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Abstract. In the bioinformatics literature, pairwise sequence alignment
methods appear with many variations and diverse applications. With this
abundance, comes not only an emphasis on speed and memory efficiency,
but also a need for assigning confidence to the computed alignments
through p-value estimation, especially for important segment pairs within
an alignment. This paper examines an empirical technique, called SEPA,
for approximate p-value estimation based on statistically large number of
observations over randomly generated sequences. Our empirical studies
show that the technique remains effective in identifying biological corre-
lations even in sequences of low similarities and large expected gaps, and
the experimental results shown here point to many interesting insights
and features.

1 Introduction

In the field of comparative genomics, an emphasis is placed on its functional ge-
nomics aspects. Most often we align two or more sequences, because we expect
that the important areas selected from that alignment will point to a significant
common biological function, even when we realize that there can be no abso-
lute guarantee of this. In order to draw our attention very quickly to the most
pertinent similar subsequences, it is necessary to compare the important areas
of alignments and rank them in order of their relevance. For instance, by com-
paring alignments in related sequences to those of unrelated sequences with no
common biological function, we may derive, for any alignment, the probability
that its important areas occur by mere coincidence. This probability measure is
also known as a p-value, and low p-values relate to high relevance rank.

Many p-value estimation techniques have been suggested and examined pre-
viously, for instance, Karlin-Altschul [4] and Siegmund-Yakir [7], but none have
proven completely satisfactory. In this paper, we focus on using empirical re-
sults to improve the p-value approximation in case of alignments of noncoding
nucleotide sequences of lengths varying from .5 Kb to 12 Kb, with expected
large gaps and low similarities. These alignments are often computed with the
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complex but biologically faithful model involving piecewise-linear gap penalty
functions as in Plains [2]; nonetheless, other techniques such as LAGAN and
EMBOSS have also proven effective. We demonstrate the effectiveness of a p-
value approximation technique called SEPA (Segment Evaluator for Pairwise
Alignments) as it selects and scores important segments pairs. Furthermore, for
random sequences, we also empirically characterize how various alignment statis-
tics, such as the segment pair lengths, scores, and magnitudes, distribute as a
function of sequence lengths. From this analysis, the parameters for a p-value
approximation are estimated, and used to demonstrate the method of sensitivity
in distinguishing important homologies from unimportant chance occurrences of
subalignments within sequences. Furthermore, SEPA is non-subjective, since it
can easily be applied to any alignment tool. We will illustrate this advantage by
using it to compare the results of Plains with LAGAN and EMBOSS. Because
of these strengths and despite its empirical foundation, SEPA fulfills a practical
computational need by speeding up the core search processes in comparative
genomics.

2 Overview

We introduce some notations as follows: Assume the sequences to be aligned are
X and Y , and their respective lengths are m and n, where m ≥ n. Let Xu and
Yv denote respectively the uth character of X and the vth character of Y , where
1 ≤ u ≤ m and 1 ≤ v ≤ n.

Let us suppose that aligning X and Y with some arbitrary alignment tool
produces an alignment A of length a, where m ≤ a ≤ m + n. We will represent
an alignment A as follows: For each i, A[i] denotes the ith position in alignment
A, and it is represented as a pair of index coordinates (u, v) taken from X and
Y , and this corresponds to Xu and Yv being aligned to each other at position i

in A if u > 0 and v > 0, or one of Xu or Yv being aligned against a gap if either
v ≤ 0 or u ≤ 0.

Next, let A[i : j] denote the portion of alignment A[i], A[i + 1], . . . , A[j]. We
will refer to A[i : j] as a strip or segment pair from position i to position j.

Let ww(i) denote the penalty for a gap of length i. ww(·) can be any arbitrary
function, but for this paper, we will assume it is a d-part piecewise-linear function
where each successive slope is smaller than the previous one. A more specific
version of this score-function is where d = 1, which is the affine function used in
the Smith-Watermann algorithm.

Also, let S(i, j) denote the score for strip A[i : j] where the score is computed
in the following way: ma is a score for each match, ms is the penalty for each
mismatch, and ww(·) is used to penalize the gaps. To compute S(i, j) from
A[i : j], each match and mismatch within it is added or deducted from the
score individually, while each region of X against a gap and Y against a gap is
penalized as a whole using ww(·) based on the length of that region.1

1 For this paper, the ma reward is 1, the ms penalty is 0.346445, and the ww(i)
penalty is the piecewise-linear approximation of 1.01742 + 1.015724 ln(i + 1). This
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Suppose we have a scheme that marks r non-overlapping strips as important.
Suppose that the endpoints for these strips are denoted as (i1, j1), . . . , (ir, jr).
For each k, we wish to measure in some way how strip A[ik : jk] provides a
meaningful correlation between X and Y . One common mathematical approach
is to, given a certain null hypothesis, compute the p-value of Pr(x ≥ s) where
s = S(ik, jk). This p-value is known as the coincidental probability of obtaining
a strip with score at least s. For this paper, we will assume the null-hypothesis
is the behavior of important strips taken from pairwise-aligning randomly gen-
erated DNA sequences. Also, if the total scores of all strips is t = Σr

k=1S(ik, jk),
then ζ = Pr(x ≥ t, y ≤ r), the probability of obtaining at least a total score of
t using at most r strips.

One should note that coincidental probabilities of the segments (both p-values
and ζ) are dictated by the scheme used to determine the segments as important.
One scheme might deem strip A[i : j] as important, but SEPA might not, and
instead SEPA may consider a possibly overlapping strip A[i′ : j′] as impor-
tant. As a result, the formula for the p-values and ζ value could differ from one
scheme to the other. For instance, in the method used to obtain important seg-
ments mentioned in Karlin-Altschul [4], Pr(x ≥ s) = 1− exp(Kmne−λs) holds.
However, as argued later in this paper, the way SEPA obtains the segments from
an alignment A leads us to approximate the p-value as Pr(x ≥ s) = K

λ
e−λs.

2.1 Obtaining High-Scoring Strips from an Alignment

Given an alignment A produced from sequences X and Y , we produce important
strips as follows: Given fixed constants W and ω, and ρ (where W is an integer,
and ω and ρ are real numbers in the range [0, 1]), let W denote the window
size to be used, ω denote the value used to prevent portions of A of lowest
match percentage from becoming considered as important strips, and ρ denote
the value used to filter away areas of A that have too low of a p-value. We obtain
our segment pairs in the following steps:

(1) For all i from 1 to a − (W − 1), we compute pa(i), the percentage of
entries in A[i : i + W − 1] where a match has occurred. Let µ and σ denote
the mean and standard deviation of our pa(·) values. Next, for each i, we mark2

pa(i) values as “special” if they exceed a threshold value of µ + ωσ. Hence, we
filter away A[i : i + W − 1] if it fails to meet this threshold value.

(2) For each u and u′ (with u ≤ u′), if pa(u), pa(u + 1), . . ., pa(u
′) are all

marked as “special”, but pa(u − 1) and pa(u′ + 1) are not, then we consider
the strip A[u : u′ + W − 1] as important (i.e., we consider as important the
strip starting the leftmost entry repsented by pa(u), up till the rightmost entry
represented by pa(u′)).

selection empirically provides a good numerical contrast in scores between strips of
high homology, and strips of lower homology.

2 The choice of using µ + ωσ as the cutoff value instead of a fixed constant gives us
the flexibility of catching important regions in the two sequences, regardless of how
homologous they are to each other.
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(3) For each strip A[i : j] deemed important, we trim it so that it starts and
ends at a position in the alignment where a match occurred. Thus, if i′ is the
smallest value such that i′ ≥ i and A[i′] is a match position, and j′ is the largest
value such that j′ ≤ j and A[j′] is a match position, then we trim strip A[i : j]
into strip A[i′ : j′].

(4) Next, we merge together any important strips that overlap. Namely, if
we have two strips A[i : j] and A[k : l] such that i ≤ k ≤ j, then we merge these
strips into one larger strip A[i : max (j, l)].

(5) With all strips now representing non-overlapping regions, we then proceed
to give each strip A[i : j] its corresponding score S(i, j), as well as its p-value.
We delete A[i : j] if its p-value exceeds ρ, since that indicates that A[i : j] may
be coincidental. We can optionally also collect other information at this point,
such as the length of each strip.

(6) The r strips kept at this step are considered the “good” ones. We now
compute t, the sum of the scores of the these strips. Using this value, we can
compute ζ, coincidental probability for all r strips obtained.

Note that these steps for SEPA are similar to that of [2], except that the
calculation for each segment pair’s coincidental probability differs. Based on
empirical experimentation, setting W = 50, ω = 0.5, and ρ = 0.5 yields segment
pairs that are reasonably long, non-coincidental, and have significantly higher
matches than the alignment “background”. We reasoned that since our method of
obtaining segment pairs differs from that of Karlin-Altschul, then the method for
computing p-values for each segment pair cannot build upon their assumptions.

2.2 Methods: Analyzing Segment Pairs

In order to approximate an appropriate p-value estimation for SEPA, we ana-
lyzed segment pairs behavior over our assumed null hypothesis of alignments for
randomly generated nucleotide sequences. For length values ranging from 1000
bp to 8000 bp, we generated 25 random sequences. We also generated 25 random
sequences of length 500 bp. For each combination of these length pairs, we ran
all 625 possible pairwise alignments using Plains, and analyzed results using
SEPA where ρ = 1 (to avoid filtering any segments out due to low p-value). The
results for mean length-to-score and mean mean segment scores are shown in
Fig. 1. From this, we infer that both are constant in terms of m and n. We also
analyzed the behavior of r (the number of segment pairs observed) and t (the
total score of all the segments) over these random sequences, and found them to
depend on m and n.3 See the full version of this paper4 for figures that elaborate
further.

3 The mean of r is ≈ 103 +ln (7.95 × 10−10mn + 1.54 × 10−7(m + n) + 1.01), the vari-
ance of r is ≈ 103 + ln (1.93 × 10−10mn + 1.97 × 10−7(m + n) + 1.00), the mean of
t is ≈ 105 +ln (4.29 × 10−10mn + 1.33 × 10−8(m + n) + 1.00), and the deviation for
t is ≈ max{100,−5.54 × 10−5j · d + 4.63 × 10−1j + 1.04 × 10−2d − 65.01}, where
j = min (m,n), and d = ‖m − n‖.

4 http://bioinformatics.nyu.edu/~gill/index.shtml
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Fig. 1. Shown in the above graphs respectively are the mean length-to-score ratio and
mean segment scores observed in the strips from aligning randomly generated DNA
sequences. In these plots, a unique line is plotted corresponding to each value of n in
the thousand lengths ranging from 1000 to 8000, and x represents the m value divided
by 1000, and y represents the mean observed for that particular m and n. These
plots indicate that, for small n values, the average length-to-score ratio and average
score decrease with increasing m. However, asymptotically (for large n) the average
length-to-score ratio and average segment scores stay roughly constant in terms of m

(at 3.1 : 1 and 45 respectively), and attempts at using Gumbel distributions failed to
provide better approximations than this.
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Fig. 2. On the left, is a plot of segment scores (x-axis) to frequency (y-axis) for
randomly generated sequences using our assumption that segment score is length-
independent. On the right, is a surface plot of observed frequency for number of seg-
ments r and total score t after adjusting both variables for average and variance be-
haviors, where lighter spots indicate higher frequencies. From the left graph, the tail of
this plot for x ≥ 30 indicates an exponential distribution of form P (S = x) = Ke−λx,
where K = 8.69 × 10−2 and λ = 3.26 × 10−2. From the right graph, we observe
that the majority of the data is concentrated in one area, and this area approxi-

mates to ece−atT
2
+btT+cte−arR

2
+brR+cr , where c = −183.90, at = 10.1, bt = 9070, ct =

−2.04 × 106, ar = 0.241, br = 4.71, cr = −27.5.
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Since the average ratio of segment lengths to score is almost uniform in these
plots, it suggests that the gap penalty used to score the strips can be treated as
if it is a differently-weighted mismatch. Also, note that the p-values computed
with the model studied by Siegmund-Yakir[7] differs mildly from the model using
the simplifying assumption that gaps are differently-weighted mismatches. For
this reason, it is common for tools to ignore the effects of gaps in generating
their p-values, much like BLAST, and in our case, SEPA as well. The left
graph in fig. 2 plots segment scores to frequency, from which we derive our p-
value approximation. Using it, we approximate that P (x = s) = Ke−λs, and our
p-value of P (x ≥ s) is therefore:

P (x ≥ s) =

∫

∞

s

Ke
−λx

dx =
K

λ
e
−λs

And notice that by this construction, P (x ≥ 30) = K

λ
e−30λ ≈ 1. We have designed

our p-value estimation this way since strip scores below 30 are empirically observed to
be unimportant.

Our next natural step, after obtaining p-values for each segment pair, is to provide
a p-value estimate ζ for coincidental probability for the whole alignment, determined
by the strips found. As mentioned earlier, we have learned that both r and t depend on
sequence lengths m and n. Hence, if R and T are supposed to be the number of segment
pairs and the total score of the segment pairs after adjusting for mean and variance
based on sequence length, then the coincidental probability ζ = P (x ≥ T, y ≤ R).
More specifically, ζ is the coincidental probability of seeing a total score of at least T

using at most R segment pairs.

The right graph in figure 2 shows the distribution of r and t values observed from
randomly generated sequences after adjusting for mean and variance. From it, our
approximation of T and R for P (x = T, y = R) gives us for ζ that5:

ζ = P (x ≥ T, y ≤ R) =

∫

∞

T

∫

R

0

e
c
e
−atx2+btx+cte

−ary2+bry+cr dydx =

=
πe

c+ct+cr+
b2
t

4at
+

b2r
4ar

4
√

atar

(

1 − Erf

(

−bt + 2atT

2
√

at

)

)(

Erf

(

−br + 2arR

2
√

ar

)

− Erf

(

−br

2
√

ar

)

)

Table 1 shows a comparison of alignments for biologically related sequences in terms
of unadjusted r and t values, and ζ ′ values, where ρ = 0.5, and ζ ′ = − ln (ζ). Note
that Plains does not always yield the results of least coincidental probability in this
table. This is because the nature of Plains is to aggressively align as many regions
as possible. This produces higher r values than other tools, which hurts its ζ ′ values.
In order to better understand how r and t vary for all the tools used, we chose to
observe what happens when we vary ρ, and figure 3 elaborates in detail for one such
experiment. From it, we see that, for any fixed r, the r best segment pairs generated by
Plains have smaller coincidental probabilities than the best r segment pairs generated
by other tools.

5 Note that Erf(z) = 2√
π

∫

z

0
e−x

2

dx
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Test Name PLAINS LAGAN EMBOSS
t r ζ′ t r ζ′ t r ζ′

fugu2r 534.14 5 11.15 360.22 3 13.05 151.39 2 14.07
HFortho1 734.82 7 10.94 349.33 4 14.18 374.35 5 13.05
HFortho2 600.22 4 16.78 555.61 4 16.78 327.91 1 20.18
HFortho3 637.52 7 14.53 259.44 3 19.05 409.99 5 16.71
HFortho4 1004.97 10 21.74 529.16 5 0.00 367.86 4 0.00
HFortho5 739.71 7 11.07 450.93 5 13.07 453.61 5 13.07

human_mouse.1_1 676.29 10 8.46 52.36 1 18.29 186.98 2 17.00
human_mouse.1_3 552.55 6 15.14 406.79 6 15.14 429.51 6 15.14
human_mouse.3_9 1260.69 15 15.47 432.25 7 24.23 801.15 12 18.44
human_mouse.4_3 262.19 3 15.44 74.91 1 17.79 176.83 2 16.59
human_mouse.4_5 421.71 6 7.35 221.57 3 10.47 401.71 5 8.32
human_mouse.7_11 594.32 8 9.06 164.10 2 15.44 476.71 7 9.99
human_mouse.17_11 608.75 7 13.93 171.96 3 18.57 451.60 6 15.02
human_dog.6_12 1284.79 14 13.88 548.19 7 21.23 394.04 6 22.44
human_dog.7_16 1042.19 13 10.45 128.07 2 22.40 309.03 4 19.84

Table 1. Shown here for Plains, EMBOSS, and LAGAN are the r, t, and ζ ′ values
obtained from aligning genomic DNA sequences of lengths between 0.5 Kb and 12 Kb
within human, mouse, dog, and fugu, where the pairs are biologically related and mainly
noncoding DNA with expected large gaps and low homology regions. The conversion
from ζ to ζ′ was carried out for convenience in comparing lab results, where higher ζ ′

indicates results that are less coincidental. Also, note the loss of precision involved in
reporting ζ′ values. Hence, if for a paricular alignment, Plains and LAGAN receive
ζ′ values that differ by less than 1 × 102, then their ζ′ values would “appear” equal in
this table. Further information regarding the sequences used can be found in the full
version of this paper at site http://bioinformatics.nyu.edu/~gill/index.shtml.
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Fig. 3. In this figure, we observe the unadjusted r and t values produced by Plains,
LAGAN, and EMBOSS from the human-mouse.3 – 9 experiment where we vary the ρ

variable used to filter our segment pairs. On each curve, we observed the t and r values
of each tool when varying ρ over various values from 0.1 till 0.9. Observe from table 1
that Plains performed poorly in terms of ζ ′ values for ρ = 0.5 for the human-mouse.3
– 9 experiments. The key to note here is that the r-to-t ratio is almost uniform for all
tools, but the y-intercept differs from one tool to the next, with Plains having the
highest y-intercept. This means that, for any fixed r, Plains yields higher t and hence
better ζ′ results. Many other experiments from table 1 have a similar plot to this one.
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3 Conclusions and Future Work

Our empirical analysis leads us to the conclusion that the SEPA-based p-value tech-
nique models coincidental probabilities much more accurately than the earlier technique
employed in [2]. Furthermore, we note that aggressively incorporating too many seg-
ments into an alignment can lower the ζ ′ coincidental probability value, in spite an
apparent improvement in the total score, as illustrated by Plains. However, if we keep
only the best r segments from an alignment, the strength of Plains becomes obvious,
since its r segments are less coincidental than its competition.

However, in spite of the promising results from SEPA, there is still plenty of room
for further improvements by using random portions of DNA from Human, Mouse, and
Fugu instead of randomly generated DNA sequences. In that case, our concern shifts
from the coincidental probability of a segment’s score from aligning random DNA, to
the coincidental probability of a segment’s score from aligning unrelated random re-
gions of organisms under comparison. Further extension includes development of better
statistics that realistically captures the base-pair and coding/noncoding distributions
within the sequences, as well as the effects of secondary and tertiary structures.
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