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Summary

Objective: Even though a vaccine for malaria infections has been under in-
tense study for many years, it has resisted several different lines of attack attempted
by biologists. More than half of Plasmodium proteins still remain uncharacterized
and therefore cannot be used in clinical trials. The task is further complicated by
the metamorphic life cycle of the parasite, which allows for rapid evolutionary
changes and diversity among related strains, thus making precise targeting of the
appropriate proteins for vaccination a technical challenge. We propose an auto-
mated method for predicting functions for the malaria parasite, which capitalizes
on the importance of the intraerythrocytic developmental cycle data and expression
changes during its five phases, as determined computationally by our segmentation
algorithm.

Materials and methods: Our method combines temporal gene expression pro-
files with protein-protein interaction data, sequence similarity scores, and metabolic
pathway information to produce a set of predicted protein functions that can be
used as targets for vaccine development. We use a Bayesian approach, which as-
signs a probability of having (or not having) a particular function to each protein,
given the various sources of evidence. In our method, each data source is repre-
sented by either a functional linkage graph or a categorical feature vector.
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Results and conclusions: The methods are tested on Plasmodium falciparum,
the species responsible for the deadliest malaria infections. The algorithm was able
to assign meaningful functions to 628 out of 1439 previously unannotated proteins,
which are first-choice candidates for experimental vaccine research. We conclude
that analyzing time-course gene expression profiles in separate phases leads to
much higher prediction accuracy when compared with Pearson correlation coeffi-
cients computed across the time course as a whole. Additionally, we demonstrate
that temporal expression profiles alone are able to improve the predictive power of
the integrated data.

Keywords: Plasmodium falciparum, intraerythrocytic developmental cycle, time-
course gene expression data, Bayesian probabilistic approach, protein function predic-
tion, RBC membrane proteins, HT motif, Pexel.

1 Introduction

1.1 Background
World-wide, each year, malaria infects approximately 515 million people and kills
between one and three million of them. A better understanding of protein functions
in malaria parasites can have a tremendous effect on approaches aimed at prevent-
ing malaria epidemics. This anticipated impact is suggested by the fact that targets for
drug and vaccine design are almost always based on proteins, particularly those involv-
ing enzymatic functions. Unfortunately, since many Plasmodium falciparum proteins
remain uncharacterized, they are mostly ignored by pharmaceutical laboratories and
disregarded as potential protein targets in drug and vaccine development. In order to
reverse this trend, it is necessary to devise more effective automated bioinformatic tools
for protein classification.

Toward this goal, this paper addresses the issue of predicting protein functions us-
ing many sources of data, with an emphasis on the use of time series gene expression
data. Unlike most methods, we allow for changes in regulatory patterns, and relation-
ships, over time. The methods are tested on a species of malaria parasite, P. falciparum,
that accounts for about 15% of infections and 90% of deaths.

In the past, functional annotation of proteins has been addressed by various com-
putational, statistical, and experimental methods. In many cases, it is convenient to
provide a graphical representation of protein networks such that each node represents
a protein and edges between nodes represent different aspects of their functional as-
sociation. The choice of functional association is used to determine the predictive
power of such a network. One promising computational approach utilizes the family
of probabilistic graphical models, such as belief networks, to infer functions over sets
of partially annotated proteins [1–4]. For instance, Bayesian network methods for data
integration have been extensively studied [5–8] for predicting protein-protein interac-
tions and protein function similarity for pairs of genes. Additionally, the approach of
incorporating the hierarchical structure of the Gene Ontology (GO) into probabilis-
tic graphical models [9, 10] has also yielded promising results for predicting protein
functions for gene subontologies of interest.



The most established methods for protein function prediction are based on sequence
similarity using BLAST [11] analysis, and rely on the fact that similar proteins are
likely to share common functions. Such similarity-based methods include sequence
homology [9, 10, 12–15], and similarity in short signaling motifs, amino acid compo-
sition and expression data [16–21]. At the same time, protein-protein interaction (PPI)
data are widely used to infer protein functions. For example, methods described in
several recent papers [1–4] used PPIs to define a Markov random field over the entire
set of proteins. In general these methods suggests that interacting neighbors in PPI net-
works might also share a function [1, 22–24]. Clustering of genome-wide expression
patterns has also been used to predict protein function, as described in [5, 25–27].

1.2 Protein function prediction in parasites
Saccharomyces cerevisiae (Baker’s Yeast) is chosen for many case studies, since it has
been extensively studied from multi-omic view-points, and its protein data are also the
most complete. The problem of protein function prediction is, however, more difficult
in parasites, where genetic and biochemical investigations are much more challenging.
For example, it is problematic to isolate a malaria parasite at various stages of its de-
velopment (e.g., the life-cycle of P. falciparum is very rapid, ookinetes are difficult to
isolate in large numbers, the liver stage of a parasite’s development is hard to study
because of technical difficulties). Such obstacles manifest themselves in a paucity of
information on the protein properties, interactions, localization and motifs of Plasmod-
ium species.

When relying on just one source of protein information, it is difficult to devise a
reliable probabilistic framework with the ability to automatically predict classifications
for proteins of interest. Indeed, combining various types of information was demon-
strated to improve the overall predictive power of automated protein/gene annotation
systems for S. cerevisiae, as shown in [5, 9, 10]. Integrating multiple sources of in-
formation is particularly important as each type of data captures only one aspect of
cellular activity. For example, PPI data suggest a physical interaction between pro-
teins; sequence similarity captures evolutionary relationships at the level of orthologs;
gene expression suggests participation in related biological processes that take place at
a certain cell cycle stage; and finally, GO defines term-specific dependencies.

As a result, it motivates one to explore, as in the case of P. falciparum, how to com-
bine different sources of information most effectively to infer protein functions. We
explore and evaluate a Bayesian probabilistic approach for predicting protein functions
in P. falciparum by integrating multiple sources of information, namely, protein-protein
interactions, sequence similarity, temporal gene expression profiling, metabolic path-
way, and GO classifications.

The primary goal of our study is to demonstrate that considering the intraerythro-
cytic developmental cycle (IDC) phases individually is crucial for protein function pre-
diction in P. falciparum. While other data sources (such as sequence homology and
protein-protein interactions) describe the static state of P. falciparum, time series gene
expression data during the IDC reflects the dynamics of the parasite’s system, describ-
ing rapidly evolving regulatory patterns and expression profiles. In particular, during
P. falciparum’s IDC, there are distinct periods of consistent gene regulation, punctuated



by instances of reorganization in the regulation pattern. In such a setting, it becomes
important to consider each time window (delineating a particular stage) separately. We
show that finding these critical timepoints, clustering time-course gene expression data
from each stage of the cycle separately and then connecting clusters across windows
(so that proteins “travel” from one window to the other) produces better results as com-
pared with Pearson coefficient calculations applied to the time-course data as a whole.
We assume that if two proteins share expression patterns (i.e., belong to the same clus-
ter) during a period of time, such as the first window or phase, they are likely to share
a function. If these proteins also fall into the same cluster in the second window, we
would increase our belief in them being similar. Finally, if they belong to the same
clusters in all five windows, we would be highly confident that they share related func-
tions.

Additionally, but not less importantly, we illustrate that inclusion of the IDC time-
course data improves the predictive power of the Bayesian probabilistic approach even
in the integrated setting (when combined with protein-protein interaction, sequence
homology, and metabolic pathways data).

Hampered by data-related limitations, we did not expect to make as many accurate
predictions as one could for a well-studied organism such as S. cerevisiae. However,
we were encouraged by being able to propose vaccine-related functions for several
P. falciparum proteins as these might play a significant role in the next stages of vaccine
and drug development, leading to effective control of the disease.

The next part of this process involves trying to understand the underlying causal
structure that is governing P. falciparum’s gene regulation. That is, now that we have a
set of possible functional annotations, and time course data covering the IDC, we aim
to narrow the set of proteins suitable for vaccine exploration by finding those that can
be used to affect others. Note that it is likely not as simple as one protein promoting
or inhibiting the production of another - there may be arbitrarily complex relationships
involving the regulation of multiple genes in concert. We have previously developed
algorithms for causal inference, where the relationships are described in a probabilistic
temporal logic, allowing arbitrarily complex causes and effects and explicit description
of the time between the cause and the effect. Preliminary results of the P. falciparum
IDC have appeared elsewhere [28]. One of the limitations of this data is the relatively
coarse timescale (as compared to other data sets used for causal inference). Rather
than exhaustively examining all proteins included in the data, we now plan to focus
on a smaller set of relationships to be tested, using our new annotations and processes
known to be useful as drug targets.

2 Methods

2.1 Data
For our analysis, we focused on 2688 P. falciparum proteins from the time-course
data [29], among which only 1249 proteins possess known biological process annota-
tions.



2.1.1 Protein-protein interaction data

We obtained Y2H (yeast-two-hybrid) data for P. falciparum from [30]. This dataset,
however, annotates a limited number of protein-protein interactions, because of the
confounding effects of the rapid life-cycle of these parasites. The 1130 interactions
cover 1312 proteins.

2.1.2 Sequence homology

We started by gathering sequence information for proteins from [30]. Each sequence
was queried against the entire P. falciparum sequence database [30] using BLAST. We
recorded BLAST pairwise p-scores as pij’s (where i and j index the proteins) and
defined a measure of sequence similarity for each pair as sij = 1 − pij . For our
purpose, we defined proteins i and j to be similar (sequence-wise), if their pairwise
p-value pij < 10−4. There are 1799 proteins meeting this criteria.

2.1.3 Metabolic pathway data

We used metabolic pathway data from [31]. For example, protein PFA0145c is a part
of ‘Asparagine and Aspartate metabolism’ and ‘Protein biosynthesis’ pathways. The
data consists of 119 metabolic pathway categories for P. falciparum. The 3526 data
pairs cover 1998 genes.

2.1.4 Temporal gene expression data

Time-course gene expression data covering the 48 hours of the intraerythrocytic de-
velopmental cycle of P. falciparum was obtained from a study by Bozdech et al. [29].
While the IDC comprises three main stages (ring, trophozoite, and schizont, separated
by two critical transition instants), the work in [32] identified four critical transition
instants with major changes in gene regulation, corresponding to the following five de-
velopmental periods: End Merozoite/Early Ring stage, Late Ring stage/ Early Tropho-
zoite stage, Trophozoite, Late Trophozoite/ Schizont, and Late Schizont/Merozoite.
Each period defines a window of time ranging from 7 to 16 hours. We consider each
window separately and process it with k-means clustering.

2.1.5 Gene Ontology data

We used GO terms as the basis of our annotation. In particular, we used the 763 bi-
ological process associated GO terms available for P. falciparum. For each term we
expanded the GO hierarchy “up” (including is-a and part-of relationships) so that if a
protein is positively annotated by a GO term, then it is also positively annotated to all of
its parents/ancestors. There are 16113 GO biological process associated pairs, which
cover 1249 P. falciparum proteins. Following Nariai et al. [5], we excluded labels that
appear fewer than five times among these genes, since these terms did not constitute
a sample large enough to make sufficiently predictive contributions. Following sug-
gestions in Nariai et al. [5], we define a negative protein-term association as follows:
if the association is not in the positive set (defined above), and a gene is annotated



with at least one biological process, and the negative annotation is neither an ancestor
nor a descendant of the known function for this protein then it is treated as a negative
association.

2.2 Data representation
In order to use the available information to its full potential, it is necessary to design a
proper data representation that optimally reflects the properties and structure of the data
itself. We represent the data using two types of structures: functional linkage graphs
and categorical feature vectors.

A functional linkage graph is a network in which each node corresponds to a protein
and each edge corresponds to the measure of functional association. Such a network
takes into account the number and the nature of interacting partners for each protein.
We use this representation for PPI and sequence similarity, since, for these data, in-
teracting partners are more likely to share a function. We encoded PPI and sequence
homology data using separate functional linkage graphs. In the case of PPI, the edges
represent known protein-protein interactions. In the case of sequence similarity (ho-
mology) an edge is added when the pairwise p-score is less than 10−4.

We adopted some ideas of the representation and analysis of functional linkage
graphs from Nariai et al. [5]. For each functional linkage graph l and for each GO label
t, we define p(l)

1 and p(l)
0 , where p(l)

1 is the probability that a protein has label t, given
that the interacting partner has label t and p(l)

0 is the probability that a protein has label
t given that the interacting partner does not have label t. For the P. falciparum network,
we used the χ2 test to show that these probabilities are statistically different and used a
Bonferroni-corrected p-value of 0.001/T , where T is the number of terms tested from
each data set.

Another method of data representation is the categorical feature vector, which
holds a list of categories where we assign 1 to a protein that belongs to a given cat-
egory and 0 otherwise. We used categorical feature vectors for the metabolic pathway
data. We define mr as a random variable associated with a protein so that mr = 1,
if a protein participates in metabolic pathway r, and mr = 0, otherwise. A feature
vector m = (m1, m2, . . . , mr)T is defined for each protein, where r = 119 is the total
number of metabolic pathway categories.

Finally, we use categorical feature vectors to represent the gene expression profiles.
Gene expression profiles are usually encoded as functional linkage graphs using the
Pearson correlation coefficient calculated for all combinations of genes. However, we
found that the Pearson coefficient might not reflect the temporal relationships, which
are crucial to the P. falciparum IDC. Instead, we consider expression data for each
phase of the IDC separately. We used the five time points found by [32] and applied
k-means clustering to the expression patterns of each time period, as described below.
We considered proteins from the same cluster to share the same categorical feature and
thus possibly have related functional annotations. Consequently, if proteins fall into
the same clusters for all or most of the time periods, they will have similar categorical
feature vectors and are more likely to share protein classification.

More formally, we define a random variable dj
r associated with each protein such



that dj
r = 1 if a protein is in cluster r in the time period j, and dj

r = 0, otherwise. A
feature vector is then

d = (d1
1, d

1
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where q = k is the number of clusters produced by k-means clustering and w = 5 is
the number time windows.

2.3 Posterior probability computation
For each protein i and each function t, we computed the posterior probability of the
protein having the specified function. We define a variable Li,t which is equal to 1 if
i is labeled with t. Our ultimate goal is to calculate the probability of Li,t = 1 for
all i and t given all the available data sources and network structures. To calculate
this probability, we follow the general principles described in Nariai et al. [5] and
summarize these principles below.

The graphical data representation emphasizes the importance of the neighbors for
each protein. We define N (l)

i as the number of neighbors of protein i in the functional
linkage graph l (unannotated neighbors are excluded). Additionally, for the corre-
sponding t, k(l)

i is defined as the number of neighbors of protein i annotated with term
t in the functional linkage graph l. In our case, l = 1 corresponds to the PPI and l = 2
to the sequence similarity network, .

At the same time, c(j)
i is the feature vector that protein i has for a functional cate-

gory j. In our case, c(1)
i is the temporal data gene expression feature vector d and c(2)

i

is a metabolic pathway feature vector m of a protein i.
We calculate the posterior probability of Li,t = 1 given functional linkage graphs

and category feature vectors of proteins as follows:
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Assuming that k’s and c’s are independent, and that L is independent of the total num-
ber of graph neighbors N (l)

i , then the numerator becomes:
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and similarly, the denominator becomes
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Assuming further that k(l)
i only depends on N (l)

i and that c(j)
i does not depend on

linkage graphs,
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Similarly to the other formulations in the literature [1, 5], P (k(l)
i |L,N

(l)
i ) and

P (k(l)
i |¬L,N

(l)
i ) are calculated assuming the binomial distribution. P (L) is the prior

probability that gene i is annotated with term t and is calculated as a frequency of term
t among genes.

3 Experiments and results
For the 5-fold cross-validation study, we created each test set by eliminating all an-
notations from a random 20% of annotated proteins (250 randomly chosen proteins
from the annotated set of 1249). We performed 5 validation runs and report the aver-
age of these for the summary statistics. We use the statistical measures sensitivity
and specificity, as defined in [33]. We also use the F1 measure which represents a
weighted harmonic mean of precision and recall and is defined as

F1 =
2× (precision× recall)
precision+ recall

Note that F1 allows analysis of the performance weighing precision and recall evenly.



3.1 Gene expression data of a parasite life-cycle
First, we show and emphasize the importance of gene expression data representation
and analysis, especially when applied to parasites. Many parasites, such as malaria
parasites, trypanosomes, endoparasites with larval stages (tapeworms, thorny-headed
worms, flukes, parasitic roundworms), undergo many changes during their various life-
cycle stages as they travel from one host to the other, or from one organ or system to
another. Each stage requires utilization of different life functions and possible meta-
morphosis, which involves up-regulation of necessary genes and/or down-regulation of
those not crucial for a specific life-cycle period.

In this study we use the five time windows of the intraerythrocytic developmental
cycle (IDC) of P. falciparum identified by Kleinberg et al. [32]. This expression data
is particularly interesting since the IDC, or blood stage, is the phase responsible for
malaria symptoms in humans. This study [32] performs the time series segmentation
and clustering of the data concurrently. Their method is formulated in terms of rate
distortion theory—it searches for a compressed description of the data (i.e. the fewest
clusters of expression profiles, obtained after an optimal temporal segmentation), while
minimizing the distortion introduced by this compression. More formally, this process
is characterized by a variational formulation:

Fmin = I(Z;X) + β〈d(x, z)〉, (16)

where mutual information and average distortion are defined as:

I(Z;X) =
∑
x,z

p(z|x)p(x)log p(z|x)
p(z)

(17)

〈d(x, z)〉 =
∑
x,z

p(x)p(z|x)d(x, z), (18)

and
d(x, z) =

∑
x1

p(x1|z)d(x1, x). (19)

Then, the set of candidate windows (i.e., enumeration of all possible windowings
within constraints on the min and max allowed window sizes) is created, and the data
is clustered within each window according to Eq. (16). Each window is then scored,
based on its length and Eq. (16). To find the optimal windowing of the data, they for-
mulate the problem as one of graph search and use a shortest path algorithm to find
a combination of windows that jointly provide the lowest cost. For the P. falciparum
data the study in Kleinberg et al. [32] found the critical time points at 7, 16, 28 and 43
hours, leading to 5 windows, sized non-uniformly. These windows correspond to the
three IDC stages and the transitions between them: End Merozoite/Early Ring stage,
Late Ring stage/ Early Trophozoite stage, Trophozoite, Late Trophozoite/ Schizont,
and Late Schizont/Merozoite.

The clustering by Kleinberg et al. [32] identified 4-5 clusters per window, corre-
sponding to the three phases of the cycle with an additional one or two clusters per
window containing terms regulating the beginning or end of a phase. In order to pre-
dict detailed functional annotations, we decided to cluster the data more finely. We use



these previously identified windows and clustered the expression profiles within each
separately, using the k-means clustering algorithm. We then define dj

r as a random
variable indicating if a protein belongs in the cluster r within window j. The sequence
of random variables for each window then constitutes a categorical feature vector d of
a protein.

We experimented with various values for k and compared results with the linkage
graph defined by a Pearson coefficient calculation; we performed this step for all pairs
of genes for the entire data set.

In our experiments, due to a high number of negative annotations for the P. fal-
ciparum dataset, specificity reaches 0.9 immediately after the threshold for posterior
probability goes above 0.05. In this case a ROC curve, as shown in Figure 1, does not
reflect a precise sensitivity-specificity relationship as expected in other cases, obtained
with a relatively large amount of data. As a result, it is necessary to use a more sensitive
statistical measure that would account for too high or too low statistical values, e.g., a
metric computed by taking their harmonic mean. In particular, we aim to maximize the
F1 statistic, which reflects a relationship of recall to precision, as noted in Figure 2.
Note that F1 will be maximized only if both measures are maximized.

Figure 1: The ROC curve of recall experiment by 5-fold cross validation for gene
expression data. Numbered legends correspond to k-means clustered datasets.

As shown in Figures 2, the variation in the number of clusters, k, does not distort
the predictive value of the method as for all values of k in this range, the method yields
nearly identical ROC and F1 curves. Figure 2 also shows the superiority of time-
dependent k-means clustering over the Pearson correlation coefficient (in the majority



Figure 2: The F1 statistics of recall experiment by 5-fold cross validation for gene
expression data (posterior probability thresholds range from 0.05 to 0.95, in 0.05 in-
crements). Numbered legends correspond to k-means clustered datasets.

of cases the Pearson curve is completely below the curves for the clustered data). The
linkage graph defined by the Pearson correlation coefficient was built using 286620
edges (a protein pair is considered co-expressed if its Pearson coefficient is larger than
0.85 [5]) and covered 2646 proteins.

Since for all values of k both figures showed nearly identical ROC and F1 curves,
we fixed it at an arbitrary value, k = 30, for the following analysis.

3.2 Analysis of prediction accuracy
We compare runs on individual data sources with runs which integrate PPI, sequence
similarity, metabolic pathway information, and temporal gene expression data. Our
first step is to analyze how well our method predicts known protein-term associations,
using 5-fold cross validation. We predict that a gene i is annotated with term t if the
probability exceeds a specified threshold.

Figures 3and 4 summarize the positive impact of data integration (PPI, sequence
similarity, metabolic pathway, window-based gene expression clustering) on protein
function prediction via ROC and F1 measures, respectively. However, since ROC
curves are very much influenced by the large number of negative annotations in P. falci-
parum data (similarly to Figure 1), specificity reaches 0.9 immediately after the thresh-
old for posterior probability goes above 0.05), this measure is not very sensitive with



respect to specificity scores; thus, we prefer the F1 statistic, which uses the harmonic
mean of precision and recall. In these figures, we also show the statistics for the data
obtained by analysis of gene expression using Pearson correlation coefficients (show-
ing a clear disadvantage), although it was not a part of the data integration.

Figure 3: The ROC curves for individual data sources and integrated data.

Additionally, we investigated the impact of gene expression data on data integra-
tion. In Figures 5 and 6, we show both ROC and F1 curves, respectively, for fused data
(PPI, similarity, and metabolic pathway) alone, then for fused data together with the
windowed and clustered gene expression data, and fused data with Pearson coefficient
defined data. Clustered temporal gene expression data shows a distinctive positive im-
pact on the overall predictive power of the method; however, Pearson coefficient data
has a negative effect on ROC and F1 statistics. Most likely this anomaly is due to a
large number of falsely defined associations between co-expressed genes.

Figure 7 shows the impact of data integration on the number of TP at two pre-
cision levels: 50% and 70%. These two levels of precision are reasonably accurate
of the range of possible improvements in our study, and the TP number is calculated
when the precision level first hits the specified margin. In Table 1, we summarize
the improvements of data integration over individual sources and conclude that data
integration significantly outperforms individual data sources at 70% precision, which
corresponds to 0.35 threshold of posterior probability for function prediction. This
probability threshold now can be applied in the second step of our study: attempting to
predict functions for the unannotated proteins of P. falciparum.

In the second part of our study, we trained our method on all annotated proteins



Figure 4: The F1 statistics for individual data sources and integrated data (posterior
probability thresholds ranges from 0.05 to 0.95, in 0.05 increments).

Data source 50% precision 70% precision
PPI 14% 20%
Sequence similarity 17% 23%
Metabolic pathway 5% 13%
Gene expression (clustering) 11% 10%

Table 1: % of improvements of data integration on #TP over individual data sources

and tried to assign functions to proteins without annotations. By integrating PPI data,
sequence similarity, metabolic pathway, and clustered temporal window-based gene
expression data we were able to assign probable GO terms to 628 out of 1439 unan-
notated proteins of P. falciparum. We ignored general terms, such as those high up in
the GO hierarchy, that appeared more than 300 times. We report more than 2500 gene-
GO assignment pairs, which can be viewed at: http://www.cims.nyu.edu/

˜antonina/real_output.txt. The GO terms are reported together with their
parents (ancestors) in the GO hierarchy. In Figure 8, we present cumulative statis-
tics for the number of predicted functional assignments and probability thresholds they
satisfy. As shown in Figure 8, by varying the original probability threshold, we can
narrow down the possible set of predictions. For example, probability threshold at 0.8
(80%) would correspond to about 500 functional assignments of higher probability.



Figure 5: The ROC curves for various ways of integrating data:“fused” is defined as
ppi+similarity+metabolic pathway.

4 Functional predictions for pharmaceutical targeting
The fundamental goal of our study is to assign functions to unannotated Plasmodium
falciparum protein hoping to find possible vaccine and drug targets. For this purpose,
we analyze all predicted functional assignments made by our computational technique
for being related to erythrocytic adhesion and modification. In particular, we pay a
special attention to Plasmodium falciparum surface proteins responsible for binding of
the parasite to human erythrocytes, and to the Plasmodium falciparum red blood cell
(RBC) membrane proteins responsible for parasite’s intraerythrocytic survival and for
the adhesion of the RBC to capillary vessels. In our predicted dataset of 628 proteins,
20 are identified as RBC membrane proteins (contributing to 78 functional predictions)
and one protein is identified as erythrocyte binding proteins (contributing to two func-
tional predictions).

We further classify RBC membrane proteins as those having one of the address
tags: either Plasmodium export element (Pexel) or N-terminal host targeting (HT) mo-
tif. Both of these motifs are responsible for a transport of Plasmodium falciparum
proteins inside erythrocytic cytoplasm, as detailed below.

During malaria blood stage, Plasmodium falciparum actively penetrates human
erythrocytes. In the process of invasion, the parasite initiates the formation of a unique
membrane, the parasitophorous vacuole membrane, which surrounds the parasite in-
side the invaded erythrocyte. The parasitophorous vacuole isolates the parasite and



Figure 6: The F1 statistics for various ways of integrating data:“fused” is defined as
ppi+similarity+metabolic pathway (posterior probability thresholds ranges from 0.05
to 0.95, in 0.05 increments).

protects it from the host’s defenses, such as lysozymal attack.
Plasmodium falciparum needs to develop its own strategy in order to survive and

feed inside human erythrocytes since red blood cells lose nucleus, ability to synthesize
new proteins, and a vesicular transport system during their formation. Residing inside
a red blood cell, Plasmodium falciparum injects hundreds of its own proteins into ery-
throcytic cytoplasm [34] to build its living environment. The injected proteins then
interact with proteins of the erythrocytic membrane skeleton and induce substantial
changes in the morphology and function of the erythrocytic cell. Such changes in-
clude development of various membraneous (tubulovesicular structures and Maurer’s
clefts) networks from the vacuole to the erythrocyte membrane, which are needed for
parasite’s nutrient uptake, and protrusion of the erythrocyte membrane in a form of
electron-dense elevations called adhesive knobs [35].

To reach the erythrocytic cytoplasm and membrane, Plasmodium falciparum ex-
ported proteins have to traverse a series of physical barriers: parasite membrane, para-
sitophorous vacuole membrane, and sometimes erythrocytic membrane [35, 36]. First,
proteins are exported form the parasite into the vacuolar space following the typical
secretion pathway existing in all eucaryotic cells. However, a special mechanism is
needed to cross the parasitophorous vacuole membrane and reach the erythrocytic cy-
toplasm. For the majority of Plasmodium falciparum proteins, an N-terminus host
targeting (HT) motif [36, 37] is required to cross the vacuole membrane.



Figure 7: Number of True Positive predictions at 50% precision (dark blue) and at 70%
precision (light blue)

On the other hand, Pexel is a Plasmodium export element (related but distinct from
HT), responsible for the transport of only soluble Plasmodium falciparum proteins into
erythrocyte cytoplasm through the parasitophoros vacuole membrane [36].

Exported proteins then interact with erythrocytic membrane causing its deforma-
tion and knobbing. Knobs mediate cytoadherence of infected erythrocytes to capillary
blood vessels. Hiding like this, the infected cells try to avoid elimination in the spleen.
Such massive accumulation of infected red blood cells in the capillary blood vessels of
the brain and kidneys can lead to organ failure and ultimate death. Thus, the targeting
of the parasite’s RBC membrane proteins could aid the development of interventions
that block the parasite’s growth or limit the severity of the disease.

As reported in the PlasmoDB [31] database, there are 195 RBC membrane proteins
containing HT motif and 293 RBC membrane proteins containing Pexel. In our study,
we predict functions for 20 RBC membrane proteins containing either of the motifs.
The list of RBC membrane proteins (with their predicted GO functions) containing both
motifs is shown in Table 2 and the list containing one of the motifs is shown in Table 3.
Some interesting examples, which could become future pharmaceutical targets, include
RBC membrane proteins PFD0495c and PFE0040c assigned with gene ontology term
GO:0007155 (cell adhesion) with probability 70% and 99% respectively. Furthermore,



Figure 8: Number of possible predictions as a function of probability threshold. Each
point corresponds to the number of predicted functional assignments whose probability
is greater or equal to the corresponding probability threshold.

a special attention should be paid to gene ontology terms responsible for reaction to
outside stimulus, as those can play a crucial role in the parasite’s survival. For exam-
ple, RBC membrane protein PFE1605w, assigned GO terms GO:0009628 (response to
abiotic stimulus) with probability 80% and GO:0042221 (response to chemical stimu-
lus) with probability 68%, could be a promising drug target.

Finally, there exist 10 Plasmodium falciparum surface proteins responsible for
binding of the parasite to erythrocyte surface ligands, as reported by [31]. Following
the establishment of a tight interaction between the parasite and the RBC, entry is initi-
ated by the activation of actin-myosin motor so that the parasite forces the invagination
of the erythrocytic membrane with formation of the the parasitophorous vacuole mem-
brane, described earlier. The only surface Plasmodium protein, PFE0340c, present in
our predicted dataset, is assigned GO terms GO:0006511 (ubiquitin-dependent protein
catabolism) and GO:0019941 (modification-dependent protein catabolism) both with
probability close to 63%.

5 Discussion and conclusions
In this paper, we have applied and evaluated a probabilistic approach for predicting
protein functions for the malaria parasite Plasmodium falciparum. We combined four
sources of information using a unified probabilistic framework. PPI and sequence



Protein ID Probability GO term
PFD0070c 0.401545231581066 GO:0043412 biopolymer modification
PFD0125c 0.49387370405278 GO:0006412 protein biosynthesis

0.494801512287335 GO:0009059 macromolecule biosynthesis
0.513352425272955 GO:0009058 biosynthesis
0.512411033603626 GO:0044249 cellular biosynthesis

PFD0495c 0.580096975765904 GO:0006412 protein biosynthesis
0.581846879650176 GO:0009059 macromolecule biosynthesis
0.603310008429891 GO:0009058 biosynthesis
0.602215349980034 GO:0044249 cellular biosynthesis
0.699684816632941 GO:0007155 cell adhesion

PFD1020c 0.7280979853935 GO:0006631 fatty acid metabolism
PFD1170c 0.422344888143171 GO:0044267 cellular protein metabolism

0.423250325426377 GO:0044260 cellular macromolecule metabolism
0.432582635313454 GO:0019538 protein metabolism
0.999999991137921 GO:0006457 protein folding

PFE0040c 0.98843772424871 GO:0007155 cell adhesion
PFE0060w 0.457539670421109 GO:0006468 protein amino acid phosphorylation

0.521369701293125 GO:0006796 phosphate metabolism
0.521369701293125 GO:0006793 phosphorus metabolism
0.437130777000256 GO:0016310 phosphorylation

MAL7P1.170 0.476701149188691 GO:0006810 transport
0.477943559067398 GO:0051234 establishment of localization
0.477943559067398 GO:0051179 localization

PF07 0132 0.351905883602301 GO:0019538 protein metabolism
PFI1785w 0.365533239904503 GO:0019538 protein metabolism

0.999794367636718 GO:0006457 protein folding
PF11 0508 0.375957294327154 GO:0006464 protein modification
PF13 0073 0.739599615802019 GO:0006412 protein biosynthesis

0.733078093566159 GO:0009059 macromolecule biosynthesis
0.751850612028445 GO:0009058 biosynthesis
0.756174623097316 GO:0044249 cellular biosynthesis

PF13 0076 0.358502146993282 GO:0006810 transport
0.360756570068609 GO:0051234 establishment of localization
0.360756570068609 GO:0051179 localization

PF13 0275 0.358502146993282 GO:0006810 transport
0.360756570068609 GO:0051234 establishment of localization
0.360756570068609 GO:0051179 localization

Table 2: RBC membrane proteins possessing HT motif and Pexel, their predicted func-
tions, and corresponding probabilities.



Protein ID Probability GO term
Pexel only:
PFA0225w 0.487145531811038 GO:0043037 translation

0.461767651699677 GO:0009058 biosynthesis
0.453487695127242 GO:0044249 cellular biosynthesis
0.539833659529562 GO:0006082 organic acid metabolism
0.539833659529562 GO:0019752 carboxylic acid metabolism
0.386239267057058 GO:0008610 lipid biosynthesis
0.388721047331319 GO:0006629 lipid metabolism
0.374685825510083 GO:0044255 cellular lipid metabolism

PFD0080c 0.665278152637513 GO:0006464 protein modification
0.511094565590855 GO:0043412 biopolymer modification
0.799046995682858 GO:0006468 protein amino acid phosphorylation
0.684531881462785 GO:0006796 phosphate metabolism
0.684531881462785 GO:0006793 phosphorus metabolism
0.704629372061098 GO:0016310 phosphorylation

PFE1605w 0.802543920254657 GO:0044267 cellular protein metabolism
0.754472317644877 GO:0044260 cellular macromolecule metabolism
0.805311582644175 GO:0019538 protein metabolism
0.72021237129596 GO:0006950 response to stress
0.70563593694521 GO:0050896 response to stimulus
0.801087730125495 GO:0009628 response to abiotic stimulus
0.680269187401183 GO:0042221 response to chemical stimulus
0.999999999999956 GO:0006457 protein folding
0.501328353480413 GO:0007155 cell adhesion

MAL7P1.7 0.400917810998465 GO:0006082 organic acid metabolism
0.400917810998465 GO:0019752 carboxylic acid
0.999999999989668 GO:0006457 protein folding

PFI1780w 0.653500492148364 GO:0043037 translation
0.877574807784855 GO:0006412 protein biosynthesis
0.871609237465261 GO:0009059 macromolecule biosynthesis
0.874807040307226 GO:0009058 biosynthesis
0.356761397372017 GO:0044260 cellular macromolecule metabolism

HT motif only:
PF13 0317 0.781092830960702 GO:0044267 cellular protein metabolism

0.781906300484652 GO:0044260 cellular macromolecule metabolism
0.78205791106515 GO:0019538 protein metabolism
0.373719533733663 GO:0043037 translation
0.781559322033898 GO:0006412 protein biosynthesis
0.782192339038305 GO:0009059 macromolecule biosynthesis
0.818767547332805 GO:0009058 biosynthesis
0.818207742211449 GO:0044249 cellular biosynthesis

Table 3: RBC membrane proteins possessing only Pexel motif or only HT motif, their
predicted functions, and corresponding probabilities



similarity data were presented in the form of functional linkage graphs, since such
data imply the importance of the number and GO annotation of the nearest neighbors.
Metabolic pathway and temporal gene expression data were encoded using categori-
cal feature vectors, simplifying the search for similar feature patterns among related
proteins.

We emphasized the importance of the data representation for parasites, though this
might not necessarily apply to non-parasitic organisms. In particular, a malaria para-
site’s life cycle is affected by change of the host (e.g., mosquito and human), tissues
(e.g., salivary glands, blood, gut wall, liver, red blood cells), and possible developmen-
tal changes of the parasite itself (e.g., gametocytes, sporozoites, merozoites). Each such
change involves different mechanisms for gene regulation and employs many specific
life-sustaining genes. Thus, it becomes crucial to analyze gene expression data from
each stage separately, as opposed to calculating Pearson correlation coefficients for all
pairs regardless of their temporal order. We have demonstrated that the data represen-
tation, which takes advantage of the temporal order of gene expression patterns, leads
to a clear improvement in statistical significance over function predictions using simple
Pearson coefficient calculations.

We show that data integration, previously shown to be beneficial for protein func-
tion prediction [5, 9, 10], is crucial when applied to organisms with limited individual
data sources, as in the case of parasites. Even more importantly, the proposed “win-
dowing” of the IDC provides a clear advantage to the data integration, dramatically
improving its predictive performance. By embedding various data sources into the
probabilistic framework, we have been able to assign functions to 628 previously unan-
notated P. falciparum proteins and expect to find in those some of the most promising
candidates for future vaccine trials.

To extend this study to include ortholog genes, we next tested our method by inte-
grating PPI data of another closely-related malaria parasite P. vivax (in particular, we
used only PPI data of close orthologs with P. falciparum), and were encouraged by the
significant improvement in the resulting performance scores and a much improved F1
curve. However, we have omitted further details of these improved results, since the
P. vivax genomic data await publication and remain publicly unavailable. Once these
data are published, we plan to disseminate the improved results through our laboratory
website.

We believe that this work will pave the way for more complex automatic annota-
tion algorithms based on model checking with temporal-logic queries—in this picture,
one would obtain a succinct Kripke model (a phenomenological model) that summa-
rizes the most important synchronization properties exhibited by a set of temporal data
streams; then use these Kripke models to infer properties satisfied in various states
(also called possible-worlds) of the model; and finally, associate these properties with
functional classes and genes active in these states of the Kripke model. It should also
be obvious that, at first, such a method is likely to be employed as a debugging tool for
existing ontologies: particularly, to check if certain ontology terms are being associated
incorrectly or inconsistently with a bio-molecule.
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