
CAF�E:A Complex Adaptive Financial EnvironmentRon EvenCourant Institute of Mathematical Sciences251 Mercer St.New York, NY 10012 Bud MishraCourant Institute of Mathematical Sciences251 Mercer St.New York, NY 10012November 21, 1995AbstractThis paper describes the Complex Adaptive Financial Environment (CAF�E), a simulator for complexadaptive systems implemented in Java. CAF�E's object oriented design makes it suitable for many typesof simulation. We give an example of a market simulation where food is traded for gold and explorethe e�ects of adding several kinds of speculators to the system. This paper describes the softwarestructure and design of CAF�E, building upon the object-oriented and distributed features of the Javaprogramming language. Although the primary application for this system is in the computational �nancearea, we envision a much more general usage.1 IntroductionOver the last couple of decades, there has been a merging of computational and �nancial �elds, prompted bythe emergence of program trading, sophisticated market-modeling, derivative markets, and more recently,E-commerce. Perhaps less well-known is the fact that new computational paradigms have been discov-ered that rely primarily on an e�cient-market-like model among computing agents. Examples of thesealgorithms abound: tra�c-ow control in a B-ISDN ATM switch network, load balancing in a parallelcomputing environment, software intelligent agents maintaining coherency of a data-base, etc. In view ofthese developments, it has become important to develop a wide variety of tools to study and experimentwith realistic models of �nancial markets, to understand the nature of the computational models embeddedin the distributed structure of the market (e.g., the Walrasian tatonnement resulting in market equilibrium)and �nally, to use the resulting tools in creating e�ective distributed algorithms rapidly.To this end, we have designed a new tool: ComplexAdaptive Financial Environment (CAF�E), a simulatorfor complex adaptive systems implemented in Java. Currently, CAF�E's object-oriented design makes itsuitable for many types of simulation; however, one can easily augment this system to create a full-edgedvirtual economy or to adapt it to particular computational needs. Note that here, by \complex system" wemean a system with many agents interacting, possibly in complex ways. Some examples of complex systemsare economies, biological systems, and chemical reactions. Thus, the possible usage of CAF�E can easily gobeyond the description given here.2 Previous Work and Comparison with CAF�EThere are several possible approaches to studying complex systems. Among them are historical analysis,human simulation, and analytical modeling. Each of these methods has its drawbacks.� Historical analysis limits us to studying only those situations for which we can �nd historical data andis also subject to over-�tting. 1



� Human simulation is limited in the complexity we can hope to achieve and by the duration for whichwe can run it.� Analytical modeling often requires drastic simplifying assumptions which greatly limit its applicability.For instance, it is common in mathematical �nance to assume that in a multi-agent system all agentsshare a common utility function and are perfectly rational. This assumption is rather unrealistic andgives rise to several paradoxical situations.CAF�E addresses these problems by providing a great deal of exibility in modeling a multi-agent system.CAF�E shares its philosophy with many existing research e�orts from three related areas: computationaleconomy, simulation, and the study of bounded rationality.� Computational Economy : Computational Economy addresses the problem of allocating distributedresources to competing users. The Spawn [6] system supports concurrent applications in a heteroge-neous distributed system. It is organized as a market economy where the commodities are slices ofCPU time on idle workstations, the buyers are applications needing CPU time, and the sellers areidle workstations with CPU time to spare. Each processor with idle cycles conducts an auction whereapplications compete for CPU time. Several experiments on Spawn have exhibited promising resultsregarding the e�ectiveness of the computational market.Wellman'sWalras [5] system and the related work of Doyle (Recon [2] system) have found applicationsin distributed con�guration design, wide-area networks with intelligent agents, and distributed multi-commodity ow problems. These economies work with producer and consumer agents, and supply anddemand based on a power utility function. It has been shown that these economies reach equilibriumunder fairly general assumptions. However, there are some thorny problems regarding the optimalityof the system in equilibrium as well as situations where many of the assumptions may fail.� Market Models : Steiglitz et. al. [4] describe a system to simulate a simple market with two com-modities which they called gold and food. The economy is made up of producers who can each eitherfarm (produce food) or mine (produce gold), each at a randomly assigned skill level. Two types ofspeculators exist in the market: trend-based , those that trade based on the second derivative of priceand adaptive, those that trade by a method called adaptive expectations. Among the �ndings fromthe simulations were that speculators aided in speeding the convergence of price to its equilibriumpoint, trade volume was less volatile with speculators, and farmers and miners produced more in thepresence of speculators, i.e., the overall e�ciency was enhanced by the price stability.CAF�E borrows many basic concepts from the preceding model. However, CAF�E has a very richset of speculators and as a result, exhibits much better performance in convergence to equilibrium,reduction in volatility and avoidance of volatility clustering. Furthermore, CAF�E allows the economyto be modi�ed much more easily.� Bounded Rationality : Historically, agents in economic models are assumed to exhibit perfect ra-tionality, i.e. their utility functions take into account all available data and make the best decisionpossible based on that data. In contrast, real world agents can cope only with bounded rationality,since the agents have only limited computational resources and often need to react to available infor-mation quickly (on-line). Recently, Brian Arthur has introduced a new model of agents with boundedrationality [1], based on some simple and intuitive heuristics. In essence, the main heuristic consistsof building several simple models based on pattern matching, using the \best" of these hypotheses tomake decisions, and constantly modifying hypotheses based on feedback.He shows the e�ectivity of these methods by considering a particular example (the so-called \Arthur'sSanta Fe Bar Problem"). The example centers around a bar in Santa Fe which is \fun" if it is occupiedby fewer than 60 people, but not if it is occupied by more than 60. The total population comtemplatingattending the bar is 100. Each person wants to attend the bar if fewer than 60 people will be there butwants to stay home if more than 60 people will be there. Under a completely rational agent model, the2



SPECULATORPRODUCER

AGENT

ADAPTIVE
EXPECTATIONS VALUE-BASED TREND-BASED

BOUNDEDLY
RATIONALFigure 1: Agent Hierarchy in CAF�Eagents fail to reach an equilibrium point as the very basic assumption of the Walrasian model doesnot hold here. Arthur introduces a model of bounded rationality whereby each person maintains a listof competing hypotheses and bases his decision on the hypothesis that appears to be working the bestso far. This model displays rapid convergence to the equilibrium point as well as only small deviationsfrom the optimal value. Although, this example may appear somewhat contrived, it captures many ofthe similar phenomena in communication networks and distributed computing systems.The agents (mostly the speculators) in CAF�E use similar bounded rationality to interact on-line andto obtain quick convergence to the equilibrium.3 Structure of CAF�ECAF�E is a simulator along the lines of Steiglitz's [4], but with an object-oriented approach which facilitatesextensibility and allows simulations of di�erent complex adaptive systems. Figure 1 shows the di�erenttypes of classes derived from the Agent class.Auction: The current auction works in rounds. In each round, orders are solicited from all the agents inthe market. A market clearing price is established based on these orders. Then, as many orders aspossible are closed at this price.Agents: Agents are de�ned as objects that provide a function (method) that generates an order, a functionthat consumes, and a function that produces. This allows both Producers and Speculators to bederived from the Agent class.Producers: Producers are derived from agents. They each have di�erent randomly assigned skill levels inmining and farming. They all use the same utility function to generate their bids.Speculators: There are four kinds of speculators in CAF�E: Those that trade based on trends in prices,those that trade by adaptive expectations, those that trade based on fundamentals, and those thatexhibit bounded rationality. At present, all speculators sell all their food when they decide to sell, andbuy as much as possible when they decide to buy.Trend-Based Speculators: Each trend-based speculator looks for trends that are at least c rounds1 long,and places an order to buy or sell depending on whether the trend is up or down.1A constant depending only on the speculator. 3



abstract public class Agent {public Holdings Networth;public Agent(){Networth=new Holdings();}abstract public Order GetBid(double price);public void Consume() {Networth.FoodDecr();}abstract public void Produce(double price);public Bar[] Report() {return null;}} Figure 2: Java code that de�nes the class AgentAdaptive Expectation Speculators: Each adaptive expectation speculator keeps track of a predictedprice. Each round, it updates its predicted price by taking a convex combination of its former predictedprices and the actual price. Based on this value, speculator either sells or buys, depending on whetherthe asset appears to be overpriced or underpriced.Value-Based Speculators: The value-based speculator has a built in price that it considers the \actual"value. If the going price for the asset uctuates outside of some margin about that price, the speculatorbuys or sells.Bounded Rationality in CAF�E: The last type of speculator is called a pool speculator, because it main-tains a pool of predictor functions �a la Arthur's boundedly rational agents. There is a large bag offunctions from which each speculator chooses a �xed-size subset. Each speculator keeps track of howwell each predictor in his \bag" is doing, using the best so far to decide whether or not to buy or sellin the upcoming auction. When a predictor becomes particularly bad, the speculator discards it andchooses a new one from the pool of contenders.4 Java and CAF�EWe chose to implement CAF�E in Java because it provides security and World Wide Web access andfacilitates object oriented design. In the near future, CAF�E will be made available on the World Wide Web,and anyone with access to the Web will be able to add agents to the system. Java provides facilities fordynamically linking code across the Web without compromising the security of the hardware or software ofthe system running CAF�E. Figure 2 gives a code fragment from CAF�E which exempli�es the use of some ofJava's object oriented features. The fact that the class is de�ned as abstract means that it is impossible tocreate an instance of the class|the class is de�ned for the purpose of deriving new classes (subclasses) fromit. Inside the class de�nition are the variables and methods (functions) associated with the class. Abstractmethods are not provided but must be provided by any non-abstract subclasses of Agent. Other methodsare provided by the Agent class but may be overridden by any subclass. For example, the Report methodreturns an array of Bar objects. The default behavior, is to return a null pointer, but the Pool subclass, forexample, overrides this method to return some useful information. The Agent class declares all the variablesand methods that every type of agent must provide. 4



Figure 3: Price vs. Time with no speculators and with each type of speculator. Speculators were introducedat time 250.5 Lessons from CAF�EWith the ability to add four (trend based, value based, adaptive expectations based, and boundedly rational)di�erent kinds of speculators into the CAF�E environment, we have begun generating data, and are observingsome encouraging results.� Individual Speculators : With no speculators, price volatility was very high. Figure 3 shows a samplerun that was typical of the behavior without speculation and with each of the di�erent types ofspeculators. Three of the four classes of speculators brought the price near equilibrium very rapidly(in fewer than 10 rounds after their introduction). The trend-based speculators did not seem to bee�ective in this regard. This was most likely because the price volatility was so high that trendsinvariably reversed themselves before these speculators could pro�t from them. The three successfulclasses of speculators all had almost the same e�ect on the price. In fact, their graphs are so close as tobe almost undistinguishable from each other in Figure 3. Whereas the volatility was over three timesthe mean price without speculators and with the trend speculators, with any of the other speculators,the volatility dropped to less than 2% of the mean price. The e�ect of the drop in volatility wasquite dramatic. The producers earned considerably under reduced volatility. This was to be expected,since their decisions to farm or mine were more likely to be correct when the price was steady andpredictable.� Multiple Speculators : Combining di�erent kinds of speculators did not have a dramatic e�ect onperformance. As long as at least one type of successful speculator was present, the volatility remainedlow. The trend-based speculators did not have much of an e�ect when combined with others, sinceprice still uctuated enough to make them irrelevant. In fact, other speculators performed better inthe presence of trend-based speculators, apparently winning their endowments.� Bounded Rationality : In Brian Arthur's work, he observes that while the boundedly rational agentsas a group operate at or near some equilibrium point, the individual agents are constantly updating5



their predictor functions. We note a similar observation in our simulations (see Figure 3). This makessense in that if all the agents settle on particular predictor functions, we would expect the price tofall into a pattern, making it easily predictable by one function, hence causing all agents to adopt thesame function. This would undermine the equilibrium point. An interesting question raised by thisobservation is what kind of predictor functions would lead to unsatisfactory results? We chose ourpool of predictor functions rather haphazardly. What are the characteristics of the pool that make itsuitable for bringing the price to equilibrium? We have some preliminary results in this direction.We altered the pool speculator class �rst to use only price history based functions, then to use onlyfunctions based on averages of past prices and �nally, to use only functions that were not tied to pricehistory (value-based functions). In the �rst two cases, preliminary results lead us to believe that theoverall behavior of the system was not greatly a�ected. In the last case, however, while the volatilityremains low, the mean price of food drops greatly. We still lack an explanation for this phenomenon.� Distributivity and the World Wide Web: We are in the process of providing the ability to add agentsrunning on remote processors. Eventually, CAF�E will run continuously, allowing remote machines toadd agents dynamically from anywhere on the World Wide Web. Since Java provides a facility fordynamic loading of new classes, users will be able to author new classes of agents and add them to thesystem. The resulting virtual economy will potentially have all the features of a real market. We noteparenthetically that the underlying security provided by the Java language makes the system secure,which is an important issue if CAF�E is to be used for E-commerce.� Future Applications : The topic of using market ideas for network pricing schemes is being activelyresearched. We are currently adapting CAF�E to simulate an ATM network. Once completed, thiswill allow us to explore di�erent pricing strategies at the nodes and compare these pricing strategiesto rate-based schemes. The World Wide Web is also stirring up interest in \software robots". Theseare intelligent software agents that are able to gather and process information for human consumption.Market methodology may provide insight into how to make these robots more e�cient.References[1] W. Brian Arthur. \Inductive Reasoning and Bounded Rationality," in Complexity in Economic Theory.[2] Jon Doyle. \A Reasoning Economy for Planning and Replanning," in Technical Papers of the ARPAPlanning Institute Workshop, Tucson, AZ, 1994.[3] Paul A. Samuelson and William D. Nordhaus. Economics. 12th Edition. McGraw-Hill, New York. 1985.[4] Kenneth Steiglitz, Michael L. Honig, and Leonard M. Cohen. \A Computational Market Model Basedon Individual Action," in Market-Based Control: A Paradigm for Distributed Resource Allocation, ScottClearwater (ed.), World Scienti�c, Hong Kong.[5] Michael P. Wellman. \ A Market-Oriented Programming Environment and Its Application to Dis-tributed Multi-Commodity Flow Problems," Journal of Arti�cial Intelligence Research, 1:1{23, 1993.[6] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Je�rey O. Kephart and W. Scott Stor-netta. \Spawn: A Distributed Computational Economy," IEEE Transactions on Software Engineering ,18(2):103{117, 1992.[7] Wayne L. Winston. Operations Research: Applications and Algorithms. pp. 933{982. Duxbury Press,Boston. 1987. 6


