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Abstract

While type causality helps us to understand general relation-
ships such as the etiology of a disease (smoking causing lung
cancer), token causality aims to explain causal connections
in specific instantiated events, such as the diagnosis of a pa-
tient (Ravi’s developing lung cancer after a 20-year smoking
habit). Understanding why something happened, as in these
examples, is central to reasoning in such diverse cases as
the diagnosis of patients, understanding why the US financial
market collapsed in 2007 and finding a causal explanation for
Obama’s victory over Clinton in the US primary. However,
despite centuries of work in philosophy and decades of re-
search in computer science, the problem of how to rigorously
formalize token causality and how to automate such reason-
ing has remained unsolved. In this paper, we show how to
use type-level causal relationships, represented as temporal
logic formulas, together with philosophical principles, to rea-
son about these token-level cases.

Introduction
When we want to determine what is responsible for a pa-
tient’s symptoms, why a stock plummeted in value, or the
reason a particular candidate won an election, what we want
to know is what caused these particular events. But rather
than finding a general relationship, such as “smoking causes
lung cancer”, we want to find whether a particular one, such
as “Bob’s smoking caused his lung cancer” is true. In order
to do this in an automated way, we need to understand the
general relationships (called type-level causality) and how
these relate to the singular cases (called token-causality).
We also need a system for combining this knowledge in a
rigorous, automated, way.

While the problem of general causal inference has been
studied in our prior work (Kleinberg and Mishra 2009) as
well as that of other computer scientists, we cannot immedi-
ately use these inferences to explain token cases. A type-
level relationship may indicate that a token case is likely
to have a particular cause, but it does not necessitate this.
Just as the relationship between smoking and lung cancer
does not mean that all lung cancers are caused by smoking,
we cannot immediately propose that a type-level cause is a
token-cause. We must first establish whether the type-level
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relationship has been instantiated and take into account that
we may wish to also assess the role of other hypotheses, in-
cluding rare factors. In some cases we will not even know if
the potential cause occurred, we may only have indirect in-
formation such as whether its causes and effects occurred.
We discuss the general problem and approach here, with
more details and examples provided in the full paper (Klein-
berg and Mishra 2010).

Computational approaches have traditionally looked at
the problem of beginning with a type-level model (such as a
Bayesian network), and then using this to assess a particu-
lar case. Approaches in logic have focused on the problem
of reasoning about the results of actions on the system (Lin
1995; Thielscher 1997) or diagnosing the causes of system
malfunctions based on visible errors (Lunze and Schiller
1999). Most recently, Hopkins and Pearl (2007) have pro-
posed a framework drawing on earlier work on structural
models as well as the work on situation calculus. In this
more recent adaptation, it is shown that counterfactuals may
be modeled using the situation calculus, however one must
still specify all dependencies - including those of counter-
factuals.

The relationship between type and token
Previous approaches require that one must either begin with
a model, know the truth values of all variables, or have a
deterministic system. In contrast, we will infer relationships
(temporal logic formulas with a causal interpretation) from
time series data and then assess the support of each of these
hypotheses for a token case.

Type-level inference
We will give a brief overview of our approach to type-
level inference before discussing how to use these type-level
causes for token-level cases. In prior work (Kleinberg and
Mishra 2009) we created a new framework for causal infer-
ence, where cause and effect are described in terms of prob-
abilistic computation tree logic (PCTL) formulas (Hansson
and Jonsson 1994), and checked to see if they are satisfied
in time series data (traces) using model checking. Then, to
determine which of these possible inferred causal relations
are significant, we compute the average difference a cause
makes to its effect, using the concept of multiple hypothesis



testing to determine at what level something is statistically
significant (Efron 2004).
Definition 1. A factor c is a prima facie cause of e if P (c) >
0 and the probability of e, when c occurs prior to e is greater
than P (e).

In order to determine whether a particular prima facie
cause is significant, we compute, with X being the set of
all other prima facie causes of e:

εavg(c, e) =

∑
x∈X\c

εx(c, e)

|X \ c|
, (1)

where

εx(c, e) = P (e|c ∧ x)− P (e|¬c ∧ x). (2)

Then we use this εavg to determine c’s significance.
Definition 2. A prima facie cause, c, of an effect, e, is an
ε-insignificant cause of e if εavg(c, e) < ε.
Definition 3. A prima facie cause, c, of an effect, e, that is
not an ε-insignificant cause of e is an ε-significant, or just-
so, cause.

The connecting principle
We will now use the strength associated with the type-level
causes to assess the strength of token-level claims using the
connecting principle, introduced by Sober (1986). The basic
idea is that the support of a particular token hypothesis (such
as Bob’s smoking caused his lung cancer) is proportional
to the strength of the type level relation (such as smoking
causes lung cancer). That is, if we know of a type-level
relationship between C and E, then the magnitude of the
support for C token causing E, given that the both actually
occurred, is proportional to a measure of strength for the
related type-level relationship. The main principle here is
that a known type-level relationship between some c and e
is good evidence for c causing e, if we see that both c and e
have occurred.

Token-level reasoning
We will now reframe Sober’s principle for our purposes, us-
ing our measure of significance and allowing incomplete in-
formation.

The set of possible token causes
Recall that we are calculating the support of token causal
claims - with the assumption that we are interested in those
with high levels of support. If two possible token causes
took place on a particular occasion and one is significant
while the other is insignificant, the more likely explanation
for the effect is that it was token caused by the type-level sig-
nificant cause. That is, if we have a number of token causal
hypotheses, those with the highest support will be those with
the highest value for εavg – our just-so or significant causes.
Thus, if we know that a just-so cause of the effect in ques-
tion took place, we do not need to examine any insignificant
or non-prima facie causes of the effect, as the only other

causes that may have higher significance for the effect are
other significant ones. If none of the just-so or significant
causes occurred, then at that point we would have to exam-
ine alternative hypotheses.

Support of a causal hypothesis
We will not always know whether a cause occurred, so we
now reformulate Sober’s measure of support to account for
this.

Definition 4. Assume that e token-occurred in population
P ; that the probability that c token-occurred in P is P (c);
and that εavg(c, e) is the strength of the type-level relation-
ship between c and e. Then, the support for the hypothesis
that c token-caused e in P is:

S(c; e) = εavg(c, e)× P (c). (3)

This means that if we have full knowledge of a scenario,
the support for each possible explanation will be exactly
equal to the strength of the corresponding type-level rela-
tionship. However, when we have missing data and are un-
sure as to whether or not a possible cause occurred, the sup-
port for the hypothesis will be weighted by the probability
of the cause having occurred, given what we have observed.

Calculating the probability of c
To calculate the probability of a particular cause token-
occurring, we can go back to our original data, using fre-
quencies (calculating the frequency of sequences of length t
where the evidence holds). However, if we have or have in-
ferred the structure of the system, we may use that instead.
In either case, note that we are computing the posterior prob-
ability of c, where our evidence is one sequence of observa-
tions, comprised of a conjunction of the facts about the sce-
nario. We will refer to this evidence as E. We are interested
in P (c|E), which is by definition:

P (c|E) = 1− P (¬c ∧ E)

P (E)
. (4)

The facts we have about the current scenario will be time-
indexed such that we have facts at times t1, t2 and so on,
indexed relative to the beginning of the event or at times
such that we know their order and can calculate the elapsed
time between them. These facts constrain the set of states
our system has occupied (assuming our model of the system
is correct, or our data is representative of the system). We
may also limit the evidence considered to known causes and
effects of c. Note that there are time windows associated
with all the causal relationships, and thus when we say ¬c,
we mean c did not occur in such as way as to satisfy the
formula representing its relationship with some e (i.e. c did
not occur within the correct time window).

Thus, when we do not have a model, the probability,
P (¬c∧E)

P (E) , will be the number of times the sequence of facts
in F ′ is true along the trace, divided by the number of times
the sequence F is true. For a set of traces, these would cor-
respond to the number of traces in which each set holds.
When we have a model, we calculate the probability of this



sequence of conjunctions holding. We will repeat this proce-
dure twice, once for the numerator and once for the denom-
inator, thus calculating the probability of each cause having
occurred using Equation (4).

Procedure for assigning support to causes
Recall that we have sets of type-level causes of the token-
effect in question. In order to determine the support for each,
we must first ascertain - using the facts about the situation
- which of these occurred. When we do not have enough
information to determine if one has occurred, we use the
above procedure to determine its probability using our ob-
served evidence. Recall that the support for each hypothesis
is the previously computed εavg - weighted by the probabil-
ity of the evidence. That is, the largest possible value of the
support for a token hypothesis is its associated εavg (since
the probability can be at most one). If any significant type-
level causes have occurred, this means that they will have
the highest values of this support. With C being the set of
significant causes of the token-effect, e, and F being the set
of known time-indexed facts, we test whether each c ∈ C
is true on this occasion given the facts. This means deter-
mining whether the components of the formulas occurred in
such a way as to satisfy the causal relationship. Thus if the
formula is q ;≥1,≤2 e and we know q at t1 and e at t2,
the formula would be true in this token instance, while if the
facts were instead that q at t1 and e at t4, it would be false.
When the support for the significant hypotheses is very low
or zero, we must examine the other potential explanations:
our previously discarded insignificant causes, and perhaps
those that are not even prima facie causes. We may define a
threshold at which we will examine less likely causes. The
result is a set of possible explanations ranked by their sup-
port, with those having the highest values being the preferred
explanations for the effect. We can also test any hypotheses
of interest to see how they relate to the token effect.

Example
We now discuss a simple example, illustrating the approach.
More examples, including difficult cases, appear in the full
paper (Kleinberg and Mishra 2010). We begin with Bob and
Susie, who are each armed with rocks that they may throw
at a glass bottle. Let us assume we have already found one
type level significant causes (with all other causes being in-
significant) of such a bottle breaking in this system. This is
represented by:

T ;
≥1,≤2
≥p G. (5)

That is, throwing (T ) a rock from a certain distance causes
the glass to break (G) in greater than or equal to one time
unit, but less than or equal to two time units, with at least
probability p. Since we have found this to be a type-level
cause, we have the associated values of εavg .

We have the following facts about the token case:
1. Bob threw his rock at time 3;
2. Susie threw her rock at time 4;
3. The glass broke at time 4;

4. The only significant cause of a broken glass is that in for-
mula 5.
Our type level relationship says that if T is true at some

time t then it can lead to G being true at time t+ 1 or t+ 2.
The facts we begin with are that Bob’s instance of T is true at
t = 3 and Susie’s at t = 4. To satisfy the causal formula of
(5), G would need to be true at t = 4 or t = 5. G is true at 4
and thus Bob’s throw can be considered as a possible token-
cause of G. Now, for Susie’s throw to be a token cause of
G, G would need to be true at t = 5 or t = 6. However, G
is true at t = 4, which means this causal relationship did not
occur, and it is not a possible token cause (since it could not
lead to G at the time at which G actually occurred). Thus in
this case our only potential token cause is Bob’s throw, and
the support for this token cause will be εavg(T,G).

Conclusion
We have shown how inferred type-level causes, represented
by logical formulas, may be used to reason about token-level
cases. This method captures information about the timing
of the general relationship and occurrence of actual events,
allowing automated reasoning about cases that were previ-
ously only correctly handled with intuition. In future work
we will discuss how to include other knowledge as well as
the possibility that some “facts” may be conflicting or incor-
rect.
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