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Abstract. In March of 2013, what started as a minor dispute between
Spamhaus and Cyberbunker culminated in a distributed denial of ser-
vice (DDoS) attack that was so massive, it was claimed to have slowed
internet speeds around the globe. The attack clogged servers with dummy
internet traffic at a rate of about 300 gigabits per second. By compar-
ison, the largest observed DDoS attacks typically against banks had
thus far registered only 50 gigabits per second. The record breaking
Spamhaus/Cyberbunker conflict arose 13 years after the publica-
tion of best practices on preventing DDoS attacks, and it was not an
isolated event.
Recently, NYU’s Courant Institute and Carnegie Mellon Software En-
gineering Institute have collaboratively devised a game-theoretic ap-
proaches to address various cyber security problems involving exchange
of information (asymmetrically). This research aims to discover and un-
derstand complex structures of malicious use cases within the context of
secure systems with the goal of developing an incentives-based measure-
ment system that ensures a high level of resilience to attack.

1 Introduction

In the 2010 JASON report [Mitre, 2010], the authors wrote “The need to secure
computational infrastructure has become significant in all areas including those
of relevance to the DoD and the intelligence community. Owing to the level of
interconnection and interdependency of modern computing systems, the possibil-
ity exists that critical functions can be seriously degraded by exploiting security
flaws.” However, they also lamented, “While the level of effort expended in secur-
ing networks and computers is significant, current approaches in this area overly
rely on empiricism and are viewed to have had only limited success.” The follow-
ing rationale was offered: “The challenge in defining a science of cyber-security
derives from the peculiar aspects of the field. The “universe” of cyber-security
is an artificially constructed environment that is only weakly tied to the physical
universe.”
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Thus the difficulty in developing a science of cyber security (SCS)” is thought
to stem from its inherent Manicheanness [Mitre, 2010], where the adversary is
strategic and utilitarian as opposed to being oblivious and stochastic (i.e. Au-
gustine). However, it must also be noted that a significant fragment of a sci-
ence of cyber security (SCS) has to be built upon a complex computational
infrastructure that is amenable to reasoning and re-engineering based on logical
models such as Kripke structures. Thus, it appears that a successful approach
to the cyber security problem may come from an amalgamation of a dualis-
tic approach, which are partly based on techniques from game theory (inspired
and validated with the tools of systems biology, e.g. analysis of immune sys-
tems) and partly based on model building (e.g., machine learning and statisti-
cal inference) and model checking. In light of this discussion, it may be worth
re-examining the strategic choices that entities such as Spamhaus and Cyber-
bunker made [Williams, 2013,Gallagher, 2013,Lee, 2013,Schwartz, 2013], despite
the obvious fact that both parties must have been well-informed about the ac-
cepted norms and best practices that were incorporated in the hardware, software
and protocol architectures; divorced from a model of the humans and the util-
ities they wished to derive from their strategic choices, the protocols, practices
and norms [Saint-Andre, 2009] achieved precious little.

We propose a novel approach, in which we model cyber security in terms of
classical Information-Asymmetry Games (also called Signaling Games) [Casey, 2013],
where the players (i.e., agents) assume either a role of a sender (S) or that of a
receiver (T). The sender has a certain type, t, for instance: beneficent (C for co-
operator) or malicious (D for defector), which could be assumed to be given by
nature. The sender observes his own type while the receiver does not know the
type of the sender. Based on his knowledge of his own type, the sender chooses
to send a message from a set of possible messages M = {m1, m2, m3, . . ., mj};
these messages are allowed to be complex: for instance, an offer of a mobile app
with certain advertised utility and a price. The receiver observes the message
but not the type of the sender or the ability to fully verify the message. Then the
receiver chooses an action from a set of feasible actions A = {a1, a2, a3, . . ., ak};
the receiver may be oblivious/trusting (C for cooperator) or vigilant/mistrustful
(D for defector) – for instance, the offer of a mobile app may be ignored, ac-
cepted, verified or rejected (with a possibility of a reputation-labeling of the app,
the sender or the app-store, etc.). The two players receive payoffs dependent on
the sender’s type, the message chosen by the sender and the action chosen by
the receiver. Examples of various modes of attacks and how they map to such
abstract games will appear in the full paper. In this paper, we focus only on a
simple model of transaction involving transfer of an app from a sender (an app
store) to a receiver (an app user).

Because of the informational asymmetry, it is possible for a sender to be de-
ceptive, as is often the case in the cyber context. Traditional techniques such as
making the signaling somewhat “costly” for the sender can help, but must be en-
gineered carefully, since otherwise the very information-sharing capabilities of the
cyber system can be seriously compromised. There have been proposals for new
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internet architecture, new internet protocols and “bandwidth-as-price” mecha-
nisms [See [Walfish et al., 2010], [Yau et al., 2005], [Beitollahi and Deconinck, 2012],
[Lee et al., 2007], [Doron and Wool, 2011], [Fu et al., 2011], [Kargl et al., 2001],
[Xie and Yu, 2009], [Bhatia et al., 2012], and [Huang et al., 2007]], but any such
approach can burden the normal transactions with an unwelcome and unaccept-
ably heavy overhead.

We, instead propose a system based on an explicit pricing, using M-coins1.
The other key ingredient is based on mechanisms for credible deterrence. How-
ever, the focus of this paper will be on two topics: (1) a simplified model for
a repeated game that results from our analysis and (2) the empirical results
obtained from an agent based simulation.

2 The Game Theoretic Models

Below (in Table 1) we describe a parameterized payoff matrix associated with
a single transaction, where a sender may act in the “cooperate” behavior mode
by sending a useful app honestly or the “defect” behavior mode by sending
a malicious app deceptively, and where a receiver may act in the “cooperate”
behavior mode by accepting trusted or the “defect” behavior mode by responding
with a challenge. The payoff-parameters in the table are as follows: a = the cost

Table 1. Row player is the sender, column player is the receiver.

Sender,Receiver receive trusted receive challenge

send clean (a,−a+ b) (a− c,−a− g)
send malware (a+ d,−a− d) (a− c− e,−a+ f − g)

of app, b = the value of app, c = the cost of verification, d = the benefit of hack,
e = the cost of getting caught, f = the benefit of catching malicious user, and
g = the cost of challenging a sender.

Table 2 simplifies the payoff matrix for the joint strategy considering both
roles of sending and receiving per user in repetition of a single transaction:

3 The Results from Simulation

To examine the details of the potential dynamics of the resulting repeated game,
we consider a reproducing population model where reproduction of a given strat-
egy depends on its performance. Strategy mutation is possible in order to explore
all possible finite strategies with mutation rates determined by a parameter µ.

1 M-coins have some resemblance to bit-coins and share many of the properties of bit-
coins, but also differ significantly in the way they are acquired, in how the number
in circulation is controlled and how they expire
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Table 2. Row player is the sender, column player is the receiver.

receiver → CC CD DC DD
sender ↓
CC b b− c −d −c− d

b −g b+ d d− g
CD −g −c− g f − g −c+ f − g

b− c −c− g b− c− e −c− e− g
DC b+ d b− c− e 0 −c− d− e

−d f − g 0 d+ f − g
DD d− g −c− e− g d+ f − g −c− e+ f − g

−c− d −c+ f − g −c− d− e −c− e+ f − g

We include the population structure parameters δ and α, similar to how they
are used in [Traulsen and Nowak, 2007,van Veelen et al., 2012] to explore reci-
procity, and provide observations over a unit-square in δ × α. Note that when
δ = α = 0 the sender-receiver-pairs for each game are randomly chosen regardless
of their types and change in every round; whereas when δ = α = 1 the sender-
receiver-pairs remain constrained to similar types and unchanged from round to
round. In general ((δ, α) ∈ [0, 1]2 \{(0, 0), (1, 1)}, the pairing is done with similar
or dissimilar types for a round and remain fixed for a random number of rounds
of the game.

The simulation model is as follows:

Initialization: Create a random population of N users who choose a repeated-
game strategy randomly over a set of seed-strategies. This set of agents
provides the population at time k = 0.
The simulation model is constructed with the following update-cycle:

Pairing: Using the population at time (k − 1) we create N/2 random pair-
ings. Population Structure parameter : For each pair with probability α one
strategy is selected with the other removed and replaced with a copy of the
selected strategy. Therefore for a given strategy s within the population its
probability of playing itself is α+(1−α)ps where ps is the frequency of strat-
egy s’s occurrences in the population at time (k − 1). Parameter α allows
for an investigation into a spectrum of possible population structures from
α = 0 (random pairing), to α = 1 (stronger and general forms of kinship
and spatial/network-connectivity-based closeness for α > 0).

Strategize: Each selected pair will play a repeated game with a number of plays
dependent on a geometric distribution with continuation parameter δ. The
expected number of plays per game is 1/(1− δ), for example δ = 0 reduces
to single shot games.

Determine Payoff: Strategy payoff is determined using automata and payoff
matrix; a multiplicative discount factor for payoff may be introduced (omit-
ted here).

Next Round: A population of size N is re-created by sampling the strategies
at time (k − 1) using a distribution whose density is computed as propor-
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tional to population normalized performances. This set of agents provides
the population at time k.

Mutate: Each user-agent is subject to the possibility of mutation with mu-
tation rate µ; a mutation creates a strategy one-mutation step from its
previously selected strategy determined in the preceding step. Mutation
steps may add or delete a state, re-label a state or re-assign an edge
destination. Mutation rates are performed in-situ on the population and
update the population at time k.

3.1 Behavior modes (dependent on parameters d, e, f, g).

We summarize the results from our simulation as shown below:

3.2 Strategies:

See Figure 1, for a list of strategies whose fitness is studied during the simulation.

We list in Figures 1(a), 1(b), 1(c) and 1(d) strategy-profiles with single state.
In the rows below these figures, we list in Figures 1(e), 1(f), 1(g), 1(h), 1(i), 1(j),
1(k) and 1(l) several more strategy-profiles with two states.

3.3 Equilibrium strategies at a glance:

Figure 2 shows the asymptotic structures of the strategic behavior of the popu-
lation.

3.4 Limiting measures of send cooperate and receive cooperatively:

Figure 3 examines the nature of cooperative behavior 2 as a function of the
parameters δ and α that jointly determine “correlation of encounters.”

2 Note that, when the cost of checking g is sufficiently large (in particular compared
to the other which provide benefit or shifting burden to the attacker) the popula-
tion will simply penalize any strategy that does so to such an extent that survival
of a checking strategy among competing non-checking strategies is extremely rare.
The data appears to show a few thousand runs for which challenging strategies are
eliminated from the population (because of the high cost, without a commensurate
benefits for doing so): see Fig3(b) [1118], where since the values are constant and
zero they are all mapped to the mean of the JET color map (Green). Note further
that the act of challenging must have a price that coincides with a benefit for doing
so (for example when g = f) or a means of shifting the cost burden to the attacker
(for example when g = e).
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(a) SAC RAC; (b) SAC RAD; (c) SAD RAC; (d) SAD RAD;

(e) SAC RTFT; (f) STFT RAC; (g) SAD RTFT; (h) STFT RAD;

(i) TFTDD; (j) TFTCC; (k) TFTV; (l) TFTV2.

Fig. 1. Repeated game strategy encoded as finite state automata. Black arrows indicate
initial state. Blue indicates a play of sending cooperatively and receiving trusted. Purple
indicates a play of sending cooperatively and receiving untrusted (defect action may
challenge reputation of sender). Green indicates a play of sending defect (attacks) and
receiving trusted. Finally red indicates a play of sending defect and receiving untrusted.
Arrows indicate the transition taken depending on an opponent’s previous play. A
repeated game may occur for any pairs of agents; the number of plays determined by
a geometric distribution continuation parameter δ. Above: twelve seed strategies for
population dynamics with evolution pressures for strategy fitness.

4 Discussion
In the JASON report, the committee addressed the following question (Q2 on
page 4): Are there “laws of nature” in cyber space that can form the basis of sci-
entific inquiry in the field of cyber security? Are there mathematical abstractions
or theoretical constructs that should be considered? The answer they provided
is rather pessimistic: “There are no intrinsic “laws of nature” for cyber-security
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(a) 1111 (b) 1118 (c) 1811 (d) 1818

(e) 1181 (f) 1188 (g) 1881 (h) 1888

(i) 8111 (j) 8118 (k) 8811 (l) 8818

(m) 8181 (n) 8188 (o) 8881 (p) 8888

Fig. 2. Infrequent mutation rates applied to populations of twelve seed strategies pro-
vide a notion of what strategies have advantages and are culled for various environments
or settings of payoff matrix values. Exploration of d, e, f, g are shown above. Each chart
provides a view of which strategy fixate in the population at various values of d, e, f, g,
pie charts are organized over the unit square of α, δ.

as there are, for example, in physics, chemistry or biology. Cyber-security is
essentially an applied science that is informed by the mathematical constructs
of computer science such as theory of automata, complexity, and mathematical
logic.” In contrast, we show that by suitably modeling the agents of a system
and the utilities they wish to achieve in cyber space, and under the standard as-
sumptions of “common knowledge of rationality,” a suitable law can be imposed
on the system, which can evolve to a desirable equilibrium.

We believe that, although our work is preliminary and require further re-
search, it is promising and could prove to be immensely useful, especially to
policy makers in the security community.
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(a) 1111 (b) 1118 (c) 1811 (d) 1818

(e) 1181 (f) 1188 (g) 1881 (h) 1888

(i) 8111 (j) 8118 (k) 8811 (l) 8818

(m) 8181 (n) 8188 (o) 8881 (p) 8888

Fig. 3. Charts of aggregate population behavior at various values of d, e, f, g showing
overall percentage of time a population sends cooperatively and receives trusted. Each
chart has four sub charts with average percentage send cooperatively plays shown in
the upper left, average percentage of receive cooperatively plays shown in the upper
right and standard deviation for each percentage shown below. Each quadrant provides
a view for simulations over the α, δ parameter unit square.
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