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Abstract

This paper addresses the protein classification problem,
and explores how its accuracy can be improved by using
information from time-course gene expression data. The
methods are tested on data from the most deadly species
of the parasite responsible for malaria infections, Plasmod-
ium falciparum. Even though a vaccination for Malaria in-
fections has been under intense study for many years, more
than half of Plasmodium proteins still remain uncharacter-
ized and therefore are exempted from clinical trials. The
task is further complicated by a rapid life cycle of the par-
asite, thus making precise targeting of the appropriate pro-
teins for vaccination a technical challenge. We propose
to integrate protein-protein interactions (PPIs), sequence
similarity, metabolic pathway, and gene expression, to pro-
duce a suitable set of predicted protein functions for P. fal-
ciparum. Further, we treat gene expression data with re-
spect to various changes that occur during the five phases
of the intraerythrocytic developmental cycle (IDC) (as de-
termined by our segmentation algorithm) of P. falciparum
and show that this analysis yields a significantly improved
protein function prediction, e.g., when compared to analysis
based on Pearson correlation coefficients seen in the data.
The algorithm is able to assign “meaningful” functions to
628 out of 1439 previously unannotated proteins, which are
first-choice candidates for experimental vaccine research.

1 Introduction

World-wide, each year, malaria infects approximately
515 million people and kills between one and three million

of them. Better understanding of protein functions in the
malaria parasite can be expected to produce a tremendous
effect on approaches aimed at preventing current malaria
epidemics. This anticipated impact is suggested by the fact
that targets for drug design and vaccination are almost al-
ways based on proteins, especially those involving enzy-
matic functions. Unfortunately, since many P. falciparum
proteins remain uncharacterized, they are mostly ignored
by pharmaceutical laboratories and disregarded as potential
protein targets in drug and vaccine development.

Toward this goal, the paper addresses the issue of auto-
matic prediction of protein functions, using many sources
of data, but with a particular emphasis on temporal tran-
scriptomic profiles. The methods are tested on a species of
malaria parasite, P. falciparum, that accounts for about 15%
of infections and 90% of deaths.

In the past, functional annotation of proteins has been
addressed by various computational, statistical, and exper-
imental methods. One promising computational approach
utilizes probabilistic graphical models, such as belief net-
works, to infer functions over sets of partially annotated
proteins [10, 6, 13]. Bayesian network methods for data in-
tegration have been extensively studied [16, 7, 12] to predict
PPIs and protein function similarity for any pair of genes.
Additionally, the approach of incorporating Gene Ontology
dependencies into probabilistic graphical models [5, 15] has
also yielded promising results for predicting protein func-
tions for gene subontologies of interest.

The most established methods for protein function pre-
diction are based on sequence similarity using BLAST [1]
analysis, and rely on the fact that similar proteins are
likely to share common functions [11, 19, 17, 5]. At the
same time, PPI data are widely used to infer protein func-



tions. For example, methods described in several recent
papers [10, 6, 13] used the PPI to define a Markov Ran-
dom Field over the entire set of proteins. In general, these
methods suggests that interacting neighbors in PPI net-
works might also share a function [10, 18, 3]. Clustering
of genome-wide expression patterns has also been used to
predict protein function, as described in [16, 14, 20].

In a majority of cases, Saccharomyces cerevisiae is cho-
sen as a model, since it has been extensively studied from
multi-omic view-points, and its protein data is also the most
complete. The problem of protein function prediction is,
however, more difficult in parasites (i.e. the malaria par-
asite), where genetic and biochemical investigations are
much more challenging. For example, it is problematic to
isolate a malaria parasite at various stages of its develop-
ment (e.g., its life-cycle of is very rapid; ookinetes are diffi-
cult to isolate in large numbers; the liver stage of a parasite’s
development is hard to study because of technical difficul-
ties; etc). Such obstacles manifest themselves in a paucity
of information on the protein properties, interactions, local-
ization, motifs etc. of Plasmodium species. By relying on
just one source of protein information, it is impossible to
devise a reliable probabilistic framework with the ability to
automatically predict classification for proteins of interest.
As a result, it motivates one to explore, as in the case of
P. falciparum, how to combine different sources of infor-
mation most effectively to infer protein functions.

Previously, it has proven beneficial to integrate hetero-
geneous data for predicting protein functions. Indeed, com-
bining various types of information can improve the overall
predictive power of automated protein/gene annotation sys-
tems for baking yeast, as shown in [16, 5, 15]. Integrating
multiple sources of information is particularly important as
each type of data captures only one aspect of cellular ac-
tivity. For example, PPI data suggest a physical interaction
between proteins; sequence similarity captures evolution-
ary relationships at the level of orthologs; gene expression
suggests participation in related biological processes; and
finally, gene ontology defines term-specific dependencies.

In our most recent work, we aimed to collect all infor-
mation currently available for P. falciparum and to evalu-
ate the predictive value of each source of data. We explore
and evaluate a Bayesian probabilistic approach for predict-
ing protein functions in P. falciparum by integrating multi-
ple sources of information: namely, protein-protein interac-
tions, sequence similarity, temporal gene expression profil-
ing, metabolic pathway, and gene ontology classifications.

We stress the importance of the approach to the data used
for protein function prediction in parasites. In particular,
during P. falciparum’s Intraerythrocytic Developmental Cy-
cle(IDC), there are distinct periods of consistent gene regu-
lation, punctuated by instances of reorganization in the reg-
ulation pattern. In such a setting, it becomes important to

consider each time window (delineating a particular stage)
separately. We show that clustering time-course gene ex-
pression data from each stage of the cycle separately pro-
duces better results as compared with Pearson coefficient
calculations applied to the time-course data as a whole.

Hampered by data-related limitations, we did not expect
to make as many accurate predictions as one could for a
well-studied organism such as S. cerevisiae. However, we
were encouraged by being able to propose even a few P. fal-
ciparum protein functions as these might play a significant
role in the next stages of vaccine and drug development,
leading to effective control of the disease.

2 Methods

2.1 Data

For our analysis, we focused on 2688 P. falciparum pro-
teins from the time-course data [4], among which only
1249 proteins possess known biological process annota-
tions. Protein-protein interaction data: We obtained Y2H
(yeast-two-hybrid) data for P. falciparum from [9]. This
dataset presents 1130 interactions covering 1312 proteins.
Sequence homology: We started by gathering sequence in-
formation for proteins from [9]. Each sequence was queried
against the entire P. falciparum sequence database [9] using
BLAST. We recorded BLAST pairwise p-values as pij’s
(where i and j index the proteins) and defined a measure
of sequence similarity for each pair as sij = 1 − pij .
For our purpose, we defined proteins i and j to be simi-
lar (sequence-wise), if their pairwise p-value pij < 10−4.
There are 1799 proteins meeting this criteria. Metabolic
pathway data: We used metabolic pathway data from [2].
The data consisted of 119 metabolic pathway categories for
P. falciparum. The 3526 data pairs covered 1998 genes.
Temporal Gene expression data: Time-course gene ex-
pression data covering the 48 hours of the Intraerythro-
cytic Developmental Cycle (IDC) of P. falciparum was ob-
tained from a study by Bozdech et al. [4]. While the IDC
comprised three main stages (Ring, Trophozoite, and Sch-
izont, separated by two critical transition instants), the work
in [8] identified four critical transition instants with major
changes in gene regulation, corresponding to the five de-
velopmental periods ranging from 5 to 12 hours each. GO
data: We used GO (gene ontology) terms as the basis of
our annotation (in particular, the 763 biological process as-
sociated GO terms available for P. falciparum). For each
term we expanded the GO hierarchy “up” (including is-a
and part-of relationships) so that a protein, positively anno-
tated to a GO term, is also positively annotated to all of its
parents/ancestors. There are 16113 GO biological process
associated pairs, which cover 1249 P. falciparum proteins.
Following Nariai et al. [16], we excluded labels that appear



less than five times among these genes, and defined a neg-
ative protein-term association as follows: if the association
is not in the positive set (defined above), and a gene is anno-
tated with at least one biological process, and the negative
annotation is neither an ancestor nor a descendant of the
known function for this protein, then it is treated as a nega-
tive association.

2.2 Data representation

In order to use the available information to its full po-
tential, it is necessary to design a proper data representa-
tion that optimally reflects the properties and structure of
the data itself. We represent the data in two main structures:
functional linkage graphs and categorical feature vectors.

A functional linkage graph is a network in which each
node corresponds to a protein, and each edge corresponds
to the measure of functional association. Such a network
takes into account the number and the nature of interacting
partners for each protein. We propose to build separate link-
age graphs for PPI and sequence similarity, since, for these
data, interacting partners are more likely to share a func-
tion. For PPI, the edges represent existing protein-protein
interactions. For sequence similarity (homology), an edge
is added when the pairwise p-value is less than 10−4.

We adopted some ideas of the data representation and
analysis of functional linkage graphs from Nariai et al. [16].
For each functional linkage graph l and for each Gene On-
tology label t, we define p(l)

1 and p(l)
0 , where p(l)

1 is the prob-
ability that a protein has label t, given that the interacting
partner has label t and p(l)

0 is the probability that a protein
has label t given that the interacting partner does not have
label t. For the P. falciparum network, we performed χ2 test
to show that these probabilities are statistically different and
used a Bonferroni-corrected p-value of 0.001/T , where T
is the number of terms tested from each data set.

A different method of data representation is the categor-
ical feature vector, which holds a list of categories and as-
sign 1 to a protein that belongs to a certain category and
0, otherwise. We used categorical feature vectors for the
metabolic pathway data. We definemr as a random variable
associated with a protein so that mr = 1 if it participates in
metabolic pathway r, and mr = 0 otherwise. A feature
vector m = (m1, m2, . . . , mr)T is defined for each protein
(r = 119 is the number of metabolic pathway categories).

Finally, we propose to use a categorical feature vector,
not the functional linkage graph, for gene expression pro-
files. Usually gene expression profiles are encoded into a
functional linkage graph using the Pearson correlation co-
efficient calculated for all combinations of genes, as used
in [16]. However, we believe that Pearson coefficient might
not reflect the temporal relationships, which are crucial to
the P. falciparum IDC. Instead, we consider expression data

for each phase of the IDC separately. We used the five time
points found by [8] and applied k-mean clustering to the
expression patterns of each time period, as described be-
low. We considered proteins from the same cluster as those
sharing the same categorical feature and thus possibly hav-
ing related functional annotations. Consequently, if proteins
fall into the same clusters for all or most of the time peri-
ods, they will have similar categorical feature vectors and
are more likely to share protein classification.

More formally, we define a random variable dj
r associ-

ated with a protein where dj
r = 1 if a protein is in cluster

r in the time period j, and dj
r = 0, otherwise. A feature

vector then is d = (d1
1, d1

2, . . . , d1
q , d2

1, d2
2, . . . , d2

q , . . . , dw
1 ,

dw
2 , . . . , dw

q )T , where q = k is the number of clusters after
k-mean clustering, and w = 5 is the number time windows.

For each protein i and each function t, we computed
the posterior probability of this protein having a specific
function. We adopt the basic ideas of such computation
from [16] and present them in the extended version of the
paper.

3 Experiments and Results

In the 5-fold cross-validation study, we created each test
set by eliminating all annotations from a random 20% of
annotated proteins (250 randomly chosen proteins from the
annotated set of 1249). We performed 5 validation runs
and report the average of these for the summary statistics.
We use the statistical measures Sensitivity = TP

TP+FN

and Specificity = TN
FP+TN , where TP is the number of

true positives, FN is the number of false negatives, etc.
We also use the F1 measure which represents a weighted
harmonic mean of precision and recall and is defined as
F1 = 2×(Precision×Recall)

Precision+Recall . Note that F1 allows analysis
of the performance weighing precision and recall evenly.

3.1 Gene Expression Data of a Parasite
Life-Cycle

First, we show and emphasize the importance of gene ex-
pression data representation and analysis, especially when
applied to parasites. Many parasites, such as malaria
parasites, trypanosomes, endoparasites with larval stages
(tapeworms, thorny-headed worms, flukes, parasitic round-
worms), undergo many changes during their various life-
cycle stages as they travel from one host to the other, or from
one organ or system to another, etc. Each stage requires uti-
lizing different life functions and possible metamorphosis,
which up-regulates necessary genes and/or down-regulates
those not crucial for a specific life-cycle period.

In this study, we use the five time windows of the
Intraerythrocytic Developmental Cycle (IDC) of P. falci-
parum identified by Kleinberg et al. [8]. This expression



Figure 1. The ROC curve and F1 statistics of
recall experiment by 5-fold cross validation
for gene expression data. Numbered legends
correspond to k-mean clustered datasets.

data is particularly interesting since the IDC, or blood stage,
is the phase responsible for malaria symptoms in humans.
This study [8] performs the time series segmentation and
clustering of the data concurrently. Their method is for-
mulated in terms of rate distortion theory—it searches for
a compressed description of the data (i.e. the fewest clus-
ters of expression profiles, obtained after an optimal tem-
poral segmentation), while minimizing the distortion in-
troduced by this compression. More formally, this pro-
cess is characterized by a variational formulation: Fmin =
I(Z;X) + β〈d(x, z)〉, where mutual information and aver-
age distortion are: I(Z;X) =

∑
x,z p(z|x)p(x)log

p(z|x)
p(z) ,

〈d(x, z)〉 =
∑

x,z p(x)p(z|x)d(x, z), and d(x, z) =∑
x1
p(x1|z)d(x1, x).

Then, the set of candidate windows (i.e., enumeration of
all possible windowings within constraints on the min and
max allowed window sizes) is created, and the data is clus-
tered within each window. Each window is then scored,
based on its length and the above equations. To find the
optimal windowing of the data, they formulate the problem
as one of graph search and use a shortest path algorithm to
find a combination of windows that jointly provide the low-
est cost. For the P. Falciparum data the study in Kleinberg
et al. [8] found the critical time points at 7, 16, 28 and 43
hours, leading to 5 windows, sized rather non-uniformly.
These windows correspond to the three IDC stages and the
transitions between them: End Merozoite/Early Ring stage,
Late Ring stage/ Early Trophozoite stage, Trophozoite, Late
Trophozoite/ Schizont, and Late Schizont/Merozoite.

In our method, we use these identified windows and clus-
ter separately the expression profiles, delimited in each of

them; for this purpose, we used k-mean clustering algo-
rithm. We then define dj

r as a random variable indicating
if a protein belongs in the cluster r within window j. The
sequence of random variables for each window then consti-
tutes a categorical feature vector d of a protein.

We experimented with various values for k and com-
pared results with the linkage graph defined by a Pearson
coefficient calculation, as shown in Figure 1. In our exper-
iments, due to a high number of negative annotations for
the P. facliparum dataset, a ROC curve does not reflect a
precise Sensitivity-Specificity relationship (since specificity
reaches 0.9 immediately after threshold for posterior proba-
bility goes above 0.05) as expected in other cases, obtained
with a relatively large amount of data. As a result, it is nec-
essary to use a more sensitive statistical measure that would
account for too high or too low statistical values, e.g., a met-
ric computed by taking their harmonic mean. In particular,
we aim to maximize F1 statistics, which reflects a relation-
ship of Recall to Precision. Note that F1 will be maximized
only if both measures are maximized.

As shown in Figure 1, the variation in the number of
clusters, k, does not distort the predictive value of the
method as for all values of k in this rage, the method yields
nearly identical ROC and F1 curves. Thus, we fixed an ar-
bitrary value, k = 30, for the following analysis.

Figure 1 also shows a clear superiority of time-dependent
k-mean clustered data over Pearson coefficient dataset (in
the majority of cases, Pearson curve is completely below
the curves for the clustered data). The linkage graph de-
fined by Pearson coefficient was built using 286620 edges
(protein pair is considered co-expressed if Pearson coeffi-
cient is larger than 0.85 [16]) and covered 2646 proteins.

3.2 Analysis of Prediction Accuracy

We compare runs on individual data sources with runs
which integrate PPI, sequence similarity, metabolic path-
way, and temporal gene expression data. Our first step is to
analyze how well we predict known protein-term associa-
tions, using 5-fold cross validation. We predict that a gene
i has term t if the probability exceeds a specified threshold.

Figure 2 summarizes the positive impact of data integra-
tion (PPI, sequence similarity, metabolic pathway, window-
based gene expression clustering; gene expression by Pear-
son coefficients was not a part of the data integration) on
protein function prediction via ROC and F1 measures.
Since ROC curves are very much influenced by the large
number of negative annotations in P. falciparum data
(similarly to Figure 1), the F1 statistics is more preferable.

Additionally, we investigated the impact of adding gene
expressions to “fused” data (PPI, similarity, and metabolic
pathway). In Figure 3, we show both ROC and F1 curves
for fused data alone, then for fused data together with tem-



Figure 2. The ROC and F1 statistics for indi-
vidual data sources and integrated data (pos-
terior probability thresholds ranges from 0.05
to 0.95, in 0.05 increments).

poral clustered gene expression data, and fused data with
Pearson coefficient defined data. Clustered temporal gene
expression data shows a distinctive positive impact on the
overall predictive power of the method; however, Pearson
coefficient data has a negative effect on ROC and F1 statis-
tics. Most likely this anomaly is due to a large number of
falsely defined associations between co-expressed genes.

Figure 4 shows the impact of data integration on the
number of TP at two precision levels: 50% and 70%. These
two levels of precision are reasonably accurate of the range
of possible improvements in our study, and the TP number
is calculated when the precision level first hits the speci-
fied margin. As shown in the table of Figure 4, data inte-
gration significantly outperforms individual data sources at
70% precision, which corresponds to 0.35 threshold of pos-
terior probability. This probability threshold now can be ap-
plied in the second step of our study: attempting to predict
functions for the unannotated proteins of P. Falciparum.

In the second part of our study, we trained our method
on all annotated proteins and tried to assign functions
to proteins without annotations. We were able to as-
sign probable GO terms to 628 out of 1439 unan-
notated proteins of P. falciparum. We ignored gen-
eral terms, such as those high up in the GO hierar-
chy, that appeared more than 300 times. We report
2546 gene-GO assignment pairs, which can be viewed at
www.cims.nyu.edu/ ∼ antonina/real output.txt. The
GO terms are reported together with their parents (ances-
tors) in the GO hierarchy.

Figure 3. The ROC and F1 statistics for var-
ious ways of integrating data:“fused” is de-
fined as ppi+similarity+metabolic pathway.

4 Discussion and Conclusions

In this paper, we have applied and evaluated a prob-
abilistic approach for predicting protein functions for the
malaria parasite Plasmodium falciparum. We combined
four sources of information using a unified probabilistic
framework. PPI and sequence similarity data were pre-
sented in the form of functional linkage graphs, since such
data imply the importance of the number and GO annota-
tion of the nearest neighbors. At the same time, metabolic
pathway and temporal gene expression data were encoded
using categorical feature vectors, simplifying the search for
similar feature patterns among related proteins.

We emphasize the importance of the data representa-
tion for parasites, though this might not necessarily ap-
ply to non-parasitic organisms. In particular, malaria par-
asites’ life cycle is affected by change of the host (e.g.,
mosquito and human), tissues (e.g., salivary glands, blood,
gut wall, liver, red blood cells, etc.), and possible devel-
opmental changes of the parasite itself (e.g., gametocytes,
sporozoites, merozoites, etc.). Each such change involves
different mechanisms of gene regulation and employs many
specific life-sustaining genes. Thus, it becomes crucial to
analyze gene expression data from each stage separately, as
opposed to calculating Pearson correlation coefficients for
all pairs regardless of their temporal order. We have demon-
strated that the data representation, which takes advantage
of the temporal order of gene expression patterns, leads to
a clear improvement in statistical significance over function
predictions using simple Pearson coefficient calculation.



Figure 4. #TP at 50% precision (blue) and at
70% precision (dark red). Table describes %
of improvements of data integration on #TP
over individual data sources.

We show that data integration, previously shown to be
beneficial for protein function prediction [16, 5, 15], is cru-
cial when applied to organisms with limited individual data
sources, as in the case of parasites. By embedding various
data sources into the probabilistic framework, we are able
to assign functions to 628 previously unannotated P. falci-
parum proteins and expect to find in those some of the most
promising candidates for future vaccine trials.

To extend this study to include ortholog genes, we
next tested our method by integrating PPI data of another
closely-related malaria parasite P. vivax, and were encour-
aged by the significant improvement in the resulting per-
formance scores. Once the P. vivax genomic data are pub-
lished, we plan to disseminate the improved results through
our laboratory website.

More importantly, we believe that this work will pave
the way for more complex automatic annotation algorithms
based on model checking with temporal-logic queries—in
this picture, one would obtain a succinct Kripke model (a
phenomenological model) that summarizes the most impor-
tant synchronization properties exhibited by a set of tem-
poral data streams; then use these Kripke models to infer
properties satisfied in various states (also called possible-
worlds) of the model; and finally, associate these proper-
ties with functional classes and genes active in these states.
Such a method is likely to be employed as a debugging tool
for existing ontologies: particularly, to check if certain on-
tology terms are being associated incorrectly or inconsis-
tently with a bio-molecule. Acknowledgments: We would
like to thank members of the NYU/Courant Bioinformat-
ics group (particularly, Prof. Marco Antoniotti and Andrew
Sundstrom) for many useful discussions, and Naoki Nariai
of Boston University for her help in answering many ques-
tions about the software usage and analysis specifications.
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