
Composing Semi-Algebraic O-Minimal Automata ?

A. Casagrande1,2, P. Corvaja1, C. Piazza1, and B. Mishra3,4

1 DIMI, Università di Udine, Via delle Scienze, 206, 33100 Udine, Italy
2 Istituto di Genomica Applicata, Via J.Linussio, 51, 33100 Udine, Italy
3 Courant Institute of Mathematical Science, NYU, New York, U.S.A.
4 NYU School of Medicine, 550 First Avenue, New York, 10016 U.S.A.

Abstract. This paper addresses questions regarding the decidability of
hybrid automata that may be constructed hierarchically and in a modular
way, as is the case in many exemplar systems, be it natural or engineered.
Since the basic fundamental step in such constructions is a product oper-
ation, an essential property that would be desired is that the reachability
property of the product hybrid automaton be decidable, provided that
the component hybrid automata belong to a suitably restricted family of
automata. Somewhat surprisingly, the product operation does not assure
a closure of decidability for the reachability problem. Nonetheless, this pa-
per establishes the decidability of the reachability condition over automata
which are obtained by synchronizing two semi-algebraic o-minimal sys-
tems.

1 Introduction

Classically two disparate mathematical traditions have incongruously coex-
isted, while studying the same natural phenomena and their dynamics using
two different elementary mechanistic representations. In one setting, the sys-
tems remain unchanged during a resting period, interrupted discretely and
intermittently by modification of its current state to a non-neighboring distant
state. In the other, the system only makes continuous changes, while metic-
ulously avoiding any perceptibly significant changes over any infinitesimally
small time interval. Common sense and intuition dictate that neither of the ap-
proaches should suffice to capture the substantial details of natural phenomena
in one or the other representation, and perhaps, a higher fidelity is to be sought
through better hybrid representations combining both discrete and continuous
evolutions. Since their introduction (see, e.g., [2]) hybrid automata have initi-
ated a new tradition, in the process, promising powerful tools for modeling and
reasoning about complex systems: e.g., embedded and real time systems, or
computational biology, where the resulting analyses are providing many new
insights. Unfortunately, in their flexibility in capturing dynamics, resides also

? This work is developed within the HYCON Network of Excellence, contract number
FP6-IST-511368 and partially supported by the project PRIN 2005 project 2005015491.
B.M. is supported by funding from two NSF ITR grants and one NSF EMT grant.

their flaws and limitations: many undecidability results proved for general hy-
brid automata [13] cast doubt on its suitability as a general tool that can be
algorithmized and efficiently implemented. On the other hand, if these repre-
sentations are further restricted, as in the powerful family of o-minimal systems
[14], one could hope to still enjoy a fidelity of representation that far surpasses
either that of a finite automata or a decidable system of differential equations,
and yet avoid the curse of undecidability. In particular, the reachability problem
has been shown decidable for semi-algebraic o-minimal hybrid automata [14],
and their extensions: SaCoRe automata which allow inclusion dynamics [7] and
IDA automata which introduce in some cases identity resets [6].

In order to build a theoretical framework that can also use these hybrid repre-
sentations in a natural manner, one must shift one’s attention to the description
of large and complex hybrid systems that can be described in a compositional
manner, built out of many elemental modules at many different levels of hierar-
chy. Since the basic fundamental step in a compositional construction is through
a product operation, yielding a new product hybrid automaton by combining
two simpler component hybrid automata, an essential desideratum of this new
theoretical framework is that the reachability property of the product hybrid
automaton be decidable, provided that the component hybrid automata belong
to a suitably restricted decidable family of automata, e.g., one in the class of o-
minimal automata. In general, the product operation does not assure a closure of
decidability property for reachability condition. Nonetheless, in this paper we
establish decidability of the reachability condition considering a synchronized
product operation, where the elementary component automata are restricted to
the decidable class of semi-algebraic o-minimal systems. Such automata appear
in biological modeling, and hence could find many practical applications, par-
ticularly, when one is interested in understanding complex biological systems
that have evolved from many smaller self-organizing systems.

The decidability of the reachability problem over semi-algebraic o-minimal
automata can be proved by first translating the problem into a decidability
problem over semi-algebraic first-order formulæ [7], since the formulæs de-
cidability follows directly from a classical result of Tarski in [17]. Interestingly,
when the translation is extended to synchronized products the presence of cy-
cles in the component automata introduces variables ranging over the naturals.
Roughly speaking the formulæ we get are linear Diophantine equations whose
coefficients are algebraic reals symbolically represented by first-order formulæ.
When at least one coefficient ranges over an interval the existence of a solution
is easy to check. On the other hand, when all the coefficients range over finite
sets of points more sophisticated methods, based on computational algebraic
number theory results, are necessary.

The paper is organized as follows: Section 2 introduces the problem together
with all the necessary notations; Section 3 presents our decidability result; Sec-
tion 4 proves the impossibility of achieving decidability via simulation quoti-
enting techniques and finally, Section 5 concludes with a brief discussion on
possible applications as well as further research directions.

All the proofs of the results presented in this paper can be found in [5].

2 Hybrid Automata and Synchronized Product

We start by introducing some basic notions about directed graphs which are
used as discrete components in hybrid automata.

Definition 1 (Labeled Directed Graph). A labeled directed graph is a pair 〈V,E〉
where V is a finite set of vertices and E ⊆ V × L × V is a finite set of edges such
that if

〈
v1, λ1, v′1

〉
and

〈
v2, λ2, v′2

〉
are two different edges in E, then λ1 , λ2. If

e = 〈v, λ, v′〉 ∈ E is an edge, then we say that Source (e) = v, Dest (e) = v′, and
Label (e) = λ are the source, the destination, and the label of e, respectively.

By an abuse of notation, we will also refer to them as directed graphs, when
the meaning is clear from the context.

A path is nothing but a successive sequence of edges. A cycle is a path in
which the first and the last edges coincide.

Definition 2 (Path and (Simple) Cycle). Let G = 〈V,E〉 be a graph. A path ph
from v ∈ V to v′ ∈ V in G is either the vertex v, only if v = v′, or a sequence of edges
‘e1, . . . , en

′ such that, for all i ∈ [1,n−1], Source (ei+1) = Dest (ei), Source (e1) = v, and
Dest (en) = v′. In the former case, we say that ph has length |ph| = 0 and, in the latter,
that ph has length |ph| = n.

A path p = ‘e1, . . . , en
′ is a cycle if e1 = en. Moreover, if ei , e j for all i, j ∈ [1,n−1]

with i , j, then we say that p is a simple cycle.

The standard definition of cycle requires that the first node coincides with
the last one, while in our definition we impose that the first and the last edges
are identical. A similar difference occurs in the definition of simple cycle. The
two definitions are obviously not equivalent. However, also with our definition
it is easy to see that a graph has only a finite number of simple cycles.

Before defining hybrid automata, we present some notations and conven-
tions. Capital letters Zm, Z′m, where m ∈ N, denote variables ranging over R.
Analogously, Z denotes the vector of variables 〈Z1, . . . ,Zk〉 and Z′ denotes the
vector 〈Z′1, . . . ,Z′k〉; and Zn denotes the vector 〈Zn

1 , . . . ,Z
n
k 〉. The temporal vari-

ables T and T′ model time and range over R≥0. We use the small letters p, q, r, s,
. . . to denote k-dimensional vectors of real numbers. Occasionally, we may use
the notation ϕ[X1, . . . , Xm] to stress the fact that the set of free variables of the
first-order formula ϕ is included in the set of variables {X1, . . ., Xm}. Analogous
notation is used over vectors of variables. Given a formula ϕ[X1, . . ., Xi, . . ., Xn]
and a vector p of the same dimension as the vector Xi, the formula obtained by
replacing Xi with p is denoted by ϕ[X1, . . ., Xi−1, p, Xi+1, . . ., Xn].

We are now ready to formally introduce hybrid automata. For each node
of a graph we have an invariant condition and a dynamic law. The dynamic
law may depend on the initial conditions, i.e., on the values of the continuous
variables at the beginning of the evolution in the state. The jumps from one
discrete state to another are regulated by the activation and reset conditions.

Definition 3 (Hybrid Automata - Syntax). A hybrid automaton H = (Z, Z′, V,
E, Inv, F , Act, Res) of dimension k consists of the following components:

1. Z = 〈Z1, . . ., Zk〉 and Z′ = 〈Z′1, . . ., Z′k〉 are two vectors of reals variables;
2. 〈V, E〉 is a graph; the vertices, V, are called locations;
3. Each vertex v ∈ V is labeled by the formula Inv(v)[Z];
4. F is a function assigning to each vertex v ∈ V a continuous vector field over Rk;

we will use fv : Rk ×R≥0 −→ Rk to indicate the solution of the vector field F (v);
Dyn(v)[Z,Z′,T]

def
= Z′ = fv(Z,T);

5. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z,Z′];
Res(e)[Z′]

def
= ∃Z Res(e)[Z,Z′].

For the sake of simplicity in notation we will write I(v), A(e), and R(e) to
denote the sets of points that satisfy Inv(v), Act(e), and Res(e), respectively.

Definition 4 (Hybrid Automata - Semantics). A state ` of H is a pair 〈v, r〉, where
v ∈ V is a location and r = 〈r1, . . . , rk〉 ∈ Rk is an assignment of values for the variables
of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r] is true.

The continuous reachability transition relation t−→C, where t > 0 is the transition
elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒ It holds that s = fv(r, t), and for each t′ ∈ [0, t] the
formula Inv(v)[fv(r, t′)] is true.

The discrete reachability transition relation →D between admissible states is
defined as follows:

〈v, r〉 〈v,λ,u〉−−−−→D 〈u, s〉 ⇐⇒ It holds that 〈v, λ, u〉 ∈ E and the formulæ
Act(〈v, λ, u〉)[r] and Res(〈v, λ, u〉)[r, s] are true.

We write ` →C `′ and ` →D `′ meaning respectively that there exists a t ∈ R≥0

such that ` t−→C `′ and that there exists a e ∈ E such that ` e−→D `′. Moreover, we
use the notation `→ `′ to denote that either `→C `′ or `→D `′.

Building upon a combination of both continuous and discrete transitions,
we can formulate a notion of trace as well as a resulting notion of reachability.

Definition 5 (Hybrid Automata - Reachability). Let I be either N or an initial
finite interval of N. A trace of H is a sequence of admissible states `0, `1, . . . , `i, . . . ,
with i ∈ I, such that `i−1 → `i holds for each i ∈ I greater than zero.

The automaton H reaches a point s ∈ Rk (in time t) from a point r ∈ Rk if there
exists a trace tr = `0, . . . , `n of H such that `0 = 〈v, r〉 and `n = 〈u, s〉, for some v,u ∈ V

(and t is the sum of the continuous transitions elapsed times).

Given a trace of H we can identify a path of 〈V,E〉 as follows.

Definition 6 (Corresponding Path). Let H be a hybrid automaton and tr be a trace
of H. A corresponding path of tr is a path ph of 〈V,E〉 obtained by considering the
discrete transitions occurring in tr.

In this paper we are interested in the reachability problem for hybrid au-
tomata, namely, given a hybrid automaton H, an initial set of points I ⊆ Rk, and a
final set of points F ⊆ Rk we wish to decide whether there exists a point in I from
which a point in F is reachable. A common approach in deciding reachability of
hybrid automata is that of discretizing the automata using either equivalence
relations (see, e.g., [14]) or abstractions (see, e.g., [1]). Since, as we will show
later, the class investigated in this paper does not have a finite (bi)simulation
quotient in general, we study reachability of hybrid automata by translating the
reachability problem into first-order formulæ over the reals. The formulæ ob-
tained by the translation include the formulæ occurring in the hybrid automata.
Hence, it is necessary to select a suitable ambient theory upon which the au-
tomata of interest are to be built. A well-known class of hybrid automata is the
class of o-minimal hybrid automata [14, 4], defined by using formulæ taken over
an ambient o-minimal theory and by imposing the constraints of constant resets
at discrete transitions, i.e., the resets do not depend on the point from which
the edge is crossed. In the case of o-minimal automata defined by a decidable
theory, reachability can be decided through bisimulation [14]. A theory which
is both o-minimal and decidable is the first-order theory of (R, 0, 1,+, ∗, <) [17],
also known as the theory of semi-algebraic sets. In this paper we focus on semi-
algebraic o-minimal hybrid automata, i.e., o-minimal hybrid automata built
over the theory of (R, 0, 1,+, ∗, <).

In order to study the reachability problem over the synchronized product
of two semi-algebraic o-minimal hybrid automata we will exploit a character-
ization of the reachability problem over hybrid automata based on first-order
formulæ over the reals (see [7, 5]).

Lemma 1. Let H be an automaton and let ph be a path in 〈V,E〉. Consider the first-
order formula Reach(H)(ph)[Z,Z′,T] defined in [5]. It holds that a point r ∈ Rk reaches
a point s ∈ Rk in time t through a trace tr having ph as a corresponding path if and
only if Reach(H)(ph)[r, s, t] holds.

Thus we have reduced the reachability problem over a path to that of deciding
the satisfiability of an existentially quantified semi-algebraic formula. In the
case of o-minimal automata, the constant resets allow to turn this result into a
first-order characterization for reachability [7, 5]. As far as the complexity of this
problem is concerned, the procedure proposed by Collins in [9] has a double-
exponential complexity. Later Hoon Hong, using many practical heuristics,
created the first popular quantifier elimination software Qepcad. Alternative
methods have been proposed Grigorév [11] and Renegar [16] that are double-
exponential in the number of quantifier alternations rather than in the number of
variables. New approaches have been proposed by Basu [3]. More importantly,
symbolic algebraic geometry holds many other powerful tools such as Gröbner
bases and characteristic sets in its arsenal, whose utility is just beginning to be
examined.

The simultaneous evolution of two or more automata with distinct continu-
ous variables is captured by the notion of synchronized product of hybrid automata,
also known as parallel composition (see, e.g., [12, 15]).

Definition 7 (Synchronized Product). Let H1 = (Z1,Z1′,V1,E1, Inv1, F1, Act1,
Res1) and H2 = (Z2,Z2′,V2,E2, Inv2, F2,Act2, Res2) be hybrid automata over distinct
variables and let ε be a label not occurring in E1 ∪ E2. The synchronized product of
H1 and H2 is the hybrid automaton H1 ⊗H2 = (Z,Z′,V,E, Inv, F , Act, Res), where:

1. Z (Z′) is the vector obtained by concatenating Z1 and Z2 (Z1′ and Z2′, respectively);
2. V = V1 × V2 and E = Ex ∪ E1 ∪ E2, where:

– Ex = {ee1,e2 = 〈〈v1, v2〉, 〈λ1, λ2〉, 〈u1,u2〉〉 | e1 = 〈v1, λ1,u1〉 ∈ E1 and e2 =
〈v2, λ2,u2〉 ∈ E2},

– E1 = {ee,v = 〈〈u, v〉, 〈λ, ε〉, 〈w, v〉〉 | e = 〈u, λ,w〉 ∈ E1 and v ∈ V2}, and
– E2 = {ev,e = 〈〈v,u〉, 〈ε, λ〉, 〈v,w〉〉 | v ∈ V1 and e = 〈u, λ,w〉 ∈ E2}.

3. Inv(〈v1, v2〉)[Z]
def
= Inv(v1)[Z1] ∧ Inv(v2)[Z2];

4. Dyn(〈v1, v2〉)[Z,Z′,T]
def
= Dyn(v1)[Z1,Z1′,T] ∧Dyn(v2)[Z2,Z2′,T];

5.

Act(ea,b)[Z]
def
=



Act(a)[Z1] ∧ Act(b)[Z2] if ea,b ∈ Ex
Act(a)[Z1] if ea,b ∈ E1

Act(b)[Z2] if ea,b ∈ E2

6.

Res(ea,b)[Z,Z′]
def
=



Res(a)[Z1] ∧ Res(b)[Z2] if ea,b ∈ Ex
Res(a)[Z1] ∧ Z2′ = Z2 if ea,b ∈ E1

Z1′ = Z1 ∧ Res(b)[Z2] if ea,b ∈ E2

Example 1 (Product of automata). Given the automata Ha and Hb depicted in
Figure 1, their synchronized product H⊗ = Ha ⊗Hb is described in Figure 2.

Ża = −1
Za ∈ [0, 1]

Za = 0
Z ′a = 1

Żb = −1
Zb ∈

[
0,
√

2
] Zb = 0

Z ′b =
√

2

Fig. 1. The automata Ha (left) and Hb (right).

As far as reachability is concerned, we will study the reachability problem
over H1 ⊗ H2, where H1 and H2 are hybrid automata of dimensions k1 and
k2, respectively, considering only sets of points of the form I = I1 × I2 and
F = F1 × F2, where I1,F1 ⊆ Rk1 and I2,F2 ⊆ Rk2 . This simplification will allow us
to work on H1 and H2 quite independently. In the general case our results can
be used to both under-estimate and over-estimate reachability. Unfortunately,
even with this assumption, one may not always be able to ascertain the closure
of reachability condition under composition; namely, starting from a set I1 it
may be possible to reach a set F1 in the automaton H1 and similarly, starting
from a set I2 it may be possible to reach a set F2 in H2, and yet starting from I1× I2
in H1 ⊗H2 it may not be possible to reach F1 × F2. Moreover, the decidability of

Ża = −1
∧

Żb = −1

Za ∈ [0, 1]
∧

Zb ∈
[
0,
√

2
]

Za = 0 ∧ Zb = 0;
Z ′a = 1 ∧ Z ′b =

√
2

ee,e

Za = 0;
Z ′a = 1 ∧ Z ′b = Zb

ee,v

Zb = 0;
Z ′a = Za ∧ Z ′b =

√
2

ev,e

Fig. 2. The hybrid automaton H⊗ of Example 1.

reachability is not always preserved under product operation i.e., it is possible
that reachability is decidable over two classesC1 andC2 of hybrid automata, but
not over the product class C1 ⊗ C2 = {H1 ⊗H2 |H1 ∈ C1 and H2 ∈ C2} (see [15]).

3 Reachability in the Synchronized Product

To construct a decidable characterization for reachability over synchronized
products, we exploit the existance of a canonical path decomposition: namely,
given a semi-algebraic o-minimal hybrid automaton, from any cyclic path of
the automaton, we can extract both an acyclic part, by removing all the cycles
occurring in it, and a set of simple cycles. The global time necessary to cover the
path is then equal to the sum of the time necessary to cover the acyclic part plus
multiples of the times we can spend over the simple cycles. What is important
is that in the case of o-minimal automata the time we can spend over a cycle
does not depend on the starting and ending point.

We define the operation which allows us to add a simple cycle to a path.

Definition 8 (Path Augmentability). Let ph, ph′ be two paths. We say that ph′ is
augmentable to ph if ph′ is a simple cycle starting and ending with the edge e and ph
is a path involving the edge e. If ph′ is augmentable to ph we denote by ph ⊕ ph′ the
path obtained by inserting ph′ in ph over the first occurrence of their common edge e,
i.e., if ph′ = ‘e, ph′1, e

′ and ph = ‘e1, . . . , ei−1, e, ei+1 . . . , en
′ where we explicitly identify

the first occurrence of e, then ph ⊕ ph′ = ‘e1, . . . , ei−1, e, ph′1, e, ei+1 . . . , en
′

Let PH′ be a set of (simple cyclic) paths we say that PH′ is augmentable to a path ph
if either PH′ = ∅ or there exists an ordering ph1, . . . , phm of the elements of PH′ such
that for each i ∈ [1,m] either phi is augmentable to ph or there exists j < i such that phi
is augmentable to ph j.

Notice that if ph′ is augmentable to ph, then it is augmentable to ph ⊕ ph′ too.
Moreover, it is easy to see that if ph is a cyclic path, then there exist ph1, . . . , phn,
simple cyclic and acyclic, such that ph = ph1 ⊕ . . . ⊕ phn.

Let H be an o-minimal hybrid automaton, ph = ‘e1, . . . , em
′ be a path of H,

and Reach(H)(ph)[Z,Z′,T] be the formula of Lemma 1 (see also [7, 5]). We define
the following formula

R̃each(H)(ph)[Z,Z′,T] def
= ∃Z,Z′

(
Reach(H)(e1)[Z,Z, 0]∧
Reach(H)(‘e2, . . . , em−1

′)[Z,Z′,T]∧
Reach(H)(em)[Z′,Z′, 0]

)

It is easy to see that the above formula characterizes all the trajectories, corre-
sponding to ph, which start and end with a discrete transition. Because of the
constant reset condition imposed on o-minimal automata, the following lemma
holds.

Lemma 2. Let H be an o-minimal automaton and ph be a path over H. If the formula
R̃each(H)(ph)[a, b, t] ∧ R̃each(H)(ph)[c, d, t′] holds, then R̃each(H)(ph)[a, b, t′] holds.

It follows that, if H is an o-minimal automaton, then we can use the formula
R̃each(H)(ph)[Z,Z′,T] to define the set of time instants Time(ph) in which ph can
be covered, i.e., Time(ph) def

= {t | ∃Z,Z′R̃each(H)(ph)[Z,Z′, t] holds}. Notice that,
since H is o-minimal by hypothesis, for each path ph of H the set Time(ph) is
o-minimal. It is easy to see the if a path ph′ is augmentable to a path ph and t
is the time needed to evolve through ph then the automaton can elapse a time
t + t′, where t′ ∈ Time(ph′), to evolve through ph ⊕ ph′. The following result
characterizes, the existence of a trace which elapses time t.

Lemma 3. Let H be an o-minimal hybrid automaton of dimension k, let r, s ∈ Rk and
let t ∈ R≥0. There exists a path ph such that Reach(H)(ph)[r, s, t] holds if and only if
there exist a path ph0 and a set of paths PH such that:

1. ph0 is acyclic;
2. PH = {ph1, . . . phn} is augmentable to ph0;
3. we can choose both t0 such that Reach(H)(ph0)[r, s, t0] holds and for each phi two

finite non empty sets {t0
i , . . . , t

mi
i } ⊆ Time(phi) and {k0

i , . . . , k
mi
i } ⊆ N>0 such that

t = t0 +
∑n

i=1
∑m j

j=0 k j
i ∗ t j

i .

In the above lemma the natural number k j
i represents the number of iterations

over the cycle phi which are covered in time t j
i . Intuitively, we impose k j

i > 0
since if there exists php which is augmentable to phi only, then it is necessary to
cover phi at least once, in order to reach php.

The above result suggests a verification technique for o-minimal automaton
time reachability. Exploiting such result, we can propose a characterization of
synchronized product reachability.

Theorem 1. Let H1 and H2 be two o-minimal automata of dimensions k1 and k2,
respectively, and I1,F1 ⊆ Rk1 and I2,F2 ⊆ Rk2 be characterized by the first-order semi-
algebraic formulæ I1[Z], F1[Z], I2[Z], and F2[Z]. The automaton H1 ⊗ H2 reaches
F1 × F2 from I1 × I2 if and only if there exist two acyclic paths ph1 and ph2 and two
sets of paths PH1 = {ph1

1, . . . , ph1
n1
} and PH2 = {ph2

1, . . . , ph2
n2
} augmentable to ph1

and ph2, respectively, such that for each h ∈ {1, 2} it holds that there exists th satisfying
∃Z,Z′(Reach(Hh)(phh)[Z,Z′,T]∧Ih[Z]∧Fh[Z]) and for each phh

i there exist two finite
non empty sets {t0

(i,h), . . . , t
m(i,h)

(i,h) } ⊆ Time(phh
i) and {k0

(i,h), . . . , k
m(i,h)

(i,h) } ⊆N>0 such that

n1∑

i=1

m(i,1)∑

j=0

k j
(i,1) ∗ t j

(i,1) −
n2∑

i=1

m(i,2)∑

j=0

k j
(i,2) ∗ t j

(i,2) = t2 − t1

We introduce the following definition based on the above theorem.

Definition 9. Let H1 and H2 be two o-minimal automata. Let ph1, ph2 be two paths
over H1 and H2, respectively. Let PH1 and PH2 be two sets of paths augmentable to
ph1 and ph2, respectively. We say that H1 ⊗H2 reaches F1 × F2 from I1 × I2 through
ph1,PH1, ph2,PH2 if the hypothesis of Theorem 1 with respect to ph1,PH1, ph2,PH2
are satisfied.

We will spend the remaining part of this section to show that the character-
ization provided by Theorem 1 is decidable.

First of all, we assume that H1 and H2 are two semi-algebraic o-minimal
automata of dimensions k1 and k2, respectively, and that I1,F1 ⊆ Rk1 and I2,F2 ⊆
Rk2 are characterized by the first-order semi-algebraic formulæ I1[Z], F1[Z],
I2[Z], and F2[Z]. Furthermore, we assume that the paths ph1 and ph2 and the
sets of paths PH1 and PH2 augmentable to ph1 and ph2, respectively, are given
and we study the reachability problem with respect to these paths.

Since, as noticed above, Time(ph) is an o-minimal set, either it contains an
interval or it consists of a finite number of time points. Given a set PH of paths
we will say that PH is time-empty if either PH = ∅ or for each ph ∈ PH it holds
that Time(ph) = {0}. We distinguish three cases:

(0) both PH1 and PH2 are time-empty;
(1) either PH1 or PH2 is not time-empty and there exists a simple cycle phh

i such
that Time(phh

i) contains an interval;
(2) either PH1 or PH2 is not time-empty and for each simple cycle phh

i the set
Time(phh

i) consists of a finite number of points.

Let us consider case (0). Theorem 1 tells us that, in this case, the synchro-
nized product reachability can be tested by verifying whether the intersection
of Time(ph1) and Time(ph2) is not empty. This can be done simply by deciding
whether the semi-algebraic formula

∃T1 ≥ 0∃T2 ≥ 0∃Z1,Z′1,Z2,Z′2
(
I1[Z1] ∧ Reach(H1)(ph1)[Z1,Z′1,T1] ∧ F1[Z′1]∧

I2[Z2] ∧ Reach(H2)(ph2)[Z2,Z′2,T2] ∧ F2[Z′2] ∧ 0 = T1 − T2

)

holds. Hence, from Tarski’s result, we can deduce the following theorem.

Theorem 2 (Case 0). Verifying whether H1 ⊗H2 reaches F1 × F2 from I1 × I2 through
ph1, PH1, ph2, PH2, where both PH1 and PH2 are time-empty, is decidable.

As far as case (1) is concerned we can further split it as follows: (1.a) both
PH1 and PH2 are not time-empty; (1.b) either PH1 or PH2 is time-empty.

In case (1.a) the decidability of reachability will be a consequence of density
of the time interval. In particular, if there exist two simple cycle ph1 ∈ PH1 and
ph2 ∈ PH2 such that Time(ph1) contains an interval (ta, tb) and t2 ∈ Time(ph2),
with t2 > 0, then there exists a number n1 of iterations over ph1 and a number n2
of iterations over ph2 such that H1 and H2 can elapse the same amount of time
over ph1 and ph2, respectively i.e., n1 ∗ t1 = n2 ∗ t2.

Theorem 3 (Case 1.a). If both PH1 and PH2 are not time-empty and there is phh
i ∈

PH1 ∪ PH2 such that Time(phh
i) contains an open non empty interval, then verifying

whether H1 ⊗H2 reaches F1 × F2 from I1 × I2 through ph1,PH1, ph2,PH2 is decidable.

We cannot use the decision technique proposed by Theorem 3 for case (1.b)
because either PH1 or PH2 is time-empty. However, if Time(ph1

1), with ph1
1 ∈ PH1,

contains an interval (ta, tb) and PH2 is time-empty, then either ta = 0 or ta > 0. In
the former case H1 can spend any wanted time t by cycling on ph1

1. In the latter,
the number of cycles elapsing a time t ∈ R is upper bounded. Since the problem
is symmetric with respect to H1 and H2, we analyze the case in which PH2 is
time-empty.

Theorem 4 (Case 1.b). If there exists ph1
i ∈ PH1 such that Time(ph1

i) contains a non
empty interval and PH2 is time-empty, then the problem of verifying whether H1 ×H2
reaches F1 × F2 from I1 ⊗ I2 through ph1,PH1, ph2,PH2 is decidable.

To get the decidability of both case (0) and case (1), we simply exploit Tarski’s
result and the density of R. In particular, case (0) and case (1.a) have been re-
duced to a decidability problem for a semi-algebraic formula over the reals,
while case (1.b) has been mapped into a decidability problem for a semi-
algebraic formula with a bounded integer parameter. To decide case (2), we
must apply a different technique. For all h ∈ {1, 2} and i ∈ [1,nh], we know how
to characterize the time elapsed along every single cycle phh

i . In particular, this
step can be effectively performed by exploiting a formula ψh

i [T]. We wish to
known whether there exist both a set of natural numbers {nh

i } and a set of time
{th

i } such that ψh
i [th

i] and
∑

i∈[1,n1] n1
i ∗ t1

i −
∑

i∈[1,n2] n2
i ∗ t2

i = t, where t is the time
needed to reach the ending point from the starting point.

The above formula is neither a semi-algebraic formula, since it involves
natural numbers, nor a “standard” linear Diophantine equation, since the coef-
ficients th

i are solutions of semi-algebraic formulæ. However, this problem can
be solved combining computational algebraic number theory algorithms (see,
e.g., [8]) with linear Diophantine equation algorithms (see, e.g., [10]).

Theorem 5 (Case 2). If PH1 ∪PH2 is not time-empty and for each phh
i ∈ PH1 ∪PH2

it holds that Time(phh
i) is a finite set of points, then the problem of verifying whether

H1 ⊗H2 reaches F1 × F2 from I1 × I2 through ph1,PH1, ph2,PH2 is decidable.

From the above theorems, since a graph has only a finite number of acyclic
paths and a finite number of simple cycles, we obtain the following result.

Corollary 1. Let H1 and H2 be semi-algebraic o-minimal automata of dimensions k1
and k2, respectively. Let I1,F1 ⊆ Rk1 and I2,F2 ⊆ Rk2 be characterized by first-order
semi-algebraic formulæ. Verifying that H1⊗H2 reaches F1×F2 from I1× I2 is decidable.

4 Simulation in the Synchronized Product

The notion of simulation was introduced by Milner as a means to compare
programs. Roughly speaking, a hybrid automaton H simulates H′, if every
behavior of H′ can be matched by H. In hybrid automata context, the most
interesting type of simulation is the time-abstract simulation.

Definition 10 (Time-Abstract Simulation). Let H and H be two automata of di-
mensions k and k, respectively, and F be a set of formulæ. A relation R between H and
H states is a time-abstract simulation preserving F if and only if, for each pair of
states q = 〈v, r〉 and q̃ of H and for each state q′ = 〈v′, r′〉 of H, if

(
q, q′

) ∈ R then:

– ϕ[r] holds if and only if ϕ[r′] for all ϕ[Z] ∈ F;
– for each edge e of H such that q e−→D q̃ in H there exist an edge e′ and a state q̃′ such

that Label (e) = Label (e′), q′ e′−→D q̃′ in H, and
(
q̃, q̃′

) ∈ R;
– if q→C q̃ in H, then there exists a state q̃′ such that q′ →C q̃′ in H and

(
q̃, q̃′

) ∈ R.

If there exist two time-abstract simulations R and R′ preserving F such that(
q, q′

) ∈ R and
(
q′, q

) ∈ R′ then q and q′ are simulation equivalent with respect to F,
denoted by q 'F q′. For any hybrid automaton H, the relation 'F between states
of H is an equivalence relation. Hence, we can consider the 'F’s equivalence
classes [q]'F and the quotient set

(
V ×Rk

)
/ 'F where V×Rk is the set of states of

H. It has been proved that, given a hybrid automaton H, there exists an unique
transition relation →'F such that | →'F | is minimal and H and the transition
system H/ 'F= 〈V ×Rk/ 'F,L,→'F〉 are simulation equivalent with respect to
F. Such a transition system is said simulation quotient preserving F of H and it
maintains some of the properties of H. In particular, [q j]'F is reachable from [qi]'F

in H/ 'F if and only if there exist two states q̃i and q̃ j of H such that q̃i ∈ [qi]'F ,
q̃ j ∈ [q j]'F , and q̃i reaches q̃ j. We say that an automaton H has a finite simulation
quotient if, for all set of formulæ F, H has a finite simulation quotient preserving
F. A bisimulation is a symmetric simulation. If a hybrid automaton admits a finite
bisimulation quotient, then it also admits a finite simulation quotient.

Even if in [14] it has been proved that every o-minimal automaton admits
a finite bisimulation quotient, in this section we prove that there exist semi-
algebraic o-minimal automata whose synchronized product does not admit a
finite simulation quotient. In particular, we prove that the automaton H⊗ of
Example 1, which can be easily proved to be semi-algebraic, does not admit
a finite simulation. To prove this fact, we show that there exists an infinite

succession of states (qi)i∈N such that qi reaches qi+1 in H⊗ and [qi]'∅ , [q j]'∅ , for
all simulation equivalences between H⊗’s states ' and all i , j ∈N.

Let us consider the succession S(i) defined as S(i) def
= i −

⌊
i√
2

⌋ √
2 with i ∈N.

〈0, 0〉

〈1, S(1)〉〈0, S(1)〉

〈1− S(2),
√

2〉

〈1− S(2), 0〉

〈1, S(2)〉〈0, S(2)〉

〈1− S(3),
√

2〉

〈1− S(3), 0〉

〈1, S(3)〉〈0, S(3)〉

〈1, S(4)〉〈0, S(4)〉

〈1,
√

2〉

Fig. 3. Infinite states which are not similar in the automaton H⊗ of Example 1.

As intuitively shown in Figure 3 there is an infinite number of states of the
form (〈v, 〈0,S(i)〉〉) which are not simulation equivalent.

Theorem 6. Consider the automaton H⊗ of Example 1. Let R ⊆
(
V⊗ ×R2

)
×
(
V⊗ ×R2

)

be a time-abstract simulation. If
(〈v, 〈0,S(i)〉〉 , 〈v, 〈0,S(j)〉〉) ∈ R, then i = j.

As a direct consequence of the preceding result, we have proven that H⊗
does not admit a finite simulation quotient.

Corollary 2. There exist synchronized products of semi-algebraic o-minimal automata,
which possess an infinite simulation quotient.

5 Applications and Conclusions

In this paper we studied the behavior of two semi-algebraic o-minimal automata
evolving concurrently. In particular, we showed that the reachability problem
for synchronized product of semi-algebraic o-minimal hybrid automata is de-
cidable. To achieve such a result we exploited Tarski’s decidability result on
semi-algebraic theory, density results over the reals, algorithms to solve the
membership problems over algebraic fields, and algorithms for solving systems
of linear Diophantine equations. The combination of these techniques allowed
us to prove the decidability of particular formulæ involving both real and in-
teger variables. Moreover, we were able to reduce the reachability problem of
synchronized product of semi-algebraic o-minimal hybrid automata to a decid-
ability problem over such formulæ and in the process proving the decidability
of the reachability problem itself. Since we showed that the studied automaton
class does not admit a finite simulation quotient, we also proved that such a
result cannot be achieved using finite quotient techniques.

To illustrate the utility of the theoretical frameworks we have proposed, we
next sketch two examples, both taken from the field of system biology. First
example concerns a ubiquitous motif in biochemical pathways, composed of
mutually repressing pair of proteins A and B, operating as a bistable switch.
Analyzing the concentration traces of A, we will soon observe that we can ap-
proximate its behaviors with a semi-algebraic o-minimal hybrid automaton,
relatively accurately. This assumption is quite reasonable, since the dynam-
ics can be approximated through Taylors method with polynomials and the
constant resets can safely approximate a certain level of uncertainty. Symmetri-
cally, we can draw an analogous automaton for B. We can now exploit the new
methodology for product automata to study the nature of their interaction and
examine what other unstable or metastable states that can be reached when the
proteins interact. For instance, since A is a repressor for B and vice-versa, then
in the product of the two automata from a region near the maximum value of A
and the minimum of B it should be possible to reach a region near the minimum
of A and the maximum of B and vice-versa.

A more complex example concerns multiple clock-like dynamics that coex-
ist within a cell, and are speculated to play a role in temporal multiplexing of
biological processes. As noticed in [18, 19] the set of metabolic reactions exe-
cuted in a cell follow an ultradian clock dynamics, since they must coordinate
those reactions, which are incompatible as well as others, which produce toxic
by-products. Hence, it is important to understand the exact details of the mecha-
nisms, which have evolved in order that the cell can avoid dangerous situations.
Spatial compartmentalization is not always able to explain these phenomena.
Temporal compartmentalization (or multiplexing) better models the repeated
temporal segregations of metabolic processes over successive cycles which have
been experimentally observed. Many concrete examples have been presented
in [18, 19] (e.g., circadian cycle and metabolic cycle in yeast). The synchronized
product presented here can be exploited to automatically model the combined
cyclic behaviors of different metabolic processes occurring within a cell.

Time-complexity issues limits the applicability of our result. Nevertheless
it presents some intriguing theoretical features. First of all, to prove the decid-
ability of synchronized product we take advantage from the decidability of a
very simple mixed real-integer language. Such approach mimes in some senses
the continuous-discrete behavior described by hybrid systems, but, as far as
we know, it has not been investigated yet. We believe that such techniques can
be extended to handle more complex languages and, hence, to decide more
sophisticated hybrid systems. Moreover, real systems are built by many com-
ponents which can interact with each other. Unfortunately, models describing
such systems may have a number of discrete states exponential with respect
to the number of the systems components themselves. This problem is known
as the state explosion problem. Different techniques have been developed to
address this issue: above all symbolic model checking, abstract model checking,
partial order reduction,and equivalence reductions. All such techniques use a
top-down approach i.e., starting from the entire system they aim to reduce the

state space. This approach faces two important hurdles: it assumes to handle
the overall system representation, and this is a strong assumption for many
biological systems having hundreds of interacting components; it does not yet
exploit the possibility of verifying the decidable parts of the system. For these
reasons, we aim to apply the bottom-up approach (i.e., verify each system’s
component and combine the results). and deciding the reachability problem for
synchronized product of o-minimal hybrid automata can be seen as a first step
over a hybrid automaton compositional theory. Notice that it is proved in [15]
that the decidability problem for synchronized product of four semi-algebraic
hybrid automata whose resets are either constant or identity is not decidable.
Despite this fact, the decidability of reachability problem for the closure under
synchronized product of semi-algebraic o-minimal automata is still an open
problem. Moreover, the technique proposed in this paper emphasizes the hard-
est cases to decide (case (2)) an suggests a class of automata whose closure under
synchronized product has a reasonably high chance of being decidable.

References

1. A, R., D, T.,  I, F. Progress on Reachability Analysis of Hybrid
Systems Using Predicate Abstraction. In Proc. of Hybrid Systems: Computation and
Control (HSCC’03) (2003), vol. 2623 of LNCS, Springer, pp. 4–19.

2. A, R., H, T. A.,  H, P.-H. Automatic Symbolic Verification of
Embedded Systems. In IEEE Real-Time Systems Symposium ’93 (1993), IEEE Computer
Society Press, pp. 2–11.

3. B, S. An Improved Algorithm for Quantifier Elimination Over Real Closed Fields.
In IEEE Symposium on Foundations of Computer Science (FOCS’97) (1997), pp. 56–65.

4. B, T., M, C., R̀, C.,  T, C. On O-Minimal Hybrid
Systems. In Proc. of Hybrid Systems: Computation and Control (HSCC’04) (2004), R. Alur
and G. J. Pappas, Eds., vol. 2993 of LNCS, Springer, pp. 219–233.

5. C, A., C, P., P, C.,  M, B. Synchronized Product of
Semi-Algebraic O-Minimal Hybrid Automata. Tech. rep., University of Udine, 2006.
Available at http://fsv.dimi.uniud.it/papers/synchro.pdf.

6. C, A., M, V., P, C.,  M, B. Independent dynamics
hybrid automata in systems biology. In Proc. of the First International Conference on
Algebraic Biology (AB’05) (2005), Universal Academy Press, Inc., pp. 61–73.

7. C, A., P, C.,  M, B. Semi-Algebraic Constant Reset Hybrid
Automata - SACoRe. In Proc. of the 44rd Conference on Decision and Control (CDC’05)
(2005), IEEE Computer Society Press, pp. 678–683.

8. C, H. A Course in Computational Algebraic Number Theory, vol. 138 of Graduate
Texts in Mathematics. Springer, 1993.

9. C, G. E. Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. In Proceedings of GI Conference on
Automata Theory and Formal Languages (1975), vol. 33 of LNCS, Springer, pp. 134–183.

10. C, E.,  D, H. An Efficient Incremental Algorithm for Solving Systems
of Linear Diophantine Equations. Information and Computation 113, 1 (1994), 143–172.

11. G́, D. Complexity of Deciding Tarski Algebra. Journal of Symbolic Computation
5 (1988), 65–108.

12. H, T. A. The Theory of Hybrid Automata. In Proc. of IEEE Symposium on
Logic in Computer Science (LICS’96) (1996), IEEE Computer Society Press, pp. 278–292.

13. H, T. A., K, P. W., P, A.,  V, P. What’s decidable about
hybrid automata? In Proc. of ACM Symposium on Theory of Computing (STOCS’95)
(1995), pp. 373–382.

14. L, G., P, G. J.,  S, S. O-minimal Hybrid Systems. Mathematics
of Control, Signals, and Systems 13 (2000), 1–21.

15. M, J. S. Decidability and Complexity Results for Timed Automata and Semi-
linear Hybrid Automata. In Proc. of Hybrid Systems: Computation and Control
(HSCC’00) (2000), vol. 1790 of LNCS, Springer, pp. 296–309.

16. R, J. On the Computational Complexity and Geometry of the First-order
Theory of the Reals, parts I-III. Journal of Symbolic Computation 13 (1992), 255–352.

17. T, A. A Decision Method for Elementary Algebra and Geometry. Univ. California
Press, 1951.

18. T, B. P., K, A., R, M.,  MK, S. L. Logic of the Yeast Metabolic
Cycle: Temporal Compartmentalization of Cellular Processes. Science 310 (2005),
1152–1158.

19. T, B. P.,  MK, S. L. Metabolic cycles as an underlying basis of biological
oscillations. Nature Reviews - Molecular Cell Biology 7 (2006), 696–701.

