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ABSTRACT
Systems biology, as a subject, has captured the imagina-

tion of both biologists and systems scientists, alike. But

what is it? This review provides one researcher’s some-

what idiosyncratic view of the subject, but also aims to

persuade young scientists to examine the possible evo-

lution of this subject in a rich historical context. In

particular, one may wish to read this review to envision

a subject built out of a consilience of many interesting

concepts from systems sciences, logic and model theory,

and algebra, culminating in novel tools, techniques and

theories that can reveal deep principles in biology—seen

beyond mere observations. A particular focus in this

review is on approaches embedded in an embryonic pro-

gram, dubbed “Algorithmic Algebraic Model Checking,”

and its powers and limitations.

1 Hypotheses non Fingo: Hooke

and Newton

Over the last few years, Sir Robert Hooke, a somewhat ma-
ligned, but still a very fascinating English experimental sci-
entist and the first secretary of the Royal Society, had be-
gun to feature unexpectedly prominently in practically all
my public presentations on Systems Biology. Initially, what
had attracted me to the story of Hooke, was the uncanny
resemblance he bore to some of our present-day scientists in
terms of their insistence on data, observations and hypothe-
ses, their apparent non-rigorous and intuitive approaches to
scientific questions, but most inexplicably, their protracted
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and debilitating open rivalries over the questions of recogni-
tion. But, as I learned more about Hooke’s life and views,
it also became clearer that his indirect influence on the
way we think about science today is only surpassed by the
opinions of only a handful of other contemporary thinkers,
with some of whom Hooke fought bitter and hopeless semi-
philosophical battles. They have, thus, unwittingly lent us a
useful perspective that is worth examining with some care.
How the emerging field of systems biology could establish
itself, how it should face its trials and tribulations along the
way, and how it could be a significant component of the “new
new” biology, etc., could all be examined from the points of
view of these 17th century scientists—a perspective that re-
mains anachronically and peculiarly relevant even today.

Robert Hooke (1635-1703) was an experimental scientist,
mathematician, architect, and astronomer. He was also the
first Secretary of the Royal Society from 1677 to 1682, and
because of his wide ranging interests, Hooke has been var-
iously described as the “England’s Da Vinci.” His work
Micrographia of 1665 contained his microscopical investi-
gations, which included the first identification of biological
cells, an enduring discovery that has maintained its central-
ity in subsequent developments in biology for more than
three centuries. In his drafts of Book II, Newton had re-
ferred to him as the most illustrious Hooke—“Cl[arissimus]
Hookius.” However, not long after, Hooke became involved
in a bitter dispute with Sir Isaac Newton over the prior-
ity of the discovery of the inverse square law of gravita-
tion. In a letter Hooke wrote to Halley, he complained about
omission of credit given to his discovery of the properties of
gravity, “which of late Mr. Newton has done me the favour
to print and publish as his own inventions.” In response
Newton wrote back to Halley, “Now is this not very fine?
Mathematicians that find out, settle & do all the business
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must content themselves with being nothing but dry calcu-
lators & drudges I beleive[sic] you would think him a man
of a strange unsociable temper”—perhaps still a common
protest of many disgruntled mathematicians whose contri-
butions to science have failed to be adequately recognized.
In a more well-known letter that Newton wrote directly to
Hooke, he famously said, “If I have seen further[sic] than
other men, it is because I have stood on the shoulders of
giants”—where, of course, the giants Newton was alluding to
were Kepler and Galileo, and not the dwarfish, small-minded
and short-tempered likes of Hooke! When Christopher Wren
was brought in to resolve this rather strangely English war-
of-words, Wren diplomatically described the disagreement
using Clairaut’s characterization of “the great distance be-
tween a glimpsed truth and a demonstrated truth”—raising
perhaps, the question of relative roles that should be as-
cribed to the inductive hypothesis-driven science in relation
to the deductive principle-driven science.

What is the nature of “TRUTH” in biology, and how is
it to be sought? Hooke saw biology as an observational sci-
ence; he wrote in Micrographia, “The truth is, the science of
Nature has already been too long made only a work of the
brain and the fancy. It is now high time that it should return
to the plainness and soundness of observations on material
and obvious things,” —a view supporting hypothesis-driven
experimentation that advances science through steps of fal-
sification or validation. Newton, on the other hand, cham-
pioned a search for deep and unifying principles. Newton
shunned hypotheses; his motto stated in Principia was “Hy-
potheses non fingo.” (“I feign no hypotheses.”) Newton’s
viewpoints are probably best stated by his most ardent dis-
ciple, Halley; in his rather ornately titled essay ‘The true
Theory of the Tides, extracted from that admired Treatise
of Mr. Isaac Newton, Intituled, Philosophiae Naturalis Prin-
cipia Mathematica,’ he wrote the following: “Truth being
uniform and always the same, it is admirable to observe how
easily we are enabled to make out very abstruse and dif-
ficult matters, when once true and genuine Principles are
obtained.”

Biology still remains an observational science; it continues
to move through the toils of a vast army of scientists each ex-
amining a small subsystem of a favored organism, as the sci-
entists sharpen their intuitions, build upon guesses, conjec-
tures, and hypotheses, and refine their ideas in many small
steps—occasionally interrupted by a great leap, a grand vi-
sion or a comprehensive shift in paradigm. If subtle princi-
ples are to be brought to light, they must wait for serendipity.
It has been argued that life is complex, it does not yield to
few small neat explanations or pigeon-holing, and if there is
a unifying principle in biology, it is that there is no unifying

principle in biology.

Can ideas from mathematics, computer science, and sys-
tems sciences be brought to bear to systematically hunt for
principles and patterns that will reveal a grand unified the-
ory of biology? Are their design rules at play in how these
systems evolve, interact, and self-assemble? What tools can
we steal from other sciences or engineering disciplines to see
much more a global view of biology? What can be auto-
mated to make computers work on tasks that are humanly
impossible? Is systems biology the answer to the problems
of biology?

2 Models as Idealization: From

Turing to Odell

A particularly revealing example, described below, under-
lines how biology progresses through both hypotheses and
principles—in many false-starts and true-conclusions—as it
attempts to develop mathematical models: in this case, mod-
els of biological pattern formation.

Alan Turing, an English mathematician, logician, and
cryptographer, may be viewed as the last and probably the
most neglected proponent of search for principles in biol-
ogy, despite an immortalized life fueled by an eclectic set of
polymathic interests that led to such wide-ranging concepts
as Turing machines—the fundamental models of computing,
Church-Turing Thesis and Turing reductions—the key in-
gredients of computability and universality in constructive
mathematics, Turing-test of artificial intelligence and Turing
patterns arising from reaction-diffusion equations. Turing
worked from 1952 until his death in 1954 on mathematical
biology, specifically morphogenesis. In 1952, Turing pub-
lished in Philosophical Transactions of the Royal Society of
London [82] one of the most influential and probably the last
truly mathematical biology papers: “The Chemical Basis of
Morphogenesis.” There, Turing proposed reaction-diffusion
equations to explain formation of biological patterns, and as
the key to understanding developmental biology. His later
papers on the subject remained unpublished until 1992 when
Collected Works of A.M. Turing was finally printed.

Through this research, Turing was attempting to create
“a mathematical model for the growing embryo,” as he was
intrigued by the process that could self assemble a whole
human with a complex thinking brain from a simple fertil-
ized egg. He wished to create a very general program for
modelling embryogenesis: Reminiscent of a Newtonian view
of science, Turing’s ‘model’ was designed to be “a simplifi-
cation and an idealization and consequently a falsification.”
His model was centered on an “abstract” object, which he
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christened as morphogen, defined as “simply the kind of sub-
stance concerned in this theory...” In fact, anything that dif-
fuses into the tissue and “somehow persuades it to develop
along different lines from those which would have been fol-
lowed in its absence” qualifies under this definition.

In this theory, one starts with a variable a, denoting the
concentration of some morphogen. The first step would be
the one relating the first temporal derivative of the mor-
phogen concentration ∂a/∂t (its rate) to its second spatial
derivative ∇2a (its flux) through a diffusion constant Da.
The resulting diffusion equation is

∂a

∂t
= Da∇

2a.

A much more interesting situation arises when one consid-
ers two interacting morphogens with their concentrations de-
noted by a and b, and also models their interactions through
an additional reaction part augmenting the diffusion equa-
tion:

∂a

∂t
= f(a, b) +Da∇

2a,

∂b

∂t
= g(a, b) +Db∇

2b,

where functions f and g, while nonlinear, could still be fairly
simple: e.g., affine. For instance, one could have f(a, b) ≡
a(b− 1)− k1 and g(a, b) ≡ −ab+ k2.

A simple system of reaction-diffusion equations such as
this can be shown to give rise to a plethora of life-like pat-
terns, that have now come to be known as Turing patterns.
Is this how biology of animal development works? Is this
how the leopard got his spots? Do we now know how the fly
gets its segmentations? What roles do genes play in this?
How are they related to morphogens?

Turing viewed that since the role of genes is presumably
catalytic, influencing only the rate of reactions, unless one is
interested in comparison of organisms, they “may be elimi-
nated from the discussion.” His reliance on one grand sweep-
ing principle and the accompanying elegant mathematical
models, in the absence of any experimental support, may
have been Turing’s greatest folly1. Developmental genes
and their control of “morphogens” would turn out to be ex-
tremely important in pattern formation as they began to
be discovered through a series of careful (though tedious)
genetic knock-out experiments on flies.

1A computer science colleague, Dr. S. Biswas of IIT-Kanpur, wrote
in response to an early draft: “You can see that I’m somewhat unhappy
that you say that Turing was wrong– not because of some thing is
wrong with your account, but because Turing is Turing!” At some
deeper level, there is some truth in this view.

Within a year of Turing’s seminal paper, Sir Francis
Crick and James Watson, both working from Cambridge’s
Cavendish lab at the time, wrote one of the seminal papers
of the last century: “Molecular Structure of Nucleic Acids:
a Structure of Deoxyribose Nucleic Acid,” (published in the
British scientific journal Nature in 1953) [87], and followed it
up in a month with another equally important paper entitled
“Genetical Implications of the Structure of Doxyribonucleic
Acid,” [86]. The first of these two papers not only eluci-
dated the double-helix structure of DNA, but much more
significantly, also opened the way for a deeper understanding
of the most important principles governing biological pro-
cesses. Watson and Crick, perhaps serendipitously, wrote:
“It has not escaped our notice that the specific pairing that
we have postulated immediately suggests a possible copying
mechanism for the genetic material.” DNA, and the genes
they contained, inherited, transmitted and used for regulat-
ing biological processes, could be seen to be nature’s code-
books written in a language that also encoded perhaps all
of the fundamental principles of biology. The collection of
the genes came to be known as a “genome,” and our efforts
to read, store, compare, align, decipher, annotate and inter-
pret genomes using massive computation, automation and
biotechnological tools became an obsession of our genera-
tion. It was felt that if we could “mine” this data, we could
learn all the important principles of biology. The debate be-
tween “hypothesis-driven science” vs. “data-mining-driven
science” would emerge repeatedly in our time, completely
oblivious of any historical context.

To a computational biologist, a genome is just a long
string made out of just four characters A, T, C, and G (in
case of humans, six billion base-pairs encoding the haplo-
typic genome2). This simple one-dimensional object (per-
haps with a little auxiliary epigenomic annotation) would
encode the genotypes and indirectly, through a Darwinian
unidirectional mapping, also the phenotypes. Since evolu-
tionary, relational, and ecological properties, all must de-
pend on either the genotypes directly, or the phenotypes
indirectly, all of biological principles must be sought in the
genomes, or in the way they are molded by the variation
and selection forces. The Crick’s central dogma assigned a
centrality to the genomes. This dogma (due to Sir Francis
Crick in 1958) states that the information flows from DNA
to RNA through transcription and then to proteins through
translation; these information flows are all unidirectional:
“... Once ‘information’ has passed into protein it cannot get

2I am counting the base-pairs in all your chromosomes, thus includ-
ing everything you inherited from both of your parents. If I lumped
together the homologous sister chromosomes in your diploid genome,
the number will be about half: three billion base-pairs encoding the
genotypic genome.
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out again. The transfer of information from nucleic acid to
nucleic acid, or from nucleic acid to protein, may be possible,
but transfer from protein to protein, or from protein to nu-
cleic acid is impossible. Information means here the precise
determination of sequence, either of bases in the nucleic acid
or of amino acid residues in the protein.” Thus once one has
performed all the experiments to determine the sequences of
the genome, this dogma may suggest to some that all that
remains in biology is just data mining.

Also, it may appear that once the genes produce the cor-
responding proteins through the processes of transcription
and translation, they do not play any direct role in the phe-
notypes determined by protein interaction, except that they
have a catalytic role in the rate of production of the pro-
teins. In that case, Turing would have been perfectly right
in dismissing the genes as he struggled to create an abstract
(hence idealized) view of biology without genes.

However, proteins do interact with DNA, as do many small
microRNAs, and in their roles as transcriptional regulators
they collude with the genes to affect the dynamics of the
entire biological system. Thus the mechanistic picture of bi-
ology that one may carry around is the following: A specific
region of the genome (DNA) that determines the synthesis
of proteins (through the transcription and translation) will
be called a gene, thus giving it a physical meaning, even
though, originally, a gene meant something more abstract—
a unit of rhereditary transmission. Transcription of a gene
to a messenger RNA, mRNA, is keyed by a transcriptional
activator/factor, which attaches to a promoter (a specific
sequence adjacent to the gene). Regulatory sequences such
as silencers and enhancers control the rate of transcription.
Most of these regulators themselves are proteins synthesized
by other genes. These regulators also play a very critical
role in the development of an organism and the pattern for-
mation.

The important role of regulators is best appreciated in
answering such morphogenetic puzzles as in the elucidation
of patterning along the head to tail (antero-posterior) axis
of the fruit fly Drosophila melanogaster . The circuitry un-
derstood from studying a fly applies to other organisms and
could reveal some important insights in developmental biol-
ogy; other multicellular organisms use similar mechanisms
for axis formation, and use similar signal transfer between
the earliest cells of the developing organisms. The processes
important for patterning in the Drosophila embryo are con-
trolled by gradients in the concentration of maternal gene
products that arise soon after fertilization. These protein
molecules establish broad domains of gene expression that
interact to establish final patterns that ultimately encode
instructions for body plan (axes: antero-posterior, or dorsal-

ventral) or construct germ layers (e.g., ecto-, meso-, endo-
derm). A simple picture of the processes involved in antero-
posterior patterning is described below.

Upon fertilization, various protein (morphogen) concen-
tration gradients spanning the egg are established, starting
with the products of the genes, called maternal effect genes,
which encode for morphogen proteins. These gradients, in
a manner that is generative rather than descriptive, estab-
lish positional values and affect the behavior of the other
genes. The model now called “PI (Positional Information)”
(or more colloquially and colourfully “French-Flag Model”)
was first proposed by Lewis Wolpert [88], with fairly scant
experimental evidence. Wolpert, a civil engineer from South
Africa, teaching Cell Biology at King’s College in London,
proposed in the sixties, that different genes would be acti-
vated differently in response to different threshold concentra-
tions of the morphogen. For instance, in order to construct
a French flag, nature may start with a linearly arrayed se-
quence of cells with a morphogen gradient monotonically
decreasing from one end to the other, which would activate
the cells in the neighbourhood differently: with high concen-
trations (above an upper threshold) turning on a blue gene,
low concentrations (below a lower threshold) turning on a
red gene, with white a default state in regions of the embryo
at the intermediate concentrations (between the lower and
upper thresholds). If one increases the number of cells, or
varies the morphogen gradient (without violating the mono-
tonicity property), one still gets the same French flag with
surprising robustness. A reader may ponder over the follow-
ing challenging exercise seeking to devise a similar algorithm
to construct an American flag using PI (positional informa-
tion).

Some of the most important maternal effect genes par-
ticipating in Drosphila PI model are: Bicoid and hunch-
back, which pattern anterior parts (head and thorax) of the
Drosophila embryo; and Nanos and Caudal, which form pos-
terior abdominal segments of the Drosophila embryo. Bi-
coid (Bcd) is a homeodomain-containing transcription fac-
tor that establishes and places all anterior structures in the
Drosophila body plan. After eggs fertilize, bcd (bicoid)
mRNA is translated, and a gradient of Bcd (Bicoid) pro-
tein is formed, with highest levels near the anterior tip of
the embryo, and gradually lower levels toward posterior re-
gions, determined by many parameters: rates of translation,
diffusion, and degradation. The experimental evidence sup-
porting Bcd (Bicoid) as a morphogen comes from mutation
experiments in which bcd (bicoid gene) is knocked-out or
its concentration is shifted, with dramatic effect on the pat-
terns that emerge. For instance, in embryos with an in-
creased copy number of bcd gene (e.g., four or six copies),
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the cephalic furrow, one of the first distinguishable morpho-
logical features, becomes shifted posteriorly.

During the time Bcd protein gradient is forming, zygotic
nuclei concomitantly undergo many rapid division cycles and
reorganize themselves along the periphery of the embryo.
Almost at the same time, the zygotic transcription process
gives rise to activation of genes such as hunchback (hb) and
orthodenticle (otd), thus turned on by bicoid (bcd). In this
way, the first morphogen gradients cascade into other inter-
esting subsequent gradients.

While I omit many of the interesting details, the readers
can imagine a rather cleverly regulated process that is at the
core of the patterning in biology—a process in which a very
specific set of developmental genes play specific and impor-
tant roles, contradicting Turing’s idealization of biology.

In the picture that emerges, the next set of genes to
be turned on are called “gap genes.” The gradients al-
ready established by Bicoid, Hunchback, and Caudal pro-
teins transcriptionally regulate other zygotically expressed
protein products, derived from members of the “gap” fam-
ily of developmental control genes. For instance, hunchback,
krüppel, giant, tailless and knirps are all gap genes. These
genes, in combination with others, establish the segmenta-
tions along the anterior-posterior axis in the body-plan of
fly. Thus, the gap genes are usually thought of as the first
layer of a hierarchical cascade of the genes that control seg-
mentation.

The next set of genes consists of the so-called Pair rule
genes, a class of segmentation genes, expressed after the gap
gene products. These genes are expressed in striped patterns
of seven bands perpendicular to the anterior-posterior axis.
Finally, the ultimate class of segmentation genes, the seg-
ment polarity genes, fine-tunes the process by interactions
between the cells of adjacent parasegments. A rather ele-
gant example of this process is seen through the reciprocal
signaling between Wingless and Hedgehog producing cells,
which stabilizes the boundary between each segment.

This tour-de-force of experimental “observational” biolog-
ical research culminated in 1995 in a Nobel Prize for Phys-
iology or Medicine, awarded to three scientists: Edward
B. Lewis, Christiane Nüsslein-Volhard and Eric Wieschaus.
This recognition was to be seen as a testimony to the power
of careful experiments based on genetic screening of embryo
patterning mutants that revealed the role, played in early
embryologic development by Homeobox genes like bicoid.
Perhaps, after all, Hooke had won the argument. It is en-
tirely possible that the theoretical elegance of abstraction
of the kind Turing was proposing is rather seductively mis-
leading; truth must be sought in the details, no matter how
confusingly ugly.

But, our viewpoints shifted again by subsequent computa-
tional research reported in an article that appeared in July
2000 issue of Nature, where von Dassow et al. [85] reported a
mathematical analysis of a model based on the earlier exper-
imental work that I have just described. The authors of this
article used a computer simulation to examine the robustness
of a simple working model of patterning in fly. This compu-
tational model, based upon a kinetic mass action formulation
of the biochemical reactions, consisted of a system of cou-
pled differential algebraic equations, derived from two cate-
gories of first-order ordinary differential equations: namely,
equations characterizing the transcriptional processes, and
equations characterizing translational processes. In this for-
mulation, the rate of change of mRNA product concentration
is expressed by combining two terms: an additive (positive)
term accounting for the way the transcriptional regulators
synthesize the mRNA and a subtractive (negative) term ac-
counting for the way the mRNA degrades or is removed.
The first term is expressed by a rational function involving
polynomials whose degrees are determined by various coop-
erative interactions among the regulators (Hill’s coefficients
in Hill-type equations), and the second term is a linear func-
tion. They all involve many free parameters, whose values
are often not known a priori. Similarly, the rate of change
of protein product concentration is expressed by combin-
ing two linear terms: an additive term for protein synthe-
sis through translation and a subtractive term for protein
degradation. However, their first model, which had encoded
faithfully the accepted interactions based on the experimen-
tal work, failed, and upon debugging, found to require the
addition of some interactions which could be only vaguely
substantiated. The revised model of fly segment polarity,
which deviated from the experimental evidence reported so
far, turned out to be highly robust, insensitive to variation in
parameters and initial conditions. The revised model, devel-
oped by Odell’s group, encompassed 136 coupled equations
and nearly 50 free parameters such as half-lives, diffusion
constants and binding coefficients, but despite this complex-
ity, the model exhibited unusual robustness. For instance,
even when the authors picked random values for the free
parameters (ranging over a wide interval varying over sev-
eral order of magnitudes, but still within a generally realistic
range), they discovered that the revised model still exhibited
the patterns seen in real flies.

After having exhausted various mathematical, experimen-
tal and computational tools available, one may still wonder
whether it is possible to be reasonably convinced of the fi-
nality of this answer(s)—even when the question is narrowed
down to just the topic of biological patterning. Is this our
final answer?
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As this example illustrates, this issue of truth and cogni-
tive finality in biology remains a rather unsettled and unset-
tling topic. At present, it is not uncommon to assume many
biological problems to have been satisfactorily solved with-
out rigorous justification. Thus, it is hoped that rigorous
mathematical models with automated tools for reasoning,
simulation, and computation can be of enormous help to un-
cover cognitive flaws, qualitative simplification or overly gen-
eralized assumptions. Some ideal candidates for such study
would include: prion hypothesis, cell cycle machinery, mus-
cle contractility, most of the processes involved in cancer (cell
cycle regulation, angiogenesis, DNA repair, apoptosis, cellu-
lar senescence, tissue space modelling enzymes, etc.), signal
transduction pathways, and many others. The story above
brings us to our next topic: What role can Systems Biology
play in better, rigorous and refined elucidation of biological
principles?

3 Model Building and Model

Checking: Kripke and Tarski

Systems Biology is characterized as a broad and challeng-
ing field attempting to hasten the understanding of life by
integrating computational, mathematical, statistical, artifi-
cial intelligence, machine learning, temporal reasoning, and
other so-called in silico techniques coupled with traditional
wet-lab in vivo and in vitro experimentation. As illustrated
earlier, one important strand of research has been modelling,
simulation and analysis of biochemical pathways to eval-
uate mutual consistency of biological facts, to validate or
refute plausible hypotheses, to aid experiment design and
refine existing models. One may then safely posit that the
fundamental systems biology problem addressing biochemical
networks will continue to be reasoning about the emergent
temporal properties and their modulation by external signals.
However, as we saw earlier, the direct detailed kinetic mass
action based numerical analysis of biochemical networks is
simultaneously limited in global analysis and intractable in
large-scale exploration, because of the complexity of the net-
work in terms of the unknown parameters and initial condi-
tions, the number of interacting species, the number of in-
terconnections and the different types of interactions. More
importantly, it becomes extremely difficult to reason about
the system-level properties of the entire network from the
time-course analysis of its many molecular components at
several different initial conditions and kinetic parameter val-
ues. The kind of debugging that Odell’s group performed on
their model had to depend on human ingenuity.

Nevertheless, understanding biological models well and de-

veloping the abilities to manipulate them have important
payoffs—both in practice and theory. A systems level anal-
ysis (as opposed to a reductionist approach) of biology is
crucial not only for giant leaps in our understanding of “plau-
sibility of life” itself [32], but also for more mundane applica-
tions to vaccine and drug discovery, diagnostics, genetically
modified food, and in the nascent field of synthetic biol-
ogy [22, 31]. The data generated by the recently announced
American National Cancer Institute’s TCGA (The Cancer
Genome Atlas) project, when combined with proper systems
biology tools modelling signal transduction pathways, can be
hoped to replicate the success of cancer drugs like Her 2 and
Gleevec (Imatinib Mesylate), and shed light on why other
cancer drugs like Iressa (gefitinib) and Tarceva (erlotinib)
have only had limited success in few populations.

One is further inspired by the techniques of model check-
ing, a popular computational approach, which has had many
important impacts [71, 25] in engineering fields because of its
ability to efficiently validate temporal logic formulæ, describ-
ing dynamical properties of the formal models of complex
real systems. These well-established techniques have been
tremendously successful in VLSI circuit design, robotics,
control theory, etc., and have been applied even to hybrid
systems with both continuous and discrete dynamics. For
biochemical networks, several modelling tools, some with
rigorous analytical capabilities, have been developed, in-
cluding Systems Biology Workbench [46], Virtual Cell [77],
E-Cell [79], Genomic Object Net [68], Simpathica [9] and
BioMiner [76]. Unfortunately, many of these currently avail-
able tools are either rudimentary and do not scale, or are
based on numerical simulation and animation, and hence can
provide only limited insight with results that are difficult to
generalize. There is a dearth of symbolic3 techniques for an-
alyzing the dynamics of biochemical systems—in particular,
a characterization of the functional relationship between the
initial conditions and the emergent phenomena. In addition
to yielding generic results, symbolic methods result in im-
proved efficiency as computations do not have to be redone
when initial conditions or parameters change.

One must then strive to develop sophisticated paralleliz-
able dense-time algebraic model checkers that can be used by
biologists, bio-technologists, et al. to reason about and ma-
nipulate important biological processes through richer and
deeper symbolic queries. Concurrently, one may seek to
elicit a better understanding of complexity and decidabil-
ity [13] issues in algebraic model checking. These ideas are

3In this paper, “symbolic” and “algebraic” denote the retaining of
variables and parameters in their symbolic forms rather than as num-
bers, and are not to be confused with symbolic model checking using
binary decision diagrams.
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elegantly integrated under the umbrella of “Algorithmic Al-
gebraic Model Checking”(AAMC) [69, 67, 65, 20, 21, 19, 64,
66, 63, 16].

3.1 Problem Domain

We start with the following taxonomy into which the cellular
biochemical processes are typically organized, as described
below.

Genetic Regulation: The oft-repeated “central dogma
of biology” states that biochemical information in cells is
encoded primarily in the Deoxyribo Nucleic Acid (DNA)
molecules. DNA is transcribed into messenger Ribo Nucleic
Acid (mRNA), and the mRNA then is translated into pro-
teins at the ribosomes. Genetic regulation is the process of
modulation of the expression of the relevant genes at the
correct locations and times, and is keyed by specific pro-
teins called transcriptional factors. Through transcriptional
factors and other ancillary modulators, proteins, the prod-
ucts of genes, themselves partake in this genetic regulatory
process, thus giving rise to complex interaction networks;
such proteins interact with regions of the DNA to effect
modulation of how genes are transcribed. The binding of
the transcription machinery and the transcriptional factors
to the DNA involves complex protein-DNA-protein interac-
tions, where, more often than not, the structural modifica-
tion of the DNA (such as euchromatin and heterochromatin
regions) and the protein has to be accounted for.

The rate of gene transcription, the post-transcriptional
mechanisms that affect mRNA half-life (i.e., stability)
and the formation of the mRNA-ribosome complex are
other aspects of genetic regulation. Similarly, there
are post-translational mechanisms for protein modification
such as phosphorylation of key residues, multimerization,
chaperone-guided complex formation, protein-folding con-
trol, and genetic control by small interfering RNA (siRNA),
all of which must be faithfully included.

Signal Transduction: The cell responds to external sig-
nals through receptors, which may be on its surface or in its
cytoplasm. The signal is transmitted to the interior through
messengers, which induce the desired response to the exter-
nal signal. Typically, a ligand binds to a trans-membrane
receptor whose conformation subsequently changes. This
change is detected by proteins bound to it (usually on the
cytoplasmic side), or is manifested as a change in the recep-
tor’s chemical properties. Subsequently, second messenger
molecules amplify the signal and communicate it to the tar-
get(s). Alternatively, the ligand can directly enter the cell

through non-specific channels and then bind to the recep-
tors inside the cell. Small molecules like calcium often par-
ticipate in these pathways, where most of the reactants are
enzymatic proteins. The net result of the signal transduction
pathway is an appropriate response by the specific subcellu-
lar component. Very often, the signaling pathway results in
the nuclear localization of transcriptional factors, leading to
the transcription (or shutting down) of corresponding genes.
The binding of the signaling molecule with the receptor, the
modification of the structure of the receptor and associated
proteins (with the receptor sometimes acting as an enzyme)
and dispatching of second messengers are the activities near
the cell membrane. Receptor desensitization, internalization
and regeneration are other complex sub-processes, thus al-
tering the physical properties of binding and diffusion.

Metabolism: Metabolism represents almost all processes
that are not genetic regulatory or signal transducing. The
gigantic set of biochemicals needed by the cell are continu-
ously produced and consumed by complex enzyme catalyzed
pathways. These comprise the metabolic network. They es-
sentially govern the matter and energy cycles of a cell— the
way energy and matter are obtained, transformed and con-
sumed by living organisms. Photosynthesis for example is
the process by which light energy is converted into chemical
energy during sugar (e.g., glucose) formation. During respi-
ration, the oxidation of glucose transforms the energy into
Adenosine Tri-Phosphate (ATP). While the ATP-cycle and
photosynthesis comprise the well-known energy metabolism,
carbohydrate metabolism deals with Glycolysis and Phos-
phates, lipid metabolism pertains to Triacyl Glycerol and
Fatty Acids, and amino acid metabolism mostly refers to
Glutamate and Urea.

Other Processes: Biology is complex, and of course,
there are still more aspects to cellular biology beyond this
simple trichotomic characterization. These include the bio-
physics of DNA packaging, small interfering RNA (siRNA),
protein folding and DNA-protein interaction, cell adhesion,
non-transcriptional regulatory pathways, cellular compart-
ments and related spatio-temporal phenomena, cell pro-
liferation, and cell migration. While the modelling ap-
proaches suggested here, when further augmented with suit-
able stochastic and spatial formalisms, will generalize as well,
I will not emphasize those applications directly in my dis-
cussions here.
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3.2 Biochemical Models

The different component parts and processes in the biochem-
ical domain may be represented at different levels of abstrac-
tion [33, 47]. I summarize some of the major approaches be-
low, but will guide the discussion towards hybrid automata
representation, a very general and powerful model for these
systems.

Logical Modelling: The state of the reactant is cap-
tured through a finite number of abstract-states (where in-
termediate expression levels are assumed to have the same
behavior), and functions are used to describe the new states
(concentration range) of the chemical species, given their old
states. The transitions between states can be assumed to
occur synchronously or (more accurately) asynchronously.
In the simplest case, only two states (“on” and “off”) are
used, and Boolean algebra is used to describe the dynamics.
Literature on Concurrent Transition Systems [24, 23] and
Pathway (Rewrite) Logic [36] provides good expositions of
logical modelling. Kappler et al. [51] demonstrate how to ex-
tend simple Boolean networks by using ordinary differential
equations to capture the concentration, while Boolean func-
tions continue to determine the rates of the reactions. The
probability of being in a state is sometimes a more reason-
able measure to estimate, as in the case of Sachs et al. [74],
who use Bayesian networks to model cell signaling path-
ways. Similarly, Shmulevich et al. [75] describe the use of
probabilistic Boolean networks to model genetic regulatory
networks and determine the long-term joint probabilistic be-
havior of a few selected genes. Platzer et al. [70] simulate the
embryonic development of C. elegans by assuming Boolean
states for the genes and synchronously updating at each time
step based on an interaction matrix. Batt et al. [11] have
applied model checking theory on biochemical systems mod-
eled though qualitative simulation.

Differential Equations: If instead the concentrations
are represented exactly in the real continuous domain, the
ordinary differential equations (ODEs) of the dynamics di-
rectly follow from the law of general mass action (GMA) [30,
52, 83]. For instance, in the reaction aA+ bB ←→ cC + dD,
the rate of the forward reaction vf ≡ kf [A]a[B]b and the
rate of the backward reaction vb ≡ kb[C]c[D]d, where kf

and kb are the forward and backward rate constants respec-
tively and the rate of individual reactants is 1

c
Ċ = 1

d
Ḋ =

− 1

a
Ȧ = − 1

b
Ḃ = (vf − vb). As a compromise between dis-

crete and continuous representations, qualitative differential
equations can be used with qualitative states corresponding
to the different concentration ranges [11, 34]. Models, involv-

ing spatially distributed or probabilistic interactions among
molecules, require several other mathematical generaliza-
tions, e.g., partial differential equations (PDEs), stochas-
tic differential equations (SDEs), or reaction-diffusion equa-
tions.

Hybrid Systems: Many biological systems, such as the
cell, follow a combination of discrete and continuous behav-
iors, which cannot be characterized in a proper way using ei-
ther only discrete or only continuous models. On one hand,
their evolution is ruled by a continuous dynamical law con-
cerning substance concentrations and gradients, and, on the
other hand, such a dynamical law may change discretely
depending on the system status itself. Because of their hy-
brid nature, part discrete and part continuous, such systems
are named hybrid systems. To model hybrid systems, Alur
et al. introduced the notion of hybrid automata in [3]. In-
tuitively a hybrid automaton is a “finite-state” automaton
with continuous variables, which evolve according to a set
of continuous laws characterizing each discrete mode of the
automaton itself. The use of hybrid automata for modelling
biomolecular networks has been described by Alur et al. [1]
and Mishra et al. [61]. Amonlirdviman et al. [6] demon-
strated the utility of hybrid systems by modelling Drosophila
planar cell polarity. Starting with the S-System formulation
of Savageau and Voit [84], Antoniotti et al. [8] used an ad-
ditional automaton to broaden the set of representable sys-
tems, subsequently using full-fledged hybrid automata [7].
Ghosh et al. presented both delta-notch [39, 38] and pro-
tein signaling network [40] models based on the hybrid au-
tomaton formalism. Casagrande et al. [19] suggested a sim-
ple (and decidable) hybrid automaton model for the E. coli
chemotaxis (see the example later). Lincoln and Tiwari [57]
detail hybrid automaton modelling of biochemical networks,
while Hu et al. [45] describe stochastic hybrid system mod-
elling of subtilin production in Bacillus subtilis. More re-
cently, Drulhe et al. [35] have described piecewise-affine mod-
els of genetic regulatory networks.

Algebraic Hybrid Automata, Dense-time Logic and

Decidability: Thus, if these methodologies are to be
adapted to the settings suitable for systems biology, what is
needed is an appropriate generalization of discrete-time sys-
tems, classical temporal logic, possible-world models of tem-
poral logic given by Kripke (e.g., Kripke structures), model
checking algorithms based on graph theoretic analysis, etc.
However, while the generalization must be sufficiently pow-
erful to capture a large segment of reasoning processes used
by the biologists, but yet it should also be sufficiently con-
strained so that these systems can be reasoned by feasible
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computational means. At the least, the resulting problems
should be decidable (computable). We seek such a frame-
work below by a judicious amalgamation of symbolic algebra
(e.g., using decision procedures of semi-algebraic geometry),
sufficiently constrained dense-time temporal logic and alge-
braic models based hybrid automata. I will present a brief
formal discussion of such hybrid automata and their reach-
ability problem, and then discuss an appropriate dense-time
logic and the complexity of the model checking problem in
this framework. The discussion, with few accompanying bi-
ological examples, indicates how close these techniques are
to the boundary of undecidability.

4 Algorithmic Algebraic Model

Checking

My research group introduced the subject of Algorithmic
Algebraic Model Checking in an attempt to rigorously exam-
ine connections between systems biology, dynamical systems,
modal logic and computability, and how they can be useful
in the biological context. Towards this aim, we started by
addressing the symbolic model checking problem for a new
class of hybrid models arising in systems biology – semi-
algebraic hybrid systems, introduced in the first paper of
our “AAMC” (Algorithmic Algebraic Model Checking) se-
ries [69]. In there, and its subsequent sequels, we sought to
characterize the widest range of automata that admit sound
albeit expensive mathematical techniques, as opposed to fo-
cusing on a very narrow class of systems that often pre-
maturely sacrifice genralizability for the sake of efficiency.
From this research, a new class of automata, IDA (Indepen-
dent Dynamics Hybrid Automata), has emerged as one that
satisfies the desiderata of systems biology.

In preparation for these systems biology models, I start by
providing a formal definition of hybrid automata — a con-
cept first introduced in [59, 4] as a model and specification
language for hybrid systems, i.e., systems consisting of a dis-
crete program within a continuously changing environment.

4.1 Syntactical Structure

First, some notations and conventions need to be introduced.
If p = (p1, . . . , pk) and s = (s1, . . . , sk) are vectors in R

k, r ∈
R≥0, ∓ ∈ {−, +}, and ≍ ∈ {≤, <, =, >, ≥}, then I will use
p∓ s to denote the vector (p1 ∓ s1, . . . , pk ∓ sk) and ‖s‖≍ r
to indicate equational relations such as

(

s21 + . . .+ s2k
)

≍ r2.

Indexed capital letter variables Zm, and Z ′
m, wherem ∈ N,

denote variables ranging over R, while Z , and Z
′

denote vec-
tors of variables (Z1, . . . , Zk), and (Z ′

1, . . . , Z
′
k), respectively.

The temporal variable T models time and range over R≥0.
In the following, given a formula ψ[Z] and a model M, I
will denote the set of tuple of values satisfying ψ in M as

Sat(M, ψ), i.e., Sat(M, ψ)
def
= {p | M |= ψ[p]}. When M is

clear from the context, I may simply write Sat(ψ).
A formal definition of hybrid automata may proceed as

follows: For each state of a discrete automaton there is an
invariant condition as well as a dynamic law. This dynamic
law may depend on the initial conditions, i.e., on the values
of the continuous variables at the beginning of the evolution
in the state. The discrete jumps from one discrete state to
another are regulated by the so-called activation and reset
conditions. As an example, one may imagine a two-state
hybrid automaton with the states {q1, q2}, with activation
conditions from q1 to q2 (respectively, q2 to q1) given by
inequality relations G12(x) ≥ 0 (respectively, G21(x) ≥ 0).
Furthermore, as the automaton enters these states, it resets
itself to some values, say x1 in the state q1 and x2 in state
q2. Starting from this skeletal description of the automa-
ton’s “discrete” behavior, the complete description augments
it with more details about what transpires between the dis-
crete switches: namely, how the automaton evolves in each of
these states according to a continuous dynamics that is then
described by flow and invariant functions: namely, ẋ = fi(x)
and gi(x) > 0 for state qi. Thus this automaton may start
in state q1 with a value x1 and evolve continuously for a
period according to the local flow described by f1(x), while
constrained to the subspace whose boundary is defined by
g1(x), until the activation condition G12(x) ≥ 0 triggers an
instantaneous jump to state q2. In the new state, it con-
tinues according to different flow and invariant rules for the
next period before jumping back to q1. A classical exam-
ple of a hybrid automaton may be provided by a thermo-
stat that maintains a room temperature in the range [15◦C,
20◦C]. The thermostat switches back and forth between two
states qoff and qon depending on whether the room is cold
or hot. If the room is cold (x < 15◦C) then the heat must
be turned on, and the temperature will increase according
to the law ẋ = kh − krx. On the other hand, If the room is
hot (x > 20◦C) then the heat must be turned off, and the
temperature will decrease according to the law ẋ = −krx.
The reset and invariant conditions are the obvious ones. I
will next describe these same ideas bit more formally.

Let L be a first-order language over the reals andM be a
model of L. In the following definition, it will be implicitly
assumed that Inv , Dyn, Act and Reset are formulæ of this
first-order language L.

Definition 4.1 (Hybrid Automaton) A hybrid automa-
ton (of dimension k) H = 〈Z, Z ′, V, E, Inv, Dyn, Act,
Reset〉 (over M), consists of the following components:
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1. Z = (Z1, . . . , Zk) and Z ′ = (Z ′
1, . . . , Z

′
k) are two vectors

of variables ranging over the reals, R;

2. 〈V , E〉 is a finite directed graph; the vertices of V are
called locations, or control modes, the directed edges in
E, control switches;

3. Each v ∈ V is labeled by the two formulæ Inv(v)[Z] and
Dyn(v)[Z,Z ′, T ] such that if Inv(v)[p] holds (in M),
then Dyn(v)[p, p, 0] holds as well;

4. Each e ∈ E is labeled by the formulæ Act(e)[Z] and
Reset(e)[Z,Z ′]. 2

The formulæ Inv(v)[Z] and Dyn(v)[Z,Z ′, T ] are said in-
variant of v and dynamics of v, respectively, while Act(e)[Z]
and Reset(e)[Z,Z ′] are called activation of e and reset of e,
respectively. Moreover, if a reset does not depend on Z, then
it is said to be a constant reset .

From such formulæ one can define the formula
Reset(e)[Z]

def
= ∃Z ′ Inv(v)[Z ′]∧Act(e)[Z ′]∧Reset(e)[Z ′, Z]∧

Inv(u)[Z], where e = 〈v, u〉.
Henceforth, one may simply write A(e), andR(e) to mean

Sat(Act(e)), and Sat(Reset(e)), respectively.
In the above definition, instead of using the classical ap-

proach based on differential equations to define the flow, one
may use the formulæ in DynSet to describe the continuous
evolution without using derivatives. (See [14] and also [56]).
This simplification allows such hybrid automata to general-
ize several recently discovered notions in this theory. For
instance, this step allows treatment of o-minimal hybrid au-
tomata [56, 14] as a special case of the resulting automata,
and map rectangular hybrid automata [72, 41, 54] into a
subclass of the earlier definition.)

On occasion, one may wish to simply express hybrid
automaton dynamics using differential expressions (either
equations or inclusions). Let R be a function assigning to
each vertex v ∈ V a system of differential inclusions (that
can become a system of differential equations, as a particular
case). I will occasionally use the notation H = 〈Z, Z ′, V , E ,
Inv , R , Act , Reset〉 instead of H = 〈Z, Z ′, V , E , Inv , Dyn,
Act , Reset〉 to denote the fact that, for each vertex v ∈ V ,
the formula Dyn(v)[Z,Z ′, T ] corresponds to the solution of
the differential inclusions R (v) when the starting point is Z.

4.2 Semantic Structure: Reachability and

Beyond

A suitable formalization of the semantics of hybrid automata
is built upon the concepts of hybrid automaton’s states and
trajectories (traces).

Definition 4.2 (States) Let H be a hybrid automaton
(over M) of dimension k. A state q of H is a pair 〈v, r〉,
where v ∈ V is a location and r = (r1, . . . , rk) ∈ R

k is an
assignment of values for the variables of Z. A state 〈v, r〉 is
said to be admissible, if Inv(v)[r] holds in M. 2

Dynamics of a hybrid automaton can then be described
via sequences of transitions from one state of the automaton
to another. Hybrid automata have two kinds of transition
(and reachability) relations: continuous transition (reach-
ability) relations, capturing the continuous evolution of a
state according to both formulæ Dyn(v) and Inv(v), and
discrete transition (reachability) relation, capturing changes
of location driven by the formulæ Reset(e) and Act(e). More
formally, the semantics of our hybrid automata is described
as follows.

Definition 4.3 (Hybrid Automaton - Semantics) Let
H be a hybrid automaton (over M) of dimension k. The

continuous reachability transition relations
t
−→C between

admissible states is defined as:

〈v, r〉
t
−→C 〈v, s〉 ⇐⇒

there exists f : R≥0 → R
k continuous function

such that r = f(0), s = f(t), and for each t′ ∈ [0, t]

the formulæ Inv(v)[f(t′)] and Dyn(v)[r, f(t′), t′] hold

in M. f is called flow function.

The discrete reachability transition relation
e
−→D, where e ∈

E, between admissible states is similarly defined as:

〈v, r〉
〈v,u〉
−−−→D 〈u, s〉 ⇐⇒

〈v, u〉 ∈ E and the formulæ Inv(v)[r], Act(〈v, u〉)[r],

Reset(〈v, u〉)[r, s], and Inv(u)[s] hold in M. 2

I will also use the notation ℓ
λ
−→ ℓ′ to indicate that either

ℓ
λ
−→C ℓ′, if λ ∈ R≥0, or ℓ

λ
−→D ℓ′, when λ ∈ E .

Example 1 Let H be a hybrid automaton with V = {v},
E = {〈v, v〉}, and in which Dyn(v)[Z,Z ′, T ] is Z ′ = eT ∗ Z,
Inv(v)[Z] is 1 ≤ Z ≤ e2, Reset(e)[Z,Z ′] is Z ′ = 1, and
Act(e)[Z] is 4 ≤ Z ≤ e2. One may choose the following tran-

sition sequence tr as valid for H : 〈v, 1〉
2
−→C 〈v, e

2〉
〈v,v〉
−−−→D

〈v, 1〉. If, now, one defines another automaton H ′, by modi-
fying only the invariant formula Inv(v)[Z] of H to change to
1 ≤ Z < e2, then by the semantics proposed in [44, 58], tr is
still valid for H ′, while it is no longer valid by our semantics.
Note that 〈v, e2〉 is not a valid state since Inv(v)[e2] is now
false, and is not admitted in a trace in the way I have defined
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it. Except for few subtle differences such as this, I have oth-
erwise closely followed the classical definition through out
this paper. 2

Without loss of generality, I focus only on hybrid automata
whose formulæ are satisfiable. For this reason, one can safely
omit any mention of the model over which the automaton
is constructed or to the dimension of the automaton, except
when it is ambiguous in the context.

Definition 4.4 (Trace) Let H be a hybrid automaton, ℓ be
an admissible state of H, and let J ⊆ N be an initial segment
of N (|J | > 1).

A trace of H is a sequence (ℓj)j∈J of admissible states
such that:

1. for all j ∈ J \ {0} ℓj−1
λ
−→ ℓj;

2. for all j ∈ J \ {0, 1} there exist e in E such that either

ℓj−2
λ
−→ ℓj−1

e
−→D ℓj, or ℓj−2

e
−→D ℓj−1

λ
−→ ℓj,

where λ ∈ E ∪ R≥0. 2

At this point, a couple of remarks are in order:

Remark 4.1 Condition 2 in the above definition admits a
notion of hybrid trace analogous to the notion of trajec-
tory defined in dynamical systems; without such a condi-
tion, a transitive dynamics must be assumed. Consider,
for instance, the dynamics Dyn(v)[Z,Z ′, T ] defined as Z ′

1 =
T +Z1∧Z

′
2 = T 2+Z2, with Z = (Z1, Z2) and Z ′ = (Z ′

1, Z
′
2).

Intuitively, one does not expect to admit a trajectory from
(0, 0) passing through (4, 8), satisfying Dyn. However, with-

out Condition 2, 〈v, (0, 0)〉
2
−→C 〈v, (2, 4)〉

2
−→C 〈v, (4, 8)〉

would be a legal trace from 〈v, (0, 0)〉 passing through
〈v, (4, 8)〉. 2

Remark 4.2 There can exist traces which do not spend
much time in continuous evolution and, in fact, time does
not even advance on them. Hybrid automata admitting such
traces are called Zeno hybrid automata. Since allowing such
systems in defining models of systems biology may lead to
counter-intuitive conclusions, special care is called for in such
situations. 2

I will now formally describe the notion of reachability.

Definition 4.5 (Hybrid Automaton - Reachability)
Let H be a hybrid automaton of dimension k. A point
r ∈ R

k reaches a point s ∈ R
k (in time t) if there exists

a trace tr = 〈v, r〉, . . . , 〈u, s〉, for some v, u ∈ V (and
t is simply the sum of the elapsed times in continuous
transitions).

We use ReachSet (r) to denote the set of points reach-
able from r. Moreover, given a region R ⊆ R

k we use
ReachSet (R) to denote the set ∪r∈RReachSet (r). 2

A näıve approach to compute reachability relation may
involve simply iterating over the computation of points lo-
cally reachable through continuous and discrete transitions.
Unfortunately, this procedure is not effective in general, as it
immediately faces two difficulties: namely, transitions might
be characterizable only by undecidable formulæ; or even
when single transitions are computable, the global proce-
dure may not be guaranteed termination. Other attempts,
for instance, the following fix-point result, defined in terms
of certain computable “forward time closure operators,” 〈·〉

→

and [·]
→

, and presented in [3] by Alur et al., suggest com-
putable algorithms for reachability, only in certain simple
situations.

Proposition 4.1 Let H be a hybrid automaton and R be a
H’s region. The reachable region ReachSet ([R]⇓) is least fix
point of the equation:

X =

〈

R ∪
⋃

e∈E

[X ]
→
e

〉→

. 2

More generally, it has been shown in [42] that reachability
is not decidable. Nonetheless, many interesting classes of
hybrid automata over which reachability is decidable have
been characterized in the literature [54, 41, 56, 14]. A com-
mon approach for deciding reachability of hybrid automata
employs the technique of discretising the automata either us-
ing equivalence relations which strongly preserve reachability
(e.g., bisimulation [56]) or using abstractions (e.g., predicate
abstraction [5, 81]). The classes of hybrid automata that
owe their decidability to bisimulation include the following:
timed automata, certain subclasses of rectangular automata,
and o-minimal automata, and are defined as follows.

Both timed and rectangular automata are special cases of
linear hybrid automata, which is not immediately useful as
high-fidelity models in systems biology. For a linear hybrid
automata, its dynamics, invariants, and activation relations
are all defined by linear expressions over the set Z of vari-
ables. For the control modes the dynamics is defined by a
differential equation of the form ż = k, where k is a constant,
one for each variable in Z, and the invariants are defined by
linear equalities and inequalities (corresponding to a convex
polyhedron) in Z. Also, for each transition, the set of re-
set assignments consists of linear formulæ in Z, too. For
automata of these kinds a trace is a piecewise linear func-
tion whose values at the points of discontinuity are finite
sequences of discrete changes. A particularly well-studied,



4 ALGORITHMIC ALGEBRAIC MODEL CHECKING 12

but somewhat artificial, special case of a linear hybrid au-
tomaton is a timed automaton, in which each continuous
variable increases uniformly with time (ż = 1) and mod-
els clocks in asynchronous or self-timed systems. A discrete
transition may either reset or disregard the clock.

A slightly more interesting specialization of a linear hy-
brid automaton, that was mentioned earlier, is a rectangular
automaton. A hybrid automaton is rectangular, if the con-
tinuous dynamics are independent of the control modes and
the variables are pairwise independent. Here, the dynamics
is described by differential inclusions of the form ż = [a, b]
for each variable. The invariant condition and the transition
relation are described by linear predicates that correspond to
hyper-rectangles. For rectangular automata, the reachabil-
ity problem (also the more useful controller synthesis prob-
lem) is decidable, when the mode switches can be assumed
to occur through discrete/integral sampling.

O-minimal systems generalize the systems of hybrid au-
tomata considerably, by allowing much more general classes
of function to describe the dynamics, invariants, and acti-
vation, but constrain the reset operation to constant values.
The decidability has been shown for a very general (some-
what technical) class, describable in the o-minimal theories,
whose definable sets are finite unions of points and inter-
vals (with respect to a linear order relation over its models).
In spite of the technical nature of these definitions, these
automata present a glimpse of what could be attempted in
systems biology models, where discrete mode switches and
differential algebraic equations abound. However, one disap-
pointing limitation (at least from the viewpoint of biological
modelling) is the requirement of constant-reset.

Although at first glance, it may appear that such restric-
tions must necessarily be imposed, if one wishes to achieve
decidability (especially, using bisimulation techniques), for-
tunately, there are still other algorithmic approaches to ex-
plore. For instance, several general and novel techniques
have emerged from the themes of the AAMC-program, in
which computational problems on hybrid automata can be
fruitfully studied via translation of the problems, such as
reachability, into satisfiability of first-order formulæ over de-
cidable theories. In particular, one can make use of the fol-
lowing results (proof omitted).

Theorem 4.1 If a class H of hybrid automata is first-order
definable and its underlying T (M) is decidable, then the
membership problem for a given hybrid automata H is de-
cidable.

Furthermore, if the reachability problem for a given hybrid
automata H is first-order definable and T (M) is decidable,
then the reachability problem for H is decidable. 2

As explained earlier, the ubiquitous tussle between com-
plexity of the system and the ease of analysis continues to
dictate which hybrid automaton subclass will ultimately pre-
vail as most appropriate for which application. For example,
though remarkably efficient verification techniques have been
perfected for Timed Automata [3], the very idea of mod-
elling a biochemical system as a set of well-behaved clocks is
largely untenable. At the other end of the spectrum, detailed
spatio-temporal models at the atomic level, though perhaps
extremely accurate, will leave simulation-based analysis as
the only feasible option.

In [20, 21], we introduced the Semi-Algebraic Constant re-
set Hybrid Automata (SACoRe), which extended O-minimal
automata over the reals, in the case of flows obtained from
non-autonomous systems of differential inclusions. SACoRe
automata were shown to admit decision procedures for reach-
ability and model checking for a limited fragment of CTL,
which they achieved by combining Tarski’s decidability re-
sult over the reals with Michael’s selection theorem. How-
ever, this formalism is still quite restrictive in the biochem-
ical domain as the constant reset requirement that they im-
pose is very limiting. This constraint is rather artificial in
systems biology since, when a biochemical system changes
its “discrete” state, it would be rather unnatural to assume
that the concentrations are reset to constant values. In fact,
the most common result of a state change is no perceptible
transient variation in continuous variables, because of the
underlying thermodynamic model built upon large number
of molecular interactions over a short time interval. In other
words, identity resets are unavoidable, if one wishes to cap-
ture such fundamental aspects of biological state transitions.

For this purpose was introduced a new class of hybrid au-
tomata – Independent Dynamics Hybrid Automata (IDA),
whose characterizing conditions are based upon a decidable
first-order theory over the reals (e.g., (R, 0, 1, +, ∗, =,
<)). The dynamics are solutions of autonomous systems of
differential equations. The reset conditions can be either
constants as in the case of O-minimal hybrid automata [56]
or the identity function. In particular, these models dis-
tinguish independent variables, whose resets are the identity
function, from dependent variables whose resets are constant
functions. The flows and the reset functions of the dependent
variables are allowed to depend on the independent ones, but
not vice versa.

In the most general setting, one cannot impose any bound
on the time interval over which an IDA’s dynamics can
be satisfactorily examined, but one is able to define such
bounds4 for an interesting subclass of IDA, called∞IDA. As

4Most importantly, observe that it is not necessary to explicitly
compute these time bounds, but only to check their existence, again,
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a consequence, reachability is always decidable on∞IDA. In
this manner, IDA automata achieve following two desider-
ata: (1) They extend O-minimal automata to make them
suitable for Systems Biology applications; (2) They re-
strain Semi-Algebraic Hybrid Automata (defined in the first
AAMC paper) and make them more amenable to analysis.
IDA automata accomplish these by exploiting the decidabil-
ity of the first-order theory over which it is defined, and
thus can bound the time interval that must be considered to
solve a reachability problem as well as prove the decidability
of reachability. When the IDAs of interest are defined on
the first-order theory (R, 0, 1, +, ∗, =, <), our approach
exploits Tarski’s result and quantifier elimination to charac-
terize reachability.

The reachability problem for hybrid automata is now for-
mulated as follows: given a hybrid automatonH and two for-
mulæ, ι and τ , denoting an initial set of points Sat(ι) ⊆ R

k

and a target set of points Sat(τ) ⊆ R
k respectively, one de-

sires to decide whether there exists a point in Sat(ι) which
reaches a point in Sat(τ).

In the IDA class of hybrid automata, the components of
Z can be partitioned into two sets: the independent and the
dependent variables. I will denote by X the vector of in-
dependent variables which maintains the same component
ordering of Z. Similarly I will indicate with Y the vector
of dependent variables and with X ′ and Y ′ the primed ver-
sion of X and Y respectively. The independent variables are
never reset and their dynamics are the same in all the loca-
tions. This condition is similar to that used in rectangular
initialized hybrid automata (see [41, 54]).

Moreover, one needs to impose conditions that will ensure
the existence of a minimum amount of time, which has to be
spent in a location between two jumps. In particular, I will
require that the invariants are closed and bounded, and that
the distance between reset and activation regions assumes a
positive value.

In condition 3 of the definition, I will need that the in-
dependent variables which are not reset have the same dy-
namics in each location. The reset and the dynamics of the
dependent variables may have to be determined by the in-
dependent variables.

For this last condition, I need to consider a norm ‖ · ‖ on
R

k, and the induced distance d(·, ·) between subsets of R
k

defined as d(A,B) = inf{‖a− b‖ | a ∈ A and b ∈ B}. From
now on, two edges e and e′ will be said to be subsequent if
the target node of e is the source node of e′.

Definition 4.6 (Independent Dynamics Automata)
A hybrid automaton H is an independent dynamics

by solving a satisfiability problem.

automaton, or simply an IDA, if:

1. H is defined over a decidable theory over the reals;

2. For each pair of subsequent edges e and e′ following
holds: d(R(e),A(e′)) > 0;

3. The vector Z of variables can be partitioned into two
vectors X (independent variables) and Y (dependent
variables) such that:

(a) for each e ∈ E Reset(e)[Z,Z ′] is of the form (X ′ =
X) ∧ σ(e)[Z, Y ′];

(b) for each v ∈ V Dyn(v)[Z,Z ′, T ] is of the form
(X ′ = fi(X,T )) ∧ (Y = fd(v)(Z, T )).

4. The set of values p ∈ R
k satisfying Inv(v)[Z] is closed

and bounded for each v ∈ V. 2

Example 2 Consider the hybrid automaton H = (Z, Z ′,
V, E, Inv, F , Act, Reset) such that: The dimension, k of
the automata is 2; The discrete projection 〈V , E〉 is illus-
trated in Figure 1; The formulæ Inv(v1)[Z], Inv(v2)[Z] and
Inv(v3)[Z] are equal to Z2 ≥ (Z1)

2 ∧ Z2 ≤ 100; the remain-
ing formulæ defining the automaton are:

Dyn(v1)[Z,Z
′, T ] ≡ Z ′

1 = 2(T )3 + Z1 ∧ Z ′
2 = −3T + Z2

Dyn(v2)[Z,Z
′, T ] ≡ Z ′

1 = −(T )2 ∧ Z ′
2 = −3T + Z2

Dyn(v3)[Z,Z
′, T ] ≡ Z ′

1 = 2(T )3 + Z1 ∧ Z ′
2 = −3T + Z2

Reset(e1)[Z,Z
′] ≡ Z ′

1 ≤ 8 ∧ Z ′
2 = Z2

Reset(e2)[Z,Z
′] ≡ Z ′

1 = Z1 ∧ Z ′
2 = Z2

Reset(e3)[Z,Z
′] ≡ Z ′

1 = Z1 ∧ Z ′
2 = Z2

Act(e1)[Z] ≡ Z2 > 5
Act(e2)[Z] ≡ Z1 ∧ Z2 ≥ 0

Act(e3)[Z] ≡ (Z1)
2 + (Z2 − 5)2 ≤ 8

The automaton H is an IDA. 2

v1 v3v2
e2e1 e3

Figure 1: The discrete component of the Example 2.

It is not difficult to extend our class of automata by allow-
ing different partitioning of the variables depending on the
topology of the discrete structure. However, such an exten-
sion would involve many tedious technical details, which is
preferably omitted in this short review.

Various questions about the power of IDAs can be found
in [19]; I refer the interested readers to this paper and its
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sequels. But I will conclude this section with the following
useful positive result.

Consider a class of automata over which an effective (ter-
minating) algorithm can be devised to test reachability (see
algorithm in [19]).

Definition 4.7 (∞IDA) Let H be an IDA. H is said to
be in the class ∞IDA if and only if for each edge e = 〈v, v′〉
of H it holds that fv is continuous on R

k ×R
+ and for each

p ∈ I(v) it holds that limt→+∞ ‖fi (p, t) ‖ = +∞. 2

Only some of the components of p are used in fi (p, t), i.e.,
only the components of p corresponding to the independent
variables.

Theorem 4.2 Let H be an ∞IDA, ι and τ be two formulæ.
The algorithm in [19] can be used to decide whether in H
Sat(ι) can reach Sat(τ). 2

A few remarks are in order, especially in the context
of classes of automata that my research group introduced
in [19, 20, 21] in its effort to discover the right formalisms
to take us beyond the linear hybrid systems. These, unlike
many of the earlier generalizations, do not admit finite bisim-
ulation quotients (a default approach of attack in this area).
However, since for these automata, it is possible to define
a translation from temporal formulae (a fragment of CTL)
into first-order formulae over the reals, they permit effective
model checking procedure—a property of enormous value in
computational systems biology. In a following section, I will
touch on some questions related to model checking and hy-
brid automata.

However, before leaving this section, I wish to highlight
two questions in this area that are likely to grow in impor-
tance: (1) In systems biology, model checking methods for
modular and hierarchical described hybrid models will need
to be developed. However, it appears that decidability in a
class of hybrid automata does not imply a similar decidabil-
ity result for models constructed by the composition of mem-
bers (Cartesian product) of the class. This apparent lack of
a closure property is at a first glance rather bewildering, but
could be intuitively explained by the difficulty in keeping
track of how the modules within a system remain synchro-
nized. (See [18].) (2) The second question deals with an
obvious but neglected problem in systems biology: namely,
from where do the hybrid automata come? Thus there is
a need for algorithmic approaches to construct hybrid au-
tomata from experimental data. (See [17].)

4.3 Example

The utility of an IDA model may be demonstrated through
a simple, yet biologically relevant example: namely, the bac-

terial chemotaxis [78, 12]. Escherichia coli has evolved an
extremely effective strategy for responding to a chemical gra-
dient in its environment, by detecting the concentration of
ligands through a number of receptors, and then reacting to
the input signal for driving its flagella motors to alter its
path of motion. E. coli responds in one of two ways: either
it “runs” – moves in a straight line by moving its flagella
counterclockwise (CCW) (typically lasting 1000 ms), or it
“tumbles” – randomly changes its heading by moving its flag-
ella clockwise (CW) (typically lasting 100 s). The response
is mediated through the molecular concentration of CheY
in a phosphorylated form (YP variable in Figure 2), which
in turn is determined by the bound ligands at the recep-
tors that appear in several forms (LT variables in Figure 2).
The ratio of y = YP /Y0 (phosphorylated concentration of
CheY to its concentration in the unphosphorylated form)
determines a bias with an associated probability that flag-
ella will exert a CW rotation; note that, in our example IDA
model (Figure 2), I have simplified this situation by ignoring
this stochastic effect by modelling it deterministically. Thus
the most important output variable is the angular velocity
w that takes discrete values +1 for CW and −1 for CCW.
The more detailed pathway involves other molecules: CheB
(either with phosphorylation or without, Bp and B0), CheZ
(Z), bound receptors (LT ) and unbound receptors (T ), while
their continuous evolution is determined by a set of differen-
tial algebraic equations derived through kinetic mass action
formulation.

This IDA model captures the essence of how an E. coli
cell performs a biased random walk by transiently decreas-
ing its tumbling frequency to move towards a region with
greater ligand concentration. A second feature of this con-
trol is its sensitivity to concentration gradients and its ob-
served dynamic range: rather than responding to absolute
concentrations, the E. coli adapts quickly as it compares its
environment during the immediate past to what existed a
little earlier. Further, it does so over a wide range of input
concentrations. 2

y =
Yp

Y0

> θ ∧ ω′ = +1 ∧ Y ′
P = YP ∧ Y

′
0 = Y0 ∧

B′
P = BP ∧ B

′
0 = B0 ∧ Z

′ = Z ∧ P ′ = P

y =
Yp

Y0

< θ ∧ ω′ = −1 ∧ Y ′
P = YP ∧ Y

′
0 = Y0 ∧

B′
P = BP ∧ B

′
0 = B0 ∧ Z

′ = Z ∧ P ′ = P

ω = −1

ẎP = kyP (Y0 − YP )− k−yZYP

ḂP = kbP (B0 −BP )− k−bBP

P = LT2p + LT3p + LT4p+

T2p + T3p + T4p

ω = +1

ẎP = kyP (Y0 − YP )− k−yZYP

ḂP = kbP (B0 −BP )− k−bBP

P = LT2p + LT3p + LT4p+

T2p + T3p + T4p

RUN [CCW] TUMBLE [CW]

Figure 2: An IDA capturing the run-tumble mechanism of
E. coli.
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4.4 Model Checking in Systems Biology

While reachability analysis hints at the basic automated rea-
soning capability needed in systems biology, and rightfully
occupies a pivotal role in reasoning about complex biological
systems, it must also be abundantly clear to the reader that
there exists a still bigger class of pertinent biological queries,
statements and hypotheses that remain beyond the grasp of
reachability. A semantically rich language for this purpose
can be fashioned with the aid of a rather simple proposi-
tional temporal logic, which could in principle extend the
techniques explored so far.

As examples of some straightforward biological property
queries that occur naturally in the emerging field of compu-
tational systems biology, one may list the following: safety
analysis, sensitivity analysis, robustness (both local and
global) analysis, steady state or homeostasis properties, flux-
balance analysis, etc.

For instance, one may consider the following model check-
ing problem centering around verification of safety proper-
ties : given a biological system (e.g., encoded by a hybrid
automaton H) and a safety property φ, one may wish to test
whenever φ holds along all of H ’s trajectories. Since this is
the case if and only if there is no reachable state in which φ
does not hold, the verification of safety properties naturally
reduces to the reachability problem. But, this situation rep-
resents an exception and not the rule, since evidently not all
the properties of interest can be so easily translated to the
reachability problem. Thus one must explore the situation
for the most general classes of queries in the temporal logic
of choice.

In a simpler setting, one may desire to represent biological
systems as transition systems and apply classical model
checking techniques (see e.g., [26]). As an example, consider
the following example of robustness analysis of a model,
representing the purine metabolism pathway. The main
metabolite in purine biosynthesis is 5-phosphoribosyl-α-
1-pyrophosphate (PRPP). A linear cascade of reactions
converts PRPP into inosine monophosphate (IMP). IMP is
the central branch point of the purine metabolism pathway.
IMP is transformed into AMP and GMP. Guanosine,
adenosine and their derivatives are recycled (unless used
elsewhere) into hypoxanthine (HX) and xanthine (XA).
XA is finally oxidized into uric acid (UA). In addition to
these processes, there appear to be two “salvage” pathways
that serve to maintain IMP levels and thus adenosine and
guanosine levels as well. In these pathways, adenine phos-
phoribosyltransferase (APRT) and hypoxanthine-guanine
phosphoribosyltransferase (HGPRT) combine with PRPP
to form ribonucleotides. This pathway is believed to be
extremely robust—not just to small perturbations, but sig-

nificant and repeated perturbations to the input signal. In
a branching time propositional temporal logic (e.g., CTL),
one could formulate a query that would ask the model
checker if the following formula is true (in a discretized
simulation-preserving model):
Always (PRPP > 50 * PRPP1)

implies

steady state()

and Eventually(IMP1 > IMP2)

and Eventually(HX < HX1)

and Eventually(Always(IMP = IMP1))

and Eventually(Always(HX = HX1))

However, when this particular query was examined with
NYU’s Simpathica/XSSYS tool, it was determined to be
false, but pointed to certain incompleteness in the path-
way representation of a commonly accepted model (shown
in Figure 3). When the pathway representation was aug-
mented with additional back-up reactions (already known in
the literature), the robustness query turned out to be true,
as determined by the same model checker.

Note, however, that, in general, hybrid automata have in-
finite state systems and the standard model checking tech-
niques, which work on finite state models, fail. To solve this
problem, many authors have suggested the use of equiva-
lence reductions based on relations such as bisimulation. In
particular, since bisimulation preserves branching-time tem-
poral logics such as CTL and CTL*, whenever the bisimu-
lation quotient of a system is finite, one could verify CTL
and CTL* properties of the system by applying finite model
checking techniques on its bisimulation quotient. Obviously,
bisimulation has the advantage of preserving more expressive
logics, but in many cases it produces infinite quotients. On
the other hand, one may choose to use the simpler simulation
relations mutatis mutandis. However, note that simulation
preserves less expressive logics, while being more permissive
as it can reduce a significantly larger class of automata to
finite state models.

Furthermore, since on a single hybrid automaton one can
consider both timed and untimed semantics, one can com-
pute (bi)simulation on both of them. For these reasons, one
must distinguish between the so called timed-abstract simu-
lations/bisimulations, computed on the untimed semantics,
and the timed simulation/bisimulation, evaluated on timed
semantics.

While there are many versions of timed-semantics, with
their individual quirks and idiosyncrasies, a particularly el-
egant formulation is given via TCTL.

Definition 4.8 TCTL[2] It has the following syntactic
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Figure 3: The pathway above depicts the classical (but
incomplete) model of purine metabolism. Using Simpath-
ica/XSSYS Systems Biology tools, one can automatically
create a discretized model and perform model checking on
the resulting automaton to show that the model fails to sat-
isfy a particular temporal logic formula, encoding global ro-
bustness. This reasoning process and manipulations with
model checking tools pointed to a more complete model that
does satisfy the robustness formula.

structure:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1∃Uφ2 | φ1∀Uφ2 | z.φ.

Its associated semantics is described below:

• z.: The freeze quantification “z.” binds the associated
variable z to the current time. Thus the formula z.φ(z)
holds at time t iff φ(t) does.

• φ1∀Uφ2 and φ1 ∃U φ2: universal (on all paths) and
existential (on at least one path) “until” operators. For
φ1 U φ2 to be true on a path, φ2 is required to be true
somewhere along the path, and φ1 is required to be true
all along the path up to (but not necessarily at) that
point. 2

Remark 4.3 The basic notations are often extended by the
following syntactic abbreviations [2].

1. p ∃U≤max q ≡ p ∃U (q ∧ z.(z ≤ max )) and
p ∀U≤max q ≡ p ∀U (q ∧ z.(z ≤ max )): “subscripted”
Until operators (max is the time-bound).

2. (∀F p ≡ true ∀U p) and (∃F p ≡ true ∃U p: “even-
tuality” operators.

3. (∀G p ≡ ¬∃F¬p) and (∃G p ≡ ¬∀F¬p): “invariance”
operators.

Definition 4.9 Single-Step Until Operator, ⊲, [43].
The formula p⊲q holds if p∨q is true all along “one step” of
the hybrid system and q is true at the end of the transition.
2

Definition 4.10 Tµ-Calculus Syntax: [43]. φ ::=
X | p | ¬φ | φ1 ∨ φ2 | φ1 ⊲ φ2 | z.φ | µX.φ, where µ is
the least-fixpoint operator5. Thus,

• Existential Until: p ∃U q = µX.(q ∨ (p ⊲ X))

• Universal Until6: p∀Uq = ¬(¬q ∃U (¬p ∧ ¬q)) 2

In addition to using this logic to answer a particular in-
stantiation of a biological model (e.g., with fixed values of
system parameters), one may wish to engineer it appropri-
ately to provide symbolic model checking facilities (e.g., the
system parameters are treated as symbolic variables, and it
is sought to determine various “equational relations” among
these variables in order for the biological system to satisfy
certain TCTL formulae). In other words, one seeks to devise
algorithmic algebraic solutions to various kinds of queries
(in TCTL) to examine interesting properties and invariants
about the hybrid automata that model biochemical systems.
As one would expect, the simplest and perhaps the most im-
portant question that one could ask about these systems is
the symbolic state reachability problem: namely, can one
reach a particular state from an initial state by following the
dynamics of the hybrid automaton which may be described
symbolically? For instance, a very relevant biological ques-
tion would be to provide a symbolic description of the initial
conditions (states) from which the biological system (mod-
eled symbolic algebraically) can reach a desired state (say,
apoptosis state for a cancer cell), or avoid certain unsafe
states. In this sense, algebraic descriptions of this form in
systems biology can be a potent tool, and need focused atten-
tion. We, as well as others, have made some progress by ex-
ploiting approximations, bounded reachability analysis, etc.
or by suitably constraining the power of the family of hybrid
automata studied [69, 67, 65, 20, 21, 19, 64, 66, 63, 16]. But
much remains to be done!

5The greatest-fixpoint ν can be expressed as ¬µX.(¬φ[X := ¬X]).
6This translation is valid only when q is “finitely variable” over all

premodels [43].
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5 Historical and Bibliographic

Notes

Since computational systems biology attempts to create a
consilience of many different scientific fields, it must re-
spond to the diverse styles, traditions, and history. What
I provide below is a Cook’s tour of that history without
any pretense of completeness. One may rightfully argue
that the present renaissance in computational systems bi-
ology owes great debts to the seminal paper of Watson and
Crick [87, 86] and then the efforts that went into sequenc-
ing genomes of a diverse group of organisms, starting with
the human genome project [15]. At present, it is possible to
access and study, in great details, the genomes of a plethora
of organisms: By the end of 2001, there existed assem-
bled sequence data for H. influenza, E. coli, and thirty-nine
other bacteria, S. cerevisiae, C. elgans, D. melanogaster,
A. thaliana and a rough draft for H. sapiens [37, 49]. Sub-
sequently, many more genomes were sequenced and became
publicly available for further analysis. At present, this list
includes: human (appearing on the covers of Science [49] and
Nature [37]), chimpanzee, dog, chicken, rat and mouse (on
covers of Nature [80, 50, 48, 29, 28], respectively), mosquito
and fly (on covers of Science [73, 60], respectively), malaria
parasite and slime mold (Nature [62, 55], respectively), etc.
Computational approaches were developed to annotate genes
and their regulators, as well as to compare orthologous
genes across the species. These studies gave rise to the
field of functional genomics and a qualitative version of sys-
tems biology [10]. Researchers were able to combine var-
ious “omics” (genomics to study genomes, transcriptomics
to study RNA abundance, proteomics to study protein, reg-
ulomics, metabolomics, etc.) to piece together a picture of
the tangled network of how these discretised elemental ob-
jects of molecular biology may be modelled to influence each
other. The asymptotic topological structures of these net-
works and many over-abundant motifs they contained turned
out to be exceptionally fascinating. They hinted not only at
the elegance of the nature’s solution at a static level, but also
at the exquisite beauty of the evolutionary dynamics which
sculpted these bio-chemical networks, it seemed appropriate
that the field of systems biology should turn its attention
to a quantitative analysis of these systems as various bio-
molecules interact within and across the cells—usually, cat-
egorized into three classes: regulatory, metabolic and signal-
transduction pathways. The goal of this emerging field be-
came a better understanding of the foundational design prin-
ciples that persisted across the evolutionary scales. In this
setting, systems biology discovered its roots in quantitative
modelling of enzyme kinetics, a discipline that flourished be-

tween 1900 and 1970, but also in the simulations developed
to study neurophysiology, the control and communication
theories, and game theory. A particularly interesting ap-
proach to understand the tangles of biochemical reactions
came from the formalisms of S-system and its extensions to
XS-systems [84, 83, 8]. The complex networks of biochem-
ical reactions could then be created out of elemental reac-
tions such as: reversible and irreversible reactions, synthesis
and degradation reaction (possibly, involving stoichiometric
constraints) and enzyme or enzyme-coenzyme based reac-
tions. Of course, such modules could then be abstracted
at different levels of hierarchy and composed to create a
hierarchical modular structure. Other approaches focusing
on SBML [46] (Systems Biology Markup Language) and re-
lated, SBW (Systems Biology Workbench) also have become
widely influential, because of the ease with which they could
be used by working biologists.

The catalytic model of gene activation by transcriptional
activators (either protein or micro-RNA factors) played a
crucial role in genetic regulatory models and the result-
ing systems of ordinary differential reactions employed by
systems biology. These models closely followed the clas-
sical Michaelis-Menten equations and its generalization in
the form of Hill’s equations. The word catalyst was coined
in 1836 by the Swedish chemist Jöns Jakob Berzelius, who
collected a number of examples of catalysis. In 1892, the
British chemist Adrian Brown, had studied the rate of fer-
mentation of sucrose in the presence of yeast to discover
that the rate primarily depended on the invertase molecules
that formed a complex with the sucrose, and had been influ-
enced by the work of Cornelius O’Sullivan, Frederick Tomp-
son (1890) and Charles Wurtz (1880). Along the way, the
field has been invigorated by several seminal discoveries, as
listed below: Fischer’s “lock and key hypothesis” of 1894
(specificity of enzyme action, explained in terms of the pre-
cise fitting together of enzyme and substrate molecules);
Victor Henri’s 1903 research elucidating relationship be-
tween substrate and enzyme concentration; work of Leonor
Michaelis and Maud Menten (1913), following earlier work
by Archibald Hill, where kinetic consequences of an enzyme-
substrate complex was used to give a precise formulation of
Michelis-Menten Equation; finally, a more general formula-
tion (of the Michaelis-Menten equation) by George Briggs
and the British geneticist John Burdon Sanderson (J.B.S.)
Haldane (in 1925).

The modern systems biology is often argued to have been
an intellectual descendant of general systems theory, origi-
nally proposed by Ludwig von Bertalanffy. Some of the key
steps in the metamorphosis of general systems theory into
the present-day systems biology include the following: Work



5 HISTORICAL AND BIBLIOGRAPHIC NOTES 18

of the British neurophysiologists Alan Hodgkin and Andrew
Huxley (1952) on a mathematical model of the action po-
tential propagating along the axon of a neuronal cell; Denis
Noble’s (1960) computer model of a beating heart; devel-
opment in the 60s and 70s of several approaches to study
complex molecular systems, such as the Metabolic Control
Analysis (MCA) and the Biochemical Systems Theory; many
successes of molecular biology throughout the 80s, (although
hindered by a skepticism toward theoretical biology that
then promised more than it achieved); the birth of func-
tional genomics in the 90s with accompanying large quantity
of good quality data; Masaru Tomita and his group’s (1997)
quantitative model of the metabolism of a whole (hypothet-
ical) cell, and creation of (around the year 2000) institutes
and departments of Systems Biology in Seattle, Tokyo and
Boston. Systems Biology may have finally found acceptance
as a movement in its own right, spurred on by the comple-
tion of various genome projects, the large increase in data
from the omics (e.g. genomics and proteomics) and the ac-
companying advances in high-throughput experiments and
bioinformatics.

The field of model checking is likely to assume as impor-
tant a role in systems biology as it is currently playing in
many engineering and computational areas; this field is much
younger but possesses an interesting history. Model check-
ing, as a tool for systems verification, was proposed as an
alternative to automatic proof-theoretic approaches, which
are “in general quite tedious” and require “a good deal of
ingenuity ... to organize the proof in a manageable fashion
(Emerson and Clarke 1981 [27]).” These highly practical and
popular techniques are used to “mechanically determine if
the system meets a specification expressed in propositional
temporal logic.” It has been shown, through ample exam-
ples, that model checking enjoys many advantages over its
rivals: namely, it requires no proofs; it is fast (compared to
other rigorous methods); it produces diagnostic counterex-
amples if the system’s “real” behaviour does not match the
believed (specified) behaviour; it is not hampered by partial
specifications; and its underlying logics can easily express
main properties of interests in many domains of application.

In parallel to the work of Clarke et al. and Pnueli et al.,
there have appeared several techniques that share a com-
mon philosophy in their approach to the problem of reason-
ing about large complex systems: namely, the independent
work of Tadeo Murata and Kurt Jensen on Petrinet tools
(late 70s); Gregor Bochmann’s work on Protocol Verifica-
tion (1978) as well as the work of Holzman also on Protocol
Verification, (1978-79).

The interest in temporal logic as a language for specify-
ing computational protocols and programs date back to the

mid seventies: e.g., the work of Burstall (1974), of Kroeger
(1977), and of Pnueli (1977), all proposing temporal logic for
reasoning about computer programs. However, Amir Pnueli
first used temporal logic for reasoning about concurrency,
as he proved program properties from a set of axioms that
described the behavior of the individual statements. The
method was extended to sequential circuits by others (e.g.,
Bochmann in 1982 and Owicki and Malachi in 1981). In
1981, Edmund Clarke and E. Allen Emerson wrote an in-
fluencial paper (“ Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic.” Logics
of Programs Workshop, Yorktown Heights, New York, May
1981, LNCS 131) showing that their temporal logic model
checking algorithms allowed this type of reasoning to be au-
tomated. The success of this approach can be attributed to
the simple fact that “Checking that a single model satisfies a
formula is much easier than proving the validity of a formula
for all models.” Their algorithm was practical (with poly-
nomial time complexity). In mid 80’s, the present author
and Edmund Clarke showed its use for Hardware Verification
(and discovered a thorny hardware bug in a published cir-
cuit designed by Charles Seitz to implement a FIFO Queue
in hardware).

Another innovation, with a high practical payoff, in some
of the early model checkers (e.g., CMU’s Extended Model
Checker (EMC)) was the facilities for giving counterexam-
ples for universal CTL (computational tree logic) proper-
ties that were false or witnesses for existential properties
that were true. This was added by Michael Browne in
1984 to an enhanced implementation, called the MCB model
checker. Further enhancements include: Automata Theo-
retic Techniques of Aggarawal, Kurshan and Sabnani (1983),
also explored in David Dill’s Thesis (1987), and by Har’El
et al. (1990); and two major breakthroughs in the field
in the form of “symbolic model checking” techniques due
to two teams of researchers, Coudert, Berthet, and Madre
(1989) and Burch, Clarke, McMillan, Dill, and Hwang (1990)
and the “partial order reduction” techniques due to Valmari
(1990), Godefroid (1990) and Peled (1994).

However, the field is far from mature, as it still needs to
deal with many problems that arise naturally in very com-
plex systems as those appearing in biology. There is a strong
impetus to explore non-traditional techniques: namely, tech-
niques based on (i) compositional reasoning, (ii) abstraction,
(iii) symmetry reduction, and (iv) induction and parame-
terized verification. New model checking techniques have
pushed the field in novel directions: timed and hybrid au-
tomata (a topic likely to be very important to systems biol-
ogy), bounded model checking, localization reduction, com-
positional model checking and learning, and infinite state
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systems. The field continues to grow in momentum, as many
of its early practitioners begin to be recognized for the field’s
impact 7

A rigorous attempt to create tools for systems biology
would most likely depend on various algebraic techniques:
both from commutative as well as differential algebra. These
techniques must be effective (i.e., algorithmic) and efficient
(i.e, have low computational complexity) in order for the
tools to be practical, rigorous and scalable. Interestingly, the
history of algorithms and algebra is somewhat intertwined:
Abū ’Abd Allāh Muhaammad ibn Mūsā al-Khwārizmī (780-
850 AD), a mathematician in the court of Caliph Harun Al
Rasid of Abassid Dynasty, is credited as the father of both
of these subjects. Two of his books, Al-Kitab al-Mukhtasar
fi-hisab al-Jabr al-Muqabalah (Algebra) and Kitab al-Jam’a
wal-Tafreeq bil-Hisab al-Hindi (Algorithm), established the
foundations for these two fields. The later of the two, trans-
lated into Latin in the twelfth century, as Algoritmi de
numero Indorum, and incorporating many of the ideas in
Aryabhatta’s Siddhanta (also translated by al-Khwārizmī
into Arabic as SindHind) created a revolutionary amalga-
mation of Indian and Greek mathematics

Soon after that, the field of algebra saw a profusion of
breakthroughs; a short list of some of the important mile-
stones in the history of algebra would include: circa 850:
Persian mathematician al-Mahani conceived the idea of re-
ducing geometrical problems such as duplicating the cube to
problems in algebra; circa 850: Indian mathematician Ma-
havira solved various quadratic, cubic, quartic, quintic and
higher-order equations, as well as indeterminate quadratic,
cubic and higher-order equations; circa 990: Persian Abu
Bakr al-Karaji, further develops algebra by replacing ge-
ometrical operations of algebra with modern arithmetical
operations, and defining the monomials; circa 1050: Chi-
nese mathematician Jia Xian discovered numerical solutions
of polynomial equations; circa1072: Persian mathematician
Omar Khayyam developed algebraic geometry and, gave a
complete classification of cubic equations; circa 1114: In-
dian mathematician Bhaskara, in his Bijaganita (Algebra),
solved various cubic, quartic and higher-order polynomial
equations, as well as the general quadratic indeterminant
equation; circa 1202: Leonardo Fibonacci of Pisa through
his work Liber Abaci introduced the subject to Europe; circa
1300: Chinese mathematician Zhu Shijie created polynomial
algebra, and solved simultaneous equations etc.; circa 1400:
Indian mathematician Madhava of Sangamagramma gave it-

7For instance, in recognition of model checking’s impact on both the-
oretical and practical computer science, Amir Pnueli, Ed Clarke, Allen
Emerson, Joe Sifakis, Ken McMillan, Randy Bryant, Robert Kurshan,
David Harel, etc. have been awarded some of the highest awards in
computer science (Turing and Kanellakis awards, for instance).

erative methods for approximate solution of non-linear equa-
tions; circa 1545: Girolamo Cardano published Ars magna,
which elucidated Fontana’s solution to the general quartic
equation; circa 1591: Francois Viete developed improved
symbolic notation In artem analyticam isagoge; circa 1682:
Gottfried Leibniz developed his notion of symbolic manip-
ulation with formal rules, called characteristica generalis;
circa 1750: Gabriel Cramer stated Cramer’s rule and stud-
ied algebraic curves, matrices and determinants; circa 1824:
Niels Henrik Abel proved that the general quintic equation is
insoluble by radicals; circa 1832: Evariste Galois developed
Galois theory; circa 1950: Tarski gave a decision method for
elementary algebra and geometry, for which the first elemen-
tary recursive method was found by Collins using the tech-
nique of Cylindrical Algebraic Decomposition (CAD), with
a better complexity (doubly exponential.) The field of algo-
rithmic algebra that combined computational methods with
algebraic manipulation to analyze systems of algebraic equa-
tions, inequations and inequalities flourished with the de-
velopment of many beautiful algorithms: Buchberger’s algo-
rithm for Gröbnr bases, Ritt’s characteristic sets, Tarski’s al-
gorithm for semi-algebraic geometry, and the methods based
on resultants. As we described, many of these techniques
have begun to influence the development of effective tech-
niques to decide various properties of hybrid automata, and
thus simpler but immensely informative models of biochem-
ical process. The emergence of the field of “Algebraic Bi-
ology” is a first step in combining ideas from algebra, algo-
rithms and automata to provide tools to understand biology
better. This review paper has been inspired by this con-
silience, which has begun to attract practitioners from many
different fields and with many different backgrounds. It is
hoped that these pioneers will build upon the foundations
that is being laid now and create an enduring structure.

6 Challenges of systems Biology

It may be considered premature to attempt listing what
problems would dominate the thinking in this emerging field
for the next few years; nonetheless, we suggest a handful:

1. Problem 1: What are the most important hybrid
systems models for biology?

These models should have many desirable properties:
namely, high fidelity, expressivity, and decidability (and
computational efficiency).

2. Problem 2: How do genotypes determine phe-
notypes?
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We can take the view that the model (e.g., structure
of the hybrid systems and their parameters, which may
be inferred directly from the linguistic patterns in the
genomes) encode the genotypes, where as the temporal
logic formulæ satisfied by the model encode the phe-
notypes. One may then ask: How does biology relate
them? Are there engineering principles governing them?
What properties are important? Are some parameters
more “flexible,” “facilitated” or “robust” than others?
Are there symmetries? Scaling laws? Laws governing
compositionality? Laws governing modularity and hier-
archy? How does evolution control them? What struc-
tural changes can be accomplished by nature? What
selection forces act on them? What invariants are im-
portant to biology? Are there utility functions that are
being optimized? What are they? A similar, but a more
detailed viewpoint, has been expounded by Harel and
Keller[53].

3. Problem 3: How can our understanding of sys-
tems biology lead to designing useful artificial
biological systems?

Can we create ab initio a complete artificial organism?
Can we perturb the properties of an existing cell by
introducing synthesized biological circuits? These ques-
tions will see application of analytical techniques of sys-
tems biology to delineate the engineering design space.

4. Problem 4: How do we build models? What
measurements are important in this process?

Causal models vs. phenomenological models: Will it be
possible now to create a causal model for any biologi-
cal phenomenon, given our cognitive incompleteness of
biological processes? Can we achieve a useful, albeit ap-
proximate, understanding of biology from simpler phe-
nomenological models that may ignore details of many
of the structural properties of models?

5. Problem 5: How can we apply our under-
standing of systems biology to solve important
biomedical problem?

The application areas would involve creation of new
tools for diagnostics and prognostics, drug discovery,
vaccine design, etc. Systems biology models, model
checking and model-based supervisory controller design
could become the basis for rational drug design in the
future.

7 Closing Thoughts

Before closing, a reflection on the nature of scientific dis-
covery is in order. Lest some may mistakenly conclude that
I have argued parochially in favour of theories over exper-
iments (equivalently, Newton over Hooke), I conclude this
review with the following beautiful quote from Hooke:

“So many are the links, upon which the true Phi-
losophy depends, of which, if any can be loose, or
weak, the whole chain is in danger of being dis-
solved; it is to begin with the Hands and Eyes, and
to proceed on through the Memory, to be contin-
ued by the Reason; nor is it to stop there, but to
come about to the Hands and Eyes again, and so,
by a continuall passage round from one Faculty to
another, it is to be maintained in life and strength.”

It is hoped that in the near future we will see the emergence
of the field of systems biology, serving as a strong link be-
tween biological principles and observations— maintained in
life and strength, as Hooke had prophesied!
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