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2 DIMI, Università di Udine, Via delle Scienze, 206, 33100 Udine, Italy
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Abstract. We identify a new class of decidable hybrid automata: namely,
parallel compositions of semi-algebraic o-minimal automata. The class we
consider is fundamental to hierarchical modeling in many exemplar sys-
tems, both natural and engineered. Unfortunately, parallel composition,
which is an atomic operator in such constructions, does not preserve the
decidability of reachability. Luckily, this paper is able to show that when
one focuses on the composition of semi-algebraic o-minimal automata, it
is possible to translate the decidability problem into a satisfiability prob-
lem over formulæ involving both real and integer variables. While in the
general case such formulæ would be undecidable, the particular format
of the formulæ obtained in our translation allows combining decidability
results stemming from both algebraic number theory and first-order logic
over (R, 0, 1,+, ∗, <) to yield a novel decidability algorithm. From a more
general perspective, this paper exposes many new open questions about
decidable combinations of real/integer logics.

Introduction

We wish to suggest a novel algebraic framework for the purpose of study-
ing composition of hybrid automata. In this framework, we exploit various
algebraic techniques (both semi-algebraic geometric and algebraic-number the-
oretic) to provide effective procedures to solve reachability problems for at
least one important class, namely, semi-algebraic o-minimal hybrid automata.
We believe that these techniques are applicable more generally and will mo-
tivate further applications to other classes and subclasses of hybrid-automata.
Our techniques show how to model state-space evolution (as quantified semi-
algebraic formulae) separately from the temporal synchronization (modeled as
a system of linear algebraic Diophantine equations and inequalities) and yet,
seek a combined solution to represent simultaneous arrival at a point in the
product state-space by each individual component automaton. In order to ob-
tain this decidability result, we needed to innovate in at least three different
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areas: to be precise, (1) theory of automata: how to effectively reduce an au-
tomata theoretic problem to an algebraic problem by modeling and by seeking
solutions for algebraic systems described via algebraic geometric and num-
ber theoretic formulations—thus, circumscribing difficulties faced by the usual
finite-quotient-techniques; (2) algorithmic algebra: how to solve a system of
equations and inequalities involving semi-algebraic geometric formulae com-
bined with linear algebraic-Diophantine relations—a rather non-trivial problem
that had remained unsolved till now, except for the special system arising in
case of composition of just two automata (see [1]); and (3) recursive function
theory: how to better recognize the boundary separating decidability from un-
decidability in the context of automata, and along the way, expand the body
of techniques applicable to such questions. To the best of our knowledge, this
paper is the first to explicitly connect discrete-continuous hybridness of these
automata to their algebraic analog of mixed real-integer formulations and also
first in proposing how to solve them algorithmically.

The paper is organized as follows: Section 1 and 2 introduce hybrid au-
tomata and their parallel composition, respectively; in Section 3, we prove the
decidability of linear Diophantine systems with semi-algebraic coefficients and,
in Section 4, we show how one can reduce to it the reachability problem for
hybrid automata obtained by parallel composition of semi-algebraic o-minimal
automata; Section 5 hints some simple applications of the proposed techniques;
in Section 6, we discuss some possible extentions and Section 7 summarizes
the results presented in the paper and draws some comparisons with related
literature. All the missing proofs can be found in [2].

1 Motivations and Notations

Since their introduction (see, e.g., [3]), hybrid automata have initiated a new
tradition, promising powerful tools for modeling and reasoning about complex
engineered or natural systems: e.g., embedded and real time systems, or compu-
tational biology, where the resulting analyses are providing many new insights.
Unfortunately, in their flexibility in capturing dynamics, resides also their limi-
tations: many different undecidability and complexity results have been proven
over general hybrid automata [4] and cast doubt on their suitability as a general
tool that can be algorithmized and efficiently implemented. However, if these
representations are further restricted, as in the powerful family of o-minimal
systems [5], one could hope to still enjoy fidelity of representation that far sur-
passes that of both discrete models and differential equations, and yet avoid
undecidability. In particular, reachability has been shown decidable over semi-
algebraic o-minimal automata [5].

In order to build a theoretical framework that can also use these hybrid repre-
sentations in a natural manner, one must shift one’s attention to the description
of large and complex hybrid systems that can be described in a compositional
manner, built out of many elementary modules at many different levels of hi-
erarchy. Since the basic fundamental step in a compositional construction is



through a parallel composition, an essential desideratum of this new theoretical
framework is that the reachability property of the product hybrid automaton
be decidable, provided that the component hybrid automata belong to a suit-
ably restricted decidable family of automata, e.g., one in the class of o-minimal
automata. In general, the product operation does not assure a closure of de-
cidability property for reachability condition. Nonetheless, in [1], we establish
decidability of the reachability condition considering the parallel composition
of two semi-algebraic o-minimal automata. Even if such hybrid automata could
be used to model interesting systems (e.g., in system biology), the limitation
on the number of composable automata poses many restrictions on the ap-
plicability of the suggested techniques. To address these shortcomings, in this
paper, we have generalized the decidability result for the reachability problem
over parallel composition of semi-algebraic o-minimal automata by allowing
the composition of an arbitrary number of automata and we extend the appli-
cability of the proposed framework to more complex systems.

1.1 Basic Notions

A directed graph is a pair 〈V,E〉 where V is a finite set of vertices and E is a finite
set of edges. The functions Source : E −→ V and Dest : E −→ V characterize
the vertex exited by an edge and the vertex entered by an edge, respectively.
In particular, we say that Source (e) = v and Dest (e) = v′ are the source and
the destination of e, respectively. In this paper, when we refer to graphs, we
always intend directed graphs. A path ph from v ∈ V to v′ ∈ V in G = 〈V,E〉 is
either the vertex v, if v = v′, or a sequence of edges ”e1, . . . , en” such that, for
all i ∈ [1,n − 1], Source (ei+1) = Dest (ei), Source (e1) = v, and Dest (en) = v′.
A path p = ”e1, . . . , en” is a cycle if e1 = en and n > 1. Moreover, if ei , e j for
all i, j ∈ [1,n − 1] with i , j, then we say that p is a simple cycle. The standard
definition of cycle requires that the first node coincides with the last one, while in
our definition we impose that the first and the last edges are identical. Similarly,
the standard definition of simple cycle requires that in the cycle the internal
nodes are not repeated, while in our definition we require that the internal edges
are not repeated. The two definitions are obviously not equivalent, however, a
graph has only a finite number of simple cycles under both definitions. Later
on we write |p| to denote the length of the path p, i.e., the number of its edges.

Next, we introduce some notations and conventions that we will need to
define hybrid automata. Capital letters X, X′, Xm, and Xm

′, where m ∈ N,
denote variables ranging overR. Analogously, Z denotes the vector of variables
〈X1, . . . ,Xd〉 and Z′ denotes the vector 〈X1

′, . . . ,Xd
′
〉. The temporal variables T,

T′, T0,. . . , Tn model time and range over R≥0. We use the small letters p, q, r, s,
. . . to denote d-dimensional vectors of real numbers. Occasionally, we may use
the notation ϕ[X1, . . . , Xm] to stress the fact that the set of free variables of the
first-order formulaϕ is included in the set of variables {X1, . . ., Xm}. By extension,
if {Z1, . . ., Zn} is a set of variable vectors, ϕ[Z1, . . ., Zn] indicates that the free
variables of ϕ are included in the set of components of Z1, . . ., Zn. Moreover,
given a formula ϕ[Z1, . . ., Zi, . . ., Zn] and a vector p of the same dimension as



the variable vector Zi, the formula obtained by component-wise substitution of
Zi with p is denoted by ϕ[Z1, . . ., Zi−1, p, Zi+1, . . ., Zn]. When in ϕ the only free
variables are the components of Zi, after the substitution we can determine the
truth value of ϕ[p].

We are now ready to define hybrid automata. For each node of a graph we
have an invariant condition and a dynamic law. The dynamic law may depend
on the initial conditions, i.e., on the values of the continuous variables at the
beginning of the evolution in the state. The jumps from one discrete state to
another are regulated by the activation and reset conditions.

Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H = (Z, Z′, V,
E, Inv, F , Act, Res) of dimension d consists of the following components:

1. Z = 〈X1, . . ., Xd〉 and Z′ = 〈X1
′, . . ., Xd

′
〉 are two vectors of variables ranging over

the reals R;
2. 〈V, E〉 is a graph. Each element of V will be dubbed location.
3. Each vertex v ∈ V is labeled by the formula Inv(v)[Z];
4. F is a function assigning to each vertex v ∈ V a continuous vector field over Rd;

we will use fv : Rd
× R≥0 −→ Rd to indicate the solution of the vector field F (v)

and Dyn(v)[Z,Z′,T]
def
= Z′ = fv(Z,T);

5. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z,Z′];

Note that, without loss of generality, we may consider only hybrid automata
whose formulæ are satisfiable. In fact, if this is not the case, we can transform
the automaton and eliminate the unsatisfiable formulæ. For instance, if there is
an edge e such that Res(e)[Z,Z′] is unsatisfiable, we can simply delete the edge
from the automaton. We use d(H) to denote the dimension of the automaton H.

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair 〈v, r〉, where
v ∈ V is a location and r = 〈r1, . . . , rd〉 ∈ R

d(H) is an assignment of values for the
variables of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r] is true.

The continuous reachability transition relation t
−→C, where t ≥ 0 is the transition

elapsed time, between admissible states is defined as follows:

〈v, r〉 t
−→C 〈v, s〉 ⇐⇒

It holds that r = fv(r, 0) and it holds that s = fv(r, t) (see 1),
and for each t′ ∈ [0, t] the formula Inv(v)[ fv(r, t′)] is true.

The discrete reachability transition relation →D between admissible states is
defined as follows:

〈v, r〉 e
−→D 〈u, s〉 ⇐⇒

it holds that e ∈ E, Source (e) = v, Dest (e) = u, and
both Act(e)[r] and Res(e)[r, s] are true.

We write ` →C `′ and ` →D `′ meaning respectively that there exists a t ∈ R≥0

such that ` t
−→C `′ and that there exists an e ∈ E such that ` e

−→D `′. Moreover, we
use the notation `→ `′ to denote that either `→C `′ or `→D `′.

Building upon a combination of both continuous and discrete transitions,
we can formulate a notion of trace as well as a resulting notion of reachability. A
trace is a sequence of continuous and discrete transitions. A point s is reachable
from a point r if there is a trace starting from r and ending in s.



Definition 3 (Hybrid Automata - Reachability). Let I be either N or an initial
finite interval of N. A trace of H is a sequence of admissible states `0, `1, . . . , `i, . . . ,
with i ∈ I, such that `i−1 → `i holds for each i ∈ I greater than zero; such a trace is also
denoted by (`i)i∈I.

The automaton H reaches a point s ∈ Rd (in time t) from a point r ∈ Rd if there
exists a trace tr = `0, . . . , `n of H such that `0 = 〈v, r〉 and `n = 〈u, s〉, for some v,u ∈ V

(and t is the sum of the continuous transitions elapsed times). In such a case, we also
say that s is reachable from r in H.

Given a hybrid automaton H and trace, tr, of H, a corresponding path of tr is a
path ph obtained by considering the discrete transitions occurring in tr. In this
case, we also say that ph corresponds to tr. Notice that if tr is a trace, then there is
a set of corresponding paths of tr and such a set is finite and hence, computable.

We are interested in the reachability problem for hybrid automata, namely,
given an automaton H, an initial set I ⊆ Rd, and a final set F ⊆ Rd we wish to
decide whether there exists a point in I from which a point in F is reachable.

An interesting class of hybrid automata is the class of o-minimal automata [5,
6]. The formulæ Dyn(v), Inv(v), Act(e), and Res(e) of such automata are defined in
a o-minimal theory for each v ∈ V and e ∈ E. Moreover, their resets are constant,
i.e., they do not depend on the point from which the edge is crossed. In the
case of o-minimal automata defined by a decidable theory, reachability and
temporal logic properties can be decided through bisimulation [5]. O-minimal
automata always possess a finite bisimulation quotient whose computation is
effective when the o-minimal theory is decidable. An o-minimal and decidable
theory is the first-order theory of (R, 0, 1,+, ∗, <) [7], also known as the theory of
semi-algebraic sets.

Definition 4 (Semi-Algebraic O-Minimal Automata). An o-minimal automa-
ton is a hybrid automaton such that Dyn(v), Inv(v), Act(e), and Res(e) are formulæ
of an o-minimal theory [8] and the truth value of Res(e)[Z,Z′] does not depend on Z,
for any v ∈ V and e ∈ E. A semi-algebraic o-minimal automaton is an o-minimal
automaton such that Dyn(v), Inv(v), Act(e), and Res(e) are semi-algebraic formulæ.

The decidability of reachability problem for such class follows directly
from [5, 7] and the problem itself has been reduced to the satisfiability of a
finite disjunction of formulæ of the form Reach(H)(ph)[Z,Z′,T] in [9]. In partic-
ular, if H is a semi-algebraic o-minimal automaton, then q ∈ Rd(H) is reachable
from p ∈ Rd(H) in H through a trace whose corresponding path is ph in time t if
and only if the formula Reach(H)(ph)[p, q, t] holds.

2 Parallel Composition of Hybrid Automata

Given two or more hybrid automata with distinct variables we are interested in
analyzing the reachability problem when we let them run independently.

Definition 5 (Parallel Composition). Let Ha = (Za,Za
′,Va,Ea, Inva, Fa, Acta,

Resa) and Hb = (Zb,Zb
′,Vb,Eb, Invb, Fb, Actb, Resb) be two hybrid automata over



distinct variables. The parallel composition of Ha and Hb is the hybrid automaton
Ha ⊗Hb = (Z,Z′,V,E, Inv, F , Act, Res), where:

– Z (Z′) is the vector obtained by concatenating Za and Zb (Za
′ and Zb

′, respectively);
– V = Va × Vb;
– E = (Ea × Eb)∪ (Ea ×Vb)∪ (Va × Eb) and θ(〈ea, eb〉)

def
= 〈θ(ea), θ(eb)〉, θ(〈va, eb〉)

def
=

〈va, θ(eb)〉, and θ(〈ea, vb〉)
def
= 〈θ(ea), vb〉 for all θ ∈ {Source, Dest};

– Inv(〈va, vb〉)[Z]
def
= Inva(va)[Za] ∧ Invb(vb)[Zb];

– Dyn(〈va, vb〉)[Z,Z′,T]
def
= Dyna(va)[Za,Za

′,T] ∧Dynb(vb)[Zb,Zb
′,T];

– Act(〈ea, eb〉)[Z]
def
= Acta(ea)[Za]∧Actb(eb)[Zb], Act(〈ea, vb〉)[Z]

def
= Acta(ea)[Za], and

Act(〈va, eb〉)[Z]
def
= Actb(eb)[Zb];

– Res(〈ea, eb〉)[Z,Z′]
def
= Resa(ea)[Za,Za

′] ∧ Resb(eb)[Zb,Zb
′], Res(〈ea, vb〉)[Z,Z′]

def
=

Resa(ea)[Za,Za
′]∧Zb

′ = Zb, and Res(〈va, eb〉)[Z,Z′]
def
= Za

′ = Za∧Resb(eb)[Zb,Zb
′];

where va ∈ Va, ea ∈ Ea vb ∈ Va, and eb ∈ Eb.

Our notion of parallel composition is equivalent to those in [10, 11] in the case
of disjoint set of events. The discrete graph underlying a parallel composition
Ha ⊗ Hb can be a multigraph, i.e., there can be more than one edge connecting
two nodes. In particular, this could happen if in either Ha or Hb there are self-
loop edges. Hence, we should introduce labels to distinguish different edges
connecting the same pair of nodes. For the sake of simplicity, we avoid this
additional labeling in the rest of the paper, when no ambiguity may result.

Example 1. Let us consider the o-minimal automata Ha = (〈Xa〉, 〈Xa
′
〉, Va, Ea,

Dyna, Inva, Acta, Resa) and Hb = (〈Xb〉, 〈Xb
′
〉,Vb, Eb,Dynb, Invb, Actb,Resb), where

Vi = {vi} and Ei = {ei}, for any i ∈ {a, b}, and
Ha: Dyna(va) def

= Ẋa = −1 Hb: Dynb(vb) def
= Ẋb = −1

Inva(va) def
= 0 ≤ Xa ∧ Xa ≤ 1 Invb(vb) def

= 0 ≤ Xb ∧ (Xb)2
≤ 2

Acta(ea) def
= Xa = 0 Actb(eb) def

= Xb = 0
Resa(ea) def

= Xa
′ = 1 Resb(eb) def

= (Xb
′)2 = 2.

The automaton Ha ⊗ Hb is depicted in Figure 1. Ha ⊗ Hb is not o-minimal since
it has also identity resets. Moreover, it is possible that a variable is never reset
along a cycle of Ha ⊗Hb, e.g., Xb is never reset in the cycle ”〈ea, vb〉, 〈ea, vb〉”.

It is easy to prove that (H1 ⊗H2) ⊗H3 reaches q from p in time t through a trace
tr if and only if H1 ⊗ (H2 ⊗H3) reaches q from p in time t through tr. Hence, we
denote by H1 ⊗ . . . ⊗Hm and

⊗m
i=1 Hi the composition of n automata.

As far as reachability is concerned, we first point out that we will study
the reachability problem over

⊗m
i=1 Hi considering only sets of points of the

form I =
∏m

i=1 Ii and F =
∏m

i=1 Fi, where Ii,Fi ⊆ Rd(Hi). To some extent, this
simplification will allow us to work on each Hi independently. In the general
case, our results can be used to both under-estimate and over-estimate reach-
ability. Unfortunately, even with this assumption, one may not always be able



Ẋa = −1
∧

Ẋb = −1

Xa ∈ [0, 1]
∧

Xb ∈
[
0,
√

2
]

Xa = 0 ∧Xb = 0;
Xa

′ = 1 ∧Xb
′ =
√

2

〈ea, eb〉

Xa = 0;
Xa

′ = 1 ∧Xb
′ = Xb

〈ea, vb〉

Xb = 0;
Xa

′ = Xa ∧Xb
′ =
√

2

〈va, eb〉

Fig. 1. The hybrid automaton Ha ⊗Hb of Example 1.

to ascertain the closure of reachability condition under composition; namely,
starting from a set I1 it may be possible to reach a set F1 in the automaton H1
and similarly, starting from a set I2 it may be possible to reach a set F2 in H2,
and yet starting from I1 × I2 in H1 ⊗ H2 it may not be possible to reach F1 × F2.
For instance, this happens if F1 is reachable only at time t = 1, while F2 is reach-
able only at time t = 2. Moreover, the decidability of reachability is not always
preserved under parallel composition i.e., it is possible that reachability is de-
cidable over m classes C1, . . . ,Cm of hybrid automata, but not over the product
class

⊗m
i=1 Ci = {

⊗m
i=1 Hi | ∀i ∈ [1,m] Hi ∈ Ci} (see [11]).

O-minimal hybrid automata have always a finite bisimulation quotient.
In [1], we proved that the parallel composition of two o-minimal automata
can have an infinite simulation quotient. Hence, the standard quotienting tech-
niques cannot be applied to decide reachability on product automata.

However, it holds that the automaton
⊗m

i=1 Hi reaches the set
∏m

i=1 Fi from∏m
i=1 Ii in time t if and only if Hi reaches Fi from Ii in time t for each i ∈ [1,m].

Hence, in order to study reachability over
⊗m

i=1 Hi, it would be necessary to
better understand the nature of timed reachability over each Hi for i ∈ [1,m].

Definition 6 (Timed-Reachability). Let H be a hybrid automaton. Given t ≥ 0,
I,F ⊆ Rd(H) the (H, t, I,F)-timed-reachability problem consists in deciding whether
there exist two points i ∈ I and f ∈ F such that H reaches f from i in time t.

Timed-reachability is in general undecidable. However, the decidability of
timed-reachability is preserved by parallel composition and, when I and F
are semi-algebraic sets, timed-reachability is decidable over semi-algebraic o-
minimal automata (see [2]). Unfortunately, decidability of timed-reachability
does not imply the decidability of reachability, since there are an infinite num-
ber of time instants to be checked.

Intuitively, to decide reachability over the composition of many o-minimal
automata, we need to check that we can cycle on their loops elapsing the same



amount of time. This check involves both integer variables (i.e., the number of
times a simple cycle is repeated) and real ones (i.e., the time elapsed on a simple
cycle). In the following sections, we first prove a result about decidability of
a particular class of Diophantine systems with semi-algebraic coefficients and,
then, we reduce the decidability of reachability for parallel composition of an
arbitrary number of automata to it.

3 Linear Systems with Semi-Algebraic Coefficients

A semi-algebraic set over R≥0 is a finite union of intervals and points such that:
each interval is characterized by algebraic numbers greater or equal to 0; each
point is an algebraic number greater or equal to 0. Semi-algebraic sets are exactly
those characterizable through first-order formulæ over (R, 0, 1,+, ∗, <).

We consider systems of the following form
∑n1

i=1 Ai ∗ αi + α =
∑n2

i=1 Bi ∗ βi + β∑n1
i=1 Ai ∗ αi + α =

∑n3
i=1 Ci ∗ γi + γ

. . .∑n1
i=1 Ai ∗ αi + α =

∑nw
i=1 Wi ∗ ωi + ω

(1)

where capital letters denote variables ranging over N>0, while Greek letters
denote real coefficients. In particular, each coefficient can either be a non neg-
ative algebraic number or range over a non negative interval characterized by
algebraic numbers. Notice that, since the coefficients can range over intervals,
this can also be seen as a system of equations and disequations in which some
variables range in N>0, while other range in R≥0. Intuitively, we can look at it
as both a generalization of a linear system of Diophantine disequations and an
existential first-order formula involving both integer and real variables. We are
interested in the question of satisfiability of such systems.

We distinguish thee cases for the expressions involved in our systems: (a)∑nd
i=1 Di ∗ δi + δ is punctual if all the involved coefficients are algebraic numbers;

(b)
∑nd

i=1 Di ∗δi +δ is quasi-punctual if all δi’s are algebraic numbers, while δ ranges
over an interval; (c)

∑nd
i=1 Di ∗δi +δ is non-punctual if at least one of the δi’s ranges

over an interval. An equation is punctual if both its left and right hand sides
are punctual. It is quasi-punctual if at least one of the involved expressions is
quasi-punctual, while the other one is either punctual or quasi-punctual. It is
non-punctual if it involves at least a non-punctual expression.

The algorithm we propose for deciding the satisfiability of System (1) first
finds the solutions of the punctual equations. Then these are refined consider-
ing the quasi-punctual equations. And in the last step the non-punctual ones
come into play. In particular, systems involving only punctual equations can be
proved equivalent to linear systems of Diophantine equations, which are decid-
able [12]. We can deal with the quasi-punctual equations exploiting properties
of the additive subgroups ofRq and other results from Diophantine approxima-
tions [13, 14]: closed subgroups ofRq are decomposable in a discrete component
and a dense one; the discrete component requires a “finite” number of checks;



the dense one is “easy” to deal with. On the one hand, if the punctual together
with the quasi-punctual equations admit a finite number of solutions, then we
can test them on the non-punctual ones. On the other hand, if the punctual and
quasi-punctual equations have an infinite set of solutions, then we can always
satisfy also the non-punctual equations. All the details can be found in [2].

Since semi-algebraic sets are composed of a finite number of intervals and
points, the techniques presented above not only lead us to the decidability of
systems of the form (1) when each coefficient ranges over an interval, but also
do so when they range over non negative semi-algebraic sets.

Theorem 1. Let S be a system of the form (1), where capital letters denote variables
ranging overN>0, while Greek letters denote real coefficients ranging over some given
semi-algebraic sets included in R≥0. The satisfiability of S is decidable.

4 Reachability over Parallel Composition

Now let H =
⊗m

i=1 Hi be the parallel composition of m semi-algebraic o-minimal
automata. We are interested in the reachability problem over H, i.e., we want to
check whether the set F =

∏m
i=1 Fi is reachable from I =

∏m
i=1 Ii. The considera-

tions presented in Section 2 lead us to the following characterization.

Lemma 1. Let H1, . . . ,Hm be m o-minimal hybrid automata. Moreover, for all i ∈
[1,m], let Ii,Fi ⊆ Rd(Hi) be sets of points characterized by the first-order formulæ Ii[Zi]
and Fi[Zi], respectively. It holds that

⊗m
i=1 Hi can reach

∏m
i=1 Fi from

∏m
i=1 Ii if and

only if, for all i ∈ [1,m], there is a path phi in Hi such that the following formula holds6.

∃T ≥ 0∃Z1, . . . ,Zm∃Z1
′, . . . ,Zm

′

m∧
i=1

(
Ii[Zi] ∧ Reach(Hi)(phi)[Zi,Zi

′,T] ∧ Fi[Zi
′]
)

Unfortunately, the model suggested by above lemma does not immediately
provide any decidability result, since we have to consider also an infinite number
of cyclic paths. In fact, it may be the case that in order to synchronize all the
automata, it is necessary to spend some time over their cycles.

To construct a decidable characterization for reachability over parallel com-
positions, we exploit the existence of a canonical path decomposition: namely,
given a semi-algebraic o-minimal hybrid automaton, from any cyclic path of
the automaton, we can extract both an acyclic part, by removing all the cycles
occurring in it, and a set of simple cycles. The global time necessary to cover the
path is then equal to the sum of the time necessary to cover the acyclic part plus
multiples of the times we can spend over the simple cycles. What is important is
that in the case of o-minimal automata the time we can spend over a cycle does
not depend on the starting and ending point. We define the operation which
allows us to add a simple cycle to a path.

6 The formula Reach(H)(ph)[Z,Z′,T] has been defined in [15].



Definition 7 (Path Augmentability). Let ph, ph′ be two paths. We say that ph′ is
augmentable to ph if ph′ is a simple cycle starting and ending with the edge e and ph
is a path involving the edge e. If ph′ is augmentable to ph we denote by ph⊕ph′ the path
obtained by inserting ph′ in ph over the first occurrence of their common edge e, i.e., if
ph′ = ”e, ph′1, e” and ph = ”e1, . . . , ei−1, e, ei+1 . . . , en” where we explicitly identify the
first occurrence of e, then ph ⊕ ph′ = ”e1, . . . , ei−1, e, ph′1, e, ei+1 . . . , en”

Let PH′ be a set of (simple cyclic) paths we say that PH′ is augmentable to a path
ph if either PH′ = ∅ or there exists an ordering ph1, . . . , phl of the elements of PH′ such
that for each i ∈ [1, l] either phi is augmentable to ph or there exists j < i such that phi
is augmentable to ph j.

Notice that if ph′ is augmentable to ph, then it is augmentable to ph ⊕ ph′ also.
Moreover, if ph is a cyclic path, then there exist ph1, . . . , phn, simple cyclic and
acyclic, such that ph = ph1 ⊕ . . . ⊕ phn.

Let H be an o-minimal hybrid automaton and let ph = ”e1, . . . , em” be a path
of H. We define the following formula

R̃each(H)(ph)[Z,Z′,T] def
= ∃Z,Z′

(
Reach(H)(e1)[Z,Z] ∧ Reach(H)(em)[Z′,Z′]∧

Reach(H)(”e2, . . . , em−1”)[Z,Z′,T]
)

where Reach(H)(e)[Z,Z′] def
= (Act(e)[Z] ∧ Res(e)[Z,Z′]). It is easy to see that the

above formula characterizes all the traces, corresponding to ph, which start
and end with a discrete transition. Because of the constant reset condition
imposed on o-minimal automata, if both the formulæ R̃each(H)(ph)[a, b, t] and
R̃each(H)(ph)[c, d, t′] hold, then R̃each(H)(ph)[a, b, t′] holds also.

It follows that, if H is an o-minimal automaton, then we can use the formula
R̃each(H)(ph)[Z,Z′,T] to define the set of time instants Time(ph) in which ph can
be covered, i.e., Time(ph) def

= {t | ∃Z,Z′R̃each(H)(ph)[Z,Z′, t] holds}. Notice that,
since H is o-minimal by hypothesis, for each path ph of H the set Time(ph) is
o-minimal. It is easy to see that if a path ph′ is augmentable to a path ph and t
is the time needed to evolve through ph then the automaton can elapse a time
t + t′, where t′ ∈ Time(ph′), to evolve through ph ⊕ ph′.

By using observations such as these, we can deduce the following lemma,
which characterizes the existence of a trace with elapsed time t, without having
to examine an infinite number of formulæ.

Lemma 2. Let H be an o-minimal hybrid automaton, let r, s ∈ Rd(H) and let t ∈ R≥0.
There exists a path ph such that Reach(H)(ph)[r, s, t] holds if and only if there exist a
path ph0 and a set of paths PH such that: (1) ph0 is acyclic; (2) PH = {ph1, . . . phl} is
augmentable to ph0; (3) we can choose α, a vector 〈A1, . . . ,An〉 ∈ Nn

>0 and a vector
〈α1, . . . , αn〉 ∈ Rn

≥0, with {αk j , . . . , α(k( j+1)−1)} ∈ Time(ph j) and 1 = k1 < . . . < kl+1 =

n + 1, such that Reach(H)(ph0)[r, s, α] holds and t = α +
∑n

i=1 Ai ∗ αi.

This result suggests a class of verification techniques for timed-reachability on
o-minimal automata, but avoids testing an infinite set of formulæ. Moreover,
exploiting such result, we can propose the following characterization.



Theorem 2. Let H1, . . . ,Hm be o-minimal automata and I j,F j ⊆ Rd(H j) be character-
ized by the first-order semi-algebraic formulæ I j[Z j], F j[Z j] for all j ∈ [1,m]. The

automaton
⊗m

i=1 Hi reaches
∏m

i=1 Fi from
∏m

i=1 Ii if and only if, for each h ∈ {1, . . . ,m},
there exist an acyclic path phh, a set of paths PHh = {phh,1, . . . , phh,mh }, augmentable to
phh, a vector 〈Ah,1, . . . ,Ah,mh〉 ∈ N

mh
>0 , and a vector 〈αh,1, . . . , αh,mh〉 ∈ R

mh
≥0 such that

{αkh, j , . . . , α(kh, j+1−1)} ∈ Time(phh, j), with 1 = kh,1 < . . . < kh,mh+1 = mh + 1, and there
is αh ∈ R≥0, satisfying both ∃Zh,Zh

′(Reach(Hh)(phh)[Zh,Zh
′, αh]∧Ih[Zh]∧Fh[Zh

′])
and the system 

∑n1
i=1 A1,i ∗ α1,i + α1 =

∑n2
i=1 A2,i ∗ α2,i + α2∑n1

i=1 A1,i ∗ α1,i + α1 =
∑n3

i=1 A3,i ∗ α3,i + α3
. . .∑n1

i=1 A1,i ∗ α1,i + α1 =
∑nm

i=1 Am,i ∗ αm,i + αm

(2)

The number of both acyclic and simple cyclic paths of a hybrid automaton can
be bounded from above. Moreover, given a semi-algebraic set S ⊆ R, we can
compute the number of its connected components. Since, by Theorem 1, we can
decide systems such as the one shown above (Eq. 2), we get the following result.

Corollary 1. Let H1, . . . ,Hm be semi-algebraic o-minimal hybrid automata. For all
j ∈ [1,m], let I j,F j ⊆ Rd(H j) be sets of points characterized by first-order semi-algebraic
formulæ. Whether

⊗m
j=1 H j reaches

∏m
j=1 F j from

∏m
j=1 I j is decidable.

In this direct formulation of the positive result stating the decidability of reacha-
bility problem, we have simply focused on the existence of a decision procedure
and not its time or space complexity. Furthermore, the infiniteness of simulation
quotient gives a hint of its inherent “hardness”. However, since the problem is
central to any program that focuses on a modular and hierarchical representa-
tion of hybrid automata, further work will need to be devoted to the complexity
issues. From what we wrote in Section 3, we can deduce an algorithm which, in
some (but frequent) cases, decides the reachability problem over parallel com-
position of o-minimal hybrid automata with a small overhead with respect to
the time needed to decide the reachability problem over its components.

Corollary 2. Let H1, . . . ,Hm be semi-algebraic o-minimal hybrid automata. For all
j ∈ [1,m], let I j,F j ⊆ Rd(H j) be sets of points characterized by first-order semi-algebraic
formulæ. If, for all j ∈ [1,m], there exists an acyclic path ph′j, a cyclic path ph′′j , and a
proper interval O j ⊆ R≥0 such that ph′′j is augmentable to ph′j, O j ⊆ Time(ph′′j ), and

H j reaches F j from I j through ph′j, then
⊗m

j=1 H j reaches
∏m

j=1 F j from
∏m

j=1 I j.

Hence, if the hypothesis in the above corollary holds, the reachability problem is
compositional and can be decided by testing each component separately. In this
case on each component we can apply either the bisimulation based algorithm
proposed in [5] or the semi-algebraic geometry based one proposed in [9].

5 Applications in System Biology

As a first example assume that we are monitoring a patient who is under therapy
with two drugs, X and Y. X and Y have non-commensurate degradation curves



and, hence, they cannot be always injected at the same time. Let X′ = fx(X,T)
and Y′ = fy(Y,T) be degradation curves of X and Y. We can imagine that the
levels of X and Y have to stay in the ranges [xm, xM] and [ym, yM], respectively.
When the machine monitoring the patient found that X is in the critical range
[xm, xl] (near the lowest admissible value) it injects X. Similarly, when Y enters
in the critical range [ym, yl] it is injected. We can model this situation with the
hybrid automata depicted in Figure 2. Since there are some interactions between

X ′ = fx(X, T )
X ∈ [xm, xM ]

X ∈ [xm, xl]
X ′ = xM

Y ′ = fy(Y, T )
Y ∈ [ym, yM ]

Y ∈ [ym, yl]
Y ′ = yM

Fig. 2. The hybrid automata depicting a clinical application of parallel composition.

X and Y, we can imagine that, if X is in the interval [xa, xb] and at the same time
Y is in the interval [ya, yb], the patient can have some problems. Let us assume
that at time t = 0 the drug levels are x0 and y0, respectively. We have to check if
in the product of these automata the region [xa, xb]×[ya, yb] is reachable from the
initial point 〈x0, y0〉. This check can be performed automatically. If the answer
is positive, then critical ranges have to be refined.

v1

Z ′
A = fA(A, T )
ZA ∈ [a, b]

v2

Z ′
A = gA(A, T )
ZA ∈ [a, b]

ZA ∈ [a, d]
Z ′

A = a

e2

ZA ∈ [c, b]
Z ′

A = b

e1

Fig. 3. The hybrid automaton representing the expression level of gene A.

Our second example concerns the analysis of metabolic pathways. Imagine
we are studying two genes A and B involved in the same pathway. We have
some time evolution traces for the expression levels of both A and B. Analyzing
the traces of A we observe that we can represent its behavior with the automaton
depicted in Figure 3. Similarly, we can draw an analogous automaton for B. We
can now exploit these automata to study whether there exists a strong interaction
between A and B. For instance if A is a repressor for B and vice-versa, then in
the product of the two automata from a region near the maximum value of A
and the minimum of B it should be possible to reach a region near the minimum
of A and the maximum of B and vice-versa.



In [16] we proposed a method to translate sets of gene profiles data com-
ing from Real-Time PCR experiments into semi-algebraic hybrid automata. In
particular, we proposed clustering techniques which allow to reduce the dimen-
sions of the involved automata. The automata we used in [16] are not o-minimal,
since some edges can involve reset conditions of the form

∨r
i=1(Z = ai ∧Z′ = bi).

However, since the disjunctions range over finite sets, it is immediate to trans-
late them into o-minimal semi-algebraic automata with multiple edges. Hence,
the reasoning proposed above on genes A and B can be applied and generalized
in that context, in order to infer relationships between genes. The combination
of the techniques proposed in [16] with the results of this paper suggests us
to build one hybrid automaton for each cluster of genes and then to use their
parallel composition for the analysis of the relationships between different clus-
ters. The fact of building one hybrid automaton for each cluster ensures us to
get substantial reductions on the automaton dimensions, as proved in [16]. The
results presented in this paper allow us to combine and compare the behaviors
of different clusters represented by separate automata.

6 Synchronizing Automata and Exchanging Information

As noticed above, parallel composition provides a powerful and theoretically
clean way of modeling complex systems by combining simple component mod-
els. However, since the original hybrid automata should not share variables by
definition, components cannot “communicate” in models built by parallel com-
position, i.e., they evolve in isolated environments without interacting. Still, the
results of Section 4 can be used to prove the decidability of reachability problem
over a different kind of composition operator, similar to that proposed in [10,
11], which allows both interactions and synchronizations between components
during system evolution. For the sake of example, let us consider the two semi-
algebraic o-minimal hybrid automata H1 = (Z1,Z1

′,V1,E1, Inv1, F1, Act1,Res1)
and H2 = (Z2,Z2

′,V2,E2, Inv2, F2, Act2,Res2) depicted in Figure 4, where:
H1: Z1 = 〈X1,X2,X3〉 H2: Z2 = 〈X2〉

Dyn1(v1) def
= X′1 = X1 + T ∧ X′3 = X3 Dyn2(v2) def

= X′2 = X2 + T
Dyn1(v′1) def

= X′1 = 0 ∧ X′3 = X3 + T
Res1(e1) def

= X′1 = 0 ∧ X′3 = 0 Res2(e2) def
= X′2 = 0

Res1(e′1) def
= X′1 = 0 ∧ X′3 = 0 ∧ X′2 = 0

Inv1(v1) def
= X1 ≤ 1, Inv1(v′1) def

= X1 = 0 Inv2(v2) def
= X2 ≤

√
2

Act1(e1) def
= X1 = 1, Act1(e′1) def

= X1 + X2 > 2 Act2(e2) def
= X2 =

√
2

v1 v′
1

e1
e′
1 v2 e2

Fig. 4. The discrete projection of H1 and H2



Since H1 and H2 share the variable X2, we cannot model their synchronous
evolution by using parallel composition. However, one may notice that all the
formulæ involving X2 in H1 are related with e′1. Let H′1 be the automaton obtained
by removing e′1 from H1. It is easy to see that the concurrent evolution of H1 and
H2 is representable by the hybrid automaton H∗ obtained by providing H′1 ⊗H2
of a further edge ē, from 〈v1, v2〉 to 〈v′1, v2〉, whose activation and reset formulæ
are Act1(e′1) and Res1(e′1), respectively.

〈v1, v2〉 〈v′
1, v2〉〈e1, e2〉

〈v1, e2〉

〈e1, v2〉

ē 〈v′
1, e2〉

Fig. 5. The discrete projection of H∗

It follows that F is reachable from I in H∗ if and only if either F is reachable
from I or Act1(e′1) is reachable from I and F is reachable from Res1(e′1) in H′1 ⊗H2.
Hence, we can exploit the results presented in this paper to decide reachability
property on H∗. Notice that a similar approach can be used also when shared
variables appear in either dynamics or invariants. We leave both formal defini-
tion and applicability analysis of synchronous composition for future work.

7 Conclusions

This paper extends our earlier work [1] showing that the reachability prob-
lem for parallel composition of semi-algebraic o-minimal hybrid automata is
decidable. To achieve such a result, it exploited Tarski’s decidability result on
semi-algebraic theory, density results over R, algorithms for the membership
problems over algebraic fields, and algorithms for solving systems of linear
Diophantine systems. Further, by showing that this class of automata does not
admit a finite simulation quotient (see [1, 2]), we have proved impossibility of
obtaining such a result through standard finite quotient techniques.

Time-complexity issues limit the practical applicability of our result. Never-
theless, it presents some intriguing theoretical features. Note first that, to prove
the decidability of parallel composition, we took advantage of the decidability
of a rather simple mixed real/integer problem. Such mixed approaches, in some
sense, reflect the continuous-discrete behavior described by hybrid systems.

Our decidability results may be surprising, in the context of Miller’s unde-
cidability results [11], but can be explained as follows. While we require constant
resets on automata components, Miller admitted both constant and identity re-
sets. Hence, he could test the value of a variable through an activation and do



not change it by applying an identity reset. This is a fundamental gadget in the
construction of the two-counter Minsky machine encoding needed to prove the
undecidability result (see Figure 3 in [11]), but it is inapplicable in our case.

Finally, the technique of this paper emphasizes the hardest cases to decide
and suggests a class of automata for which the reachability problem of parallel
composition can be reduced to reachability problems on each component.
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