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Abstract. PLAN C, an Agent-Based Model platform for urban disaster
simulation and emergency planning, features a variety of reality-based
agents interacting on a realistic city map and can simulate the com-
plex dynamics of emergency responses in different urban catastrophe
scenarios. Work reported here focuses on the incorporation of specific
subpopulations of person agents, reflecting the existence of individuals
with specific defining characteristics and needs, and their interactions
with the available resources. Performance of these subpopulations are
compared in both point-source attack and distributed disaster scenar-
ios for disasters of different magnitudes. Specific “recovery points” can
be derived both for total- and sub-populations, which estimate the du-
ration of a response system’s/city’s vulnerability. The effect of varying
topologies of available resources, i.e. different hospital maps, provides
particular insight into the dynamics that can emerge in this complex
system. PLAN C produces interesting emergent behavior which is often
consistent with the literature on emergency medicine of previous events.

Keywords: PLAN C, Agent-Based Modeling, Complex Systems, Disas-
ter Management.

1 Multi-agent and Complex Systems: Application to
Disaster Management

A central problem in disaster management is the complexity inherent in an emer-
gency response. As such, planners often rely on experience gained from previous
events or drills, where possible, coupled with expert opinion. Such thinking in-
forms policies governing operations for hospitals, responders, ambulances, etc.
There exists, however, no practical way to test these policies and their effects
within the global dynamic of the everyday milieu, i.e. a city with all of its
resources and interacting population. The resulting gap between the theory of
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disaster management and its practice is thus largely due to the fact that the real-
world environment is fundamentally a Complex System whose intricacies cannot
be reduced without sacrificing realism. Predicting the dynamics of this system,
and in particular the experience of a disaster for particular subpopulations of
individuals is therefore a nontrivial task.

Complex Systems are often characterized by agents capable of interacting with
each other dynamically, often in non-linear and non-intuitive ways. Attempts to
characterize their dynamics often results in partial differential equations that are
difficult, if not impossible, to solve. One powerful technique for analyzing such
complex systems is agent-based modeling (ABM) [16]. ABM has seen an expo-
nential growth in the last few years for understanding the dynamical behavior of
complex systems [16], including applications to economics [18], social science [6],
biology, [5,1] and several other real-world domains. It has been recently applied
with success also in the area of Disaster Management and Preparedness (evacua-
tion, traffic, epidemic, health-care, etc). In such models, the system is represented
by a collection of autonomous decision-making entities called “agents”. A large
multi-agent system can reproduce very complex dynamics even if the individual
agents and their interactions follow simple rules of behavior. Emergent behaviors
may be even more unpredictable and even counterintuitive when the agents are
embedded and forced to interact in a real-world environment that introduces
more communication channels, constraints, and behavioral rules.

Related works. Though several mathematical and computational approaches
have been proposed in recent years for public health and emergency response
planning, no unified framework yet exists. These methods differ in various char-
acteristics including: underlying modeling technology, level of details and as-
sumptions, population size, scale and realism of the environment, etc. PLAN C
has been developed in order to avoid various limitations of the following (not ex-
haustive) list of competing agent-based modeling and simulation tools: InterSim
[17] is an epidemic model that uses a powerful mathematical model for model-
ing the agent interactions and the time course of the disease (e.g., the SEIRS
model), but it lacks a realistic environment in which the simulation evolves.
EpiSim [2], by contrast, is a highly detailed epidemic simulation system, but it
is rather expensive in terms of computational time. Also, it can be difficult to
collect reliable statistics from a significantly large number of simulation runs.
Furthermore, it lacks an interactive user interface that could enhance its prac-
tical applicability. DrillSim [10] and PedSim [8] are two examples of evacuation
models with topological constraints where the scale is restricted to evacuation
plans of a floor of a building with a limited number of active agents. For exam-
ple Drillsim was used in [9] to analyze a scenario with a total of twenty-eight
evacuee agents. In [8] PedSim is used to suggest practical ways of minimizing
the harmful consequences during evacuation of 400 people. It was found that a
set of columns placed asymmetrically in front of the exit door can considerably
reduce the number injuries.
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1.1 PLAN C

Integral to the Large Scale Emergency Readiness (LaSER) project of NYU’s
Center for Catastrophe Preparedness and Response (CCPR1), is the develop-
ment of a robust, agent-based model of the dynamics of urban catastrophes that
permits evaluation of different biological, chemical, radiological, and other haz-
ardous scenarios, alone or in combination, and their disaster dynamics. PLAN C2

[11,12,13,14] (Planning with Large Agent-Networks against Catastrophes), a
modeling and simulation tool for catastrophic events, has been designed and
tested in other areas of disaster preparedness. Built on top of the Java version of
Repast 3.1 [15], it aims to integrate theories, algorithms, techniques, and tech-
nologies from essential preparedness disciplines in order to improve planning for
and response to the public health and medical consequences of a mass casualty
event. Using this robust and flexible modeling platform, public health, medi-
cal, or emergency management professionals can simulate, analyze, and predict
consequences of a catastrophe, and thereby improve the capabilities of both the
government and the private sectors to prepare for and respond to large-scale in-
cidents. The agent-based modeling (ABM) paradigm provides a natural way to
describe the behavior of the agents and also facilitates easier transfer of domain
specific knowledge into the model.

(a) (b)

Fig. 1. PLAN C snapshots: (a) point-source scenario and (b) distributed scenario.
People are labeled by small circles; color changes from green to red, signifying a high
and low health level, respectively. Ambulances and first responders are labeled by small
yellow circles. Larger circles signify hospitals; circle size correlates with resource level.
Color represents the state of the hospital (available, critical, or full); color stays white,
irrespective of state, until the first disaster patient is admitted.

PLAN C is constructed at the micro-level but permits macro-level behavior
to emerge from the individual interactions of all of the agents (and their inter-
actions, via messaging, with authorities). Behavior is not artificially imposed in
1 http://www.nyu.edu/ccpr/
2 http://www.bioinformatics.nyu.edu/Projects/planc
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a top-down approach. In this way, the ABM technology on which PLAN C is
founded is consistent with the underlying philosophy of disaster response plan-
ning: namely, planning for what people, individually and as a whole population,
will do in an emergency, not what the emergency planner would like them to do
[4]. Detailed descriptions of person and hospital agents, which are specifically
analyzed in this research paper, are given in the appendix. A more thorough
description of the PLAN C model can be found in [12,13].

PLAN C results can be analyzed at both the macro- and micro- levels. Collec-
tive results and system dynamics at the global level (e.g. average health, fatality
rate, average distress, etc.) in different emergency scenarios can be addressed.
At the micro-level, analysis of selected individual agent traces allows for greater
spatio-temporal resolution of disaster dynamics in a “post-debugging” process.
For instance, the behavior of the hospital closest to the disaster may be compared
with one further away. Similarly, the experience of a particular disaster survivor
may be compared with that of a victim, perhaps enabling a finer delineation of
the factors contributing to survival.

2 Simulation Results

Previous studies employed a homogeneous population of person agents. The
present article reports the incorporation into PLAN C of subpopulations with
special characteristics, specifically, physical disability. Dynamics of the subpop-
ulations are analyzed and compared for a point-source attack (i.e. a sarin gas
attack at the Port Authority Bus Terminal in Manhattan, NY) as well as a hypo-
thetical distributed scenario (i.e. a previously concentrated population exposed
to an agent with delayed onset of symptoms that is now distributed throughout
Manhattan). Furthermore, disasters of different magnitudes vis a vis the number
of casualties are considered. Finally, the effects of varying the topology of avail-
able resources (hospitals) on disaster outcome are considered for the point-source
attack.

Modeling the physically disabled subpopulation is accomplished by stochasti-
cally tagging individuals with a disability factor, the value of which is initialized
probabilistically from a uniform distribution between 0 and 0.5 and remains
constant, reflecting the chronic nature of the disability. Thus, the range of 0 to
0.5 means that a particular disabled person can move at most half as fast as a
normal person, all other factors, such as health level, being equal.

The health level (a real number in the interval [0, 1]) of each person in the
population is initialized according to four major categories of illness defined
respectively by the following probabilities and ranges: deadpr = 0.05 − [0, 0.2] ,
severepr = 0.2−[0.2, 0.5], lightpr = 0.3−[0.5, 0.8], no-symptoms = 0.45−[0.1, 1].
The incorporation of people with mild or no symptoms captures explicitly the
effect of the “worried well”: people who do not actually need medical treatment
but nonetheless consume available resources.

All simulations involve 20 ambulances, 5 onsite responder units and 30 hospi-
tals. Unless otherwise stated, a total number of 10 simulations are run for each
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set of initial conditions. Thus, a point on the graph represents a mean value, for
that specific tick, of the parameter value found in 10 independent runs.

3 Point-Source Attack

The first scenario is a point-source sarin gas attack at the Port Authority Bus
Terminal in Manhattan. 25% of the exposed population (either 1000, 5000, or
10000 people) suffer from impaired mobility, covering anything from low level
disability (e.g., extremes of age) to chronic physical disabilities (e.g., wheelchair-
bound). The emergency response and population dynamics are followed for a
period of 2 days and 2 hours (3000 ticks/minutes), representing a reasonable
amount of time before external aid arrives.

Different Disaster Magnitudes. Fig.2(a) features the fraction of the total popula-
tion treated by each tick for disasters of different magnitudes, i.e. increasing size
of the total exposed population. This parameter is an important performance
measure of the emergency response system, as it characterizes its ability and
efficiency in absorbing and treating disaster casualties. As seen in the figure, in
the case of 1000 exposed people, 70% of the population has received treatment in
the first 800 minutes of the disaster aftermath. This number decreases somewhat
as the total exposed population increases. These values attest to the resilience
of the city-wide emergency response system in that most victims have been seen
and treated well within the first 24 hours of the disaster event. Significantly,
these results compare well with actual events. The Madrid terrorist bombings
of March 11, 2004 resulted in 2062 casualties. Of these, 1430 (about 70%) were
treated within the first 810 minutes post event [3]. The fatality rate per tick as a
percentage of the total population is graphed in the inset plot of Fig. 2(a). This
value increases nonlinearly with increasing disaster magnitude.

Subpopulation Dynamics. A finer level of detail is attained by analyzing the
fraction of each subpopulation (normal and physically disabled) accessing med-
ical treatment at each tick. As seen in Fig. 2(b), the first thing to note is that
all curves are sloping downward by 3000 minutes, and in fact well before that
time. All along, many people who are not very sick but nonetheless seek out
medical treatment (i.e. the “worried well”) receive treatment, if necessary, and
are discharged relatively quickly. This fraction shows itself in the difference be-
tween the fraction of people receiving treatment at a given tick (Fig. 2(b)) and
the total fraction that has received treatment by that tick (Fig. 2(a)). There are
others who require a longer stay in the hospital. As these sicker patients recover
and begin to be discharged in significant numbers, the curves shown in Fig. 2(b)
begin to slope downwards until all have been discharged.

Passing this point represents that the population as a whole is on the way to re-
covery. The timing of this recovery point is significant. A population that features
an earlier point is recovering faster. In this light, the results in Fig. 2(b) shows
that the normal subpopulation as a whole recovers faster than the physically
disabled population for all disaster magnitudes. Within the normal population,
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Fig. 2. Point-source attack: (a) fraction of the total population treated by each tick
and fatality rate dynamics (inset plot) for the total population for different disaster
magnitudes; (b) fraction of the normal and physically disabled subpopulations treated
at each tick for different disaster magnitudes

the point of recovery shifts to later times as disaster magnitude increases, il-
lustrating the intuitive notion that a population recovers more slowly from a
disaster of larger magnitude. Interestingly, the recovery point is fairly constant
for the physically disabled subpopulation, suggesting that its ability to recover
is compromised even at smaller disaster magnitudes.

Different hospital topology structures. Analysis in the aftermath of the Madrid
bombings suggested that there probably existed an over-triage to the closest
hospital. Namely, many noncritical patients presented to the nearest hospital
[3]. In light of this conclusion, it is interesting to study the effects of the clos-
est hospitals on disaster outcome. One way to do this is to remove sequentially
hospitals close to the disaster site, i.e. to change the hospital topologies. Re-
sults in this section report on three such scenarios. In the first simulation, the
closest hospital, St. Vincent’s Midtown Hospital (415 W. 51st St) is removed.
The second simulation features removal of this and the next closest hospital,
Roosevelt Hospital (1000 Tenth Ave.). Finally, the third simulation features the
additional removal of Bellevue Hospital (462 First Ave.). Fig. 1(a) shows the
specific locations of these four hospitals in the map.

The fraction of each subpopulation (normal and physically disabled) access-
ing treatment at each tick is graphed in Fig. 3(a) for these three scenarios (and
the original point-source attack with all hospitals operating). For the physically
disabled population, removal of the hospitals has little effect. A relatively small,
but interesting effect is seen early on for the normal subpopulation. Removal of
the first hospital has very little effect, and this is consistent with the fact that St.
Vincent’s Midtown Hospital, while the closest, is a relatively small facility. The
additional removal of Roosevelt Hospital, however, leads paradoxically to an in-
crease in the number of individuals receiving treatment early in the simulation
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Fig. 3. Hospital topologies: (a) dynamics for the fraction accessing treatment for the
normal and the physically disabled (inset plot) individual for the removal of 0, 1, 2,
and 3 specific hospitals near the disaster site. (b) dynamics for the total fraction of
people waiting for admission.

and also results in an earlier recovery point. Further removal of Bellevue Hospital
Center results in a slight decrease in these numbers and a slightly delayed recovery
point.

This trend is confirmed by analyzing the fraction of the total population
that is waiting for admission to a hospital at each tick. As seen in Fig. 3(b),
the number of people waiting early (first 300 minutes) in the simulation de-
creases significantly as the closest two hospitals are removed. Taken together,
these results highlight a counterintuitive emergent phenomenon: removal of the
two closest hospitals results in better performance. Further consideration sug-
gests a reason: their removal somehow allows for a better distribution of people
among the available hospitals by removing the incentive for people to move in a
counterproductive fashion by crowding the closest two hospitals.

A confirmation of this hypothesis is seen in Fig. 4, which plots for each of the
30 hospitals the number of people either admitted to the hospital for treatment
or waiting for admission in each minute. Each plot corresponds to the removal
of 0, 1, 2, or 3 specific hospitals. As seen in Fig. 4(a), for the removal of no
hospitals, crowds of people leaving the Port Authority in the aftermath of the
disaster initially reach St. Vincent’s Midtown, evidenced by the early green spike
in the figure. A short time later, people also arrive at Roosevelt Hospital, evi-
denced by the early red spike. Roosevelt Hospital, due to its large size, continues
to attract a large fraction of the total population throughout the simulation.
Note that the hospital curves are similar in shape to the curves for the fraction
accessing treatment at each tick. They feature similar recovery points and slope
downwards as the sicker people recover and are discharged. Fig. 4(b) confirms
the hypothesis that dynamics do not significantly change with the removal of
the closest hospital, St. Vincents Midtown. As seen there, the early spike seen
for St. Vincents in Fig. 4(a) is no longer present, while the dynamics overall are
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Fig. 4. Dynamics for the number of people either admitted or waiting for admission
at each hospital for the case of removal of 0 (a), 1 (b), 2 (c), or 3 (d) nearby hospitals
in the point-source attack scenario

similar to Fig. 4(a), with Roosevelt Hospital playing a dominant role. As seen
in Figs. 4(c) and 4(d), people’s movements change dramatically once Roosevelt
Hospital is also removed. Instead of moving northward, people move east to
Tisch Hospital (gray curve) and nearby Bellevue Hospital (pink curve), which
is no longer seen in Fig. 4(d) as it has also been removed. Moving east instead
of north results in the better outcome seen in Figs. 3(a) and 3(b). This is un-
derstood in light of the greater number of resources that are found there. For
example, Tisch and Bellevue are both large hospitals in close proximity to one
another, as compared with Roosevelt and St. Vincent’s Midtown, whose com-
bined resources are less. Furthermore, movement east places people closer to
larger hospitals on Manhattan’s East Side.

These results are particularly illustrative of the usefulness of PLAN C in
emergency planning. While suggesting that the distribution of hospitals in Man-
hattan as given may not be optimal for a specific disaster scenario, they also
suggest that emergency managers, through risk communication or other means,



Resilience in the Face of Disaster 441

can guide people’s movements in particular directions and to particular hospi-
tals to improve outcome. Moreover, the map for a given city may not necessarily
be a given constraint. Different configurations for the resource locations can be
designed and PLAN C could be employed to determine the optimal layout for a
given scenario, enabling planners to redesign an entire city or a particular locale
for optimal robustness in the face of a specific disaster.

4 Distributed Scenario

In contrast to the point-source attack studied above, the current section fo-
cuses on a distributed scenario in which the individuals are positioned randomly
throughout Manhattan. The hypothetical situation is one in which a large num-
ber of people were congregated at some earlier point in time. All were exposed
to a hypothetical agent that does not reveal itself symptomatically until a later
time. As the simulation starts, a certain number are already dead, and the city-
wide health system is becoming aware of the nature of the situation. The pa-
rameters for the hypothetical agent vis a vis health decline are made identical
to those of the sarin scenario in order to facilitate comparisons between a point-
source and distributed attack. The distributed scenario does not feature onsite
responders or ambulances, as PLAN C does not currently include ambulances
that can respond to particular emergency calls.
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Fig. 5. Distributed scenario: (a) fraction of the normal and physically disabled sub-
populations treated at each tick for different disaster magnitudes; (b) dynamics for the
total fraction of people waiting for admission

Fig. 5(a) highlights the fraction of the normal and physically disabled sub-
populations that are receiving medical treatment at each tick for disasters of
different magnitudes. Comparison with the point-source attack (Fig. 2) demon-
strates a robustness of the physically disabled population not seen previously.
Namely, the recovery point (maximum) is earlier for disasters of lesser magni-
tude, whereas in the point-source attack it was constant. This robustness in the
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distributed scenario is expected. There is less competition for the same hospital
resources as people distribute more equitably to a variety of hospitals. This more
equitable distribution is seen when comparing Fig. 6, which plots the number
of people admitted or waiting for admission at each hospital, with the analo-
gous figure for the point-source attack (Fig. 4(a)). From the point of view of the
city-wide health system, the ability to absorb disaster casualties is significantly
compromised in a point-source attack as compared with a distributed scenario.
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Fig. 6. Distributed scenario: dynamics for the number of people either admitted or
waiting for admission at each hospital (represented by a different trace)

Analysis of the total fraction of people waiting for admission reveals an in-
teresting result (Fig. 5(b)). For a distributed disaster magnitude of 1000 people,
the number waiting increases early in the simulation and then decays. A similar
form is seen for 5000, with a slower decay. Finally, for 10000 people, the curve
does not decay in the early part of the simulation. Even for the distributed
simulation, which yields a more robust city-wide disaster response with earlier
recovery points as compared with the point-source attack, a large disaster can
still stress the system.

5 Conclusions and Future Investigations

Results presented here illustrate the feasibility of incorporating special subpopu-
lations within the PLAN C framework, capable of simulating disasters of various
magnitudes (10000 casualties). Analysis of the system dynamics in disasters of
varying topologies, both in terms of the spatial distribution of subpopulations
(point-source versus distributed scenario) as well as the locations of the available
resources (hospitals), can reveal counterintuitive emergent phenomena, such as
the fact that removing hospitals close to the disaster site can improve overall
outcome of the system. A significant finding is that “recovery points” can be
discerned, both for total- and sub-populations. When carried forward with dis-
asters of larger magnitude or of longer duration (e.g. infectious diseases), these
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points can be determines in order to estimate the duration of a response sys-
tem’s/city’s vulnerability. Proactive use of PLAN C in planning would attempt
to maximize system resilience and earlier recovery points by optimizing vari-
ous facets of disaster response. Emergency managers, urban planners and public
health officials can refine existing emergency plans and policies using PLAN C’s
versatile, innovative platform.

Among the many lines of investigation which we plan to address, particu-
larly relevant are the following: 1) greater realism can be incorporated by the
introduction of social networks linking individuals across subpopulations with
consequent dynamics that may prove very different as normal individuals al-
ter their dynamics to aid “friends” or family members who suffer from some
impairment such as physical disability; 2) validation of PLAN C’s realism in
order to build confidence in its use as a tool for disaster planning; 3) automatic
computation of optimal configurations (locations) for the available resource (i.e.
hospitals) through the use of multi-objective evolutionary algorithms [14].
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Appendix: PLANC’s Agent Behavior Description

PLAN C is an innovative agent-based framework for simulating large scale
disasters in urban settings which features: (i) large number of computational
actors/agents (Person, Hospital, On-Site Responder, Ambulance and Catastro-
phe); (ii) flexible number of parameters for describing the agents’ behavior and
interaction, the time course of the disease, environmental factors, etc.; (iii) com-
munication channels to exchange information (e.g., health/resource levels, hospi-
tal operation mode, etc.); among similar and differing agents; (iv) realistic models
of medical/responder units and catastrophe chemical agent effects; and (v) inte-
grated urban topologies (streets, subways, hospitals, etc), via publicly available
GIS (geographical information system) data. PLAN C involved collaborative
participation from a multi-disciplinary team including medical, sociological and
legal experts from the NYU’s CCPR (Center for Catastrophe Preparedness and
Response). Because of the focus of the present paper, we present detailed de-
scriptions of the Person and the Hospital agents.
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Hospital Agent

The hospital is a stationary agent that is an abstraction of any medical facility
that can play a role at the time of a catastrophe. The hospital uses a simple
triage policy with three operation modes (available, critical and full). The tran-
sition from one state to another is based on the available number of beds and
resources. The hospital is realistically modeled to include an Emergency Depart-
ment (ED), inpatient beds, isolation beds, and critical care capacity in the form
of an Intensive Care Unit (ICU) and ventilators.

The hospital mode directly influences several decisions (triage): whom to turn
away, whom to admit, whom to treat, how much resources to allocate to a person
requiring treatment, who can be discharged, and who can be moved from the
ED to an inpatient or ICU bed. In the available mode, the hospital admits
all persons present for treatment; in the critical mode, only critically ill people
can be admitted; in the full mode, no new people can be admitted. Among the
several parameters which influence the way the hospital operates, the following
are particularly relevant. Thirty major hospitals have been included, and the
number of hospital beds was used as an indicator of the capacity of the hospital.

Probability of admission. This equation captures the assumption that increased
hospital efficiency results in a higher probability of admitting additional people
in each tick. Conversely, as the number of occupied beds increases, the admission
probability decreases:

Pr(admit) =
EffH × ratep × ticksize

1 + |H |occ
(1)

where EffH is the efficiency of the hospital H (defined later), ticksize is the
number of minutes per tick of the simulation (= 1), ratep (= 50) is the number
of people per minute that can be attended to (admitted + treated + discharged),
and |H |occ is the number of total occupied beds in the hospital.

Hospital efficiency. The efficiency, regulated by the following rule, directly in-
fluences many decisions, such as the amount of treatment given to a person as
well as the number of persons admitted or treated at each tick, also it indirectly
affects the waiting time at the hospital and mean hospitalization time:

EffH =
1

1 +
(

|H|occ+SH

|H|+|ED|
) (2)

|H |occ is defined as before, while |H | and |ED| are respectively the total number
of inpatient and ED beds and SH is the level of sickness inside the hospital,
defined as SH =

∑
i:p∈H (1 − hp), where hp is the health level of the person p.

The intuitive notion behind this equation is that the efficiency of the hospital
should decrease as bed occupancy and the overall sickness of the inpatient popu-
lation increases. We are currently studying different variations of these formulas
to better model these processes.
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Average time in ED. The average time a person spends in th ED before being
moved to an inpatient bed is defined by the following equation:

AvgED
t = baset × (1 + |Ed|occ +

SED

|ED| ) (3)

where baset (= 5) is a user parameter defining the base value for the average
time in the ED, SED is the total sickness of people in the ED. This formula and
the previous one are consistent with the time series analysis in [7].

Person Agent

The affected population is modeled as reactive selfish agents with bounded ratio-
nality and stochastic behavior. The person’s initial goal is to reach the original
destination (home or place of work) from the initial location. After the event,
health begins to deteriorate such that at a certain health-level, governed by envi-
ronmental and personality factors, the person decides to head to a hospital. The
person agent maintains information about destination (home/work or hospital),
current health level hl ∈ [0, 1], current level of medical intervention ml ∈ [0, 1];
location and current capacity of known hospitals. An agent may talk to any
agent in its neighborhood (defined as everybody in the same location on the
map), and exchange information about the known list of hospitals, the disease
type, etc.

Level of worry and compliance. Each person has specific personality traits de-
fined through the degree of worry/fear wl ∈ [0, 1], which represents the innate
level of irrationality in the agent, and the level of compliance cl ∈ [0, 1], which
captures the instruction-abiding trait of a person; Both wl and cl are initialized
uniformly random in [0, 1] but they also change during the simulation as a con-
sequence of the interactions between the agents: when two agents talk to each
other they both update the variables wl and cl according to the current values
of the other agent computing the mean value.

Level of distress. The degree of worry and the health level are combined together
to define the perceived level of distress of a person: sl = wl ×(1−hl). The simple
intuition behind this formula is the following: if the health level is high then
with low probability the degree of worry can generate distress. This parameter
influence many decisions of the person agent, for example, higher the level of
distress suffered by a person, higher the probability of selecting the nearest
hospital even when it is full.

Disability factor. The disability factor dl reflects the chronic nature of the dis-
ability of the person. This parameter which is initialized randomly in [0, l], where
l is used to decide the degree of disability, is then used as a multiplication factor
with other characteristics parameter of a person. In this paper, the speed of a
disabled person is updated proportionally to dl.
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