose proofs are omitted in
this presentation. The inital results on reasonable date sets are encouraging.
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2 Optical Mapping

Optical mapping is a physical mapping approach that provides an ordered
enumeration of the restriction sites along with the estimated lengths of the
restriction fragments between consecutive restriction sites. A restriction site
is the location of a short specific nucleotide sequence (4-8 bp long) where
a particular restriction enzyme cleaves the DNA by breaking a phosphodi-
ester bond. The fragment of DNA generated by cleaving at two consecutive
restriction sites is a restriction fragment.

The physico-chemical approach underlying optical mapping is based on
immobilizing long single DNA molecules on an open glass surface, digesting
the molecules on the surface and visualizing the gaps created with fluores-
cence microscopy. Thus the resulting image, in the absence of any error,
would produce an ordered sequence of restriction fragments, whose masses
can be measured via relative fluorescence intensity and interpreted as frag-
ment lengths in bps. The corrupting effects of many independent sources of
errors affect the accuracy of an optical map created from one single DNA
molecule, but can be tamed statistically by combining the optical maps of
many single molecules covering completely or partially the same genomic re-
gion and by exploiting accurate statistical models of the error sources. To a
rough approximation the resolution and accuracy of an optical map can be
arbitrarily improved by simply increasing the number of enzymes and number
of molecules involved.

2.1 Parameters of the experiment

We consider a set of M fragments of average length L which cover the genome
of length G with coverage ¢ = % On this genome we have a set of N restric-
tion sites. Each molecule is a contiguous region from one of two haplotypes,
and contained on the molecule are some restriction sites. Each molecule pro-
vides a local view of the ordered restriction sites taken from one haplotype.
For each of the restriction sites found on a molecule we have data for position
in the interval [1, G]. For the sake of simplicity, in this paper, we assume that
non-digestion rates are negligible, and that distance data may be scaled to a
consensus map so that positional data may be understood.

The consensus map may be represented by an ordered set of lengths.
After the construction of a consensus map all of the observed data may be
represented by an M x N matrix D. Each row of D represents a molecule.
Each column of D represents a restriction site found in the consensus map.
The entry found at D;; is the position of restriction site j ( corresponding to
consensus restriction site j) found on molecule 4, in the event that there is
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not a site j on molecule ¢ then the entry D;; is set to zero. The position may
be specified by a metric amounting to a scaled distance in base-pairs from the
3’ end of the chromosome. D is a large banded matrix whose band width is
equal to the coverage ¢ in expectation, hence the expected sparsity of matrix
D is % = £ or £. We denote the smallest number which bounds the

J e
band width of this matrix by ¢'.

3 EM-Algorithm for Detection of RFLP’s

This section details the problem of detecting the RFLP event. An expec-
tation maximization or EM-algorithm is given for the estimation of a mixed
distribution model, and is followed by a criteria for deciding if data supports
an RFLP event.

Consider the jth column of D and take the non-zero entries as a column
vector denoted by a and consider it as an instance of random vector A, an
n x 1 vector with (4;);=1., i.i.d. random variables representing the position
of restriction sites taken from a distribution with p.d.f. function:

1 (x —m)* 1 (z — pa)’®
A; = = — — . (1
f( (4 IE) QI 271'0'2 eXp 20_2 + Q2 27‘_0_2 exp 20_2 ( )

We do not know the parameters yet, but without any loss of generality,
we may assume that u; < ps. Also, ¢;(i = {1,2}) may be interpreted as a
probability that point z is derived from the Gaussian with mean p;. Further,
we have ). ¢; = 1.

For each random column A of D there is an estimation problem: Namely,
determine the values of © := (u1, u2,0,q1). Once this step is complete, we
may detect RFLPs as events involving the distance between p1 and pe, and
also compute probabilities of pairwise events.

The typical approach to such problems is through maximum likelihood
estimators (MLE), whereby one maximizes the probability that a particular
parameter vector © may produce the observed data. L(®) = P(A=a:
0) = ILfe(Ai =a;)

In the full paper we show that our EM-Algorithm attains the same results
as a related Maximum likelihood optimization problem.

We choose to treat one of the parameters g ; as the probability of a hidden
random variable for each derivate a;. Let Y7; be a Bernoulli random variable
whose p-value is equal to ¢;; and represents the probability that the data point
a; is derived from the Gaussian with the leftmost mean.
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We note that we have a distribution:

P(A; =2,Y1;, =v|0) = T,—1fi(a;) +1,—2f2(a;)

(ai — 1) d N (ai — p2)”
997 an fa(a;) = s exp e

fi(ai) = = exp —

whose marginals are:
P(A; =2|0) = E,[Lu=1f1(a;) + Lo=af2(ai)] = qi1f1(ai) + g2 f2(a;)

We now formulate the EM-algorithm by use of Jensen’s inequality, omit-
ting details:

L'(©) =log(L(®)) =log;=1.nP(A; = z|©)
> F(Q,0)
Where:
F(Q,0) = QYi =v)log P(A; = z,Y; = v|0) + H(Q:)
i=L:N v=1:2

Here @ is an arbitrary measure and H(Q) = >, Q; log(&) is the Entropy
Function on probability vectors:

The EM-algorithm is a process of increasing the F function value . We
note that a gradient ascent may be performed on the “likelihood surface” by
alternately maximizing @) followed by O.

E-Step: Qi1  {Q : maxq F(Q,04) = F(Q*, 04)}.

Lemma 1 E-Step.

Let @ be a vector (giv)i=1:N,y=1:2 Where N is the number of non-zero entries
in the column of data. The Arg-Max can be solved for explicitly with :

1
k

Qr+1 = (Qflﬂ)i:LN and q§1+1) A

exp (

The proof is omitted.

M-Step: Op41 + {0* : maxe F(Qk+1,0) = F(Qk+1,0*)}.
Lemma 2 M-Step.

CII: submitted to World Scientific on July 30, 2002 5




The Arg-Max can be solved for explicitly with :

k+1 k+1
(k+1) - Zi:l:N ngl )ai (k+1) - Zi:l:N Q,(Q )ai
P (k+1) Hea (k+1)
Y im1.N Gt D im1.N G
1 k k k k
oM o 3 D a2, O = Y Y oY)
v=1:2i=1:N

The proof is omitted.
Lemma 3 In the limit, the EM algorithm converges to a local mazximum of
the likelihood function in the parameter space.

The proof is omitted.
With the lemmas we assume we have procedures called ESTEP and
MSTEP. The EM-Algorithm is now:
Algorithm 1
EM( A)
QPREV <« .5*0NES( MAX(SIZE(A)), 2)
M < MEAN(A )
S < sTD(A )
TPREV « ( M(1-S), M(1+ S), S)
QNEW < INF
TNEW <« INF
WHILE( MAX( NorM( QPREV - QNEW ) , NorM( TPREV - TNEW ) ) > ¢ )
QNEW ¢« ESTEP( QPREV, TPREV )
TNEW « MSTEP( QNEW, TPREV )
ENDWHILE
return ( QNEW, TNEW )
Denote the return values QNEW with matrix [¢1,¢2] /. ,, and TNEW with
vector {fi1, fi2,0); the “over-script hats” denoting that these quantities are

estimates.

3.1  Detection of RFLPs

We define a detected RFLP as an outcome to our EM algorithm, it is an event
such that |ue — pa| > 0 for some positive d(c) as a function of local coverage
c.

detected RFLP = (Juz — 1] > d(c)) (2)

4  Mathematics of Phasing

The Phasing problem consists of inferring two haplotype data sources which
combine to provide the observed genotype data.

Each polymorphism gives rise to two alternatives for a diploid organism.
We may enumerate the alternatives of polymorphism 1 by the set {11, 1},
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and likewise for polymorphism 2 the alternatives are a set ﬁTz, l2}. Haplotype
I must have one of the alternatives from each set while haplotype IT must have
the others. The potential co-association for the haplotypes are shown below:

Haplotype I 11 12 3)
Haplotype II |1 |2

Haplotype I 11 |2 (4)
Haplotype II |1 T2

Haplotype I |1 12 ®)
Haplotype II 11 |2

Haplotype I |1 J2 6)
Haplotype II 11 T2

These four events ( 3 — 6 ) give all possible outcomes to pairwise events.

We may identify events ( 3 ) and ( 6 ) as the event that alternative 1;, and
12 are found on the same haplotype, and denote this covariant event by the
symbol 11. Similarly we may identify events ( 4 ) and ( 5 ) as the event that
11, and |, are found on the same haplotype and denote this contravariant
event by the symbol 1]. One can compute the probabilities of these pairwise
events 11, and 1| with the use of a continuous multiplicative group, to be
introduced below.

4.1  Data maps to Group Elements, MLE homomorphism

The results of EM on each column A; of D is value (Q(5),0(j)) = (¢;(-),1 —
G;(-), pj1, pj2,05). Consider a data point in the jth column djj, as such it
is derived from a distribution of the form equation(1) whose parameters are
given by the results of EM. where §; is an interpolated functional estimate of
g(z) a random function giving p-values of the point z being derived from the
distribution with p;i1. Let gj» be the the probability that dy; derives from
the left distribution.

Let pj# = 1 — §;# and identify the data point dy; with the 2 x 2 matrix
[@ji' Djir
Pjir Gjir
data:

] . We similarly define a map for each element in the jth column of

djir Djr
Ot dy; — |0 /]
I [sz" djir

The map is an injection into the set G the 2 x 2 symmetric bi-stochastic matri-
ces. G is a set with a natural Abelian group structure under the usual matrix
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Figure 1. case 1, 11, 111, 1V

multiplication when the degenerate, idempotent ( or dead state ) element [;g ;g]
is excluded from the set.

4.2

Let us focus on two restriction sites: Site j and site k& that are believed to be
RFLPs. These sites have non-constant §;(z),gx () functions.

Consider molecules that span both RFLPs, these molecules contain data
points = and y which were used to estimate both the functions §;(z) and
gr (z). Let us look at the possible haplotypes producing points x and y:

See figure (1 ) We denoted case 1 by: (ji2,k12) N (jo1, k21), case 2 by
(12, k11) N (J21, k22) , case 3 by (j11, k12) N (J22, k21) , and case 4 by (j11, k11)N
(jao, k22). As mentioned before, we care to determine which pairs are found
together on a haplotype, the events of interest are:

Ei = ((J11, k11) N (J22, k22)) U ((J12, k12) N (Ja1, k21)) ,
Ey = ((j11, k12) N (J22, k21)) U ((J12, k11) N (J21, k22)) -

Now we compute the probability that molecule { with point z, and point y¢
support the event Fj:

Computing Pairwise Events

P(E1[¢) = P ((j11, k11,¢ € H1) N (ja2, k22, € H2)) U ((j12, k12, ¢ € H1) N (21, k21, € Ha))
= gj(z)ar(ze) + i (ye)pr(ye)
R Gjcdre + DicPrc-

Similarly P(EQ) ~ qugﬁkC +ﬁjg(jk§.
The connection with the group structure is given by the formula:

P(E,[() P(Ele)]
P(E;|¢) P(Ey[()

note P(E)) is the entry on the diagonal while P(E») is the entry on the
off diagonal of the product: Since sites on different molecules are independent,

- A~ A~

_ [@jc I?jc] « [@kc Ifkc]
Pic Gic]  [Pr¢ dre
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various probabilities of events (E; and E») are computed as follows:

P(Er| Uy=t:m Go) P(E2| Up=tim Cv)] - Y w [q}'cv ﬁjcu] . [fikcu ﬁkcv]
P(E2| Uv:l:m Cv) P(E1| Uv:l:m Cv) v ﬁj{v (jjcu p

D¢, ke,
Here ), .., wy = 1 and is the general form of a prior, for example when all
molecules are equally “informative” we have: w, = #

Given two restriction sites o and 3, we define the support of the pair as:
Supp (a,B) = {¢ : d¢a # 0 Adeg # 0} or equivalently as the number of
molecules indexed by ( that span both sites. The phase between two sites:
RFLP a and RFLP 8 may be defined as:

1
¢a,B = Ta T Ay Z <I>a($g) " QB(yC)
| Supp (a,,@)| ¢€ Supp (a,B)

v=1:m

We can also define the distance between two fragments as d, g = \SUppIW'

Computing all pairwise spins can be done with a few sparse matrix mul-
tiplications:
Algorithm 2
PWS (P)

DIST <+~ (P!=0)*(P!=0)

Q < ONEs( sizg( P )) - P

6« ((P*P) + (Q*Q))./DIST

return ( 6 )
For use in large data sets, we may round values to the singular matrix, for
reasons discussed in the section on Chernoff bounds. We define a dead state
as a spin which is rounded to the singular matrix.

5 Algorithms

We define the phasing problem as follows: Given a sequence of poly-
morphisms (whose parameters and distributions have been estimated from a
mizture model), use pairwise data to assign the polymorphisms to the haplo-
types (i.e., a consistent phasing structure) such that the local assignments are
consistent with the data, in the sense of maximum likelihood.

5.1  Weighted k— Neighbor Phase-Contig Algorithm

We can define the phased contigs recursively as follows: The base case is a
singleton contig: C; = {F;} shall be phased as follows:

[1 0], if F; is a detected RFLP, (nontrivial contigs) ;

01

[;g ;g], otherwise (trivial contigs).
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Induction cases: If C, = {F),, Fp,, ..., Fp,} and C, = {F,,, Fy,, - ..,
F, .} are phased contigs with well defined phasing, then the union C, U C,
may be phased by a phase-join operation.

We define the distance between two phased contigs as the minimum dis-
tance between two fragments within contigs.

C7 77—\ e/ | /A N
FPI szFps-” FPI FquQZ FQS-” FQm

C C

The phase-join oplération may be performed on C), and Cq'q if and only if
there is a molecule ¢ which contains a data point z¢ from a restriction site
E,, found in contig C},, and a data point y, from a restriction site Fy, found
in contig Cy, as otherwise the distance is undefined.

For every pair Fy, € C}, and F € C, there are pairwise “phasing” variables
to consider in the phase-join. These pairwise phasings tell us how to orient
the phased-contig C, relative to the phased-contig Cp: we will consider a
weighted combination of this information, where weights depend on distance

between fragments, confidence in RFLP assignment etc.
bpi_2.P143

bpi_0.P142 %p1.P143

Gy Cy

To attempt a join of C) to C; we compute a mean group action which is
a ‘least squares’ rotation to be applied similarly to all variables in the right
contig to make a “fit” for all pairwise spins in the union of C}, U C;. To
compute the group action for a pair of RFLPs , one in each of the phased-
contigs, having spin assignment 73 and Js, and pairwise spin ®12, we derive
the chain of computations, let k15 be the group action for pair {1, 2}.

/_\
Ji 012 T2
Cp k12J2 = @127, Cy (7)
k1o = l72_1‘1’12j1- (8)

Solving for k12 we find the best rotation for this pair, as after we update
the phasing Ja < k127> the variables would be in a state which satisfy the
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pairwise spin estimates. Thus in our algorithm the pair 1, 2 casts a “weighted
vote” for ko = 7271‘71<I>12 as the mean group element needed to phase contig
C, correctly. In summary, the contigs are phased by the mean group action
Dpa:

"I)MGA = Z wa/jkaﬂ; where Zwaﬂ =1.
Fo€Cyp,FgeCqf—a<k+l

Now if the resulting mean group action ®pga = [g g] is not near the dead

state ( degenerate matrix ), the phase-join operation is successfully executed,
and a parent contig Cp A Cy is assigned the value ®(Cp A Cy)  Pmga. We
omit the discussion of the special attention that needs to be given to the
situation when either of the constituent contigs is trivial.

We omit all the details of an efficient implementation, Assuming that the
maximum molecular coverage at any region is ¢4z, the worst case complexity
of the phasing algorithm is bounded by O(c2, ., Ny (c2,,.N)). In practice, v
is a very slow growing function, and the parameters ¢,,,, and k are likely to
be small constants, the algorithm performs almost linearly in the number of
polymorphic markers N.

6 Simulations and Examples

We demonstrate our algorithm on two simulated data sets. The views
below are broken up into bands, the simulated haplotypes are in the bottom—
most band of the layout. Above that is the haplotype molecule map for a
diploid organism, these molecule maps are available to the algorithm as mixed
data, the segmentation shown is unknown to the algorithm. The third band
indicates estimate values and here we can see what features the EM algorithm
for mixed Gaussian chooses as RFLPs. Mistakes occur with the lack of a deep
library. The forth band in the layout indicates the history of contig—operations
and from this tree one can view: 1) the developing k—neighborhoods used to
compute mean group action, and 2) the distinct phased contigs. The top
band in the layout gives the algorithmic output to this problem, complete
with phasing in subsets that span the distance indicated by the bars. Areas
where phase structure overlaps but cannot extend indicate regions that are of

interest to target with more specific sequences to extend the phasing.
Parameters of the simulations are summarized in the table:
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Figure 2. Data set 1

Parameter Symbol Data Set 1 | Data Set 2
number of molecules M 80 150
number of fragments RFLP and non RFLP F 20 100

size of the genome G 12000 50000
expected molecule size EMS 2000 2000
variance in molecule size VMS 50 500
variance in fragment length size VFS 1 20
P-value that any given Fragment is an RFLP P-BIMODE .5 .3
Expected separation of means for RFLP ERFLPSEP 10 50
Variance in the separation of means for RFLP VRFLPSEP .01 6

Any parameter with both an expectation and variance is generated with a
normal distribution. From these parameters one can compute some additional
symbols that we use in the paper L = EMS and ¢ = %

For the first simulation on data set I seen in figure 5.1 a relatively small
set is chosen so that one can view the action of the algorithm, here the neigh-
borhood size is set to k = 5 and there is no € guard of the dead state, still
things work pretty well, and one can see that any mistakes are due to the low
coverage library.

In the second simulation on data set II seen in figure 5.1 we illustrate that
similar results may be achieved on large data sets.
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