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Abstract 

We describe NC algorithms for doing exact arith- 
metic with real algebraic numbers in the sign- 
coded representation introduced by Coste and Roy 
[CoR 19881. W e p resent polynomial sized circuits 
of depth O(log3N) for the monadic operations 
-LY, l/o, as well as (Y + P, cy - r, and sgn(cr - P), 
where T is rational and cx is real algebraic. We 
also present polynomial sized circuits of depth 
O(log7 N) for the dyadic operations cr+p, cr.p, and 
sgn(o - /3), where (Y and p are both real algebraic. 
Our algorithms employ a strengthened form of the 
NC polynomial-consistency algorithm of Ben-Or, 
Kozen, and Reif [BKR 19861. 

1 Introduction 

The subfield A C R of real algebraic numbers 
consists of real roots cy of rational polynomials 
p E Q[z]. Real algebraic numbers appear as co- 
ordinates of points in problems of computational 
geometry and robotics. If the algorithms in these 
areas are to be robust, the underlying computa- 
tion must be capable of performing exact arith- 
metic and comparison operations with algebraic 
numbers. Fixed, finite precision arithmetic may 
lead to incorrect, or worse, topologically inconsis- 
tent answers. We are looking both for efficient rep- 
resentations and fast parallel algorithms (which for 
us means of class NC) over the subfield A. 
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The standard representation for (Y E A has been 
CM + (p(x), [r, s]), where p E Q[z] has (Y as a root, 
and [T, s] is an isolating interval with rational end- 
points which uniquely identifies the root Q. Thus 
the isolating interval must be small enough to sep- 
arate Q from all the other roots of p(x). The bit 
complexity of this representation depends on the 
heights of the coefficients of p(2) = C aizi, and 
the number of bits needed to specify the isolating 
interval. 

The best known bound on the root separation 
as a function of coefficient size is given by 

Sep(p) > &d-(d+2)/2]jp]]1-d, (1) 

where d = deg(p), and ]]p]] = (Cc~p)~/~. (See [Mig 
19821, who also points out the example of an irre- 
ducible polynomial p(z) = xd - 2(a~ - 1)2 which 
has Sep(p) < 2a- (d+2)/2.) Lower bound (1) im- 
plies that the representation based on isolating in- 
tervals can be presented with O(d(log d + log ]]p]])) 
many bits for the isolating interval. However, the 
process of finding an isolating interval using bisec- 
tion (or multisection) does not seem to paralielize 
well, hence an alternative representation is sought. 

We propose to use the sign-representation of real 
algebraic numbers. We describe explicit poly-log 
depth circuits for doing exact arithmetic and sign 
determination. 

2 Sign-representation of real 
algebraic numbers 

It is convenient to view the sign of a real number 
sgn(z) E {-l,O,+l} as an element of Z/32. We 
speak of “sign-vectors” s E (Z/3Z)n and “sign- 
arrays” s E Mat,-,-,,,(Z/3Z) (the m by rz matrices 
with coefficients in Z/32). 

Definition 2.1 Given q = [Q~,. . . , qn] E Q[z]“, 

and a vector I: = [PI,. . . , rm] of real roots of 



p E Q[x], define Zhe sign-array sP(r,q) dgf 
(sgn(pi(Tj))) E Mat,,,(Z/3Z). If there is only 
one rood (Y in question, then we get a sign-vector 
+((Y, q). If the underlying polynomial p(r) is un- 
derstood, then the subscript may be suppressed. 

Definition 2.2 The “sign-representation” of the 
real algebraic root (Y of ihe of Ihe polynomial p E 
Q[x], of degree n, is 

(4 dzf (P, [sgn(p’(4), * ’ * > ?7~(P(“-‘)w1)* (2) 
The second component identifies (Y among the roots 
of p(x) as we shall see. Rational numbers r E 
Q are represented as (z - r,S). We denote the 
vector [p(z),... ,~(“-~)(x)] E Q[xI-~ by %I, 
the “Fourier sequence” (in our case we are using 

WI). 

This representation appears in the work of Coste 
and Roy [CoR 19881. They point out that Thorn’s 
lemma may be applied to univariate polynomials 
to guarantee the soundness of the representation. 
The following definition is collected here for con- 
venience: 

Definition 2.3 Given q = [ql, , . . , q,,] E Q[x]“, 
P E Q[x], and s E (Z/SZ)” a sign-vector, define 
Ihe “sign-condition” 

CP(q = s) dgf (x E R 1 p(x) = 0 A 

SgIl(qi(X)) = s[i], i = 1,. . ., n}. 

(3) 
That is to say, CP(q = s) is the subset of roots of 

p(x) where the vector q adopts the sign p&tern s. 
In case p(x) is understood, Ihe subscript may be 
suppressed. 

Note. We apply the convention that lower 
case symbols cP(q = s), c(q = [+l]), etc.., refer 
to cardinalities of the sets denoted by their corre- 
sponding upper case versions. A useful mnemonic 
is that subscripted s symbols refer to sign pat- 
terns, whereas subscripted C and c symbols refer 
to Conditions which determine subsets of roots. 

3 Soundness of the sign rep- 
resentation 

Theorem 3.1 Given or, CY’ two real roots of the 
polynomial p(x) E REX], then (a) = (a’) implies 

I CY=(Y. 

Proof: It is sufficient to show that 

sp@, WI) = sp(&,F[pl]) j o = (Y’, which fol- 
lows directly from the following lemma and its 
corollary [CoR 19881. 

Lemma 3.2 (Little Thorn’s lemma) Suppose p E 

RM, c&W = n > 0, and s is a sign-vector of 

length n, indexed from 0 to n - 1. Let 

A(s) = {x E R 1 sgn(p(‘)(x)) = s[i], 
i = 0,. . . ,n - 1). 

Then A(s) = 8 or A(s) is connected. (In fact, the 
sign conditions may include 5 0 or 2 0, but we 
shall not need these here.) 

Corollary 3.3 Suppose p(x) E R[z] is of degree 
n > 0, and let ~Y,CY’ be two real roots ofp(x). Sup- 
pose 0 5 m < n. If pcm)(a) = p(“)(a’) = 0 and 
sgn(p(“+“)(cy)) = sgn(p(“+“)(a’)) for 1 2 k 5 
n-m- l, lhen (Y = cd 

The proof of theorem 3.1 now follows, since for 
any two roots Q and cr’ of p(x), at least p(O)(a) = 
p(O)(&), and the signs of the rest of the derivatives 
are equal by assumption. D 

The sign-sequence representation cannot easily 
be made canonical, since that would require find- 
ing in all cases a unique representing polynomial 
for each algebraic number, which would necessar- 
ily be its irreducible polynomial. We bypass this 
problem by providing efficient parallel algorithms 
for doing equality comparisons. 

The basic tool which permits the rapid deter- 
mination of (a) is the NC algorithm of Ben-Or, 
Kozen, and Reif [BKR 19861. 

Algorithm BKR(p, [ql, . . . , q,J) 

Input: PE Qbl,q= [ql,...,qJ E Q[z]“. 
output: B = {s E (Z/32)” 1 Cy(q = s) # 0}, 

C={Cp(q=S)(SEB}. 

That is to say, all the sign-vectors s such that 
CP(q = s) # 0, and the corresponding cardinali- 
ties. 

4 Sign-counting Lemma 

The BKR algorithm depends upon an application 
of Sturm’s theorem, which we wish to present in a 
fully generalized form requiring no special assump- 
tions regarding the input polynomials. 
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Definition 4.1 For p,q E Q[x], define the “gen- 
eralized Sturm sequence” Sturm(p, q) = [rr~ = 

P,Q =Q,T2>*--, r,.,] as the vector of successive neg- 
ative remainders which begins with p and q, (i.e.) 
;T:y)c=j qj(z)rj(z) - rj+l(z) and m--1(z) = 
n rn x . 

Definition 4.2 Define the “sign variation” of a 
sign-vector s E (Z/32)* to be the number of times 
the components change sign when read from either 
end in sequential order, ignoring zeros. Denote 
this by Var[s]. For a vector q E Q[x]” and a E R, 
let Var,[ql be Var[q(a)]. 

Lemma 4.3 Suppose the sign vector s contains 
no zeros and is covered by subintervals Ci = 
[ai, bi] - s = [Sl,..., s,] = C~UC2lJ...UCk, 
where (Vi) Ci-1 fl Ci = {bi-1) = {ai}. Then 
Cf=, Var[Ci] = Var[s]. 

Definition 4.4 For p,q E Q[x], define the 
“Sturm query” S(p, q) to be 

Var-,[Sturm(p, q)] - Var+oo [Sturm(p, q)]. 

Lemma 4.5 Given p E Q[x], not necessarily 
square-free, then the Sturm query S(p,p’) com- 
putes the total number of real roots ofp(x) ignoring 
multiplicity. 

Proof: Omitted. 0 

Note that when sweeping past a root of rn all the 
terms rj will become simultaneously zero, but we 
have shown that the sign pattern of the sequence 

b0, . . . , rn] must emerge sorted out with exactly 
one loss of sign variation between p(x) and p’(x). 
(The ri(x) are Sturm remainder polynomials.) 

Lemma 4.6 With the above notations and those 
of definition (2.3), we have for p, q E Q[x] 

S(P, P’d = Cp(Q = [+1]> - cp(c! = [-II> (4) 

Proof: Omitted. •I 

5 BKR Identity 

The second basic ingredient needed for the BKR 
algorithm is the matrix identity of Ben-Or, Kozen, 
and Reif, for which we present a significantly sim- 
plied proof. In the following discussion R and S 
denote commutative rings. 

Definition 5.1 For A E Mat,,,,,(S) and B E 
Mat m,,n,(S), define the “Kronecker product” A x 

BEMut mlma,nlna(S) as the matrix consisting of 
ml x nl blocks each of size m2 x n2, gotten by 
replacing each component a;j of A by aijB. We 
may apply the Kronecker product to vectors as a 
special case. 

Lemma 5.2 Suppose A E Mat,(S) and B E 
Mat,(S), v E S* and w E S”, then (A x B)(v x 
w) = (Av) x (Bw). 

Fix p E Q[z], with real roots (r-1,. . . , rk}. 

In the following discussion let S be the real al- 
gebra R” (under componentwise multiplication) in 
which the bit vectors Z/22” are embedded. These 
may be used to represent subsets of roots of p(x) 
specified by sign-conditions. We observe that the 
componentwise product represents intersection of 
subsets. 

Let R be the algebra Rk (again), but consid- 
ered to contain Zj3Zk, and used to represent sign- 
vectors sr(rj, q). We observe that the componen- 
twise product of two sign-vectors s, s’ correspond- 
ing to q, q’ E Q[z] represents the sign-vector of the 
product qq’. 

Lemma 5.3 Suppose c E S” and c’ E S” are 
vectors of bit vectors specifying n and m subsets 
of roots of p E Q [z], respectively. Suppose s E R* 
and s’ E R” are vectors of sign-vectors specifying 
sign patterns achieved at the roots of p by n and m 
polynomials of the form niEI, qi and nj,,, qj, re- 
spectively, for n subsets {Ia} and m subsets (Jp}. 
Then for any A E Mat,(R), A’ E Mat,(R) 

AC = s, A’c’ = s’ GS (A x A’)(c x c’) = s”, 

where 8 E a”‘+” is a vector whose components are 
the mn sign-vectors of (niEZa qi)(njEJ# qj). 

Proof: This follows directly from lemma 5.2 
and the observations above. •I 

The ultimate object is to determine which sign 
conditions on the polynomials {qjl are consistent, 
(i.e.) represent non-empty sets of roots of p(x). 
Consistency can easily be checked by applying 
the linear functional p([xi, . . . , xk]) = ci=, Xj to 
both sides of the linear relations, and using the 
fact that p(*)(Ac) = Ap(“)(c). Now, p applied to 
a bit vector in G counts the size of the set, whereas 
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p applied to a sign sequence in H computes the 
difference between the number of +1’s and the 
number of -l’s, ignoring zeros. The sign-counting 
lemma 4.6 says we may evaluate p of a sign-vector 
using Sturm queries: p(sp(q)) = S(p, p’q), whereas 
the terms ~(c x c’) on the left hand side corre- 
spond directly to the cardinalities of the subsets 
of roots determined by conjunctions of sign con- 
ditions. By combining the sign conditions and 
sign vectors pairwise in a log-depth tree we even- 
tually test every possible sign combination for con- 
sistency. 

6 The BKR circuit 

The BKR function is computed by a log-depth 
circuit. At the leaves one determines all the values 
c(qj = PI), c(qj = [+ll), and c(qj = L-11) by 
appIying the linear functional p to both sides of 
the linear relation of the following lemma: 

Lemma 6.1 Given p,q E Q[x], then 

[; ; -i] [ ~$3;!\]= [ E$J]? 

which is a linear relation between bit vectors on 
the left hand side and sign vectors on the right. 

Proof: The first row just says that the union 
of the subsets of roots of p where q is zero, posi- 
tive, and negative respectively, accounts for all the 
roots of p. Note that p(1) = S(p,p’), the ordi- 
nary Sturm query. The second row just restates 
the definition of sp(q). The third row says that 
Cp(q = [+l]) + CP(q = [-11) equals the vector 
of signs of q2 at the roots of p, which is correct 
because q2 is positive when q is either positive or 
negative. 0 

The remaining stages of the BKR circuit involve 
composing pairs of linear relations AC = s and 
AC’ = $’ using the BK R matrix identity to get 
new relations (A x A’)(c x c’) = s” as in lemma 5.3. 
After each stage one applies p to both sides, which 
reduces on the right to some more Sturm queries 
via the sign-counting lemma. 

After solving ~(c x c’) = (A x A’)-l)p(~“) = 
(A-l x A’-I)/J(s”), one may reduce the original 
system to rank at most t (since the number of 
roots of p(z) bounds the number of consistent sign- 
conditions). The result is a new system of the form 

A”c” = 8’ which is ready for another application 
of the basic step. 

‘7 Generalized BKR circuit 

In order to describe algorithms for the field oper- 
ations, we need a generalization of BKR to pairs 
of polynomials in two variables. 

Circuit 

BKWPI(~), PZ(Y), kz+,~Y), . . A&J,Y)] 

Input: PI(Z) E Q[d, PZ(Y) E Q[yl, q = 
[!Jl(Z:, Y), . *. , 42, ~11 c &Lx, ~1”. 

Output: Sign sequences of q at all solutions 
(CX, /3) of pl , p2, with multiplicities. 

7.1 Specification of BKR2 

View the qj as polynomials in y, qj(z, y) = 
Qj,dj(z)Ydj + ’ * . + qj,o(z),j = 1,. . . , n. 

1. 

2. 

It is possible that certain leading coefficients 
qj,dj (3) may vanish at a root Q of PI(Z). It is 
necessary to determine when this happens be- 
cause it alters the effective degree of the poly- 
nomial qj(a, y), hence the form of the Sturm 
query to be performed. So compute 

BRK(Pl(~), [Ql,l(~), * . . , I(l,dl (z)l), 
BRK(Pl(~), [92,1(2), *. . , c?2,d2 (2)1), 

BRK(Pl(z),[*~,liz),... , ‘InA(~) 
This tells us which polynomials are zero at 
roots of PI(Z) (among other things), hence 
which “reductum” of each qj (2, y) to use at 
each different root of PI(Z). In the worst case 
a different reductum is required for each of 
O(N) roots of pl (z), so we may have increased 
the number of polynomials by a factor O(N). 
Relabel the qj to refer to this expanded set of 
polynomials. 

For each j compute the integral Sturm se- 
quences 

StlLrm(Pz,Pz’) = [uo, 211,. . . , 2161, 

St~Llm(Pz,Pz’qj) = [vo, Ul , . . . , ve], 

StaTm(Pz,P2’qj2) = [‘wo, WI,. . . , WV], 

in Q [z][y]. This may be done using princi- 
pal minors of the Sylvester resultant, which 
we describe subsequently. Note that the cost 
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3. 

4. 

5. 

6. 

of multiplying matrix components is now log- 
arithmic, since they may be polynomials in 
Q[z]. The same values arise whether one sets 
z = T then computes the determinants, or 
first computes the polynomial determinants, 
and then sets z = T. Therefore to compute 
these Sturm queries, it is sufficient to know 
the signs of the leading coefficients of ui, vi, 
and wk at the roots of pr(z). 

Compute 

BKR(pl, [{Hcoeff(w)}, {Hcoeff(vj)), 
Pcoewwm) 

where Hcoeff denotes the head coefficient of a 
polynomial. This tell us, for each root pi = 
0, which sign sequences are realized by the 
collection of head coefficients appearing in the 
Sturm queries above. 

We now have sufficient information to com- 
pute cpa (qj = Pl)j cpn (qj = [+I], and cpz (qj = 
[-l]) for each j. 

Combine these results using the BKR ma- 
trix identity exactly as before. New Sturm 

queries S(P2, P2’(&1 qi)(flj EJ qj)) will w- 
pear on the right hand side as one goes along. 
These must be evaluated by additional recur- 
sive calls to BKR as above to determine the 
proper reducta and Sturm coefficients. 

Continue through logarithmically many recur- 
sive stages until the full answer is computed. 

The two variable generalization has the basic 
form of a log2-depth tree, where there are numer- 
ous subcircuits to perform polynomial multiplica- 
tion, Sturm queries via determinants, linear equa- 
tion solving, and basis extraction. 

8 Circuits for real algebraic 
arithmetic 

8.1 Sign-vectors for the roots off 

Call BKR(f, 3[f’]); Thorn’s lemma assures us 
that any sign-vector which is realized will be real- 
ized only once. 

8.2 Sign of g at one root of f 

Call BKR(f, [3[f’], g]); the rationale is that 
among the sign-vectors realized by [T[f’], g] at 
the roots of f, the sign-vector of cy will appear 
uniquely among the initial segments T[f’]. So run 
BKR, then do a prefix match. 

8.3 Sign-representation for --Ly 

;ff$)) 7 (f’x), [sl, ~2,. . . , ++ll> then t---(y) = 
2 , a, s2, + * *, (-q”Sn-ll). 

8.4 Sign-representation for Q! + p 

Recall that r(x) = Res,(f(z - y), g(y)), the resul- 
tant with respect to y, has all the sums cyd + /3j as 
roots, where {ai} are the roots off, and {&} are 
the roots of g. Next, compute 

This gives us the list of sign-vectors achieved by 
[~[T](z), F[g’](y), 3’[+](z + y)] at the solutions 
(ai,&) of the system {f(z),g(y)). We may iden- 
tify the mapping ( (cY~), (/3j)) I-+ (ai + j3j) by doing 
a prefix search for sf(c~i, 3[f’]) and sg(,8i, T[g’]). 

8.5 Sign-representation for a@ 

Recall that the 
polynomial r(z) = Resy(y”f(z/y),g(y)) has all 
the products a,/3j as roots. Compute 

BI~fW(xL g(y), Wf’l(4, WI(y), F[r’l(z~)l). 

This gives us the sign-vectors achieved by 
[3[f’J(x), T[g’](y), 3[r’](zy)] at the solutions 
((r,p) of the system {f(z),g(y)}. Again, we 
can identify the mapping ((ai}, (pj)) H (oi/?j) 
by doing a prefix search for sf (oi, 3[f’]) and 
%(Pj I J%‘l)- 

8.6 a <,=, > p 

Compute 

BKRW(4 g(y), EW’l(4> WI(Y), (z - Y)l). 

For each solution ((Y, p) of {f(x), g(y)} this pre- 
fixes the sign of z - y with sf(cri, 3[f’]) and 
s,(flj, 3[g’]), which is sufficient to decide x > y, 
x = y, or 2 < y. 
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8.7 Sign-representation for l/cu 

First determine the sign of o by applying the al- 
gorithm which determines the sign of g(z) = t at 
the roots of f. If o = 0, then stop. Otherwise, 
the reversed polynomial P(Z) = z”f(l/~) has the 
inverses l/&i as roots. 

Consider F[f’](l/z); we would like to multiply 
each component by a sufficiently high even power 
of z so that it returns to being a polynomial with- 
out changing its sign. Call the resulting sequence 
g(z). Next compute 

This prefixes the sign codes at the roots l/o of P 
with the signs acquired by T[f’] at cu. 

8.8 Sign-representation for p + & 
and r e ac 

Here P E Q. The polynomial f(~ - r) has T + Q! as 
a root, and the signs of its derivatives at (Y + r are 
identical to those of f(z) at 0~. 

The polynomial g(2) = r”f(z/r) has T. cr as a 
root. In this case 

Wl(4 = 
[P--lf’(z/r), rms2f”(2/r), . . . , Tf(m-l)(t/r)] , 

and the signs depend on (Q), the sign of r, and the 
parity of the exponents (in case r is negative). 

9 Complexity of the circuits 

There are 1ogN parallel stages, where each com- 
bining step entails O(N2) additional Sturm queries 
on the right hand side. As remarked earlier, the 
linear systems so generated may be reduced to size 
O(N). At each stage the system has to be solved, 
then pared down by eliminating the columns corre- 
sponding to zero entries in the c-vector, and finally 
run through a subcircuit which extracts a square 
sub-system of the reduced rank. 

The O(N2) additional Sturm queries have sizes 
bounded by O(N2) and therefore circuit depth still 
bounded by O(Iog2 N). The circuit size grows, 
however, to be O(NC+3), where O(Nc) is the 
best available size for an O(log2 N)-depth circuit 
which computes the determinant. Currently C 5 
(Y + 1 + e, where CY is the exponent of N for the 

best available O(log N)-depth circuit which multi- 
plies two N x N matrices, and E > 0 [Ber 19841. 

Both the linear system solution and the paring 
down with extraction of a square subsystem can 
be reduced to the rank problem. (One computes 
in parallel the ranks of the submatrices of rows 
1 through Ic and retains the rows where the rank 
increases,) K. Mulmuley [Mu1 19873 shows how to 
find the rank of an n x m matrix A by computing 
a characteristic polynomial G(t) = det(t1 - XA). 
Applying the result of Berkowitz we may obtain a 
circuit of depth O(log2 N) and size O(NC) for the 
rank problem. 

There are O(logN) stages in the basic BKR 
circuit, so the overall depth bound is O(log3 N), 
and the size bound is O(NC+3). 

The depth complexity of our circuit for com- 
puting BKR2 continues to be dominated by the 
cost of Sturm queries. These queries involve de- 
terminants of matrices with univariate polyno- 
mial entries. Their sizes may be estimated using 
Hadamard’s inequality, and bounded as O(N2). 
This will not affect the circuit depth, but it will 
increase the circuit sizes. We must also concern 
ourselves with the number and degree of the poly- 
nomials being presented to the recursive subcir- 
cuits. Both the number and degrees of the poly- 
nomials may grow quadratically. In both cases, as 
with the coefficient size, we have recursive inputs 
which are O(N2). 

The circuit depth for BKR2 increases by a fac- 
tor of log N, since it becomes necessary to put 
in polynomial multiplication circuits where previ- 
ously there had been only integer multiplication 
circuits. Also, each outer Sturm query entails 
O(N2) recursive applications of the basic BKR 
circuit to determine signs of leading coefficient 
polynomials. These additional factors multiply 
together to produce an overall depth bound of 
O(log7 N) for the B K R circuit. The size increases 
to O(N2NC+3) = O(NC+5). Our experience with 
practical implementation indicates that the com- 
putation parallelizes as expected, and can be efFec- 
tive in situations in which the degrees of the alge- 
braic numbers involved in the computation can be 
bounded in advance. 
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10 Summary of circuit com- 
plexity for real algebraic 
arithmetic 

In all cases where either B K R or BK R2 are called, 
they dominate the complexity. We understand cr 
and p to be roots off E Q[z], r E Q to be a ratio- 
nal constant, and O(Nc) to be the best available 
size for an O(log2 N)-depth circuit which computes 
the determinant. 

Summary 
Stage 1 depth 1 size 
Outermoduct I 001 1 OIN4j - -- -- c- ----- 

St- queries O(logL N) O(NL+3) 
System solution O(log” N) O(NC+‘) 
Reduction O(log2 N) OWC+‘) 
BKR O(log3 N) OW’+3) 
BKR2 O(log’N) O(NCt5) 

Operation depth size 
Roots of f O(log3 N) O(N=+3) 

SW9 a O(log3 N) O(N“t3) 
-CX O(1) O(N) 

(a + P) O(log’N) O(NCt5) 
(a * 01 ,- *r, OIloz N\ OINc+5\ 

cy <,=,> P Ojlo> Nj oinrc+sj 
I 

(l/a) O(log3 N) O(Nct3) 
T+OI O(1) O(N) 
T’Ci O(1) OW2) 
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