
The Importance of Being Bounded ?

Alberto Casagrande1,2, Venkatesh Mysore3, Carla Piazza2, and Bud Mishra3,4

1 PARADES, Via S.Pantaleo, 66, 00186 Roma, Italy
2 DIMI, Università di Udine, Via delle Scienze, 206, 33100 Udine, Italy

3 Courant Institute, NYU, New York, USA
4 NYU School of Medicine, NYU, New York, U.S.A.

Abstract. In this paper we introduce and study a new class of hybrid
automata, Independent Dynamics Hybrid Automata (IDA). IDA are an exten-
sion of decidable O-minimal automata in which also identity resets are
allowed. We define the conditions under which reachability is decidable
over IDA. These conditions involve the satisfiability of first-order formulæ
that limit the interval of time we need to consider to study reachability. In
order to prove the decidability of reachability we mainly exploit the de-
cidability of the first-order formulæ which define IDA. Then we introduce
the subclass ∞IDA of IDA over which reachability is always decidable.
An interesting subclass of ∞IDA is the class of IDA whose flows are
non-constant polynomials. IDA and∞IDA are usefull in the modeling of
biological systems where it is possible to have variables which continue
their flows independently (e.g., input reactants coming from other sys-
tems). We briefly comment on how to model bacterial chemotaxis using
IDA.

1 Introduction

Hybrid automata have emerged as the predominant formalism for modeling
and analyzing biochemical systems [5]. The different discrete states naturally
capture the different regimes of cellular behavior, while the flow equations in
each state correspond to the time-variation of their concentrations based on
the laws of chemical kinetics. Guards are necessary to capture the fact that the
biochemical system changes its state only when certain criteria are met, while
reset relations are used to capture the new conditions from where the system
begin its evolution in the new mode/phase.

The notion of Hybrid Automata was first introduced in [2] as a model and
specification language for hybrid systems, i.e., systems consisting of a discrete
program within a continuously changing environment. Since their introduction

? This work is partially done in the framework of the HYCON Network of Excellence,
contract number FP6-IST-511368, and supported by NSF’s ITR program, Defense Ad-
vanced Research Projects Agency (DARPA), the US Air Force (AFRL), National Insti-
tutes of Health (NIH) and New York State Office of Science, Technology & Academic
Research (NYSTAR), the European Community Project IST-2001-33520 CC, the MIUR
FIRB grant RBAU018RCZ, and the MIUR PRIN’04 grant 2004013015.

they have been widely used for the automatic verification of both natural and
engineered systems. It is only more recently that their utility in Systems Biology
is is being appreciated. However, the omniprescent tussle between complexity of
the system and the ease of analysis continues to dictate which hybrid automa-
ton subclass is suitable for which application. For example, though remark-
ably efficient verification techniques have been perfected for Timed Automata
[1], the very idea of modeling a biochemical system as a set of well-behaved
clocks is quite outrageous. At the other end of the spectrum, detailed spatio-
temporal models at the atomic level, though perhaps extremely accurate, will
leave simulation-based analysis as the only feasible option. As a reasonable in-
termediate, Semi-Algebraic Hybrid Automata [25, 24] were identified as the largest
subclass amenable to algebraic analysis, with their suitability for Systems Biol-
ogy well described.

In [10], we introduced the Semi-Algebraic Constant reset Hybrid Automata
(SACoRe), which extended O-minimal automata over the reals, in the case
of flows obtained from non-autonomous systems of differential inclusions.
SACoRe automata were shown to admit decision procedures for reachabil-
ity and model checking for a limited fragment of CTL, by combining Tarski’s
decidability result over the reals and Michael’s selection theorem. However,
this formalism is still quite restrictive to the biochemical domain as the constant
reset requirement is very constraining. This is because, when a biochemical sys-
tem changes its “discrete” state, it is very unnatural for the concentrations to be
reset to constant values. In fact, the most common result of a state change is no
change, because of the continuous nature of chemical concentrations and other
biochemical variables. In other words, identity resets are necessary to capture
this fundamental aspect of most biological state transitions.

In this paper, we introduce and study a new class of hybrid automata –
Independent Dynamics Hybrid Automata (IDA), whose characterizing conditions
are based upon a decidable first-order theory over the reals (e.g., (IR, 0, 1, +, ∗,
=, <)). In particular, an hybrid automaton of dimension k can be defined only
using formulæ over k dimensional vectors of reals. The dynamics are solutions
of autonomous systems of differential equations. The reset conditions can be
either constants as in the case of O-minimal hybrid automata [19] or the identity
function. In particular, we distinguish independent variables, whose resets are the
identity function, from dependent variables whose resets are constant functions.
The flows and the reset functions of the dependent variables can depend on the
independent ones, but not vice-versa.

Our motivation for defining this new subclass has two sources: (1) Extend
O-minimal automata to make them suitable for Systems Biology applications;
(2) Restrain Semi-Algebraic Hybrid Automata and make them more amenable
to analysis. We exploit the decidability of the first-order theory over which an
IDA is defined, both to bound the time interval we need to consider to solve a
reachability problem, and to prove the decidability of reachability. The bounds
on the time interval do not always exists on IDA, but we can prove that they
are always defined on an interesting subclass of IDA which we call ∞IDA. As

a consequence, reachability is always decidable on ∞IDA. It is important to
observe that we do not explicitly compute these time bounds, but we check
their existence, again, by solving a satisfiability problem.

When the IDA we consider are defined on the first-order theory (IR, 0, 1,
+, ∗, =, <), our approach exploits Tarski’s result and quantifier elimination to
study reachability. Similar approaches have been under investigation, over the
last decade or so. For instance, Jirstrand [17] demonstrated, in the context of
non-linear control system design, the use of Qepcad for the problems of com-
puting reachability, stationarizable sets, range of controllable output, and curve-
following. Subsequently, Anai [4] and Franzle [22] independently suggested the
use of quantifier elimination for the verification of polynomial hybrid systems.
Franzle went on to prove that progress, safety, state recurrence and reachabil-
ity are semi-decidable using quantifier elimination [12], and developed “proof
engines” for bounded model checking [13]. More recently, Lafferiere et al. [20]
have again described a method based upon quantifier elimination for symbolic
reachability computation of linear vector fields.

Lately, Ratschan and She [26] have suggested a new constraint propagation
based abstraction refinement for the safety verification of hybrid systems with
autonomous differential equations. Other recent developments include Becker
et al.’s integration of bounded model checking and inductive verification [7].
Lanotte and Tini [21] have recently proved that the semi-algebraic hybrid au-
tomaton obtained by approximating each formula in any hybrid system defi-
nition with its Taylor polynomial is an over-approximation. The novelty of our
approach mainly lies in the use of the formulæ to bound the interesting time
interval a-priori, and in our observation that continuity of the dynamics and
compactness of the invariants can be exploited to define the time-bound.

The paper is organized as follows. In Section 2, we introduce some basic
notions about graphs and hybrid automata. In Section 3, we introduce our
class of automata. In Section 4, we start considering the reachability problem
from a general perspective, and then investigate the conditions under which
we can prove the decidability of reachability on IDA. In Section 5, we identify
an interesting subclass of IDA over which reachability is always decidable. We
conclude in Section 7, with consideration of extensions and applications.

2 Preliminaries

2.1 Hybrid Automata

First, we introduce some notations and conventions. Capital letters Zm, Z′m,
where m ∈ IN, denote variables ranging over IR. Analogously, Z denotes the
vector of variables 〈Z1, . . . ,Zk〉 and Z′ denotes the vector 〈Z′1, . . . ,Z′k〉; and Zn

denotes the vector 〈Zn
1 , . . . ,Z

n
k 〉. Moreover, if X = 〈X1, . . . ,Xm〉 is a vector of

variables, ΓX denotes the set {X1, . . . , Xm}. The temporal variables T and T′

model time and range over IR+. We use the small letters p, q, r, s, . . . to denote
k-dimensional vectors of real numbers.

Occasionally, we will use the notationϕ[X1, . . . , Xm] to stress the fact that the
set of free variables of the first-order formula ϕ, denoted by Free(ϕ), is included
in the set of variables {X1, . . ., Xm}. By extension, if {X1, . . ., Xn} is a set of variable
vectors,ϕ[X1, . . ., Xn] indicates that the free variables ofϕ are included in the set
of components of X1, . . ., Xn. Moreover, given a formulaϕ[X1, . . ., Xi, . . ., Xn] and
a vector p of the same dimension as the variable vector Xi, the formula obtained
by component-wise substitution of Xi with p is denoted by ϕ[X1, . . ., Xi−1, p,
Xi+1, . . ., Xn]. If in ϕ the only free variables were the components of Xi, after the
substitution we can compute the truth value of ϕ[p]. Later on, given a formulæ
ψ[Z], we will denote the set of values satisfingψ as Sat(ψ), i.e., Sat(ψ) = { p |ψ[p]}.

We are now ready to formally introduce hybrid automata. For each node
of a graph, we have an invariant condition and a dynamic law. This dynamic
law may depend on the initial conditions, i.e., on the values of the continuous
variables at the beginning of the evolution in the state. The jumps from one
discrete state to another are regulated by the activation and reset conditions.

Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H = (Z, Z′, V,
E, Inv, F , Act, Reset) of dimension k consists of the following components:

1. Z = 〈Z1, . . ., Zk〉 and Z′ = 〈Z′1, . . ., Z′k〉 are two vectors of variables ranging over
the reals IR;

2. 〈V, E〉 is a graph; the objects, v ∈ V, are called locations;
3. Each vertex v ∈ V is labeled by the formula Inv(v)[Z];
4. F is a function assigning to each vertex v ∈ V a continuous vector field over IRk;

we will use fv : IRk × IR+ −→ IRk to indicate the solution of the vector field F (v)
and Dyn(v)[Z,Z′,T] to identify the corresponding formula, i.e., Dyn(v)[Z,Z′,T] ≡
Z′ = fv(Z,T);

5. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Reset(e)[Z,Z′];

Reset(e)[Z′] def
= ∃Z Reset(e)[Z,Z′].

To easy notation, later on, we will write I(v), A(e), and R(e) in place of
Sat(Inv(v)), Sat(Act(e)), and Sat(Reset(e)) respectively.

Notice that it is not restrictive to consider only hybrid automata whose
formulæ are satisfiable. In fact, if this is not the case, we can transform the
automaton and eliminate the unsatisfiable formulæ. For instance, if there is an
edge e such that Reset(e)[Z,Z′] is unsatisfiable we can simply delete the edge
from the automaton.

Here we always use k to denote the dimensions of the hybrid automaton H.
Moreover, when we refer to a hybrid automaton H, we implicitly assume that
H is of the form H = (Z, Z′, V, E, Inv, F , Act, Reset).

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair 〈v, r〉, where
v ∈ V is a location and r = 〈r1, . . . , rk〉 ∈ IRk is an assignment of values for the variables
of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r] is true.

The continuous reachability transition relations t−→C, where t > 0 the transition
elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒ The equation s = fv(r, t) holds, and for each t′ ∈ [0, t] the
formula Inv(v)[fv(r, t′)] is true.

The discrete reachability transition relation →D between admissible states is
defined as follows:

〈v, r〉 →D 〈u, s〉 ⇐⇒ The relation 〈v,u〉 ∈ E holds, and the formulæ Act(〈v,u〉)[r]
and Reset(〈v,u〉)[r, s] are true.

Building upon continuous and discrete transitions, we can introduce the
notions of trace and reachability. A trace is a sequence of continuous and discrete
transitions. A point s is reachable from a point r, if there is a trace starting from

r and ending in s. We use the notation ` → `′ to denote that either ` t−→C `′, for
some t, or `→D `′.

Definition 3 (Hybrid Automata - Reachability). Let I be either N or an initial
interval of N. A trace of H is a sequence `0, `1, . . . , `i, with i ∈ I, of admissible states
such that `i−1 → `i holds for each i ∈ I with i > 0. Such trace is also denoted by (`i)i∈I.

A point r ∈ IRk reaches a point s ∈ IRk (in time t), if there exists a trace `0, . . . , `n
of H such that `0 = 〈v, r〉 and `n = 〈u, s〉, for some v,u ∈ V (and t is the sum of the
elapsed continuous transition times).

Given a trace of H, we can identify a path of 〈V,E〉 as follows.

Definition 4 (Corresponding Path). Let H be a hybrid automaton and let tr =
〈v0, r0〉, . . . , 〈vn, rn〉 be a trace of H. The corresponding path of tr is the path ph =
〈v′1, . . . , v′m〉 of the graph 〈V,E〉 obtained by considering the discrete transitions occur-
ring in tr. In this case, we also say that ph corresponds to tr.

In this paper we are interested in the reachability problem for hybrid au-
tomata, i.e., given a hybrid automaton H and two formulæ, ι and τ, denoting an
initial set of points Sat(ι) ⊆ IRk and a target set of points Sat(τ) ⊆ IRk respectively,
we want to decide whether there exists a point in Sat(ι) which reaches a point
in Sat(τ).

Though it has been proved that reachability is in general not decidable [16],
many interesting classes of hybrid automata over which reachability is decidable
have been characterized in the literature [18, 15, 19, 9]. A common approach in
deciding reachability of hybrid automata is that of discretizing the automata,
either using equivalence relations which strongly preserve reachability (e.g.,
bisimulation [19]), or using abstractions (e.g., predicate abstraction [30, 3]). In
this paper, we study reachability of hybrid automata by adopting a different
strategy: translating the reachability problem into first-order formulæ over the
reals. The formulæ we get from the translation include the formulæ occurring in
the automata, and hence we need to know the theory using which the automata
was built.

Definition 5 (T-Automata). Let T be a theory over the reals. A T-automaton H is
a hybrid automaton such that, for each v ∈ V and for each e ∈ E, the formulæ Dyn(v),
Inv(v), Act(e), Reset(e) are formulæ of T.

An interesting class of hybrid automata is the class of O-minimal hybrid
automata [19, 9]. Such automata are defined using formulæ taken from an O-
minimal theory, i.e., they are T-automata in which T is an O-minimal theory.
Moreover, their resets are constant, i.e., they do not depend on the point from
which the edge is crossed. In the case of O-minimal automata, reachability,
as well as other temporal logic properties, can be decided through bisim-
ulation [19]. In fact, O-minimal automata always have a finite bisimulation
quotient, whose computation is effective when the O-minimal theory is decid-
able. A theory which is both O-minimal and decidable is the first-order theory
(IR, 0, 1,+, ∗, <) [29].

In the following, we try to relax the constant reset condition used in O-
minimal automata, maintaining the decidability of the reachability problem. In
particular, we will introduce a class of hybrid automata, the independent dynamics
automata, and we will show how we can decide reachability.

3 Independent Dynamics Hybrid Automata

In our class of hybrid automata the components of Z can be partitioned into
two sets: the independent and the dependent variables. We denote by X the vector
of independent variables which maintains the same component ordering of Z.
Similarly we indicate with Y the vector of dependent variables and with X′ and
Y′ the primed version of X and Y respectively. The independent variables are
never reset and their dynamics are the same in all the locations. This condition
is similar to that used in rectangular initialized hybrid automata (see [15, 18]).
Moreover, we impose conditions that will ensure the existence of a minimum
amount of time, which has to be spent in a location between two jumps. In
particular, we impose that the invariants are closed and bounded, and that the
distance between reset and activation regions is greater than 0. For this last
condition we need to consider a norm ‖ · ‖ on IRk, and the induced distance d(·, ·)
between subsets of IRk defined as d(A,B) = inf{‖a − b‖ | a ∈ A and b ∈ B}. From
now on we say that two edges e and e′ are subsequent if the target node of e is
the source node of e′.

Definition 6 (Independent Dynamics Automata). A hybrid automaton H is an
independent dynamics automaton, or simply an IDA, if:

1. H is a T-automaton, with T decidable;
2. For each pair of subsequent edges e and e′ it holds d(R(e),A(e′)) > 0;
3. The vector Z of variables can be partitioned into two vectors X (independent vari-

ables) and Y (dependent variables) such that:
(a) for each e ∈ E Reset(e)[Z,Z′] is of the form (X′ = X) ∧ σ(e)[Z,Y′];
(b) for each v ∈ V Dyn(v)[Z,Z′,T] is of the form (X′ = f i(X,T)) ∧ (Y =

f d(v)(Z,T)).
4. The set of values p ∈ IRk satisfing Inv(v)[Z] is closed and bounded for each v ∈ V.

In condition 3 of the definition, we impose that the independent variables
which are not reset have the same dynamics in each location. The reset and the
dynamics of the dependent variables can depend on the independent variables.

Example 1. Consider the hybrid automaton H = (Z, Z′, V, E, Inv, F , Act, Reset)
such that:

– The dimension, k of the automata is 2;
– The discrete projection 〈V,E〉 is reported in Figure 1;
– The function F induces the following dynamics:
• Dyn(v1)[Z,Z′,T] ≡ Z′1 = 2(T)3 + Z1 ∧ Z′2 = −3T + Z2;
• Dyn(v2)[Z,Z′,T] ≡ Z′1 = −(T)2 ∧ Z′2 = −3T + Z2;
• Dyn(v3)[Z,Z′,T] ≡ Z′1 = 2(T)3 + Z1 ∧ Z′2 = −3T + Z2;

– The formulæ Inv(v1)[Z], Inv(v2)[Z] and Inv(v3)[Z] are equal to Z2 ≥ (Z1)2 ∧
Z2 ≤ 100;

– The function Reset is such that:
• Reset(e1)[Z,Z′] ≡ Z′1 ≤ 8 ∧ Z′2 = Z2;
• Reset(e2)[Z,Z′] ≡ Z′1 = Z1 ∧ Z′2 = Z2;
• Reset(e3)[Z,Z′] ≡ Z′1 = Z1 ∧ Z′2 = Z2;

– The function Act is such that:
• Act(e1)[Z] ≡ Z2 > 5;
• Act(e2)[Z] ≡ Z1 ∧ Z2 ≥ 0;
• Act(e3)[Z] ≡ (Z1)2 + (Z2 − 5)2 ≤ 8;

The automaton H is an IDA.

v1 v3v2
e2e1 e3

Fig. 1. The discrete component of the Example 1.

It is not difficult to extend our class of automata allowing different parti-
tionings of the variables depending on the topology of the discrete structure.
However, such an extension would require many technical details which we
prefer to omit here.

4 IDA Reachability

In this section, we show that reachability over IDA is decidable, when there is
a maximum time within which a set is reachable for the independent variables.
This assumption, paired with the fact that in IDA we have to spend a minimum
amount of time in each location, allows us to compute the maximum length of
the corresponding paths that we need to consider.

4.1 Reachability Formulæ

We start introducing the first-order formulæ which encode the reachability along
a path. First, we define the formulæ encoding the continuous reachability in a
location and the discrete reachability through an edge.

Lemma 1. Let H be a hybrid automaton, consider the first-order formulæ below:

Reach(v)[Z,Z′,T] def
= Z′ = fv(Z,T) ∧ ∀0 ≤ T′ ≤ T Inv(v)[fv(Z,T′)]

Reach(〈v,u〉)[Z,Z′] def
= Act(〈v,u〉)[Z] ∧ Reset(〈v,u〉)[Z,Z′]

Then 〈v, r〉 t−→C 〈v, s〉, if and only if Reach(v)[r, s, t] is true, and 〈v, r〉 →D 〈u, s〉 if and
only if Reach(〈v,u〉)[r, s] is true.

Proof. The thesis comes directly from the hybrid automata semantics (see Defi-
nition 2). ut

Given a point r ∈ IRk, the first-order formula Reach(v)[r,Z′, t] in Lemma 1,
with free variables in Z′, characterizes the set of points reachable from r in
the node v using only t-timed continuous dynamics. Similarly, the first-order
formula Reach(e)[r,Z′] defines the set of points reachable from r using the discrete
transition e.

Now suppose that a point r reaches a point s in time t through a trace tr,
whose corresponding path is ph = 〈v,u〉. Since our dynamics are solutions of

autonomous differential equations, we see that 〈v, r〉 0−→C 〈v, r〉 and 〈u, s〉 0−→C

〈u, s〉. Hence, tr is equivalent to tr′ of the form 〈v, r〉 t′−→C 〈v, r1〉 →D 〈u, s1〉 t′′−→C
〈u, s〉, where t = t′ + t′′. Thus, the reachability can always be expressed through
a trace whose corresponding path is ph and results in the following first-order
formula:

Reach(v,u)[Z0,Z1,Z2,Z3,T] def
= ∃T1 ≥ 0 ∃T2 ≥ 0

(
Reach(v)[Z0,Z1,T1]∧

Reach(〈v,u〉)[Z1,Z2] ∧ Reach(u)[Z2,Z3,T2]∧
T = T1 + T2)

If we have a path ph = 〈v0, . . . , vh〉 in the graph 〈V,E〉, then following two
cases are possible: either it corresponds to a trace of H or it does not. In both
cases, we can express the desired reachability relation with a first-order formula,
which characterizes all the pairs of IRk that can be connected in H through a trace

corresponding to path ph = 〈v0, . . . , vh〉:

Reach(ph)[Z0, . . . ,Z2h+1,T] def
= ∃T0 ≥ 0 . . .∃Th ≥ 0

T =

h∑

i=0

Ti ∧ Reach(v0)[Z0,Z1,T0] ∧
∧

i∈[0,h−1]

(
Reach(〈vi, vi+1〉)[Z2i+1,Z2i+2]∧

Reach(vi+1)[Z2i+2,Z2i+3,Ti+1]
)

Notice that in the above formula we consider only traces in which continuous
and discrete transitions are alternating. This is not restrictive, since our dynamics
are solutions of autonomous systems of differential equations. Hence any trace
can be mapped into a trace which satisfies the continuous/discrete alternation,
with the same starting and finishing states. The following lemma proves that
Reach(ph)[Z0, . . . ,Z2h+1,T] is correct and complete.

Lemma 2. Let H be an automaton, and let ph = 〈v0, . . . , vh〉 be a path in 〈V,E〉. It
holds that a point r ∈ IRk reaches a point s ∈ IRk in time t through a trace tr whose
corresponding path is ph, if and only if Reach(ph)[r,Z1, . . . ,Z2h, s, t] is satisfiable.

Proof. (⇒) Let tr = `0, . . ., `n with `0 = 〈v0, r〉 and `n = 〈vn, s〉. If in tr there are
two consecutive discrete transitions `i →D `i+1 →D `i+2 we can replace them

by `i →D `i+1
0−→C `i+1 →D `i+2. Similarly, if in tr there are two consecutive

continuous transitions `i
t−→C `i+1

t′−→C `i+2 the fact that the flows are solutions
of autonomous systems allows us to replace them with `i

t′′−→C `i+2, where
t′′ = t + t′. Hence, without loss of generality, we may assume that in tr discrete
and continuous transitions are alternated. We may further assume that tr starts
and ends with a continuous transition, since, otherwise, we may simply add

either `0
0−→C `0 or `n

0−→C `n or both. Hence, without loss of generality, we have
that n = 2h. Let `i = 〈vi, ri〉 and consider the valuation, which replaces Zi by ri
in the formula Reach(ph)[r,Z1, . . . ,Z2h, s, t]. By induction on h, we can prove that
this valuation satisfies Reach(ph)[r,Z1, . . . ,Z2h, s, t].

(⇐) Since Reach(ph)[r,Z1, . . . ,Z2h, s, t] is satisfiable, there exists an assignment
to the Zi’s which satisfies it by replacing Zi with zi. Consider the trace tr = `0, `1,
. . ., `2h such that `0 = 〈v, r〉, `2h = 〈vh, s〉, and for each i ∈ [1, h − 1], we have
`2i−1 = 〈vi−1, z2i−1〉 and `2i = 〈vi, z2i〉. By induction on the length of ph, we can
prove that tr is a trace of H, which connects r to s in time t. ut

Hence, r reaches s in time t if and only if there exists a path ph = 〈v0, . . . , vh〉
of 〈V,E〉 and has a formula Reach(ph)[Z0, . . . ,Z2h+1,T] as a witness to this fact.
So, if we just considered the disjunction of all the formulæ for all the paths of
〈V,E〉, we would characterize reachability. Unfortunately, if 〈V,E〉 has a cycle,

then it has an infinite number of paths. Later on, we will show that, under some
assumptions, there is a path of maximum length that we need to consider to
evaluate the reachability for IDA.

4.2 Reachability Decision Procedure

In this section, we consider the problem of limiting the length of the paths we
need to consider in the study of reachability. This will lead us to the definition
of a decision procedure for reachability.

We first show that elapsed time we need to spend inside a location is always
greater than 0 in IDA automata.

Given two formulæ ι and τ, the time instants at which a point in Sat(ι) can
reach a point in Sat(τ) can be characterized by the formula

Flow(v, ι, τ)[T] def
= ∃Z,Z′ (ι[Z] ∧ τ[Z′] ∧ Reach(v)[Z,Z′,T])

On the one hand, if this set of time instants is empty, i.e., Sat(ι) cannot reach
Sat(τ), then the following formula is true.

NotFlow(v, ι, τ) def
= ∀T ≥ 0 ¬Flow(v, ι, τ)[T]

On the other hand, if Sat(ι) can reach Sat(τ), the infimum of the time instants at
which Sat(ι) reaches Sat(τ) is the solution of the formula:

InfFlow(v, ι, τ)[T] def
= ∀ε > 0 ∃T′ (|T′ − T| < ε ∧ Flow(v, ι, τ)[T′])∧

∀T′ ≥ 0 (Flow(v, ι, τ)[T′] −→ T ≤ T′)

We prove now the correctness of the formula InfFlow(v, ι, τ)[T]. Moreover, we
show that if it has a solution this is greater than 0.

Lemma 3. Let H be a hybrid automaton and let v be a location of H. Moreover, let ι
and τ be two formulæ such that there exists δ > 0 such that for each p satisfying ι and
q satisfying τ it holds ‖p − q‖ > δ. If I(v) is closed and bounded, then NotFlow(v, ι, τ)
does not hold if and only if there exists the infimum, t̄, of the set {t | Flow(v, ι, τ)[t]},
t̄ > 0 and t̄ is the unique value satisfying InfFlow(v, ι, τ)[T].

Proof. The set I(v) ⊆ IRk is closed and bounded by hypothesis, hence I(v) is
compact. Moreover, the function F (v) is continuous by Definition 1. Thus, since
the image of a compact set over a continuous function is compact, the image,
fv(I(v)), of I(v) over fv, is compact and then bounded. It follows that there exists
a r > 0 such that ‖ fv(p)‖ ≤ r for each p ∈ I(v). Hence, if q = fv(p, t) and t̃ is the
minimum time instant at which p can reach q, then the distance between p and
q can be at most the distance which can be covered at maximum speed r in time
t̃, i.e., ‖p − q‖ ≤ rt̃.

Let φ be the formula φ[Z,Z′,T] def
= ι[Z]∧ τ[Z′]∧Z′ = fv(Z,T). By hypothesis,

there exists a δ > 0 such that for all p and q satisfying ι and τ respectively

‖p − q‖ > δ, it follows that if φ[p, q, t] holds then δ ≤ ‖p − q‖ ≤ rt, but r > 0, and
then t ≥ δ

r . Thus, since Flow(v, ι, τ)[T] implies the formula ∃Z,Z′ φ[Z,Z′,T] by
definition, if Flow(v, ι, τ)[t] holds then t ≥ δ

r .
(⇒) If the formula NotFlow(v, ι, τ) does not hold, there exists t ≥ 0 such

that Flow(v, ι, τ)[t]. Thus there exists an infimum t̄ of the set of t ≥ 0 satisfying
Flow(v, ι, τ)[t]. Hence for all t ≥ 0, if Flow(v, ι, τ)[t] holds then t ≥ t̄. Moreover
for all ε > 0 there exists a t′ is such that ‖t′ − t̄‖ < ε and Flow(v, ι, τ)[t′] holds by
definition of infimum. Thus t̄ satisfies InfFlow(v, ι, τ). Furthermore, by definition
of infimum, t′ ≥ t̄, and then for all ε > 0 there exists a t′ is such that t′ < ε + t̄
and t′ ≥ δ

r . It follows that δ
r < ε + t̄ holds for all ε > 0. Hence δ

r ≤ t̄ and, since δ
is greater than zero by hypothesis, t̄ > 0.

Now we will prove than exists an unique t̄ satisfying InfFlow(v, ι, τ). Let t̃
be such that InfFlow(v, ι, τ)[t̃] holds. Thus t̃ is such that for all ε > 0 there exists
a t′ is such that ‖t′ − t̃‖ < ε and Flow(v, ι, τ)[t′] and t̃ is smaller or equal than
each t such that Flow(v, ι, τ)[t]. Hence t̃ is an infimum for the set of t satisfying
Flow(v, ι, τ). But t̄ is the infimum for such set and then t̄ is the unique t such that
InfFlow(v, ι, τ)[t].

(⇐) Let assume that there exists the infimum, t̄, of the set {t | Flow(v, ι, τ)[t]},
that t̄ > 0 and that t̄ is the unique value satisfying InfFlow(v, ι, τ)[T]. Thus, there
exists a t̄ > 0 such that the formula InfFlow(v, ι, τ)[t̄] holds. It follows that it
does not hold that, for all t ≥ 0, the formula Flow(τ, v, ι)[t] does not hold. Hence
NotFlow(v, ι, τ) does not hold by definition. ut

We are interested in the infimum time we need to spend inside a location v
reached through an edge e before we can cross another edge e′. The following
formula characterizes the set of time instants at which the reset of e = 〈v′, v〉 can
reach the activation of e′ subsequent to e.

EFlow(e, e′)[T] def
= Flow(v,Reset(e),Act(e′))[T]

In Lemma 4 we will prove that the reset of e cannot reach the activation of e′ if
and only if the following formula holds.

NotEFlow(e, e′) def
= NotFlow(v,Reset(e),Act(e′))

As a consequence we get that when the reset of e can reach the activation of e′,
the infimum of the instants at which the reset of e reaches the activation of e′ is
the unique solution of the formula

InfEFlow(e, e′)[T] def
= InfFlow(v,Reset(e),Act(e′))[T]

and it is greater than 0. We prove that the above formulæ are correct.

Lemma 4. Let H be a IDA. If both e = 〈v′, v〉 and e′ = 〈v, v′′〉 are edge of H, then A(e′)
is not reachable from R(e) with a flow in v if and only if the formula NotEFlow(e, e)
holds.

Proof. The set A(e′) is not reachable from R(e) with a flow in v if and only if
〈v, r〉 →C 〈v, s〉 does not hold for all r ∈ R(e) and s ∈ A(e′) and then if and only
if, for all r ∈ R(e) and s ∈ A(e′), there is no t ≥ 0 such that s = fv(r, t), and for
each t′ ∈ [0, t] the formula Inv(v)[fv(r, t′)] is true. Thus A(e′) is not reachable from
R(e) with a flow in v if and only if for all t ≥ 0 it does not hold that there exists
r ∈ R(e) and s ∈ A(e′) such that s = fv(r, t), and for each t′ ∈ [0, t] the formula
Inv(v)[fv(r, t′)] is true. Moreover, s ∈ A(e′) if and only if Act(e′)[s] by definition
and r ∈ R(e) if and only if Reset(e)[r]. It follows that A(e′) is not reachable from
R(e) with a flow in v if and only if for all t ≥ 0 it does hold not that there exist r
and s such that Act(e′)[s], Reset(e)[r], and s = fv(r, t) holds and for each t′ ∈ [0, t]
the formula Inv(v)[fv(r, t′)] is true. Thus A(e′) is not reachable from R(e) with a
flow in v if and only if the formula Flow(v,Reset(e),Act(e′))[T] does not hold for
any t ≥ 0 and thus, by definition, if and only if NotEFlow(e, e′) holds. ut

At this point, we have to characterize the supremum of the time instants
at which, starting from a set of points we can reach another set of points. As
already said, we will not consider the case in which there are no independent
variables.

When some of the variables are not reset, their dynamics are preserved along
a path. Hence we can try to compute the supremum on the projection of all the
sets of interest (i.e., initial set, target set and invariants) on the independent
variables. If this supremum is a real number, then, because of the Lemma 3, the
length of the traces we have to consider to evaluate reachability is bounded.

The time instants at which a point in the initial set Sat(ι) can reach a point in
the target set Sat(τ), considering only the dynamics of the independent variables,
are characterized by the formula:

IFlow(ι, τ)[T] def
= ∃X,Y,X′,Y′

((
ι[X,Y] ∧ τ[X′,Y′] ∧ X = f i(X,T)

) ∧
∀0 ≤ T′ ≤ T ∃X′′,Y′′

(
X′′ = f i(X,T′) ∧ ∨v∈VInv(v)[X′′,Y′′]

))

The I in IFlow is to stress the fact that we consider only the independent variables
flows. When the above formula is not satisfiable the following one is true.

NotIFlow(ι, τ) def
= ∀T ≥ 0 ¬IFlow(ι, τ)[T]

Otherwise, the supremum of the time instants which satisfy IFlow(ι, τ)[T] is
defined by:

SupIFlow(ι, τ)[T] def
= ∀ε > 0 ∃T′ (|T′ − T| < ε ∧ IFlow(ι, τ)[T′])∧

∀T′ ≥ 0 (IFlow(ι, τ)[T′] −→ T ≥ T′)

We prove the correctness of our formulæ. In particular, we prove that if
SupIFlow(ι, τ)[T] has a solution, this solution is an upper bound for time reach-
ability.

Lemma 5. Let H be a IDA and let ι and τ be two formulæ. Either the formula
NotIFlow(ι, τ) holds or t̄ ∈ IR satisfies SupIFlow(ι, τ)[T] if and only if t̄ is the supremum
of the set {t | IFlow(ι, τ)[t]}.

Proof. If the formula NotIFlow(ι, τ) does not hold, there exists t ≥ 0 such that
IFlow(ι, τ)[t]. Thus the set of t ≥ 0 satisfying IFlow(ι, τ)[t] is not empty. Let assume
that the supremum t̄ of such set exists. Hence for all t ≥ 0, if IFlow(ι, τ)[t] holds
then t ≥ t̄. Moreover for all ε > 0 there exists a t′ is such that ‖t′ − t̄‖ < ε and
IFlow(ι, τ)[t′] holds by definition of superior. Thus t̄ satisfies SupIFlow(ι, τ).

Now we will prove than if SupIFlow(ι, τ)[t̄] holds, then t̄ is the supremum of
the set {t | IFlow(ι, τ)[t]}. Let t̄ be such that SupIFlow(ι, τ)[t̄] holds. Thus t̄ is such
that for all ε > 0 there exists a t′ is such that ‖t′ − t̄‖ < ε and IFlow(ι, τ)[t′] and t̄
is greater or equal than each t such that IFlow(ι, τ)[t]. Hence t̄ is the supremum
for the set of t satisfying IFlow(ι, τ). ut

To conclude we need to introduce a formula which expresses the fact that
either H cannot reach Sat(τ) from Sat(ι) or it can reached it with less than j + 1
discrete transitions.

In this formula we use Sb to denote set of pairs of edges 〈e, e′〉 of E such that
e′ is subsequent to e.

θ(j, ι, τ) def
= NotIFlow(ι, τ) ∨

∧

〈e,e′〉∈Sb

NotEFlow(e, e′)

∨

∃T

SupIFlow(ι, τ)[T] ∧

∧

〈e,e′〉∈Sb

∀T′
(
InfEFlow(e, e′)[T′]→ T′ j > T

)

We prove the correctness of θ(j, ι, τ).

Theorem 1. Let H be a IDA. Moreover, let ι and τ be two formulæ. If the formula
∃T ≥ 0 SupIFlow(ι, τ)[T] holds, then there exists a j ∈ IN such that θ(j, ι, τ) holds.
Furthermore, ifθ(j, ι, τ) holds and there exist p ∈ Sat(ι) and q ∈ Sat(τ) and q is reachable
from p in H, then q is reachable from p in H with less than j + 1 discrete transitions.

Proof. By definition, θ(j, ι, τ) holds if and only if one of the followings hold:

– NotIFlow(ι, τ)
–

(∧
〈e,e′〉∈Sb NotEFlow(e, e′)

)

– ∃T
(
SupIFlow(ι, τ)[T] ∧

(∧
〈e,e′〉∈Sb ∀T′

(
InfEFlow(e, e′)[T′]→ T′ j > T

)))

If either NotIFlow(ι, τ) holds or
(∧

e,e′∈E′ NotEFlow(e, e′)
)

holds then, θ(0, ι, τ)

holds. Let assume that both NotIFlow(ι, τ) and
(∧

e,e′∈E′ NotEFlow(e, e′)
)

do not

hold. If the formula
(∧

e,e′∈E′ NotEFlow(e, e′)
)

does not hold, then there exist pairs
of edges in E′, e = 〈v′, v〉 and e′ = 〈v, v′′〉, such that NotEFlow(e, e′) does not
hold. Hence, by Lemma 3, for each of these pair, e and e′, there exists a unique
t ∈ IR satisfying InfEFlow(e, e′)[T] and such t is greater than zero. Let t̄ be the
minimum t, over all these pairs, satisfying InfEFlow(e, e′)[T]. Moreover, by hy-
pothesis, there exists the supremum, t̃ ∈ IR, of the set {t | IFlow(ι, τ)[t]}. Thus,
since NotIFlow(ι, τ) does not hold, t̃ is the unique satisfies SupIFlow(ι, τ)[T] by

Lemma 5. Hence j̄ = dt̃/t̄e + 1 is a natural number. Furthermore for any pair
〈e, e′〉 ∈ Sb, if InfEFlow(e, e′)[t] then, t ≥ t̄ and thus:

t j̄ ≥ t
⌈

t̃
t̄

⌉
+ 1 ≥ t

t̃
t̄

+ 1 ≥ t̃ + 1 > t̃

Hence
∧

e,e′∈Sb ∀T
(
InfEFlow(e, e′)[T] −→ T j̄ > t̃

)
holds. It follows that the formula

θ(j̄, ι, τ) holds and hence if the set {t | IFlow(ι, τ)[t]} has a supremum, there exists
a j ∈ IN such that θ(j, ι, τ) holds.

Now we will show that if θ(j, ι, τ) holds and there exist p ∈ Sat(ι) and
q ∈ Sat(τ) such that q is reachable from p in H then, q is reachable from p in H
with less than j + 1 resets.

Let assume that NotIFlow(ι, τ) holds. Hence θ(0, ι, τ) holds too. By definitions
of the formulæ NotIFlow(ι, τ) and IFlow(ι, τ):

NotIFlow(ι, τ) ≡ ∀T ≥ 0 ¬IFlow(ι, τ)[T]

≡ ∀T ≥ 0 ¬
∃X,Y,X′,Y′

ι[X,Y] ∧ τ[X′,Y′] ∧ X = f i(X,T) ∧

∀0 ≤ T′ ≤ T ∃X′′,Y′′
X′′ = f i(X,T′) ∧

∨

v∈V
Inv(v)[X′′,Y′′]

≡ ∀T ≥ 0 ∀X,Y,X′,Y′
¬ι[X,Y] ∨ ¬τ[X′,Y′] ∨ ¬

X = f i(X,T) ∧

∀0 ≤ T′ ≤ T ∃X′′,Y′′
X′′ = f i(X,T′) ∧

∨

v∈V
Inv(v)[X′′,Y′′]

Thus, by Lemma 2 and by IDA’s definition, it holds that for any path ph in 〈V,E〉:

NotIFlow(ι, τ) =⇒ ∀T ≥ 0 ∀Z,Z′ (¬ι[Z] ∨ ¬τ[Z′]∨
¬

(
∃Z1 . . .Z2|ph| Reach(ph)[Z,Z1, . . . ,Z2|ph|,Z′,T]

))

By Lemma 2, it follows that there are no p and q such that ι[p] and τ[q] and q is
reachable from p in H.

Let us assume that the formula
(∧
〈e,e′〉∈Sb NotEFlow(e, e′)

)
holds. Henceθ(0, ι, τ)

holds too. Moreover, by Lemma 4, for all pair of edges e = 〈v′, v〉 and e′ = 〈v, v′′〉
in E, A(e′) is not reachable from R(e) with a flow in v. Furthermore it may exist
an edge e′′ = 〈v, ṽ〉 ∈ E and a p ∈ IRk such that ι[p] and p reaches A(e′′). Thus for
all p and q such that ι[p] holds, τ[q] holds, and q is reachable from p with at most
one reset.

Let assume that neither NotIFlow(ι, τ) nor
(∧
〈e,e′〉∈Sb NotEFlow(e, e′)

)
hold. As

proved above, it follows that there exists t̃ such that SupIFlow(ι, τ)[t̃]. More-
over, for each 〈e, e′〉 ∈ Sb it holds that either InfEFlow(e, e′)[T] has not a so-
lution, since it is not possible to reach the activation of e′ from the reset of

e, or InfEFlow(e, e′)[T] is satisfied by t̄(e, e′) ∈ IR such that (t̄(e, e′) j > t̃) holds.
Moreover, by Lemma 5, t̃ ∈ IR satisfies SupIFlow(ι, τ)[T] if and only if t̃ is
the supremum of the set {t | IFlow(ι, τ)[t]}. Thus, for all t > t̃, the formula
IFlow(ι, τ)[t] does not hold. Hence, by IDA’s definition, by Lemma 2 and by
the definition of the formula IFlow, if there exist p, q and t such that ι[p] holds,
τ[q] holds and p reaches q in H in time t, then t ≤ t̃. Moreover by Lemma 3,
t̄(e, e′) ∈ IR satisfies InfEFlow(e, e′)[T] if and only if t̄(e, e′) is the inferior of the set
{t | Flow(v,Reset(e),Act(e′))}, where v is the bridge vertex from e to e′. Thus for
all t < t̄(e, e′), the formula Flow(v,Reset(e),Act(e′))[t] does not hold. Hence, by
Flow’s definition and by Lemma 2, if there exist p′, q′ and t′ such that Act(e′)[q′]
holds, Reset(e)[p′] holds and p′ reaches q′ in v in time t′, then t′ ≥ t̄(e, e′). Fur-
thermore Act(e′)[q′] holds if and only if q′ ∈ A(e′) and Reset(e)[p′] if and only if
p′ ∈ R(e). Thus for each pair of edges e = 〈v′, v〉 and e′ = 〈v, v′′〉 in E, if there
exist p′, q′ and t′ such that p′ ∈ R(e), q′ ∈ A(e′) and p′ reaches q′ in v in time t′,
then t′ ≥ t̄(e, e′). Hence if there exist p, q such that ι[p] holds, τ[q] holds and p
reaches q through a trace tr in H, whose corresponding path is ph = 〈v0, . . . , vn〉,
the automaton stays in each location vi of tr at least for time t̄(〈vi−1, vi〉, 〈vi, vi+1〉).
Let t̄ be the minimum of the infimus t̄(e, e′) with e and e′ subsequent in T . Thus
the number of resets in the trace tr must be less than dt̄/t̃e + 1. But since t̄ is one
of the infimum in our formula we have that (t̄ j > t̃), and hence j + 1 > dt̄/t̃e + 1.
It follows that if there exist p, q such that ι[p] holds, τ[q] holds and p reaches q
through a trace tr in H, the number of resets in the trace tr must be less than
j + 1. ut

Exploiting Theorem 1 and Lemma 2, we can write Algorithm 1 which decides
whether there exists p and q such that ι[p] holds, τ[q] holds and p reaches q in a
IDA H. The algorithm works when the involved supremums are real numbers.
The following formula is used to exit the repeat loop:

Test(ph, ι, τ) def
= ∃T ≥ 0∃Z,Z′

(
ι[Z] ∧ τ[Z′] ∧ Reach(ph)[Z,Z′,T]

)

The correctness of our algorithm follows by the second part of Theorem 1
and by Lemma 2. Termination is ensured by the first part of Theorem 1.

5 Decidable Classes of IDA

In this section, we define some conditions under which the existence of a maxi-
mum time of flow is always guaranteed. This automatically gives us the decid-
ability of reachability for the IDA satisfying these assumptions.

We need to guarantee that either the formula NotIFlow(ι, τ) is true or the
formula SupIFlow(ι, τ)[t] has a solution in IR. Let us assume that the formula
NotIFlow(ι, τ) is not true. This means that there exists t > 0 such that IFlow(ι, τ)[t]
is true. Let us assume that there are I independent variables. Unraveling the
formula IFlow(ι, τ)[t], we get that there exists p ∈ IRI satisfying ∃Y ι[X,Y] and

Algorithm 1 Check whenever there exist p and q such that ι[p] holds, τ[q] holds
and p reaches q in a IDA H
Require: An IDA H and two formulæ ι and τ such that the formula ∃T ≥

0 SupIFlow(ι, τ)[T] holds.
Ensure: Return TRUE if there exist p and q, FALSE otherwise.

j← 0
repeat

for all ph path of length j do
if Test(ph,ι,τ) then

Return TRUE
end if

end for
j←− j + 1

until θ(j − 1, ι, τ)
Return FALSE

q ∈ IRI satisfying ∃Y τ[X,Y] such that q = f i(p, t) is true and for each t′ ≤ t it
holds that ∨

v∈V
∃YInv(v)[f i(p, t′),Y]

is true, i.e., f i
(
p, t′

)
belongs to the projection on the independent variables of

one of the invariants. This simply means that p is in the projection of ι on the
independent variables, q is in the projection of τ on the independent variables
and p reaches q in time t using the dynamics of the independent variables in v.
Under these assumptions, we have to find conditions which ensure that there
exists a time t̃, such that for each time t > t̃ the projection of ι on the independent
variables cannot reach the projection of τ on the independent variables using
the dynamics of the independent variables. Hence, if we find a condition which
ensures that there exists a time t̃ such that for each admissible state 〈v, p〉 after
time t̃ we are outside the union of all the invariants of the automaton, then we
have that all the supremums are bounded by t̃, hence they are real numbers.

Since in IDA the invariants are bounded, we try to ensure that we exit the
invariants imposing that there exists at least one independent variable whose
dynamic has an unbounded limit. Moreover, to exploit the standard compact-
ness theorems, we have to require the continuity of fv with respect to all its
components. In fact, the fact that fv is a solution of a vectorial field ensures only
the continuity with respect to the time.

Definition 7 (∞IDA). Let H be a IDA. We say that H is in the class ∞IDA if and
only if for each edge e = 〈v, v′〉 of H it holds that fv is continuous on IRk × IR+ and for
each p ∈ I(v) it holds that

lim
t→+∞

‖ f i
(
p, t

) ‖ = +∞

Notice that only some of the components of p are used in f i
(
p, t

)
, i.e., only the

components of p corresponding to the independent variables.

The dynamics of the independent variables are preserved in all the locations,
hence it is sufficient to check the condition of Definition 7 in one location. More-
over, since the invariants in IDA are always bounded we get that in ∞IDA for
each state 〈v, p〉 after a finite amount of time we exit the union of the invariants.

Lemma 6. Let H be a ∞IDA and 〈v, p〉 be a state of H. There exists t〈v,p〉 ∈ IR+ such
that for each t′ > t〈v,p〉 it holds that fv(p, t′) is not in the union of the invariants of H.

Proof. We have that
lim

t→+∞
‖ f i

(
p, t

) ‖ = +∞
Hence,

lim
t→+∞

‖ fv(p, t)‖ = +∞
From the fact that all the invariants are bounded we have that the set of points
I(V) inside the union of the invariants is bounded. Hence, there exists M such
that for each q ∈ I(V) it holds ‖q‖ ≤ M. By definition of limit we have that there
exists a time t〈v,p〉 such that for each t′ > t〈v,p〉 it holds ‖ fv(p, t′)‖ > M, from which
we immediately get the thesis. ut

The above lemma is not sufficient to conclude that there exists a time t̃ such
that for each state 〈v, p〉 and for each t′ > t̃ it holds that fv(p, t′) is outside all the
invariants.

Let M be such that for each q inside the union of the invariants it holds
‖q‖ ≤M. Consider the function Gv : I(v) −→ IR+ defined as

Gv(p) = inf{t | ‖ fv(p, t′)‖ > M}
By Lemma 6 and from the fact that ‖ fv(p, 0)‖ = ‖p‖ ≤ M we have that Gv is
correctly defined. We prove that Gv is bounded.

Lemma 7. There exists tv ∈ IR+ such that for each p ∈ I(v) it holds Gv(p) ≤ tv.

Proof. Let us assume by contradiction that there the thesis does not hold. This
means that the supremum supp∈I(v) Gv(p) of Gv(p) is +∞. Hence for each h ∈ N
there exists ph ∈ I(v) such that Gv(ph) > h. Consider the sequence s = (ph)h∈N.
Since I(v) is closed and bounded, I(v) is compact and s admits a convergent
subsequence s′. With an opportune renaming of the indexes we have that s′ is
of the form s′ = (qh)h∈N with Gv(qh) > h. Let p̃ ∈ I(v) be the limit of s′. From the
fact that p̃ is the limit of s′ we get that in each neighborhood Up̃ of p̃ there exists
j such that for each m ≥ j it holds q j ∈ Up̃. Let us call this property (*).

From Definition 7 we have that limt→+∞ ‖ fv(p̃, t)‖ = +∞. Hence there exists t̄
such that, for each t ≥ t̄ it holds ‖ fv(p̃, t)‖ > M + 1. Exploiting the continuity of
‖ fv(p̃, t̄)‖ we obtain that for each ε-neighborhood V(ε) of ‖ fv(p̃, t̄)‖ there exists a
δ-neighborhood W(δ) of 〈p̃, t̄〉 such that for each 〈q, t〉 ∈W(δ) it holds ‖ fv(q, t)‖ ≥
‖ fv(p̃, t̄)‖ − ε. In particular, with ε < 1 we have that for each 〈q, t〉 ∈ W(δ) it
holds ‖ fv(q, t)‖ ≥ ‖ fv(p̃, t̄)‖ − ε > M. Let W′ be the neighborhood of p̃ obtained
projecting W(δ) on the components of p̃. We have that for each q ∈ W′ it holds
‖ fv(q, t̄)‖ > M, i.e., G(q) < t̄. This contradicts property (*), hence the thesis is
true. ut

Since the locations of a hybrid automaton are finite, we can now conclude
that the maximum of the tv’s defined in the above lemma is the t̃ which ensures
that the all the supremums are limited.

Corollary 1. Let H be a ∞IDA, ι and τ be two formulæ. Algorithm 1 can be used to
decide whether in H Sat(ι) can reach Sat(τ).

Proof. We only have to check that the requirements of Algorithm 1 are satisfied.
This is an immediate consequence of Lemma 7. ut

Notice that if H is a IDA in which the flows of the independent variables are
non constant polynomials, then H is also a∞IDA.

Example 2. Let us consider the automaton H defined in Example 1. From the
above consideration it follows that H is a ∞IDA. Hence, we can decide any
reachability problem on it.

6 Example

Next the utility of an IDA model is demonstrated through a simple, yet bio-
logically relevant example: namely, the bacterial chemotaxis [28, 8]. Escherichia
coli has evolved an extremely effective strategy for responding to a chemical
gradient in its environment, by detecting the concentration of ligands through a
number of receptors, and then reacting to the input signal for driving its flagella
motors to alter its path of motion. E. coli responds in one of two ways: either it
“runs” – moves in a straight line by moving its flagella counterclockwise (CCW)
(typically lasting 1000 ms), or it “tumbles” – randomly change its heading by
moving its flagella clockwise (CW) (typically lasting 100 s). The response is me-
diated through the molecular concentration of CheY in a phosphorylated form
(YP variable in figure ???), which in turn is determined by the bound ligands at
the receptors that appear in several forms (LT variables in figure???). The ratio
of y = YP/Y0 (phosphorylated concentration of CheY to its concentration in
the unphosphorylated form) determines a bias with an associated probability
that flagella will exert a CW rotation; note in our example IDAmodel (fig ???)
we have ignored this stochastic effect by modeling it deterministically. Thus
the most important output variable is the angular velocity w that takes discrete
values +1 for CW and −1 for CCW. The more detailed pathway involves other
CheB (either with phosphorylation or without, Bp and B0), CheZ (Z), bound
receptors (LT) and unbound receptors (T), wile their continuous evolution is
determined by a set of differential algebraic equations derived through kinetic
mass action formulation.

This IDA model captures the essence of how an E. coli cell performs a biased
random walk by transiently decreasing its tumbling frequency to move towards
a region with greater ligand concentration. A second feature of this control
is its sensitivity to concentration gradients and its observed dynamic range:
rather than responding to absolute concentrations, the E. coli adapts quickly as

it compares its environment during the immediate past to what existed a bit
earlier. Further, it does so over a wide range of inpout concentrations.

As we model just the simplest aspect of this behavior of E. coli using an
IDAautomaton 2, there are several futures that become notable. The concentra-
tions of all signal transduction proteins evolve in a continuous manner, oblivious
of the mode switches. But as certain functions of these concentrations (y) trigger
various guard conditions the hybrid automaton switches discretely from one
mode to the other (“run” or “tumble”) through a dependent variable w. Note
that it is rather straightforward to represent this system as a pair of communi-
cating automata: one a single-mode hybrid automaton and the other a purely
discrete two-state automaton.

ḂP = kbP(B0 − BP) − k−bBP

ṫ = 1

θ̇ = 0

ṫ = 1

ẎP = kyP(Y0 − YP) − k−yZYP

ḂP = kbP(B0 − BP) − k−bBP

θ̇ = 1

RUN TUMBLE

ẎP = kyP(Y0 − YP) − k−yZYP

t > 1000 ∧ t′ = 0 ∧ θ′ = 0 ∧ Y′P = YP ∧ B′P = BP ∧ P” = P ∧ Z′ = Z

t > 100 ∧ t′ = 0 ∧ θ′ = 0 ∧ Y′P = YP ∧ B′P = BP ∧ P′ = P ∧ Z′ = Z

Fig. 2. An IDA capturing the run-tumble mechanism of E. coli.

7 Conclusions

In this paper we introduced IDA hybrid automata. IDA are a generalization of
decidable O-minimal automata in which non-constant resets are allowed. The
resets which are not constant are identities.

We introduced the assumptions under which we can prove that reachabil-
ity is decidable on IDA automata. In particular, we translated the reachability
problem into an infinite set first-order formulæ over a decidable theory. Then,
we characterized a finite subset of formulæ and proved that the original reach-
ability problem corresponds to the validity of a formula in this subset.

To conclude we presented a subclass∞IDA of IDA in which all the assump-
tions are guaranteed. Hence, on these automata reachability is always decidable.
All the IDA automata whose dynamics are non constant polynomials are in the

class ∞IDA. We demonstrated a typical Systems Biology application, by pre-
senting a simplistic characterization of the run-tumble chemotaxis mechanism
of E. Coli.

The complexity of our algorithm strongly depends on the complexity of the
decidable theory used to define the automaton. In the case of formulæ over (IR,
0, 1, +, ∗, =, <), decidability has been proved by Tarski [29], and one of the first
double-exponential algorithms has been proposed by Collins [11]. Later Hoon
Hong, using many useful and practical heuristics, created the first practical
quantifier elimination software Qepcad. Alternative CAD-based methods have
been proposed Grigoriev [14] and Renegar [27], that are doubly exponential in
the number of quantifier alternations rather than the number of variables. New
quantifier elimination approaches have been proposed by Basu [6]. Another
line of investigation is to characterize the simplifications that result for IDAin
the approximate algorithms developed for semi-algebraic hybrid automta [23].
More importantly, symbolic algebraic geometry holds many other powerful
tools such as Groebner bases and characteristic sets in its arsenal, whose utility
is just beginning to be examined.

References

1. A, R., C, C., H, N., H, T. A., H, P.-H., N,
X., O, A., S, J., Y, S. The Algorithmic Analysis of Hybrid
Systems. Theoretical Computer Science 138 (1995), 3–34.

2. A, R., C, C., H, T. A., H, P. H. Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In
Hybrid Systems (1992), R. L. Grossman, A. Nerode, A. P. Ravn, and H. Richel, Eds.,
LNCS, Springer, pp. 209–229.

3. A, R., D, T., I, F. Progress on Reachability Analysis of Hybrid
Systems Using Predicate Abstraction. In Hybrid Systems: Computation and Control
(HSCC’03) (2003), O. Maler and A. Pnueli, Eds., vol. 2623 of LNCS, Springer, pp. 4–
19.

4. A, H. Algebraic Approach to Analysis of Discrete-Time Polynomial Systems. In
European Control Conference (ECC’99) (1999).

5. A, M., M, B., P, C., P, A., S, M. Modeling
cellular behavior with hybrid automata: Bisimulation and collapsing. In CMSB ’03:
Proceedings of the First International Workshop on Computational Methods in Systems
Biology (London, UK, 2003), Springer-Verlag, pp. 57–74.

6. B, S. An Improved Algorithm for Quantifier Elimination Over Real Closed Fields.
In IEEE Symposium on Foundations of Computer Science (FOCS’97) (1997), pp. 56–65.

7. B, B., B, M., E, F., F̈, M., H, M., H, C., H-
, J., K, D., N, B., P, I., W, R. Bounded model check-
ing and inductive verification of hybrid discrete-continuous systems. In GI/ITG/GMM
Workshop (2004).

8. B, H. Motile behavior of bacteria. Physics Today 53, 1 (2000), 24–29.
9. B, T., M, C., R̀, C., T, C. On O-Minimal Hybrid

Systems. In Hybrid Systems: Computation and Control (HSCC’04) (2004), R. Alur and
G. J. Pappas, Eds., vol. 2993 of LNCS, Springer, pp. 219–233.

10. C, A., P, C., M, B. Semi-algebraic constant reset hybrid
automata - sacore. In In Proc. of IEEE Int. Conference on Decision and Control (CDC’05)
, IEEE, 2005, To appear. (2005).

11. C, G. E. Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. In Proceedings of the Second GI Con-
ference on Automata Theory and Formal Languages (1975), vol. 33 of LNCS, Springer,
pp. 134–183.

12. F̈, M. What Will Be Eventually True of Polynomial Hybrid Automata? In
Theoretical Aspects of Computer Software (TACS’01) (2001), N. Kobayashi and B. C.
Pierce, Eds., vol. 2215 of LNCS, Springer, pp. 340–359.

13. F̈, M., H, C. Efficient Proof Engines for Bounded Model Checking
of Hybrid Systems. In FMICS (2004).

14. G, D. Complexity of Deciding Tarski Algebra. Journal of Symbolic Computation
5 (1988), 65–108.

15. H, T. A., K, P. W. State Equivalences for Rectangular Hybrid Au-
tomata. In Proc. of Int. Conference on Concurrency Theory (Concur’96) (1996), U. Mon-
tanari and V. Sassone, Eds., vol. 1119 of LNCS, Springer, pp. 530–545.

16. H, T. A., K, P. W., P, A., V, P. What’s decidable about
hybrid automata? In Proc. of ACM Symposium on Theory of Computing (STOCS’95)
(1995), pp. 373–382.

17. J, M. Nonlinear Control System Design by Quantifier Elimination. J. Symb.
Comput. 24, 2 (1997), 137–152.

18. K, P. The Theory of Rectangular Hybrid Automata. PhD thesis, Cornell University,
1996.

19. L, G., P, G. J., S, S. O-minimal Hybrid Systems. Mathematics
of Control, Signals, and Systems 13 (2000), 1–21.

20. L, G., P, G. J., Y, S. Symbolic Reachability Computation
for Families of Linear Vector Fields. J. Symb. Comput. 32, 3 (2001), 231–253.

21. L, R., S.T. Taylor Approximation for Hybrid Systems. In Hybrid
Systems: Computation and Control (HSCC’05) (2005), M. Morari and L. Thiele, Eds.,
vol. 3114 of LNCS, Springer, pp. 402–416.

22. M, F. Analysis of Hybrid Systems: An ounce of realism can save an infinity of
states. In Computer Science Logic (CSL’99) (1999), J. Flum and M. Rodrı́guez-Artalejo,
Eds., vol. 1683 of LNCS, Springer, pp. 126–140.

23. M, V., M, B. Algorithmic Algebraic Model Checking III: Approximate
Methods. In Infinity – The 7th International Workshop on Verification of Infinite-State
Systems (2005).

24. M, V., P, C., M, B. Algorithmic Algebraic Model Checking II:
Decidability of Semi-Algebraic Model Checking and its Applications to Systems
Biology. In Automated Technology for Verification and Analysis (ATVA) (2005).

25. P, C., A, M., M, V., P, A., W, F., M, B.
Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and their
Reachability Analysis. In Computer Aided Verification (CAV) (2005).

26. R, S., S, Z. Safety verification of hybrid systems by constraint prop-
agation based abstraction refinement. In Hybrid Systems: Computation and Control
(HSCC’05) (2005), M. Morari and L. Thiele, Eds., vol. 3114 of LNCS, Springer, pp. 573–
589.

27. R, J. On the Computational Complexity and Geometry of the First-order
Theory of the Reals, parts I-III. Journal of Symbolic Computation 13 (1992), 255–352.

28. S, P., P, J., O, H. A model of excitation and adaptation in
bacterial chemotaxis. Proc Natl Acad Sci, U S A 94, 14 (Jul 1997), 7263–8.

29. T, A. A Decision Method for Elementary Algebra and Geometry. Univ. California
Press, 1951.

30. T, A., K, G. Series of Abstraction for Hybrid Automata. In Hybrid
Systems: Computation and Control (HSCC’02) (2002), C. J. Tomlin and M. Greenstreet,
Eds., vol. 2289 of LNCS, Springer, pp. 465–478.

