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Prediction of Protein Functions with Gene
Ontology and Inter-Species Protein Homology
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Abstract—Accurate computational prediction of protein functions increasingly relies on network-inspired models for the protein
function transfer. This task can become challenging for proteins isolated in their own network or those with poor or uncharacterized
neighborhoods. Here, we present a novel probabilistic chain-graph based approach for predicting protein functions that builds on
connecting networks of two (or more) different species by links of high inter-species sequence homology. In this way, proteins are
able to “exchange” functional information with their neighbors-homologs from a different species. The knowledge of inter-species
relationships, such as the sequence homology, can become crucial in cases of limited information from other sources of data, including
the protein-protein interactions or cellular locations of proteins. We further enhance our model to account for the Gene Ontology
dependencies by linking multiple but related functional ontology categories within and across multiple species. The resulting networks
are of significantly higher complexity than most traditional protein network models. We comprehensively benchmark our method by
applying it to two largest protein networks, the Yeast and the Fly. The joint Fly-Yeast network provides substantial improvements in
precision, accuracy, and false positive rate over networks that consider either of the sources in isolation. At the same time, the new
model retains the computational efficiency similar to that of the simpler networks.

Index Terms—Biology and genetics, machine learning, bioinformatics (genome or protein) databases
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1 INTRODUCTION

In protein-protein networks, each node represents a protein and
edges between nodes represent different types of functional
associations, such as protein-protein interactions, sequence
similarity, co-expression patterns, and others. Majority of
computational methods for protein classification rely on the
property that close neighbors in a protein-protein network
typically share a function [17], [15], [23], [21], [8], [6], [4],
[20]. These methods assign the function (or functions) to a
protein of interest based on the annotations of its neighbors.
Such approaches have shown success in cases where pro-
teins have multiple, mostly annotated neighbors. However,
the methods display much less success on proteins with
insufficient neighborhoods: those proteins isolated in their own
network or the ones surrounded by poorly annotated neighbors.

In this work we propose a novel approach to protein function
prediction, which overcomes these limitations and incorporates
inter-species evolutionary information with multi-functional
Gene Ontology (GO) dependencies. The fundamental concep-
tual innovation of our method is to connect protein-protein

• A. Mitrofanova is with the Department of Computer Science, Courant
Institute of Mathematical Sciences, New York University, New York, NY,
10003.
E-mail: antonina@cs.nyu.edu

• V. Pavlovic is with the Department of Computer Science, Rutgers Univer-
sity, Piscataway, NJ, 08854.
E-mail: vladimir@cs.rutgers.edu

• B. Mishra is with the Department of Computer Science and Mathematics
(Courant Institute of Mathematical Sciences) and Cell Biology (School of
Medicine), New York University, New York, NY, 10003.
E-mail: mishra@nyu.edu

Manuscript received December 01, 2008; revised January 11, 2009.

networks of two (or more) different, but related species,
into a single computational model. Through the edges of
high homology, proteins are able to expand their learning
neighborhood and acquire additional functional information
from their neighbors-homologs of a different species network.

Our new approach relies on a chain-graph probabilistic
approach to integrate multiple sources of information: protein-
protein interactions, multi-functional ontology information,
intra-species sequence similarity, and inter-species homology
which captures evolutionary relationships between species. In
connecting networks, we rely on the fact that proteins of
different species, which share high sequence similarity, are
likely to share similar protein classification. In most cases
such proteins, orthologs, had established functions before the
speciation event. Thus, high similarity of sequences between
species is likely to lead to shared functions. Even though the
resulting large chain-graphs can suffer from increased time and
space complexity of the models, compounded by the added
complexity of the multi-species network, we show that the
combined models often lead to efficient implementations and
significant improvements in predictive accuracy not observed
in isolated networks or other competing approaches.

The rest of the paper is organized as follows. In Section 2
we first present an overview of the closely related network
approaches to protein function prediction. We then introduce,
in Section 3, a chain-graph based probabilistic network model
that combines both the GO structure and the information
from protein-protein networks of multiple species. Section 4
demonstrates the effectiveness of the proposed approach when
applied to large fly and yeast networks, at different granulari-
ties of the GO. We finally discuss the new results in Section 5
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and relate them to the performance of related state-of-the-art
probabilistic network models.

The code (C/C++/Perl) and data files used in this work are
available from http://research.rutgers.edu/∼amitrofa/yeast fly.
html.

2 RELATED WORK
Proteins are involved in many if not all biological processes,
such as energy and RNA metabolism, signal transduction, and
translation initiation. However, for a large portion of proteins,
their biological function remains unknown or incomplete.
Thus, constructing efficient and reliable models for predict-
ing protein functions has thus become the task of immense
importance.

A critical factor that impacts performance of network mod-
els is the choice of functional association between proteins.
The most established methods for protein function prediction
are based on sequence similarity (e.g., a BLAST score). A
large set of methods relies on the fact that similar proteins
are likely to share common functions, subcellular location
or protein-protein interactions (PPIs). Such similarity-based
methods include sequence homology, similarity in short signal-
ing motifs, amino acid composition and expression data [18],
[27], [22], [8], [20], [6].

Using PPI data to ascertain protein function within a
network has been studied extensively. For example, methods
in [17], [10], [11] used the PPI to define a Markov Random
Field over the entire set of proteins. These methods are based
on the notion that interacting neighbors in PPI networks should
share a function [17], [15], [23].

One promising computational approach to protein function
prediction utilizes the family of probabilistic graphical models,
such as belief networks, to infer functions over sets of par-
tially annotated proteins [17], [10], [11]. Using only a partial
knowledge of functional annotations, probabilistic inference
is employed to discover other proteins’ unknown functions by
passing on and accumulating uncertain information over large
sets of associated proteins while taking into account different
strengths of associations.

Several related studies used various probabilistic frame-
works to infer functions of proteins [25], [24], [26], [13], [19].
For example, the method in [26] used multiple Support Vector
Machines for the classification of protein predictions using
protein sequences of several organisms for training. GOtcha
approach developed in [19] and method in [13] search for
similar sequences, using the scoring scheme for GO annota-
tions, based on degree of similarity of the original query and
frequency of occurrence of GO in different sequences. Shin
at el [24] proposed graph sharpening as a way to eliminate
undesirable edges from sequence and 3D similarity graphs, and
showed that graph sharpening together with data integration
produced improvement in protein function prediction. Tsuda
at el [25] proposed automated method to choose/weigh best
networks (out of PPI, genetic interactions, protein complex,
Pfam domain structure, gene expression networks) for each
protein class, using Support Vector Machines.

More recently, the approach of incorporating Gene Ontology
structure into probabilistic graphical models [8] has shown

Fig. 1. Examples of proteins isolated in their own network,
but connected to neighbors-homologs in the other species
network.

promising results for predicting protein functions while outper-
forming approaches that do not take advantage of dependen-
cies among different functional terms. The approach described
in [8] considers multiple functional categories in the Gene
Ontology (GO) simultaneously. In their model each protein is
represented by its own annotation space - the GO structure.
In this case, the information is passed within the ontology
structure as well as between neighboring proteins, leading to
an added ability of the model to explain potentially uncertain
single term predictions.

Multiple approaches have proven that incorporating het-
erogeneous data to predict protein function can improve the
overall predictive power of automated protein/gene annotation
systems, as for example shown in [21], [4], [8]. Integrat-
ing multiple sources of information is particularly important
as each type of data captures only one aspect of cellular
activity—PPI data suggest a physical interaction between
proteins, sequence similarity captures relationships on a level
of orthologs (inter-species relationship) or paralogs (intra-
species relationship), and gene ontology defines term-specific
dependencies.

Many learning approaches rely on information available
from neighbors in a protein network [21], [17], [4]. However,
there may exist proteins with no edges connecting them to
other proteins in their own networks, as demonstrated in Fig-
ure 1. For example, considering Yeast and Fly networks, yeast
protein YPL262W has no edges of high sequence similarity
to other proteins in its own yeast network, but it is connected
to two fly proteins (CG6140-PA, CG4095-PA) through high
similarity edges. On the other hand, fly protein CG4866-PA
and yeast protein YHR148W do not share any sequence sim-
ilarity with proteins in their own networks, but are connected
through a highly homologous edge with each other. In a single
species network it is often the case that proteins are surrounded
only by proteins whose functional information is absent or
very limited. In such cases, using information from multiple
species becomes crucial: neighborhoods of many proteins are
expanded by connecting them to proteins of high sequence
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Fig. 2. The hypothetical protein is positively annotated
(light blue color) to GO term 43565 and, thus, also posi-
tively annotated to its parent - GO term 3677 , and further
up the tree to the parent’s parent, term 3676. The term
3700, with the darker blue shade, indicates the negative
annotation of the protein to this term. Its child, term 3705,
inherits this negative annotation. The protein is unknown
at the three unshaded (white) terms.

similarity in a different species’ network. Through such multi-
species networks sufficient information may be accumulated
to improve the accuracy of protein functional prediction.

3 METHODS
3.1 Single Species Network
In our work, we employ the idea of probabilistic chain graphs
with incorporated Gene Ontology dependencies [8] to build
protein network for each species (such as Yeast and Fly).

In this method, each protein is represented not by a single
node, but by a replicate of a Gene Ontology (or subontology),
as depicted in Figure 2. Gene Ontology (GO) is a directed
acyclic graph which describes a parent-children relationship
among functional terms. The child term either IS A special
case of the parent or is a PART OF the parent’s process or
its component. Every protein has its own annotation space
corresponding to each of the functional terms in the Gene
Ontology. The annotations can, in turn be, assigned positive,
negative or unknown states.

Because the relationships between children and parents are
directional, if a protein is positively annotated to a child, it is
also, by definition, positively annotated to a parent. However,
the reverse relationship does not hold. At the same time, if
a protein is negatively annotated to a parent term, it will be
negatively annotated to all the children terms.

From the above definition it becomes clear that the prob-
ability that the child term is negative, given that the parent
term is negative, is one. In the presence of multiple parents, a
negative state of any parent immediately yields a negative state
for child. This step leaves the only probabilities that remain
to be estimated as those that define the likelihood of a child
being positively/negatively annotated when its parent is (or all
parents are) positive.
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By defining such probabilistic dependencies for the Gene
Ontology terms (conditional probability distribution of all
child terms given their parent terms), we create a Bayesian
network (BN) representation for each protein, as represented
in Figure 2.

We encode the ability of our model to transfer functions
among similar proteins using a probabilistic graphical repre-
sentation of a Markov Random Field (MRF) [12], similarly
to [17], [10], [11]. In our work we consider two measures
of similarity within each species network: sequence similarity
determined through normalized BLAST scores and protein-
protein interactions. The notion of similarity between proteins
in this case is not directional, unlike the case of Gene
Ontology.

For each measure of similarity we define a potential func-
tion, which corresponds to the probability of joint annotation
of two proteins at a term, given that the proteins are similar.
The sequence similarity-based potential for proteins i and j at
term c is defined as

ψ(+,+) = ψ(−,−) = swithin
i,j,c

ψ(+,−) = ψ(−,+) = 1− swithin
i,j,c

where swithin
i,j,c is a pairwise normalized BLAST score (we only

consider normalized BLAST scores above 0.5). In this case,
swithin

i,j,c = swithin
i,j for all terms c.

Similarly, the PPI-based potential is defined in a term-
specific way as shown below

ψ(+,+) = P (+,+|interaction),
ψ(−,−) = P (−,−|interaction),
ψ(+,−) = P (+,−|interaction)
ψ(−,+) = P (−,+|interaction),

where the quantities are estimated using relative frequency
counts from the training data.

If both the similarity measure and the PPI occurred between
a pair of proteins, the total potential ψ is defined as a
product of the similarity-based potential and the PPI-based
potential [8].

In the model, each protein i can have the evidential function
φ at each term c, defined as follows. Let x(c)

i be the positive or
negative annotation of a protein i to a particular term c. Then
the evidential function models our knowledge of particular
term annotations: a positively annotated protein at term c

is modeled with φ(x(c)
i ) defined as φ(+) = 1, φ(−) = 0.

Similarly, when a protein is negatively annotated at c, the zero
and one values are interchanged so that φ(+) = 0, φ(−) = 1.
For proteins with no annotation the evidence φ is set to 0.5.

Our final model is embodied in a chain graph [16], a
hybrid between a Bayesian Network (BN) and a MRF, see
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Fig. 3. A chain graph model with three proteins. Each
protein is represented by GO subontology of size eight,
with different annotations present at each protein. Some
model elements, P and potential function ψ, are shown.

Figure 3. Operating all of the above parameters, the single-
species model (of either Fly or Yeast, in our case) can now
define a joint Gibbs distribution of functional term annotations
over a set of proteins, as defined in Equation (1),where Z is
the normalizing constant and Pa(x(c)

i ) is a parent (parents) of
the GO term c in the protein xi.

Once the network (chain graph) is built, the information
is passed from annotated proteins through undirected links to
their neighbors. At the same time the information flows within
each protein’s Bayesian network along the directed links,
according to the conditional probabilistic relationships among
different terms. In this fashion the annotation information is
accumulated both via the similarity MRF and the ontology BN.
For each term of a protein, a set of neighbors is defined by the
local connectivity: for example, in the Figure 3 the neighbors
of 3688 in the protein i+ 1 are x(43565)

i+1 , x
(3688)
i , x

(3688)
i+2 .

The flow of information is modeled using a message-passing
mechanism for chain graphs, similar to that described in [8].
Messages are passed until the state of convergence is reached;
we define it as state at which all normalized messages change
by less than 10−4 between successive iterations. We employ
the “down” message-passing schedule: messages are initiated
from the annotated term nodes, sent to all of their neighbors,
then to the neighbors of their neighbors, and so on, until all
nodes have sent their messages out.

At convergence, the posterior probabilities of membership in
the classes defined by GO are calculated at the target proteins,
and predictions are made based on those probabilities. We
compare the beliefs, obtained thus, to a preselected threshold.
Prediction decisions are based on 0.8 decision threshold, as
suggested in [8], [17].

3.2 Multi-species network

Our next step is to join networks of two (or more) species
by edges of high sequence similarity into one computational
model. In particular, an edge is introduced between homolo-
gous proteins in two species if their normalized BLAST score
is above 0.5 (the similarity is high). On the other hand, inter-
species edges are not introduced when the score is below 0.5
(the similarity is low), since dissimilar proteins may or may
not be involved in the same biological process. Moreover, most
of the protein pairs would share some low similarity, which
would obscure the network with potentially irrelevant low-
similarity edges.

More formally, in a two-species setting, we define a simi-
larity measure between protein i in Yeast network and protein
j in Fly network, at term c, as sbetween

i,j,c , a normalized pair-
wise BLAST score. Consequently, the potential function for
homologs between different species is defined as

ψ(+,+) = ψ(−,−) = sbetween
i,j,c

ψ(+,−) = ψ(−,+) = 1− sbetween
i,j,c

Similarly to a single-species model, we consider sbetween
i,j,c =

sbetween
i,j for all terms c of the Gene Ontology, as illustrated

in Figure 3. While this assumption may be open to debate,
it is shown to lead to improved annotation performance.
Considering heterogeneous values of similarity sbetween

i,j at
each term c may lead to additional improvements, at a cost of
a more complex and demanding parameter estimation process.

The combined model for joint Fly-Yeast (referred to as
species 1 and species 2) network now defines a joint Gibbs
distribution of functional term annotations over a set of all
proteins in the chain graph, detailed in Equation (2). Here,
Z is the normalizing constant, ψwithin is similarity measure
within one species network, ψbetween is a similarity measure
between the networks, Pa(x(c)

i ) is a parent (parents) of the
GO term c in the protein xi.

After the joint network is built, the belief propagation is
used to make predictions at all ontology terms in both species.
We consider a state of convergence and decision thresholds to
be defined similarly to a single-species network.
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Fig. 4. Yeast and Fly networks joint by the similarity edges between Yeast’s protein i and Fly’s protein z+1. The edges
between all GO terms of these proteins are in dark bold, with ψ shown.

Adding inter-species homology information into the learn-
ing model has unique advantages and shows significant im-
provements in protein function prediction. The model is specif-
ically beneficial for proteins isolated in their own networks
(having no interaction neighbors) or for proteins which are
surrounded by poorly annotated neighbors. In a multi-species
setting, the neighborhood of such proteins is expanded so that
they can learn their functional annotations from their homologs
in the different species.

4 EXPERIMENTS AND RESULTS
4.1 Experiment design
We apply our method to two largest protein networks of Yeast
and Fly as well as to a joint Yeast-Fly network. Predictive
performance of our models is evaluated in a 5-cross validation
setting. The test set consists of a random 20% of annotated
proteins, that maintains the same proportion of negatively
and positively annotated proteins as the remaining 80% of
the data used for training the model. For each randomly
chosen test protein, all of its annotations are left out—the
Gene Ontology structure remains in place but the functions
at all terms are now listed as unknown. In the case of a
joint Fly-Yeast network, we eliminate annotations of 20% of
annotated proteins from each network. In the testing phase,
upon convergence of the message-passing process, predictions
at terms whose annotations were left out are tested against the
known eliminated annotations.

For each tested network, we conduct a total of ten exper-
imental rounds using the random splitting process. In each
round, we compared results of runs on single networks (with-
out joining) to that of the joint network. Individual and joint
networks are trained and evaluated on the same training/testing
data.

For the measure of intra- and inter-species similarity we
used normalized BLAST scores, defined as a BLAST score

divided by self score of query (i.e. BLAST score of the
homologue divided by the BLAST score of the protein against
itself), ranging from 0 to 1. We obtained sequence and
annotation data from Saccharomyces genome Database [3] for
Yeast (February 2 and April 11, 2009 release) and FlyBase [1]
for Fly (April 27, 2009 release). Protein-protein interaction
data were obtained from BIOGRID [7] database (April 27,
2009 release). We considered only manual (higher quality)
annotations, since computational predictions have been noted
to present a conflicting evidence. To expand the applicability
of our method, we considered all reported in the above sources
Yeast and Fly proteins (as opposed to considering only proteins
with specific evidence, such as protein-protein interactions).
This resulted in a combined set of 12199 Fly and 6008 Yeast
proteins that were used to construct our joint belief networks.

Gene ontology structure was downloaded from the Gene
Ontology database [2]. When reading Gene Ontology anno-
tations, we consider two fundamental GO assumptions: GO
hierarchy is expanded up for positively annotated proteins
(if a proteins is positively annotated to a term, then it is
also positively annotated to all of its parents/ancestors) and
is expanded down for negatively annotated proteins (if a
protein is negatively annotated to a term, then it is negatively
annotated to all of its children/descendants). We construct a
negative set relying on co-annotation (co-occurence) statistics
of GO annotations in the data (further maintaining two funda-
mental GO assumptions). In particular, a protein is considered
negatively annotated to a specific GO term if this term has
never been observed to co-occur with a known function for
this protein in the training data.

Our example of gene ontology was taken from molecular
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size precis. recall accur. FP rate F1
8 Fly 100 99.78 99.86 0 99.89

Fly, JN 100 99.78 99.86 0 99.89
12 Fly 99.00 99.40 99.25 0.90 99.23

Fly, JN 99.36 99.33 99.37 0.60 99.34
16 Fly 98.44 98.93 98.75 1.25 98.68

Fly, JN 99.20 98.25 98.95 0.625 98.72

TABLE 1
Average precision,recall,accuracy, false positive rate, and
F1 over 10 runs for Fly species in isolated Fly and joint
Fly-Yeast networks (percentage wise) for subontologies
of various sizes. JN stands for joint Yeast-Fly network.

function subtree of GO hierarchy 1, as depicted in Fig-
ure 2. As previously investigated in [17], [15], [8], [4], [20]
among others, PPI networks have strong predictive power for
molecular function categories of Gene Ontology, especially
in combination with other sources of evidence (such as intra-
and inter- species homology). Previously PPI and intra-species
sequence homology together showed significant improvements
in predicting molecular functions of proteins, as for example
shown in [8], [20], [4]. Most importantly, the use of the pro-
posed inter-species homology may render our computational
method, a core concept of this work, broadly applicable to all
three ontologies: molecular function, biological process and
even the cellular component.

Our method can be applied to the entire gene ontology,
at the expense of time and space complexity. However, in
practice, biologists and clinicians are interested in specific,
relatively small, subontologies, targeted in our study. For
instance, vaccine and drug targets are usually the proteins that
perform very specific functions, represented by the leaves of
a specific Gene subontology.

583 Fly and 236 Yeast proteins are annotated to one or more
terms of the selected subontology (among those 110 Fly and
29 Yeast proteins were assigned some negative annotations).
Other proteins are unannotated to a given subontology and are
used as intermediate points for information passage.

4.2 Results

For our model, we operate several performance measures,
such as: precision, recall, accuracy, false positive rates, and
F1 defined as: recall = TP

TP+FN , precision = TP
TP+FP ,

accuracy = TP+TN
TP+TN+FP+FN , fpr = FP

TN+FP , F1 =
2∗precision∗recall
precision+recall , respectively.

The calculations are done separately for the Yeast network,
the Fly network and the joint Fly-Yeast network. In the joint
network, we separately calculate the performance of Fly and
Yeast species and compare them to those in isolated networks.

In this work, we consider GO subontologies of different
sizes. The main focus is on the GO subontology of size

1. The original GO subontology covered eight terms: nucleic acid bind-
ing (3676), DNA binding (3677), sequence-specific DNA binding (43565),
methyl-CpG binding (8327), DNA replication origin binding (3688), cen-
tromeric DNA binding (19237), transcription factor activity (3700), and RNA
polymerase II transcription factor activity, enhancer binding (3705).

size precis. recall accur. FP rate F1
8 Yeast 89.52 97.66 91.13 29.32 93.41

Yeast, JN 100 96.17 97.27 0 98.05
12 Yeast 94.98 97.05 95.27 7.24 95.96

Yeast, JN 98.33 96.94 97.33 2.18 97.63
16 Yeast 95.06 96.31 95.54 4.9 95.64

Yeast, JN 99.01 95.6 97.7 0.465 97.26

TABLE 2
Average precision,recall,accuracy, false positive rate, and
F1 over 10 runs for Yeast species in isolated Yeast and

joint Fly-Yeast networks (percentage wise) for
subontologies of various sizes. JN stands for joint

Yeast-Fly network.

8, similarly to our previous work in [5]. We expand our
model to subontologies of bigger sizes: 150% the size of
the original subontology (size 12) and 200% the size of the
original ontology (size 16), shown in Figure 5. A typical run
of the model with the 8-sized ontology on the joint Fly-Yeast
network (on 3.6 GHz CPU with 8GB memory machine) takes
approximately 28 minutes (with four iterations of message
passing). In comparison, corresponding runs on individual
species networks take 59 minutes for Fly and 35 minutes for
Yeast.

While the difference in running times may at first appear
to go against intuition, faster convergence rates in a Joint
Network can be contributed to the presence of “denser”
sources of evidence in networks of multiple species compared
to that of the isolated runs.

Table 1 shows the average precision, recall, accuracy and
false positive rate for Fly: in isolated Fly network, and in joint
Fly-Yeast network, for subontologies of various sizes. Table 2
shows corresponding measures for Yeast.

The overall performance of Fly and Yeast networks is highly
improved (compared to the results presented in our previous
work [5]), which is most likely due to the more reliable
sequence similarity scores, expanded protein coverage, and
more general definition of a negative set.

The joint Fly-Yeast network significantly improves preci-
sion, accuracy, and FP rate while only slightly suffering from
lowered recall, as shown in Table 1, for Fly, and Table 2,
for Yeast. We stress the importance of F1 measure, a har-
monic mean of precision and recall, and notice its consistent
significant improvement in the joint network, even for larger
subontologies. This indicates that despite the larger size and
more complex structure, considering networks of multiple
species jointly continues to offer important benefits to the
prediction process.

4.3 Statistical analysis

Statistical analysis of significance of the aforementioned per-
formance scores was done using the t-test and the Wilcoxon
Signed-Ranks Test [9]. The tests were conducted separately
for each species and each performance measure: single Fly
network is compared with the performance on the Fly in the
joint Fly-Yeast network; and single Yeast network is compared



JOURNAL OF IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 1, OCTOBER 2009 7

Fig. 5. Expanded subontologies of size 12 (added nodes
are shown in gray) and 16 (added nodes are shown in
black).

with the performance of the Yeast in the joint Fly-Yeast
network. For comparison to be sound, the evaluations on single
and joint networks were done using the same random samples
(splits for testing and training sets).

4.3.1 t-statistics per species
We present p-values calculated from t-statistics (degree of
freedom= 9) to evaluate statistical significance of our findings
in Table 3. We consider p-value to be statistically significant
if it is less than 0.05. In general, Yeast shows more substantial
improvements compared to Fly, which could indicate the
higher quality of Fly data and better neighborhoods for the
majority of Fly proteins.

4.3.2 Wilcoxon signed-ranks test
To remove the possible effects of outliers on the computed
t-test statistics random samples can compensate for overall
bad performance) we applied the Wilcoxon Signed-Ranks Test.
Wilcoxon Signed-Ranks Test is a non-parametric alternative to
the t-test, which assumes commensurability of differences in
a qualitative way: greater differences count more. In many
cases, this test is safer than the t-test since it does not assume
a normal distribution.

Let dq = Ec1
q
− Ec2

q
be the difference between the per-

formance scores of the approaches on the q-th out of the 10
random trials. Each difference is considered at its absolute
value and the values are ranked. In the case of ties between
differences, the average score among them is assigned. We use
R+ to denote the sum of ranks for the samples on which the
Joint method outperforms the individual network approach;
R− is the sum of ranks when the individual methods “win”:

R+ =
∑
dq>0

rank(dq) +
1
2

∑
dq=0

rank(dq)

R− =
∑
dq<0

rank(dq) +
1
2

∑
dq=0

rank(dq)

The z-statistic can be calculated as

z =
(
T − 1

4
N(N + 1)

)
/

√
1
24
N(N + 1)(2N + 1),

precis. recall accur. FP rate F1
8 Fly, t-test * * * * *

Fly, WSR * * * * *
Yeast, t-test 3 ∗ 10−6 - 2.1 ∗ 10−5 < 10−6 4 ∗ 10−6

Yeast, WSR 0.0027 - 0.0046 0.0027 0.0029
12 Fly, t-test 0.22 - 0.35 0.20 0.35

Fly, WSR 0.024 0.078 0.024 0.024 0.012
Yeast, t-test 0.016 - 0.019 0.018 0.018
Yeast, WSR 0.014 0.42 0.014 0.061 0.0053

16 Fly, t-test 0.11 - 0.33 0.10 0.47
Fly, WSR 0.016 0.003 0.003 0.016 0.11

Yeast, t-test 0.021 - 0.026 0.011 0.08
Yeast, WSR 0.016 0.016 0.016 0.016 0.017

TABLE 3
p-statistics from t-test and Wilcoxon Signed-Ranks Test:
p-values with respect to precision, recall, accuracy, false

positive rate, and F1 as a measure of statistically
significant improvements of a joint network performance,
for subontologies of various sizes. “*” stands for “cannot

be improved”.

where T = min(R+, R−). andN = 10 is the number of
samples. With α = 0.05, the null hypothesis will be rejected
if z < −1.96. We calculate the corresponding p-values from
the determined z-values.

The Wilcoxon test similarly confirms significant improve-
ments in performances on the Joint network when compared to
individual Yeast and Fly networks, as shown in Table 3. In fact,
Wilcoxon test “catches” statistically significant improvements
where t-test presents no evidence, such as for subontologies
of size 12 and 16.

5 COMPARATIVE ANALYSIS

5.1 Gene Ontology vs single-term predictions

As a baseline test, we compare our methodology (with GO
dependencies) to runs without GO in place, where the whole
network of proteins is tested on a single ontology term
(single protein function). As before, we perform 5-fold cross
validation by choosing random 20% of annotated proteins as
a testing set over 10 trials of the program. The results shown
in Table 4 indicate the superiority of the network with built-in
Gene Ontology over the single-term network even in the case
of multiple species networks.

It is worth mentioning that the model with gene ontology in
place makes a true positive prediction where the model without
it commits a false negative error. This result is not surprising
as there is only one term with one protein annotated to it. In
general, similar to [8], incorporating the ontology structure,
along with the dependencies among its functional terms,
considerably improves performance over that of traditional
models that consider each term in isolation.

5.2 Comparison with other methods

In this section we comprehensively compare our method to
the most widely used group of techniques, such as in Nariai
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networks precision recall accuracy FP rate
Fly w/o GO 45.57 48.7 74.25 49.05

GO 100 99.78 99.86 0
Fly | JN w/o GO 49.5 53.78 54.94 32.13

GO 100 99.78 99.86 0
Yeast w/o GO - 0 43.79 0

GO 89.52 97.66 91.13 29.32
Yeast | JN w/o GO 34.76 70.52 72.10 54.1

GO 100 96.17 97.27 0
JN overall w/o GO 44.36 59.63 60.9 39.81

GO 100 98.70 98.98 0

TABLE 4
Comparison of results for the network with GO and

without GO

et. al. [21], which are based on Bayesian probabilistic ap-
proaches. In such methodologies, proteins are embedded into
protein-protein networks so that each protein is represented
by a node and similarity measures between proteins (such
as protein-protein interactions, sequence similarity, etc.) are
represented by edges. In the model, each protein learns its
functional annotation based on the number and character of
his neighbors in the protein network, particularly the total
number of neighbors and the number of annotated (to the GO
term of interest) neighbors. This information is then embedded
into a probabilistic Bayesian framework, which consequently
assigns a probability to a protein of interest as positively
or negatively annotated to a specific GO term [21]. Since
fundamentals of Bayesian probabilistic approach are at the
heart of the overwhelming majority of methods currently used
for protein function prediction, we compare ourselves against
this computational technique.

To achieve the most accurate comparative results, we use
the same 10 training/testing sets as in our own experimental
studies in a 5-fold cross validation setting. Similarly to our
setting, both PPI and Sequence similarity (determined by
normalized BLAST cores) are used to build protein interaction
networks.

We present results as individual performance of Yeast and
Fly species in the joint network (Figure 5), as well as the
overall performance (Figure 6) in the joint network. The
results indicate that our method performs better than the
Bayesian probabilistic approach of Nariai et al [21] across F1,
precision, recall, and accuracy scores, for all validation sets
considered. We observed that the method of Narai et al. tends
to produce higher rates of false negative predictions, resulting
in lower recall rates. At the same time, the false negatives
are correctly identified as positive using our approach. This
improved performance can be attributed to the expanded
neighborhood definition, endowed by the GO structure, which
is not explicitly used in the approach of [21].

Interestingly, Fly species achieves precision of 100% and
the false negative rate of 0 in the method of Nariai et. al. and
for the subontology of size 8 in our proposed method. This
may indicate that higher quality data was used to build the
Fly protein network and that good learning neighborhood are
induced for the majority of Fly proteins, which may not hold

Fig. 7. Comparison of our method (light gray) to Nariai et.
al. [21] (dark gray): overall performance of a joint network,
%-wise precision, recall, accuracy, F1 rate.

for the Yeast network. As for Yeast species, our method shows
FP rate of 0 while the method of Nariai et. al. shows FP rate
of 1.41%.

6 CONCLUSIONS
In this work we presented a novel approach that uses inter-
species sequence homology to connect networks of two, and
possibly more, species together with Gene Ontology depen-
dencies in order to improve the predictive ability needed for
protein classification. Joining the networks of two different
species shows important advantages over runs on individual
networks. While in single species networks proteins may exist
that have no annotated partners, they have the potential to
acquire annotated interacting partners-homologs in a two-
species setting. Additional benefits emerge for species with
poorly defined protein functions and/or protein interactions.
The use of the Gene Ontology enables simultaneous consid-
eration of multiple but related functional categories, opening
information paths for further improvements to the model’s
predictive ability.

Our method readily extends to multiple species settings, and
may produce improvements similar to the case of two species.
The presence of multiple interacting networks may further
enable integration of additional sources of evidence, thus
contributing to increased accuracy of functional predictions.
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APPENDIX
A Model Checking Interpretation. Our expanded Gene
Ontology approach can also be interpreted as a special case
of a new broader framework of “probabilistic graphical model
checking.” The framework resembles classical model checking
algorithms [14] implemented through message passing in a
statistical graphical model. This connection becomes explicit
when a Gene subontology for a protein (Figure 2) is viewed
as a family of properties encoded through logical propositions
and connectives. Also modal operators and quantifiers may be
added, if further generalizations are desired. These properties
can be embedded and propagated in a general graphical
structure with certain logical implications—all interpreted in
a three-valued logic: True (positive), False (negative) and
Unknown. For example, in the currently used Gene subon-
tology, the positive information about a child implied positive
information about a parent; and negative information about a
parent implied negative information about child. Additionally,
we define a probability for a child being positive/negative
given that a parent is positive, which defines a probabilistic
framework for the model. Thus, if we view our graphical
model as not strictly related to a GO subontology, but to a
more general framework such as this, we can define any set of
properties on the elements of this graphical structure, introduce
time frames, or imply hierarchical relationships for this graph.
Once we define relationships/properties, we can then propagate
these properties in the entire model (which in our application,
corresponds to message passing).

For specific species, our framework connects subontologies
of all proteins by edges. In the language of model checking
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on graphical models, subontology network for each species
can be viewed as an initial labeling of “possible worlds”
with certain relationships/properties. By connecting networks
of two different species we thus connect two neighboring
“possible worlds” and try to gain some additional informa-
tion from their distances (measured by orthology or PPI).
Theoretically, if the two possible worlds are adjacent, they
are expected to satisfy similar properties. Considering both
“worlds” simultaneously will lead to algorithms with high
fidelity and improved efficiency. Our approach suggests, for
propositional and temporal logic, a potentially much broader
range of applications including many non-biological problems.
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