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1 Introduction

The study of genetics relies on complete nucleotide sequences of the organism together with a description
of the transcription units. While this information at its finest level is not often available, or when available,
suffers from various errors due to sequencing or assembly, one can garner much information from signif-
icantly coarser descriptions that are easily available in genomic maps. Such maps with high resolution
and accuracy as well as partially assembled sequences at various degrees of completion exist for many
of the microbial organisms, yeasts, worms, flies and now humans. In general, genetically or physically
mapped collections of objects derived from the genome under study are still of immense utility, and require
robust bioinformatics tools to validate their mutual consistency and integration. The integrated genomic
databases derived from all available sources are likely to prove useful even at an early stage for annotation,
gap detection (in sequences) and targeted gap closing, sequence contig phasing and map assisted sequence
assembly. In this paper, we examine many algorithmic issues involved in such a process. For the sake of
concreteness, we focus on an example involving ordered restriction map data based on optical mapping
and partially assembled sequences for the malaria parasite, Plasmodium falciparum.

In this paper, we focus on validation and genome-wide alignment of sequence data against optical
maps using efficient matching algorithm. The validation algorithm derives its efficiency from a dynamic
programming formulation that explicitly models all the known error parameters involved in optical map-
ping. The alignment algorithm, on the other hand, involves resolution of certain inherent ambiguities and
appears closely connected to the class of NP-complete problems—particularly, the INDEPENDENT SET
problem. We present a greedy algorithm, an efficient approximation algorithm and a search algorithm
based on A* to solve this problem, and study the behavior of these algorithms on the available data.
Subsequently, we will expand our work to analyze this partially assembled sequence data to find reading
frames, genes, regulatory sequences, etc. The general software structure for the validation and alignment
processes is illustrated in Figure 1. In addition to the implementation of the algorithms described here,
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our system (dubbed Valis) also involves many innovations in hardware and software engineering: a Linux
Beowulf cluster, an integrated database with XML interface, and the ConVEx (Contig Visualization and
Exploration) visualization tool.

Paper Organization. The paper is organized as follows. First, we give some motivations for our work,
especially with respect to the research on Malaria. Secondly, we present a probabilistic analysis of the
feasibility of a given (optical) mapping experiment, be it a validation or sequence alignment (anchoring)
one. Thirdly, we present our mathematical-statistical model for the validation algorithm (eventually im-
plemented as a dynamic programming procedure [6]), and we pose and discuss a special alignment problem
that takes into consideration the results of the validation procedure. Finally we report on preliminary
results that we found by examining our Plasmodium falciparum optical maps (cf. [7, 8]) and the content
of the PlasmoDB (www.plasmodb.org) data base.

2 Plasmodium falciparum Genome

There are several species of Plasmodium that infect rodents, amphibians and primates, but the ones
infecting human are four: P. falciparum, P. vivax, P. malarize, and P. ovale. P. falciparum has been
responsible for almost all deaths, whereas P. vivax has been also widespread but largely responsible for non-
fatal morbidity. As a result there has been considerable attention focussed on understanding the genome
of P. falciparum. Years of research has now yielded a high-resolution genetic map which has localization
within 30 Kb or less, physical maps based on YAC contig maps and high-resolution ordered restriction map
using genome-wide optical mapping method and complete sequences of only two chromosomes and many
unaligned sequence contigs. These efforts have been slow due to the instability of cloned DNA fragments
in E. coli, the AT-richness of Plasmodium genome and other technical reasons. But, the available data,
if integrated properly at this stage, promise important advances through understanding of gene function,
pattern of gene expression and other biological processes.

The haploid P. falciparum genome contains 14 nuclear chromosomes with a DNA content of about 30
Mb. These chromosomes are linear and range in length between 800 Kb to 3.5Mb. The telomere sequences
cap subtelomeric regions containing repeats and often result in large variations of the sizes of individual
chromosomes. Average gene density within P. falciparum chromosome has been estimated to be about
a gene every 3 to 5 Kb. Most genes do not contain any intron and few genes that do have large exons
and extremely short (< 1 Kb) introns. Codon usage is biased towards triplets containing A or T in third
positions and the non-coding intergenic regions have extremely rich AT content of more than 90%.

With the availability of this genomic data, and because of the difficulties that the sequencing projects
must face, we believe that our bioinformatics project aimed at P. falciparum must deal with many unique
challenges, is likely to identify important issues to be further addressed and will be of interest to the
general scientific community.

3 Probabilistic Analysis and Feasibility

3.1 Sequence Validation

Among the many important applications of the high-resolution and high accuracy maps, its use in verifying
existing sequences and its help in sequence assembly has the highest immediate impact.

We provide a simple statistical analysis here to show that the sequence verification strategies based on
optically-mapped ordered restriction maps, is capable of detecting errors in even conservatively assembled
sequences. For instance, consider an assembly scenario, where a genome of length G has been shotgun
sequenced (sequence length = [ = 500) with a coverage c and resulting in K = Gc¢/le ¢ islands (about 2000



for a coverage of 5x) and K — 1 oceans. Let us assume that the sequence contigs and islands are correct
with high probability, but as one closes the gaps (represented by the oceans) there is a small probability
po that the gap is filled by an unrelated random sequence erroneously. Note that the probability that
there are r incorrect gap-filling is given by:

(K N 1) (1= po)<~"""p},

r

Next as we compare a short region around the gap with the corresponding region in an ordered restriction
map (created with m enzymes, /8 relative accuracy and p, the cutting probability of each enzyme), we
see that given that there are r errors the probability that all the errors will go undetected is simply:
B/ 2)rmPeG/K Thys the probability that the sequence verification process will admit a sequence that is
incorrect is given by
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A simple calculation shows that if P. falciparum genome is assembled from a 5x coverage shotgun sequences
(with a p, = 10% or smaller)!, and the map is made with 2 enzymes and a relative sizing accuracy of 15%
then the probability that a wrong sequence is incorporated into the final data base is < 1075.

3.1.1 Sequence Anchoring

Once a reference map is created, one can increase its accuracy as well as resolution by optically mapping
more and more genomic fragments with the same enzyme or different enzymes. At this point, one can
use the high resolution reference map to anchor short sequence contigs and thus generate the complete
sequence without relying on the expensive large-scale sequence assembly.

Here we evaluate aspects of the anchoring scheme, where a sequence contig of length L is to be anchored
onto a genomic ordered restriction map (of length G) created with m enzymes, where each enzyme is
assumed to cut with probability p. Assume that the relative accuracy of the genome-wide restriction map
with respect to any enzyme is 8. Consider an arbitrary random location s on the restriction map, and we
wish to compute the probability that the sequence contig can be placed there. Let an ordered restriction
map be created (by purely computational method) for the sequence contig, corresponding to a particular
enzyme, and let this computed map be compared to the BAC map at site s.

Thus it is of considerable interest to estimate the probability of false positive as a function of the
number of enzymes (m), length (L), probability that the given enzyme cuts at an arbitrary location (p)
and the relative accuracy of the restriction map (53).

First consider the case when m = 1 and the sequence contig is being placed with a fixed orientations

 n practice p, is significantly smaller.



(out of two) at site s. The false positive probability for a fixed location is then approximately

o0
Z Pr[The sequence contig has exactly & cuts]
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Note that the matching rule, we have used is fairly simple: given an internal fragment of length x from
the sequence contig and a corresponding fragment of length y from the BAC map, we say they match if

z(1-pB) <y <z(1+P).
Using m enzymes, and both orientations for the sequence contig, we see that in general this probability is

2(pL)me—mpL(1—,8/2)

Let us assume that we will consider only the cut sites in the genomic map to anchor the sequence
contigs; there are on the average Gp such sites to be considered. Thus the probability that the sequence
contig does not get anchored at any of the Gp possible false sites is then bounded by e~“P" and the false
positive probability is roughly:

FP~1—¢e 0P,

On the other hand, given a sequence contig from the genome, we will fail to place it at the appropriate
location, if it has no cut with respect to any enzyme. The probability with which this event occurs is
bounded by FN = e ™PL_ the false negative probability.

Thus we conclude that for a fixed G, as the number of enzymes m increases or the length of a sequence
contig L increases, we will be able to place these sequence contigs in the correct location almost surely.

Thus the overall utility of high resolution restriction maps is to enormously facilitate the closure of
gaps in several ways: 1) sequence contigs are confidently ordered by alignment to the scaffold maps, and
2) gap lengths are well characterized, thus enabling closure techniques based on PCR. Additionally, such
maps provide a means to verify sequence alignments, especially critical when dealing with large regions
of repetitive sequence.

3.1.2 Map Assisted Sequence Assembly Algorithm

With the analysis in hand, we can now propose a very efficient and highly accurate sequence assembly
algorithm that works based on a Bayesian approach similar to the one proposed for genomic map assembly.
The algorithm proceeds in several steps. The first step uses a perfect hashing scheme that organizes the
set of short sequence reads in a hash table. This organization, implicitly provides a clustering scheme
where small clusters of overlapping sequence reads can be assembled. Once short sequence contigs are of
length above a predetermined threshold they can be anchored.

Using the anchored sequence contigs, a new hashing function can be recomputed and sequence contigs
can be rehashed and reclustered. These steps are iterated until no more unanchored sequence reads
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Figure 1: The validation and alignment processes overall flow.

remain. The number of iterations can be easily bounded using a martingale analysis and shown to keep
the algorithmic complexity close to linear.

As indicated earlier, at the end of this process not only are sequences properly assembled, but also
phased, thereby, providing much more efficient means for gap closing. We postpone a detailed description
of the map assisted sequence assembly algorithm to a future publication.

4 Algorithms and Methods

In order to test our approach for validation and alignment, optical maps of the P. falciparum genome were
“matched” to assembled and unassembled sequence fragments obtained from www.plasmodb.org. The
P. falciparum sequence in plasmodb is based on the efforts of by three genomic centers: Sanger, TIGR
and Stanford. At present, chromosomes 2 and 3 have been fully assembled and the rest are still being
sequenced and assembled.

4.1 Validation and Local Alignment

The validation of a sequence map against a (optical) map can be set up as a simple dynamic programming
routine (DPR) (cf. [5, 6]). By itself, the algorithm can be derived from the original formulation of Bellman
directly and shares many concepts with a large class of sequence and map alignment algorithms. However,
the DPR recurrence and algorithm described here are carefully tailored to a detailed mathematical model
based on an MLE function, and handles all the possible sources of errors in the overall map making proce-
dure, by modeling them as a combination of Gaussian, Poisson and Bernoulli processes. This approach to
bioinformatics data is original and leads further to interesting algorithmic issues when the scores of many
individual DPRs have to be combined as in the alignment problem. In [2] we provide a detailed analysis
and derivation of the validation Mazimum Likelihood Estimator (MLE) for maps against sequences. Here,
we only summarize the key ideas.

4.1.1 Statistical Description of the Problem

Figure 2 shows a simple setup of the matching problem involving a sequence map and a consensus map.
The sequence map is considered to be correct and it is viewed as the hypothesis H of a Bayesian problem
to be analyzed, while the consensus map is considered to be a piece of data D to be validated against H.
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Figure 2: The most complex matching of a sequence map against a consensus map we consider.. In
this case, the fragments (..., 1y, ...) to (..., l; ...) from the consensus map, and the fragments
(--r) @Gj—y, ...) to (..., aj, ...) from the sequence map match. The intervening cuts are classified by
the validation procedure as missing cuts (cuts in the sequence maps that were not found in the consensus
map) and false cuts (vice versa).

As a result, a validation problem can be formulated simply as an optimization problem maximizing
the following probability density function

Pr[D | H(6,pe,py)],

where ¢ is a standard deviation (which summarizes maps wide standard deviation data, i.e. & = f(o;) for
some function ‘f’), and the overall function depends on other parameters as well: p., the cut probability,
and py, the false positive cut probability. For a detailed description of the sources of these errors and how
these map parameters are estimated by the Gentig algorithm, see [1].

Ideal Case

To begin, we formulate the problem in the ideal case where we have known orientation of the sequence
map, no false cuts, and no missing cuts. L.e. p. =1, and py = 0.

Consider a position A in the consensus map and the consensus map fragment sub-vector from h to
N — 1. Further, consider the full sequence map fragment vector from 0 to M — 1. For the sake of
simplicity, we drop the h term and count the consensus map fragments from 0 as well, thus allowing us
to write expressions like /; instead of [j4;.

Let us now consider the “match” between the i-th fragments of the consensus map and of the sequence
map. We want to evaluate how much the hypothesis consensus map deviates from the “correct” sequence
map. We assume a Gaussian distribution, therefore for the i-th fragment we will need to evaluate the
following expression:

L—a:)2
1 - ( zZUazl)
V2mo;
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Given this expression, and the assumption that the sequence map is correct? the overall Pr[D | ()]
function can be written as
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Maximizing Likelihood. Now we can take the logarithm of the simplified expression and obtain:

In(Pr{D | #(6)]) — gm (\/%U) —En: (%) .
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This expression maximizes log likelihood, therefore it provides a Maximum Likelihood Estimate (MLE).

Minimizing “Weighted Sum-of-Squares”. Since we can assume that the first term of the MLE does
not vary much from location to location, we simplify the problem by minimizing a “weighted sum-of-error-
square” cost function.

n
(li — @)
FD) = ) ( -
=0 ?
Minimizing F(D) yields the “best match” of the sequence map represented as #, against the consensus
map represented as D.

General Case

Allowing for full generality, we take into account orientation of the molecules, false negatives, and false
positives in cut identification. Intuitively, this approach implies that the sizing error is now computed
by lumping together a “block” of fragments from the consensus map, and a similar “block” of fragments
from the sequence maps. Missing cuts and false cuts contribute to the score function within the blocks
and the contributing terms for these cases are based on the underlying Bernoulli and Poisson processes.
The DPR main recurrence described in Section 4.1.2 shows all these terms. See [2] for a full derivation.

4.1.2 Dynamic Programming “Main” Recurrence

In what follows, the consensus map has m fragments and the sequence map, n fragments; the DPR uses
an n X m matching table T; and the entry T[i, j] contains the (partially evaluated) value of a matching
function F(...)3: i.e. F(...) is incrementally computed from “left” to “right”, by considering all possible
fragment by fragment matches. We use the index 7 (respectively, j) to indicate a fragment in the consensus
(respectively, sequence) map.

The main recurrence for entry T[4, j] is shown below:

T[i, j] =
T[Z - u, .7 - ’U] \
+] \/27r(0—2'2+U?j—1)+"'+0—(2i—v))
11 Pe
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+u—1)In () + (0 - 1) In(2)

Note that the main recurrence depends on two parameters u and v. These parameters depend on the
0;’s*. However, a pragmatic bound can be set around 3 x o; (given the current ¢;). This will become a

3Because of space limitations we abuse the notation and present only an abbreviated form of the actual mathematical
model.

“In an even more accurate model, © and v would also depend also on the digestion rate of the “in vitro” experiment that
breaks up the DNA molecule.



parameter of the DPR. In this way, the computation for each entry T(:,-) must consider about 9 nearby
entries. The overall space complexity of the algorithm is O(mn) and time complexity is O(c, -mn) (i.e. the
actual time complexity depends on a constant, which in turn depends on the overall ¢ of the experiment
instance). The result of a validation algorithm is presented as an ordered sequence of triples, each triple
identifying the sequence with the assigned orientation, the matching position and the alignment score;
they are sorted in the ascending order in terms of their score values.

4.2 Global Alignment

The validation procedure matches a single sequence map against a consensus map. However, in practice,
the result of the validation procedure is interpreted in terms of a global alignment of several sequences
against a given consensus map. We call this procedure alignment”.

The result of n “validation experiments” is n sets of possible sequence positions along the consensus
map: denote these sets as S; (with 0 < ¢ < n). Formally each of the k items in each S; is a triple
(84, Z(3,5)s v(i,j)>, where s; is a sequence map identifier, z; j is the j-th alignment of s; against the consensus
map, and v(; ;) is the alignment score (with 0 < j < k). Let § = |J; S;. The definitions lead to the following
problem.

Definition: Map Based Alignment Problem. The Map Based Alignment Problem requires one to
choose at most one triple from each S; satisfying the following conditions:

1. The chosen s;’s do not overlap (although this requirement may be relaxed);
2. >, (Ii X v 7)) is minimized;
3. n— Y, I; is minimized;

where I; is an indicator variable assuming a value 1 if a triplet from S; is included in the chosen set, and
0 otherwise. O

It should be immediately clear that objectives (2) and (3) conflict: the minimum of objective (2) is achieved
when no sequence is chosen, while (3) requires to choose as many sequences as possible,irrespective of the
score values. We resolve this conflict by a weighting scheme involving a Lagrangian-like term linearly
combining the two contradictory objectives.

In the following we consider several approximation algorithms to solve this problem. We start by
considering the problem for the special case when & = 1 and devise an efficient algorithm. Next, we
consider the general case when k£ > 1 and devise good approximation heuristics. We discuss three different
solutions: a (yet another) Dynamic Programming solution, a Greedy solution, and a Graph Search A*
solution, and show when they are applicable.

4.2.1 Characterization of the Alignment Problem for k£ =1

If we restrict the number of sequences present in each S; to 1 (just the best score) then the problem yields
to a feasible solution. In general, if the sequence matches uniquely to one map location, then this case
applies and the general case is only of theoretical interest.

The complete alignment algorithm, constructing a solution P, is sketched below.

1. Sort all the (si,.x(i’l),v(i,l))’s in ascending z(; 1) order and store the result into a list L; from now
on, the indices 7 and j’s range over L.

®The term “global alignment” is used here in a somewhat nonstandard manner.



2. Construct two the vectors C[i] and B3] (0 < i < n), where each entry in C' is defined to be the cost
of including s; in an alignment that already contains (a subset of the) sequences up to s;; the index
J is stored in B[i].
The update rules for C[i] and B[i] basically searches backward in the C vector for values minimizing
the cost function and setting B to “point back” to the chosen point.

Cli] = [nax (Clj] + W(X; 1)) such that s; does not overlap with s;,
j<i
B[{] = j.

The form of the W (\; i) function takes into account the conflicting nature of the objectives. Since
we cannot optimize both objectives simultaneously, we build a weight function (where a user may
supply the parameter A) which will account for both. Two possible W’s are shown below:

Wl(A; Z) = |8,"—)\-UZ',
Wao(A; i) = I — X-v;.

W, takes into account the “span” covered by the chosen sequences (|s;| is the size of the sequence).
W takes into account the number of sequences chosen (I; is the indicator variable previously intro-
duced. The parameter A is under user control.

4.2.2 Characterization of the Alignment Problem for £ > 1

If £ > 1 then the problem becomes much more complex. Since for each sequence s;, we have k alignments
to choose from, the complexity, involved in a straightforward generalization of the preceding algorithm,
grows exponentially in n. We conjecture that this problem is N'P-complete and closely related (with
respect to p-time reduction) to INDEPENDENT SET problem.

Apart from these complexity considerations, one can use the following heuristic algorithm to produce
a good (though suboptimal) solution in the case k > 1. The idea is to simply iterate the basic dynamic
programming algorithm (i.e., & = 1 case) on an input set that takes the best possible solutions from
each S; while ignoring the non-overlapping constraint. The solution is further improved in the subsequent
iteration, by constructing a new input to the basic (k = 1) DPR algorithm, that consists of the preceding
solution augmented with an element from each §; excluded in the preceding solution. Clearly, since the
preceding solution is also a solution (possibly non-optimal) of the new problem, the new solution is no
worse than the solution so far. In each iteration, the basic optimal solution is also a general (suboptimal)
solution. Since an item once removed from consideration, is never reconsidered, there can be only O(kn)
iterations, and each iteration involves O(n?) work. Hence a naive analysis yields an O(kn?) time algorithm.

A* Graph Search. The construction of the best solution P, (n being — in our case — the number of
sequences) to the alignment problem can also be cast as a heuristic graph search problem [9]. A heuristic
graph search problem constructs a solution P, by augmenting a partial one Py for which we know a cost
g(Py). One particular case of these class of algorithms is A*. In A*, the choice of the next item T(s41) 1O
add to Py is done by taking into account g and an estimate h(P(t +1)) of the “distance” to an optimum
solution P,,. The function

f=g9+h

is called the heuristic evaluation function for a partial solution.
Since the partial solutions are generated in an incremental way, and the set of choices is maintained
as a graph (and since the core of the algorithm is not much different from Dijkstra’s Shortest Path



algorithm), these algorithms are classified as “graph search algorithms”. The difficulty in devising a
good A* implementation for the problem at hand lies in finding a “good” h function which satisfied the
conditions described in [9].

We have explored this venue as well and looked into several h functions; while none of which completely
satisfied the desired conditions, nevertheless they appear to work well in practice and require more analysis.

5 Experimental Results

We used the NYU-BiG ApplE (Bioinformatics Group Application Environment) software to run several
experiments involving P. falciparum genome. Our first experiments checked “in silico” maps obtained
from P. falciparum sequence data against optical ordered restriction maps for the same organism. Our
second experiment produced a putative ordering of the published contigs for chromosomes 14.

We obtained the sequences for the P. falciparum’s 14 chromosomes from the www.plasmodb.org site.
Our experiment cut the sequences “in silico” using the BamHI restriction enzyme. The resulting maps are
input to the validation program along with appropriate optical ordered restriction maps.

5.1 Validation of Chromosomes 2 and 3

Here, we report results of our extensive experiments on chromosome 2 and chromosome 3. In the full
paper, we describe the complete experiment with other enzymes (e.g. NheI) as well.

We produce two “in silico” maps for the chromosome 2 and chromosome 3 sequences with the enzyme
BamHI. For chromosome 2 we built maps with 30 and 23 fragments, for chromosome 3 we built maps with
36 and 28 fragments (taking into account orientation). The molecule maps thus produced are then sent to
the validation checker along with the possible consensus maps. The optical ordered restriction maps we
used were published in [7, 8]. Since the published maps omitted all the statistically relevant information,
we also used maps generated subsequent to the publication, by an improved version of the gentig program.

The gentig program gave us an indication of the overall standard deviation to be used for each fragment
of the consensus map. The parameter used was 6 = 4.4754 Kbps, and each fragment was assigned a

standard deviation of & \/% Kbps, where [ is the fragment size and L is the average consensus map
fragment size.

Our implementation is not completely optimized. However, speed did not turn out to be an issue. The
system runs the 75 x 4 = 300 DPR instances in about 3 minutes®.

We produced the results reported in Tables 1, 2, and 3. Tables 1 and 3 show the match of the sequence
maps for chromosomes 2 and 3 against the consensus maps generated by gentig. Table 2 show the match
of the sequence maps against the consensus map published in [4].

The data we report here are a summary of the data we actually produced. In particular we also have

the position of the matches of the sequence maps against the consensus maps.

5.2 Alignment Experiment of Contigs for Chromosome 14

For the contigs assigned to chromosomes 14 in the www.plasmodb.org database, we ran an alignment
experiment using our validation post-processing tool.

The alignment tool proposed an alignment of all contigs of length roughly greater that 20 Kbps. We
are limited to this number by the resolution of the particular optical maps used. Parts of the alignment
are shown in Figures 3 and 4. Figure 4 in particular shows an interesting overlap of few sequences. In the

5The system may appear slow, but in reality it keeps track of all the intermediate results and makes them available
for interactive inspection after the actual run. Also, the sequence, the sequence map, and the consensus maps, are always
available for inspection and manipulation.
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Chromosome 2 Validation Summary A
‘ rank ‘ matches ‘ score ‘ map id ‘ # missing cuts ‘ # false cuts ‘

1 29 80.869 1302 0 1
2 28 105.861 | 1302 2 1
3 18 126.956 | 1326 12 4
4 22 127.488 | 1305 8 4
) 18 132.890 | 1414 12 2

Table 1: The data reported shows the best “matches” found by the validation checker in the case of P. fal-
ciparum chromosome 2. The “in silico” sequence map was obtained from the TIGR database sequence.
The sequence map (as well as its reversed) was checked against 75 (optical) consensus maps produced by
gentig. The 75 optical maps cover the entire P. falciparum genome. The validity checker found its best
matches against the map tagged 1302.

Chromosome 2 Validation Summary B

‘ rank ‘ matches ‘ score ‘ map id ‘ # missing cuts ‘ # false cuts ‘
1 29 77.308 | NYU-WISC 1 0
2 22 125.088 | NYU-WISC 8 2
3 22 130.866 | NYU-WISC 8 4
4 24 131.475 | NYU-WISC 6 1
5 24 132.838 | NYU-WISC 6 4

Table 2: The data reported shows the best “matches” found by the validation checker in the case of P. fal-
ciparum chromosome 2. The “in silico” sequence map was obtained from the TIGR database sequence.
The sequence map (as well as its reversed) was checked against the map published in [4].

Chromosome 3 Validation Summary
‘ rank ‘ matches ‘ score ‘ map id ‘ # missing cuts ‘ # false cuts ‘

1 35 108.360 | 1365 1 0
2 32 117.571 | 1365 4 1
3 32 119.956 | 1365 4 2
4 35 121.786 | 1296 1 3
9 31 125.265 | 1365 5 1

Table 3: The data reported shows the best “matches” found by the validation checker in the case of
P. falciparum chromosome 3. The “in silico” sequence map was obtained from the Sanger Institute
database sequence. The sequence map (as well as its reversed) was checked against 75 (optical) consensus
maps produced by gentig. The 75 optical maps cover the entire P. falciparum genome. The validation
checker found its best matches against the map tagged 1365.

11
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Figure 3: Alignment of Chromosome 14 maps against Chromosome 14 Optical Map [8].

full paper we will report the results of running BL2SEQ on such overlapping sequences to check whether
the contigs can be extended.

6 Conclusions

We have been building a complex set of tools (the “NYU BIG ApplE”) based on a number of technologies
centered around the idea of single molecule physical (optical) mapping. These tools are built on a well
founded statistical-mathematical analysis of the biochemical and optical processes at hand. In this paper
we presented three such analysis and we described the tools we built upon them: feasability analysis,
validation, and alignment.

We showed very preliminary results from the application of these tools to the analysis of the P. falci-
parum DNA.

Our results point out how our technology can be useful in assessing and improving the goodness of
various sequence and map data currently being published in a variety of formats from a variety of sources.
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