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ABSTRACT
Agent-based models (ABMs) / multi-agent systems
(MASs) are today one of the most widely used modeling–
simulation–analysis approaches for understanding the dy-
namical behavior of complex systems. These models are
often characterized by several parameters with nonlinear
interactions which together determine the global system
dynamics, usually measured by different conflicting crite-
ria. The problem that emerges is that of tuning the control-
lable system parameters at the local level, in order to reach
some desirable global behavior.

In this research paper, we cast the tuning of an ABM
for emergency response planning as a multi-objective op-
timization problem (MOOP). We then propose the use of
multi-objective evolutionary algorithms (MOEAs) for ex-
ploration and optimization of the resultant search space.
We employ two well-known MOEAs, the Nondominated
Sorting Genetic Algorithm II (NSGA-II) and the Pareto
Archived Evolution Strategy (PAES), and test their perfor-
mance for different pairs of objectives for plan evaluation.
In the experimental results, the approximate Pareto front of
the non-dominated solutions is effectively obtained. Fur-
ther, a conflict between the proposed objectives is patent.
Additional robustness analysis is performed to help policy-
makers select a plan according to higher-level information
or criteria not present in the original problem description.
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1 Introduction

The emerging area of agent-based simulation has seen an
exponential growth in the last few years, including ap-
plications to social science, marketing, business, biology,
and several other real-world domains [1]. In such mod-
els, the system is modeled as a collection of autonomous
decision-making entities called “agents”. A large multi-
agent system can produce very complex dynamics even if
the individual agents and their interactions follow simple
rules of behavior. These emergent behaviors may be even
more unpredictable and even counter-intuitive, if the agents
are embedded and forced to interact in a real-world envi-

ronment which introduces more communication channels,
constraints and behavior rules. ABMs are often charac-
terized by several parameters with nonlinear interactions
which together determine the global system dynamics. The
modeler usually desires to produce a system that satisfies
some global behavior that can be measured by different
conflicting criteria, but the model is designed bottom-up
from the agent’s local perspective. The consequence is that
the system parameters at the local level of the agent rules
of behavior must be tuned in order to reach some global
objectives.

Although the consequence of this calibration / tun-
ing process is substantial, very few attempts for a general
method are present in literature, especially with a success-
ful application to real-world systems. Some public tools,
like NetLogo1, allow the user to explore the parameter
space of the system in a systematic and automatic way, but
these approaches become impractical when there are many
real-valued parameters. In [2], a parameter sweep infras-
tructure is proposed where searcher agents traverse the pa-
rameter space in search of higher “fitness”. More recently,
the use of evolutionary computation has been considered:
in [3], a single-objective genetic algorithm is proposed to
explore the parameter space of a simple ant-foraging ex-
ample with ten ants and tuning only two parameters of the
model; in [4], a multi-objective evolutionary approach is
used to calibrate a simple agent-based model of a financial
market, using as objectives the mean and the variance of
the simulated model with respect to the real data.

It is important to note that this calibration / tuning pro-
cess acquires different perspectives according to the spe-
cific dynamical system that is modeled and analyzed. In
our work, we propose a novel method for searching and
selecting emergency response plans in disaster manage-
ment. Planning can be seen as the problem of adjusting
the controllable parameters in the interaction between dif-
ferent classes of agents (hospitals, persons, on-site respon-
ders, ambulances, etc. ) and available resources, in order
to minimize the negative consequences of a catastrophic
event. As part of New York University’s Center for Catas-
trophe Preparedness and Response (NYU’s CCPR), “PLAN

C” 2 [5, 6, 7] – a novel comprehensive multi-agent model
for simulating large-scale urban disasters has been devel-

1http://ccl.northwestern.edu/netlogo/
2http://www.bioinformatics.nyu.edu/Projects/planc/



oped. Here, the performance of a candidate plan can be
evaluated based on the output of the system, according to
different user-specified criteria. In this paper, we show
how this problem can thus be formulated as a constrained
MOOP, and how multi-objective evolutionary algorithms
(MOEAs) can be effectively used to produce approximated
Pareto fronts of “good” preparedness and response plans.

The rest of the paper is organized as follows: inSec-
tion 2, we start with a short description of the PLAN C
model and its main features;Section 3 introduces the major
concepts of multi-objective optimization and shows how
the problem of searching for good plans using the PLAN

C model can be formulated as a constrained MOOP;Sec-
tion 4 describes the use of multi-objective evolutionary al-
gorithms for the proposed optimization problem; inSection
4, we present the experimental results; then the conclusions
follow.

2 The PLAN C Model

An effective response simulation in an urban environment
requires a large number of actors, each with their own
skills, objectives, behaviors and resources, to be able to co-
ordinate their efforts in order to mitigate the outcome of
a disaster. The complex interactions between the affected
population and the available resources of a response plan
have remained poorly understood, and are still beyond the
analytical capability of traditional modeling tools. ABMs
provides a natural way to describe such systems, where the
global dynamics is the result of the behavior of populations
of autonomous agents with a fixed set of rules based on
local information.

The modeling subgroup of the Laser-Med project of
the NYU Center for Catastrophe Preparedness and Re-
sponse (CCPR3) has explored how ABM can serve as a
powerful simulation technique for analyzing large-scale ur-
ban disasters. The team effort in this direction has resulted
in a new multi-agent based disaster simulation framework,
built on top of the Java version of RePast 3.1 [8], able to
model and simulate catastrophic scenarios (e.g., chemical
agent, bomb explosion, food poisoning, small pox) with the
following features:

1. Large number of agents, belonging to five different
classes: Person, Hospital, On-Site Responder, Ambu-
lance and Catastrophe;

2. Large number of parameters for describing the agents’
behavior and interaction;

3. Several communication channels for information
(health / resource levels, hospital operation mode,
etc.) exchange between similar and differing agents;

4. Modeling of the Person agent as a selfish and bound-
edly rational being, with stochastic personality traits
emulating panic behavior;

3http://www.nyu.edu/ccpr/

5. Realistic models of medical / responder units and
Catastrophe agent effects (disease prognosis and
dosage response), validated by medical, sociological
and legal experts from the NYU CCPR;

6. Integration of topological and transportation con-
straints, via publicly available Geographic Informa-
tion System (GIS) data of Manhattan island in New
York City;

7. Computer software for parallel and distributed con-
current computing on large-scale clusters of worksta-
tions, using the integration between ProActive4 and
RePast.

A more detailed description of the system can be found in
[6].

Parameters Table 1 shows the main model parameters
and their possible ranges. Some of these capture the en-
vironment, e.g., the probability of being able to make a
telephone call, but the major part influences the rules of
behavior of the involved agents. These parameters are of
different nature: some of them can be fixed in consultation
with experts; for example, the number of hospitals, ambu-
lances and on-site responders can be set according to the
real situation in Manhattan. Others, however, must be kept
variable due to the scarce knowledge about their real-world
value or usage; for example, the “unsafe health level” is the
health level at which a person chooses to head to a hospi-
tal; this parameter plays an important role in the dynam-
ics of the system, especially in the distributed utilization of
the available resources. According to the afore-mentioned
considerations, we have chosen10 controllable parameters
from the list inTable 1 (marked with(∗)) for use in the opti-
mization process. Some of these parameters are involved in
a linear ordering that should not be violated. In particular,
we have the following relations:p1 < p6 < p7, p2 < p7,
p9 < p8.

Note that the probability of having a communication
device and the probability of being able to communicate us-
ing it are “controllable”, only in the sense that emergency
preparedness can involve improving communication infras-
tructure. However, it is not always clear what the cost-to-
benefit ratio is for this utility. The optimization procedure
can help shed light on this issue.

Warfare Attack Scenario As a simulation scenario, we
consider a possible terrorist attack with a warfare agent,
like Sarin gas, at the Port Authority Bus Terminal in the
island of Manhattan. We consider an affected population
of 500 individuals,5 on-site responder units and10 ambu-
lances. The28 major hospitals are also included, with their
location and capacity initialized based on real data. The
ambulances and on-site responders are activated30 min-
utes after the attack, to capture the real delay between the

4http://www-sop.inria.fr/oasis/proactive/



Table 1. Main model parameters. The starred ones (“(*)”)
are being optimized.

Agent Description Id. Range
Person Critical health Level(∗) p1 [0, 1]

Person Unsafe health level(∗) p2 [0, 1]
Person Probability of having p3 [0, 1]

a communication device(∗)

Person, Phone update probability(∗) p4 [0, 1]
Ambulance
On-site Responder Dischargeable health level(∗) p5 [0, 1]

Hospital Noncritical health level(∗) p6 [0, 1]

Hospital Dischargeable health level(∗) p7 [0, 1]

Hospital Low resource level (%)(∗) p8 [0, 100]

Hospital Very low resource level (%)(∗) p9 [0, 100]

Hospital Low beds level (%)(∗) p10 [0, 100]
Hospital, Alert time (in minutes) [0,∞]
Ambulance,
On-Site Responder
Catastrophe Percentage of lethal, [0, 100]

severe, light, injuries
User Maximum number of iterations [0,∞]
User Number of agents of each class [0,∞]

attack and the first emergency call. The probability dis-
tributions for lethal, severe and light injuries immediately
following the attack are set at0.1, 0.35, 0.40 and0.15. re-
spectively. Each model simulation is carried out for1000
ticks, corresponding to the first16 hours after the attack.

3 Emergency Response Planning as a Com-
plex Constrained MOOP

When an optimization problem involves more than one ob-
jective function, the task of finding one (or more) optimum
solution(s), is known as the Multi-Objective Optimization
Problem (MOOP). In problems characterized by more than
one conflicting objective, there is no single optimum so-
lution; instead there exists a set of solutions which are all
optimal, called theOptimal Pareto front.

A general multi-objective optimization problem is de-
fined as follows (minimization case):

min F(x) = [f1(x), f2(x), . . . , fM (x)]
subject to E(x) = [e1(x), e2(x), . . . , eL(x)] ≥ 0

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , N,

(1)

wherex = (x1, x2, . . . , xN ) is the vector of theN decision
variables, M is the number ofobjectives fi, L is the num-
ber ofconstraints ej , andx

(L)
i andx

(U)
i are respectively the

lower and upper bound for each decision variablesxi. Two
different solutions are compared using the concept ofdom-
inance, which induces astrict partial order in the objective
spaceF . Here a solutiona is said to dominate a solutionb
if it is better or equal in all objectives and better in at least
one objective. For the minimization case we have:

F(a) ≺ F(b) iff

{
fi(a) ≤ fi(b) ∀i ∈ 1, . . . , M

∃j ∈ 1, . . . , M fj(a) < fj(b)
(2)

A large scale emergency plan naturally involves multiple
objectives: minimize the number of casualties (affected

Table 2. Model stochasticity.

No. of Runs % of Fatalities Avg. Ill-health Avg. Waiting Time
1 11.53% 2% 27.41%
5 3.57% 0.87% 8.21%
10 1.14% 0.82% 6.63%
50 1.09% 0.19% 1.84%
100 0.26% 0.054% 1.83%

people), fatalities (mortalities), the average ill-health of the
total population, average waiting time at the hospitals, etc.,
andmaximize the average time taken by a person to die (so
as to increase the chance for external help to arrive), uti-
lization of resources at different locations (so that no one
location runs out of critical resources), etc. There are also
tangible economic, legal and ethical issues in disaster man-
agement which could contribute a different class of objec-
tive functions. The PLAN C model produces as its output
the individual traces of all its agents and statistical infor-
mation about the time-course of the global behavior. In
this paper, we have decided to investigate and analyze the
three criteria presented inTable 2: the percentage of fatal-
ities, average ill-health of the affected5 population (at the
end of16 hours) and the average waiting time at the hos-
pitals (during the first16 hours). The global behavior is
the emergent interaction between the different classes of
agents and available resources for the specific emergency
scenario. Therefore the multi-objective formulation is de-
fined as follows: the selected input parameters of the model
are thedecision variables, the criteria for plan evaluation
are theobjectives, the parameter ranges are thevariable
bounds, and the mutual relations between the set of pa-
rameters are theconstraints. In particular, in this research
paper we investigate the formulation of the problem as a
two-objective optimization problem, where the percentage
of fatalities is coupled first with the average ill-health and
then with the average waiting time.

4 Methods

Over the past ten years, a number of multi-objective evolu-
tionary algorithms (MOEAs) have been proposed and stud-
ied [9]. The major reasons for the growing interest in such
techniques is their ability: (i) to generate multiple Pareto-
optimal solutions in a single run of the algorithm, (ii) to
handle a large search space, and (iii) to be robust to the ef-
fects of noise. Moreover, MOEAs have been successfully
applied to several real world problems: protein folding
[10], circuit design [11], safety related systems [12], etc.
Among the growing class of MOEAs, in this work we em-
ploy two well-known algorithms, NSGA-II and PAES, and
test their relative performance for the proposed problem.
These two evolutionary algorithms were chosen because:
(i) they are representative of the state-of-the-art in evo-
lutionary multi-objective optimization, (ii) they belong to

5Persons in perfect health (= 1.0) are excluded in the computation of
this average.



two different classes of evolutionary algorithms – Genetic
Algorithm (NSGA-II) and Evolution Strategy (PAES), and
(iii) their software (code) is in the public domain.

The Nondominated Sorting Genetic Algorithm II
(NSGA-II) [13] is based on the use of fast nondominated
sorting approach to sort a population of solutions into dif-
ferent nondomination levels. It then uses elitism and a
crowded-comparison operator for diversity preservation.
The Pareto Archived Evolution Strategy (PAES) [14] uses a
simple (“1+1”) local search evolution strategy. It maintains
an archive of nondominated solutions which it exploits to
estimate accurately the quality of new candidate solutions.

The goal of our work is to estimate the Pareto front of
a large scale emergency response planning problem, using
the PLAN C model for the simulation of the effectiveness
of the candidate plan on the targeted catastrophic scenario
(represented as a set of input parameters to the model), and
multi-objective evolutionary algorithms to optimize the so-
lutions according to the defined objectives or criteria. Iden-
tifying a good estimate of the observed Pareto front is cru-
cial for the policy makers’ selection of a stable and robust
plan satisfying the objectives. Of course, this approach
cannot be used as a stand-alone technique, but must be
combined with traditional table-top exercises (such as war-
games), and can be used by domain experts to develop, test,
evaluate and refine public health policies governing catas-
trophe preparedness and emergency response.

Model Stochasticity In the PLAN C model the stochas-
ticity is an important aspect that must be handled carefully:
two different simulations can generally bring slightly dif-
ferent results even with the same initialization of parame-
ters. It follows that one simulation is not enough to evaluate
the fitness function, and can only be considered as an esti-
mate of the fitness. In order to study the stochasticity of
the PLAN C model,Table 2 shows the error rate in the esti-
mation of the different analyzed objectives with respect to
a “true” fitness value estimated on1000 independent runs.
As expected, the stochasticity is different for each objective
/ criteria: the number of fatalities and the average waiting
time are more sensitive to the stochastic behavior than the
average ill-health. As a good trade-off between the quality
of the approximation and the computational cost,10 runs
are used for the fitness evaluation (based onTable 2).

Constraint Handling Several constraint handling tech-
niques have been proposed in recent years in order to en-
sure feasibility of constrained optimization. Following the
ideas proposed in [15], we have also introduced the concept
of a constraint objective:

γco(x) =

L∑

i=1

min{ei(x), 0}, (3)

The standard dominance relation≺ of equation 2 is

redefined as follows:

x1≺̂x2 iff

{
γco(x1) < γco(x2) or
γco(x1) = γco(x2) and F(x1) ≺ F(x2),

(4)
whereF is the set of objectives. In this way, the constraint
objective has the highest priority and there is no necessity
to check the feasibility of the solutions during the evolu-
tion of the algorithm. We have modified both NSGA-II and
PAES dominance relation according to equation 4.

Evolutionary Algorithm Parameters and Operators
We use a real-valued representation for both algorithms. In
particular, for NSGA-II we use the usual simulated binary
crossover (SBX) and polynomial mutation, with probabil-
ities and distribution indices beingpc = 0.9, ηc = 10 and
pm = 1

N
, ηm = 20 respectively. For PAES, the muta-

tion operator selects a decision variablexi with probability
pm = 1

N
and mutates it according to the following law:

x∗

i = xi + N(0, 0.1)× (x
(U)
i − x

(L)
i ). HereN(0, 0.1) is a

real number generated by a Gaussian distribution of mean
µ = 0 and standard deviationσ = 0.1.

Experimental Protocol Both algorithms are run for a
maximum of 4, 000 fitness function evaluations. For
NSGA-II, we use a population of40 individuals and run
the algorithm for100 generations. For PAES, we use an
archive sizea = 100, depth parameterd = 4, and run
the algorithm for4, 000 iterations. We use the final popu-
lation of NSGA-II and the final archive of PAES to make
comparative results. We must reiterate that, because of the
model stochasticity, a single fitness function evaluation cor-
responds to running the model for10 independent simula-
tions and calculating the mean value as an estimate of the
fitness. Thus, it follows that we have in all40, 000 model
simulations for each run of the algorithm. As introduced
in section 2, in order to handle this big computational chal-
lenge, we use the ProActive library in order to run each
of the simulations in a different node of the computational
cluster at the NYU Bioinformatics Laboratory6. The pro-
duction of a single Pareto front takes about5 days in our
cluster, but it is important to emphasize that this is an au-
tomatic procedure, in contrast to the standard calibration
method performed by hand. Also, the computation of the
Pareto front helps vividly elucidate the underlying dynam-
ics, interaction complexities and emergent properties, in
addition to actually optimizing the objective functions.

5 Simulation Results

Before presenting comparative results between the Pareto
fronts obtained by the two evolutionary algorithms, it is
important to validate experimentally the proposed multi-
objective approach. It is reasonable to imagine the pres-
ence of a trade-off, for example, between the number of

6http://www.bioinformatics.nyu.edu
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Figure 1. NSGA-II mean evolution curves for the two-
objectives problems studied. Left y-axis range is for per-
centage of fatalities (both plots), right y-axis range is for
average ill-health (main plot) and average waiting time (in-
set plot).

fatalities and the average ill-health of the population at the
and of a response plan. However, trying to characterize the
dynamics of all the involved agents in a complex system
often results in partial differential equations that are dif-
ficult, if not impossible, to solve. This process becomes
even more perplexing when the agents are mobile and em-
bedded in a highly interconnected environment such as an
urban area. Studying the dynamics of the objectives dur-
ing the iterations of an evolutionary algorithm can provide
insight about their mutual interactions.Figure 1 shows the
mean evolution curves of the population of NSGA-II for
the two pairs of objectives analyzed. In both cases, a con-
flict scenario is evident: an improvement of one objective
is nearly always accompanied by a worsening in the other,
but the interaction during the evolution produces a global
minimization of both objectives. This effect is more ev-
ident in the main plot ofFigure 1, where the percentage
of fatalities is plotted against the average ill-health, than
in the case of the average waiting time (inset plot ofFig-
ure 1). Figure 2 shows the final Pareto fronts obtained by
NSGA-II and PAES for the percentage of fatalities and the
average ill-health. It is evident that NSGA-II generates a
better set of solutions than PAES, both in terms of the qual-
ity and the spread. Although we used an archive size of
100 elements for PAES, the final set is composed of only
15 solutions. This suggests that PAES is not able to main-
tain a good level of diversity in the archive and that it was
probably trapped in a local minimum. In the other scenario
of Figure 2, although PAES finds slightly better solutions
then NSGA-II, the final set is again composed of only11
solutions. Moreover, all these solutions are spread along
the percentage of fatalities axis, in contrast with NSGA-II
that produces additional solutions with low percentage of
fatalities along the average waiting time axis.
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Figure 2. Comparison between the final Pareto fronts ob-
tained by NSGA-II and PAES, using the two-objectives
problems studied.

Understanding the Results Consider the case where we
want to study the influence of the “unsafe health level”
and the “low resource level” on the three objectives. The
“unsafe health level” parameter was introduced in section
2. The “low resource level” parameter is the level below
which a hospital changes its mode of operation from “avail-
able” to “critical” (so that only critically ill persons aread-
mitted henceforth). The standard approach is to explore in a
systematic way the parameter space generated by their pos-
sible ranges. If we use30 uniformly distributed points for
each range, we have a Cartesian product of900 pairs to be
evaluated. Using10 simulations for each one, this requires
9, 000 model simulations in total only for two parameters
(with three parameters the computation starts to become
unpractical:27, 000 model simulations). By following this
brute-force approach, the minimum percentage of fatalities
obtained was8.54 using an unsafe health level of0.33 and a
low resource level of96%, but resulted in an average wait-
ing time at the hospital of187 minutes. Using the proposed
multi-objective approach, we found it much easier to find a
better solution that minimized the average waiting time at
the hospital (seeFigure 2) also. For example, one such so-
lution produced6.2% of fatalities with a waiting time at the
hospital of only15 minutes, using an unsafe health level of
0.13 and a low resource level of28. The practical interpre-
tation of these numbers is that people are suggested to go
to the hospital as soon as possible and the hospital should
work in critical mode only when its resources are below
28%. This behavior is facilitated by a specific combined
setting of all the other parameters, as discovered by the ge-
netic algorithmic search. For example, the dischargeable
health level for the hospital is set to0.2, meaning that the
patients are discharged even if they are still sick, because
they have a high chance to survive with the short treatment
received. This particular global dynamic is the result of the
simultaneous multi-objective optimization of all the model
parameters, which permits the study of their mutual inter-



actions in a reasonable amount of computational time.

Robustness of the Front

In the stochastic environment produced by the agent-based
model simulator, finding a good set of solutions is not the
only aim of the multi-objective optimization process. A
good emergency plan should be alsorobust against en-
vironmental changes and should still work satisfactorily
even if the behaviors of the involved agents slightly change
from the optimal plan. This should be one of the selection
criteria for selecting solutions from the generated Pareto
front. The correct approach is to directly generate a ro-
bust Pareto front. The idea is to use an expected fitness
function based on the probability distributionp(δ) of the
possible perturbationδ. Usually the expected fitness func-
tion is calculated by averaging over a number of randomly
sampled pointsf(x + δ). The drawback of this approach
is that it precipitously worsens the computational complex-
ity of the algorithm, and thus cannot be applied to real-
world problems where the calculation of the fitness func-
tion is particularly expensive. A more practical solution is
to use robustness analysis as a post-processing phase in or-
der to study the solutions in the final Pareto front. Both
environmental and behavioral changes can be simulated in
the model by introducing small variations to the input pa-
rameters. In particular, for each set of input parameters
x = (x1, . . . , xj , . . . , xN ) in the Pareto set, we generate
M = 100 random neighbors using the following rule for
each decision variablexj :

xj = u(xj − δ, xj + δ), j = 1, 2, . . . , N

where δ = α × (x
(U)
j − x

(L)
j )

(5)

whereu(a, b) is a uniform random number generated in the
range[a, b] andα is a parameter that controls the extent of
the desired robustness. We observe that in order to evalu-
ate the neighbors, we again have to use an averaged fitness
estimation over10 simulations, so that1000 model simula-
tions are required to evaluate the robustness of each point
on the Pareto front.Figure 3 shows the robustness of the
Pareto front obtained by NSGA-II for the percentage of fa-
talities, against the average ill-heath usingα = 0.1. The
two error-bars indicate the standard deviations with respect
to each objective produced by the100 generated neighbors
(in the parameter space) of each point. Of course, solutions
with lower standard deviation should be preferred, but this
information must be combined with additional higher-level
knowledge that can be extracted, for example, by running
the PLAN C model and analyzing the emergent dynamics
produced by the selected solutions.

6 Conclusion and Future Work

In this paper, we have proposed a constrained multi-
objective formulation of the problem of finding “good”
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Figure 3. Robustness of the Pareto front: the error-bars
indicate the standard deviations relative to the two objec-
tives of the100 neighbors generated using equation 5 with
α = 0.1.

emergency response plans, using the agent-based mod-
eling technology for scenario simulation and evolution-
ary algorithms to obtain approximated Pareto fronts. The
experimental results have shown that the disaster man-
agement problem indeed presents the characteristics of a
multi-objective optimization problem, and that the esti-
mated Pareto fronts of optimal solutions can be effectively
produced at reasonable computational expense. We have
employed two well known MOEAs: namely, NSGA-II
and PAES. Our empirical observations seem to suggest
that NSGA-II demonstrates a better behavior for the two-
objective problems we have studied. However, more rigor-
ous theoretical developments and practical verifications are
necessary to further evaluate their relative merit. Also, we
have introduced a simple technique to test the robustness
of the solutions in the front. This is intended to be used in
addition to other higher-level expert knowledge to choose
between solutions from the Pareto set.

Most importantly, the developed approach is com-
pletely general and can be applied to any agent-based
model. Its applications are likely to be most beneficial
in models involving societies of agents with probabilis-
tic and stochastic rules of behavior, and whose global dy-
namic must be evaluated by different and conflicting objec-
tives. Several possible future lines of investigation can be
followed: (1) Studying the performance and scalability of
the proposed algorithms using3 or more objective at the
same time. (2) Introducing the robustness search directly
inside the evolutionary algorithm, with minimal increase
to its computational complexity (e.g., using the informa-
tion already available within the population). (3) Using the
stochastic properties of the fitness function evaluations to
guide the selection / creation of the next generation of so-
lutions (e.g., the same point may be treated as two different
points corresponding to its extreme fitness function eval-
uations). (4) Using the stochastic variations as a measure



of robustness during the computation of the next genera-
tion. (5) Using the running mean and standard deviation
to dynamically decide the number of simulations neces-
sary to statistically validate the fitness function evaluation
(e.g., if the first3 runs do not produce significant varia-
tions, it may not be necessary to perform all the10 runs.).
The combined use of the agent-based modeling paradigm,
multi-objective optimization and statistical analysis, offers
a promising way to study, understand and analyze the dy-
namics of a complex system and, in this specific case, how
to plan a large-scale urban emergency response.
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