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Abstract—In this paper we introduce and study a special on to prove that progress, safety, state recurrence and reacha-
class of hybrid automata, Semi-Algebraic Constant Reset hybrid pility are semi-decidable using quantifier elimination [8] and
automata(SACoRe). SACoRe automata are an extension of O- developed “proof engines” for bounded model checking [9].

minimal automata over the reals in the case of flows obtained M tv. Lafferi t al. 1101 h in d ived
from non-autonomous systems of differential inclusions. Even ore recently, Lafferiere et al. [10] have again describe

though SACoRe automata do not have the finite bisimulation & method based upon quantifier elimination for symbolic
property, they do admit decision procedures for reachability reachability computation of linear vector fields.
and model checking for a limited fragment of CTL, by com- Lately, Ratschan and She [11] have suggested a new
bining Tarski's decidability result over the reals and Michael's 4 straint propagation based abstraction refinement for the
selection theorem. - . . .
safety verification of hybrid systems with autonomous differ-
ential equations. Other recent developments include Becker
et al.’s integration of bounded model checking and inductive

The notion ofHybrid Automatawas first introduced in [1] verification [12]. Lanotte and Tini [13] have recently proved
as a model and specification language for hybrid system@at the semi-algebraic hybrid automaton obtained by ap-
i.e., systems consisting of a discrete program within Broximating each formula in any hybrid system definition
continuously changing environment. Since their introductiofith its Taylor polynomial is an over-approximation.
they have been widely used for the automatic verification of The novelty of our approach mainly lies in the use of
both natural and engineered systems. continuous selection results [14] which allow us to consider

In this paper we introduce and study a special class of suglvn-autonomous differential inclusions. Moreover, as a direct
automata,Semi-Algebraic Constant Reset hybrid automataonsequence of continuous selection results, we can derive
(SACoRe), whose characterizing conditions are based upfirst-order formulee to encode reachability problems with low
first-order theory ove(IR, 0, 1, +, %, =, <). In particular, a structural complexity.
hybrid automaton of dimensiok can be defined using only  The paper is organized as follows. In Section Il we
formulee overk dimensional vectors of reals. The dynamicdntroduce the syntax and the semantics of SACoRe automata.
are defined through formulee which can be obtained as solr Section Il we show how to decide reachability. The fact
tions of non-autonomous systems of differential inclusionghat SACoRe automata do not have the finite bisimulation
The reset conditions have to be constant as in the caggoperty is proved in Section IV. Section V is devoted to
of O-minimal hybrid automata [2]. Even though SACoRemodel checking of a fragment of CTL for SACoRe automata.
automata do not have the finite bisimulation property, thginally, Section VI ends the paper with some considerations
conditions we impose on their dynamics allow us to combingbout the use of SACoRe automata to study stability and
Tarski's result [3] and Michael's selection theorem [4] torobustness of biological systems. All the missing proofs can
translate reachability problems into first-order satisfiabilithe found in [15].
problems over the reals.

The approach of exploiting Tarski’'s result and quantifier
elimination to study hybrid automata has begun to be widely. Syntax
investigated in the last few years. For instance, Jirstrand [5] First, we introduce some notations and conventions. Cap-
demonstrated, in the context of non-linear control systenal letters Z,,, Z/,, and Z", wheren, m € IN denote
design, the use oQepcad for the problems of computing variables ranging oveR. Analogously,Z denotes the vector
reachability, stationarizable sets, range of controllable outpuif variables(Z,, ..., Z,); Z’ denotes the vectofZi, ...,
and curve-following. Subsequently, Anai [6] and Franzle [7)}); andZ™ denotes the vectqZy, ..., Z}*). The temporal
independently suggested the use of quantifier elimination feariables7 and 7/ model time and range oveR™. We
the verification of polynomial hybrid systems. Franzle wenuse the small letters, g, 7, s, ... to denotek-dimensional

vectors of real numbers.
_This yvork has been partially supported by the European Cpmmu- Occasionally, we will use the notatio,n[Xl, .--,Xm] to
nity Project 1ST-2001-33520 CC (Control and Computation), NSF's ITR . .
programs, DARPAs BioCOMP/Biospice program, and NYU CCPR/DHsSITEsS the fact that the set of free variables of the first-order
prgram. formulap may be included in the set of variabléX, ...,
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X, }. By extension, if{ X!, ..., X"} is a set of variable =~ Example 1:Consider this system of differential equations:

vectors,p[ X!, ..., X" indicates that the free variables of 7. _ a9y

. . q 1 - 1
o are included in the set of components &f, ..., X™. { o~ 43
Moreover, given a formulap[X*', ..., X?, ..., X"] and a 2 = L2

vector p of the same dimension as the variable veckdr,  Its solutions with initial conditionsZ; (0) = z; and Z5(0) =

the formula obtained by component-wise substitutionXdf =z, are

with p is denoted byp[X?, ..., X7, p, X+, ..., X"]. { Zi(t) = =ze

If in ¢ the only free variables were the componentsxof Zo(t) = (22+3)" -3

after the substitution we can compute the truth valug[pf.  Translated in our notation this system corresponds to the fol-
We are now ready to formally introduce hybrid automatalowing hybrid automatond = (Z, Z’,V, &, Inv, Dyn, Act,

For each state of a discrete automaton we have an invariaittset) whereZ = (Z,, Z,) andZ’ = (Z1, Z3) are variables

condition and a dynamic law. This dynamic law may dependver R*; V = {v} and & = 0; Inv(v)[Z] = true;

on the initial conditions, i.e., on the values of the continuou®yn(v)[Z, 2", T] = (Z] = Z1e*' A Z} = (Zy + 3)e” - 3).

variables at the beginning of the evolution in the state. The Hence, starting from the poiniy = (1,1) we reach at

jumps from one discrete state to another are regulated by th@e 7' = 1 the pointp; = (e?,4e — 3) and at timeT’ = 2
activation and reset conditions. the pointp, = (e*,4e? — 3). Notice that if we start from

Definition 1 (Hybrid Automata)A hybrid automaton M€ Pointp; attimeT =1 we reachp,, as we are using an
H=(Z, 2',V, & Inv, Dyn, Act, Reset) of dimensionk autonomous system of dlff_erentlal equations.
consists of the following components: Consider next the following system:

1) Z =(Z,, ..., Z,)and Z' = (Z], ..., Z;) are two { 2 _ it
vectors of variables ranging over the refits

2) (V, &) is a finite directed graph; the vertexés, are We can express this in our notation with the hybrid au-
calledlocations or control modesthe directed edges, tomaton H’ in which V, €, InvSet are as inH, while
¢, are callededges or control switches Dyn(v)[Z,Z',T)is (Z] =T* + Z1 N Zyy = T + Z3).

3) Each vertexv € V is labeled by the two for-  Starting from the pointy = (1,1), we can reach at time
mulee Inv(v)[Z] and Dyn(v)[Z,Z',T] such that T =1 the pointg = (2,2) and at timeT" = 2 the point
if Inv(v)[p] is true then Dyn(v)[p,p,0] is true; 92 = (5,3). Notice that in this case if we start at tinte

InvSet = {Inv(v)[Z] | v € V} and DynSet = from ¢, at timeT = 2 we reach the poing; = <673>_
{Dyn(v)[Z,Z',T] | veV}; which cannot be reached starting frag. In fact, as this

4) Each directed edgee € & is labeled by example illustrates, when the system of differential equations
the two formuleelct(e)[Z] and Reset(e)|Z, Z); is not .auton'omous and the trajectories are not “transitive”,
ActSet = {Act(e)[Z] | e € €} and ResetSet = the trajectories cannot be split and recombined.

{Reset(e)[Z,Z'] | e € E}. ) ) )
As is well known, the afore-introduced hybrid automata
are “undecidable”, i.e., many of the classical problems re-
In our definitions, instead of the classical approach %arding hybnd automata, such mchabi|ityandtempora|
USing differential equations to define the ﬂOW, we use the fo‘ogic model Checkingremain recalcitrant to a decision pro-
mulae InDynSet to describe the continuous evolution With'cedure [18] even when Specia"zed to the kind of automata
out using derivatives. Our approach is similar to that followegescribed above. Many subclasses of hybrid automata have
in [16]. For instance, in [2], even though the automata argeen explored in the literature with the hope of proving
defined with differential equations, itis necessary to Compu%mdabmty results under appropriate restrictionS, e.g., O-
their solutions in order that the bisimulation algorithm carnminimal hybrid automata [2] and Rectangular hybrid au-
be applied, and express these solutions)ay.(v)[Z, Z',T],  tomata [17] are two such well-known examples. In the rest
whose intuitive meaning is that froiF after T instants the of the paper, we will focus on dec|dab|||ty results for a new
continuous flow can reaclt’. Thus, our hybrid automata sypclass of hybrid automata, we introduce here.
generalize several recently discovered notions in the hybrid Following the approach of O-minimal hybrid automata,
systems theory. Note, as an example, Baninimalhybrid \ye require that the formulee defining the invariants, the
automata [2], [16] are a subclass of our hybrid automatgynamics, the activations, and the resets be taken from an
since we do not impose restrictions on the formulae and Qsiminimal theory. In particular, we focus on the first-order
the resets. Moreover, we admit an infinite number of ﬂOW&heory over the reals, as it suffices for all our areas of
which can also be self-intersecting. Similarigectangular applications. Nonetheless, our results can be also applied to
hybrid automata [17] can be easily mapped into a subclagsminimal extension of the realsyutatis mutandis
of our definition. In general, we are able to express all pefinition 2 (Semi-Algebraic Automatayve call a hy-
the hybrid automata defined using differential expressiongyid automatonH semi-algebraidf the formulee inInvSet,

provided that either exact or approximated solutions of thgynSet, ActSet, and ResetSet are first-order formulee over
differential expressions can be characterized with a formulge reals, i.e., ovefIR, 0, 1, +, *, =, <)).



trajectories. Moreover, it requires that for each pgirdnd
In order to define this new class of automata, we alsfor each time instant the set of points reachable fromat
need to characterize the time instants, at which the automatiame ¢ is a closed convex set. This condition will allow us to
starting from a pointp in a locationv, can reach a point exploit Michael's selection theorem [4] to find trajectories.
¢, while remaining inside the invariant set of Such a The condition 3 is exactly the condition imposed on O-
characterization is possible when the automaton is semminimal hybrid automata.
algebraic. We recall that an interval oMBr- is a set of the Example 2:Let H = (Z,Z',V, &, Inv, Dyn, Act, Reset)

form {r € R" |a <1 7 <2 b}, where<y, <2 are in{<, <}, where Z = (Z,,Z,) and 2’ = (Z},7}); V = {v}
a€RY, beRTU{+o0}, anda < b. and & = {e}, wheree goes formv to v; Inv(v)[Z] =
Lemma 1:Let H be a semi-algebraic hybrid automaton.(0 < Z; <1A0< Zy <1); Dyn(v)[Z,Z',T] = (Z1 =

Let p € IR* be such thatlnv(v)[p] holds. The set of time T+ Zy A Zy > T? + Zy); Act(e)[Z]) = (Zy = 1V Zy = 1);
instants 7', satisfying the formuladZ’(Dyn(v)[p, Z',T] A Reset(e)[Z,Z'| = (Z] = 1N Zj =1).
Inv(v)[Z']), can be expressed as the union of a finite number The formulee inH are first-order formulee over the reals.
of disjoint intervals ofR*. One of these intervals contains!f p = (p1,p2), with 0 < p1,ps < 1, then the function
the time instan®. 14;;; is defined asF)(t) = {(q1,42) |1 = t +p1,q2 >

The above lemma allows us to focus on the intelifabf ~ ¢*+p>, and0 < g1,¢2 < 1}. Itis easy to see thate F;(0)
time instants, for which there are dynamics that start frorand for eacht the setF;) () is closed and convex, since it is
p and remain inside the invariant ef—these dynamics are a segment. Moreover, this function is lower semi-continuous
main objects of our interest. We ug€R*) to denote the set over the interval}. Finally, Reset(e)[Z, Z'] does not depend
of subsets ofR”. on Z. Hence,H is a SACoRe automaton.

Definition 3 (; and F}): Let H be a semi-algebraic hy-
brid automaton. Let be a location ofif andp be such that  O-minimals hybrid automata are easily seen as special
Inv(v)[p] holds. 1} is the interval of time instants satisfying cases of SACoRe automata. Since, in O-minimals hybrid
the following:VT" € I; 3Z'(Dyn(v)[p, Z', T] A Inv(v)[Z']);  automata, each point allows only one continuous algebraic
0 € I, and I, is maximal with respect to the first two flow from it, in this case, for each time instant the set

requirements. F7(t) reduces to a singleton, which is obviously closed and
Define the functions) : 1) — o(RY) as: convex. The continuity of the flow immediately implies the
) lower semi-continuity ofF;)'(¢) over I;. On the other hand,
Fp(T) ={q| Dyn(v)lp, ¢, T| and Inv(v)]ql}- the class SACoRe is not included in the class of O-minimals

hybrid automata, since from each point we allow a set of

i 1 i v . .
We will need to impose on the functiongy’ some fows. Moreover, our flows are not necessarily solutions of
continuity conditions—in particular, we requitewer semi- 5 ;tonomous differential inclusions.

continuity, as defined below. For a complete treatment of this
notion, please refer to [14]. B. Semantics

Definition 4 (Lower semi-continuous functioret I C Let H be a hybrid automaton of dimensioh. The

R* be an interval and™: I — p(R*). We defineF” to be  semantics off is presented in terms continuous and discrete
lower semi-continuougabbreviated, |.s.c.) if for eache I, transitions as defined below.

for eachy € F(t), and for each neighborhood, of y, Definition 6 (Hybrid Automata - Transitions)A state ¢
there exists a neighborhodd of ¢ (in I) such that for each of 1 is a pair (v,r), wherev € V is a location and
t' € Uy it holds F (') N U, # 0. r = (ri,...,r) € IR¥ is an assignment of values for the

variables of Z. A state (v,r) is said to beadmissibleif
We now possess all the ingredients to introduce our clagm(v)[r] is true.

of hybrid automata. The continuous reachability transition relatior-¢ be-
Definition 5 (Semi-Algebraic Constant Reset Automata):tween admissible states is defined as follows:
We say that a hybrid automatol is a semi-algebraic (y r) - (v,s) iff
constant resehybrid automaton, or simply 8ACoReif: there existsf : Rt — IR* continuous function such
1) H is semi-algebraic; that r = f(0), there existst > 0 such thats = f(¢),
2) For eachv € V, p € IR such thatlnv(v)[p] holds, and for eacht’ € [0,t] the formulee Inv(v)[f(t')] and
the functionFy; is lower semi-continuous, and for each Dyn(v)[r, f(t'),t'] are true.

t € I the setFy(t) is closed and convex; The discrete reachability transition relatior-p between
3) Each formula Reset(e)[Z,Z'] is of the form admissible states is defined as follows:
Reset(e)[Z'], i.e., it does not depend af. (v,7) —=p (u,s) iff

It holds (v,u) € € and the formuleeAct({v,u))[r] and
A SACoRe hybrid automaton is defined using first-ordeReset({(v, u))[s] are true.
formulae over the reals, and thus, exploits Tarski's results
over the reals [3] to get decidability procedures. The con- Building upon continuous and discrete transitions, we can
dition 2 imposes a certain kind of continuity on the set ofntroduce notions oftrace and reachability A trace is a



sequence of continuous and discrete transitions. A pointtransitions occurring intr. In this case, we also say that

is reachable from a pointif there is a trace starting from  ph correspondgo tr.

and ending ins. We use the notatiof — ¢’ to denote that

either! —¢c ¢/ or ¢ —p 0. Notice that for each trace- there exists always a unique
Definition 7 (Hybrid Automata - Reachabilityl:et 7 be pathph which corresponds tor.

eitherN or an initial finite interval ofN. A trace of H is a . )

sequenceo, /1, ...,/ with i € I, also denoted by, )ic;, < Reachability and Model Checking

of admissible states such that: Given a SACoRe hybrid automatoA and a starting

region R C IR* characterized by a first-order formula

p over the reals, we may wish to compute the region

ReachSet(R) C IR of points that can be reached starting

from a point in R and following a trace of{.

e Foreachie I,: >0, it holds¢;_1 — ¥;;
o If ¥, —¢ ‘giJr], then€i+1 7/->C €i+2-
A point r € IR* reachesa points € IR¥ if there exists a

tracely, ..., £, of H such thatlo = (v,r) and?, = (u, s), More generally, given a formul@ of a temporal logic, we
for somev, u € V. . may also be interested in determining the pointsRofvhich

We use ReachSet(r) to denote the set of pglnts reach-gaiisfy . Let us introduce here the syntax and semantics of
able fromr. Moreover, given a regiom® C IR” we use CTL_y, CTL without the next operator (see [21]).
ReachSet(R) to denote the set,c g ReachSet (r). Definition 9 (CTL x - Syntax): Let P be a set ofpropo-

sitional symbolsand P € P. The formulee of CTL ovefP
We impose the condition that, in a trace, continuougre defined by the following grammar:

transitions do not occur consecutively. If we only consider
automata whose flows are solutions of autonomous differ-Q p= PlQuiVQa[ Q1 |E(Q1UQ2) [A(Q1TU Q2) |
ential inclusions, there the continuous transition relation EF Q1 [ AF Q1 |EGQy | AGQy

is transitive, and all their traces, Containing Sequence of We avoid using the next Operator, since it requires the
consecutive continuous transitions, can be reduced to a trgggoduction of a temporized semantics (see, e.g., [22]), thus
without such consecutive continuous transitions. In generahking us out of the scope of this paper.
it may be the case that the continuous transition relation is | the case of O-minimals hybrid automata, reachability as
not transitive (see?’ in Example 1). In this case, if we start el as other temporal logic proprieties are checked through
from a pointr in a locationv, as long as we remain inside pisimulation (see [2]) as follows: first, a finite discrete au-
v, it is reasonable to consider only those points reachabjgmatonA bisimilar to the hybrid automatoH is computed:;
from r, which satisfy the dynamics conditions imposedron next, the property is checked od. Since bisimulation
i.e. Dyn(v)[r, Z',T]. Similarly we allow that a point may  strongly preserves both reachability and temporal formulae,
reach a poink passing through a poin, while s may notbe  the results obtained onl are correct, by definition. This
reachable from:. Such apparently paradoxical situation canechnique can be applied whenever we consider a Claxs
occur when the dynamics are solutions of non-autonomoyg/hrid automata, which has the finite bisimulation property,
differential inclusions, since in this case the evolution from @e. each automaton i has a finite bisimulation quotient.
point depends on time instant, at which the point is reaChedJ-nfortunater, the class of SACoRe does not possess the
Usually two properties hold in temporal semantics [19]finite bisimulation property, as we will show in Section IV.
[20]: the suffix closurewhich requires that the suffix of a  Our approach will instead exploit both Tarski’s decidabil-
trace is a trace; théusion closurewhich requires that the jty result [3] for first-order formulee oveflR, 0, 1, +, *,
concatenation of two traces is a trace. Our semantics is <) and Michael’s selection theorem for set-valued maps.
suffix closed. On the other hand, fusion closure holds iMore specifically, Michael's selection theorem will guarantee
our semantics only for the following case: when two traceghe correctness of a translation into appropriate first-order
try andiry are concatenated such that eittter ends with  formulae of our reachability and model checking problems,

a discrete transition ofry starts with a discrete transition. whereas Tarski's result will provide us the decidability.
In fact, fusion closure implies that the system behavior

depends only on the current state, and not on the past. This [ll. REACHABILITY

property does not always hold in our dynamics, since we |n this section, we demonstrate how the reachability prob-

allow solutions of non-autonomous differential inclusions. lem over SACoRe automata can be reduced to a first-order
We recall that given a finite directed grai6h a path of  satisfiability problem. We start characterizing the sts

G is a sequenceo, v1, ..., v, ... Of nodes ofG such that ~ Lemma 2:Let H be a SACoRe automaton. Consider the

for eachi > 0 there exists an edge d@f connectingv; to first-order formula

v;+1. Given a trace off we can identify a path ofV, &) def

as follows. Tp(’U)[Z, T] = Y0 < 1 < TEIZ/(Dyn(U)[Zv Z/a T/]/\
Definition 8 (Corresponding Path)tet H be a SACoRe Inw(v)[Z']).

automaton. Letr = (vo, 7o), ..., (vn,Tn) be a trace offf.  Assumer to be such thafnu(v)[r] holds. It follows that:

The corresponding pattof ¢r is the pathph = v, ..., v,

rYm

of the graph(V,¢&) obtained by considering the discrete te I iff Tp(v)lrt] is true



Theorem 1:Let H be a SACoRe automaton, satisfyingselection theorem [4] we may deduce the following: there

the first-order formula below:

Reach(v)[Z, 2] < Inw(v)[Z] A Inv(v)[Z']
T > 0(Dyn(v)[Z,Z",T] NTp(v)[Z,T)).

Then following holds:

(v,ry —¢ (v,s) iff Reach(v)[r,s] is true

Proof: (=) By Definition 6 we have that:
(v,7) —¢ (v,s) iff there existsf : RT — IR* continuous
function such that- = f(0), there existst > 0 such that
s = f(t), and for each’ € [0,t] the formuleelnv(v)[f(t')]
and Dyn(v)[r, f(t'),t'] are true.

From the fact that for eacti € [0, ¢] Dyn(v)[r, f(¢'),t'] A
Inv(v)[f(t)] is true, we deduce thal'p(v)[r,t] is true.
Hence we see thanov(v)[r], Inv(v)[s], Dyn(v)]r, s, ], and
Tp(v)[r,t] are all true, as stated.

(<) By hypothesis, Inv(v)[r] and Inv(v)[s] are true
and thus, there exists € IR such thatDyn(v)[r, s, t] A
Tp(v)[r,t] holds. Hence by Lemma 2 we have thate
IY. Moreover, s belongs toF’(¢), which is lower semi-

exists f : [0,¢] — R* continuous selection fronk'. Hence,
by definition of continuous selection (see [14]}, is a
continuous function such that for ea¢h € [0,¢] it holds
f(t") € F(t'). From this last statement, we further deduce
that: f(0) = r; f(t) = s; for each0 < ¢’ < ¢ it holds that
ft') € EX ('), i.e., Dyn(v)[r, f(¥'),t'] and Inv(v)[f(¢")].
In particular, consider the functiofi: Rt — R* defined as:

ﬂﬂ:{fﬁ) if T e [0,

S if T >t
We have demonstrated thgt satisfies all the hypothesis
required to conclude thaw, r) —¢ (v, s), as desired. ®

One may observe that for any edge u) € € the discrete
reachability is characterized by the first-order formula

Reach((v,u))[Z, Z'] % Act((v, u))[Z] A Reset((v, u))[Z].

Given a pointr € IR*, we see that the first-order formula
Reach(v)[r,Z'], as defined in Theorem 1, and with free
variables inZ’, characterizes the set of points reachable from

continuous with convex and closed images. Consider thein the nodev using only continuous dynamics. Similarly,

function F : [0,¢] — p(R*) defined as:

{r} if T=0
F(T){ Fy(T) ifo<T<t
{s} if T =t

It is immediately seen that for each in [0,#] F(t) is
closed and convex. We prove thatis lower semi-continuous

on [0,t]. Let ¢’ € [0,¢]. We need to consider three distinct

cases: (@) =0; (b) 0 <t/ <t; (c)t' =t.

(@ If ' = 0 andy € F(0), theny = r. Let U, be a
neighborhood of. Since,F} is lower semi-continuous there
exists a neighborhood, of 0 in I? such that for each”
in Uy it holds thatF?(t"") N U, # 0. Since,[0,t] C I? we
get thatUj, = Uy N [0,¢) is a neighborhood of in [0, ¢]. If
t" € U], there are two possible subcases: eite= 0 or
0<t" <t Ift”=0,thenF(0)NU, = {r} # 0. If, on the
other handp < ¢ < t, thenF(t")NU, = F*(t")NU, # 0.

(b) If 0 < ' <t andy € F(t'), theny € F¥('). Let U,
be a neighborhood af. SinceF} is lower semi-continuous,
there exists a neighborhodd. of ¢’ in I’ such that for each
t” in Uy it holds thatF}? (t") N U, # (. Sincet’ € (0,t) C
I?, we conclude thal’/, = Uy N (0, t) is a neighborhood of
tin [0,¢]. If t" € U}, thenF(t")NU, = E*(t")NU, # 0.

() If ' =tandy € F(t), theny = s. Let U, be a
neighborhood ok. SinceF’ is lower semi-continuous, there
exists a neighborhoot; of ¢ in I’ such that for each’ in
Uy, it holds thatF?(t") N U, # 0. Since(0,t] C IV, we
get thatU] = U; N (0,¢] is a neighborhood of in [0, ]. If

t" € U/, then there are two possible subcases: namely, either, ..

t"=tor0<t' <t Ift" =t thenF(0)NU, = {s} # 0.
If 0<t” <t thenF(t")NUs = FY(t")NU, # 0.
Since I : [0,t] — p(RF) is lower semi-continuous, for

eacht’ in [0,¢], F'(t') is closed and convex; and sinfe t]

the first-order formulaReach(e)[r,Z'] defines the set of
points reachable from using the discrete transition

Now suppose that a point reaches a poing through
a tracetr, whose corresponding path g = v, u. Since,
by Definition 1, Dyn(v)[r,r,0] and Dyn(u)[s, s, 0] hold, we
see that(v, r) —¢ (v, r) and (u, s) —¢ (u, s). Hence,
tr is equivalent totr’ of the form (v, r) —¢ (v, r1) —p
(u, s1) —¢ (u, s). Thus, the reachability can always be
expressed through a trace whose corresponding path is
and results in the following first-order formula:

def

Reach(v,u)[Z, Z*, 22, 7'
Reach(v)[Z, ZY] A Reach({v,u))[Z*}, Z?]
A Reach(u)[Z?,Z'].

If we have a pattph = vg, v1, ..., v, in the graph(V, &),
then following two cases are possible: either it corresponds to
a trace ofH or it does not. In both cases, we can express the
desired reachability relation with a first-order formula, which
characterizes all the pairs @i" that can be connected iff
through a trace corresponding to path

def

Reach(ph)[Z, 2}, ..., 2% 7' =
Reach(vg)[Z, Z] A Reach({vo,v1))[ZY, Z*] A ...

A Reach(vp,)[Z2", Z').

In Reach(ph)[Z,Z',..., 2% Z'], we have2h free vari-
ables, and no quantifiers. The following lemma proves that
Reach(ph)[Z,ZY,...,Z%" Z'] is correct and complete.
Lemma 3:Let H be a SACoRe automaton, lgh = vy,
., vp be a path in(V, €). It holds thatr reaches
s through a tracefr whose corresponding path js iff
Reach(ph)[r, Z',..., Z?" 5] is satisfiable.
Hence,r reaches: if and only if there exists a patph of
(V, &) and has a formul&each(ph)[Z,Z",..., Z?" Z'] as

is a metric space, an* is a Banach space, by Michael's a witness to this fact. So, if we just considered the disjunction



of all the formulee for all the paths ofV, &), we would
characterize reachability. Unfortunately(¥, £) has a cycle, | | | |
then it has an infinite number of paths. However, we can
exploit the fact that SACoRe have constant resets and ignore *,
all the paths of(V, £€) whose length exceed§|.

Definition 10: Let H be a SACoRe automaton. Lét be

the set of paths ofV, &) of length at mostn = |€|. Define _ (L5 Prey (@)
the first-order formulaR[Z, Z*, ..., Z*™, Z'] as follows: \/ % o
- PN Pre, (L(r/3)) |~ ~
R[Z,ZY, ..., Z*™, 7] def T (41,0 a0 T (=1,0) 1,0
Vphep Reach(ph)|Z,Z%,. .., Z*™, Z'.
(a) Hin's formula Dyn. (b) Preimages.

Theorem 2:Let H be a SACoRe automaton. It holds that
s € ReachSet(r) iff R[r,Z*, ..., Z*™, s] is satisfiable.

We can now characterize the set of points reachable from
a first-order definable set C IR*.

Fig. 1. Dynamic and preimage for the automattp;.

Corollary 1: Let R C IRF be the set of points which Dyn(v)[Z,Z',t] = up[Z,Z'] A up[Z,Z'], where
satisfies the first-order formulg[Z]. The setReachSet(R) uplZ, 2" = 2 > ZyZ,+ Zo(1— Z1) and up [ Z, Z'] =
is characterized by the first-order formula Zh > — 2,7 + }2<1 + 7Z4),

. o Act(e)[Z]=(Zy =1N0< Zy < 1),
R(R)Z] ct(e)[Z] = (Z <Zy<1)

L om 1 o e Reset(e)|Z,Z2'1=(Z] =-1N0< Z], <1),

FZIZINIZ o 2T RIZ 2 0 250 ). is a SACoRe and does not admit a finite bisimulation.
Thus we have reduced our reachability problem to that of Lemma 4: H;,; is a SACoRe automaton.

deciding the satisfiability of an existential semi-algebraic for- To prove that the automatoHi, does not admit finite

mula involvingu = O((|V|+|€])k)+N(p)) variables in total  pisimulation, we have to introduce some set definitions.

degreed = max[deg(Inv),deg(Act),deg(Dyn),deg(p)] In particular, letR(e), A(e) and J(v) be subsets ofR>

and involving s = O(|P| + |p|) polynomial equations, such thatR(e) = {p |3Z € R* Reset(e)[Z,p]}, Ale) =

inequations and inequalities, whefé and deg denote the {p| Act(e)[p]} and I(e) = {p | Inv(v)[p]}, respectively.

number of variables and total degree, respectively used pyrthermore, for allP C IR?, for eachv € V and for

the semi-algebraic description of Inv, Act, Dyp, etc. In  each (v,uy € & let Pre,(P) = {p|q € P (v,p) —¢

addl'gon, if we assume t_hat the coeff_|C|ents of the pon(v’q>} and Pre,,, (P) = {p|q € P (v.p) —p (u.q)},

nomials can be stored with at most bits, then the total respectively. Sinceiy is @ SACORe automaton, it satisfies

time complexity (bit-complexity) [23] of the decision pro- the Condition 3 (“constant reset condition”) of the SACoRe

cedure is(Llog Lloglog L)(s/v)*d°™). This exponential automaton Definition 5 and then it follows that:

complexity has its origin in Collins’ double-exponential 0 if PNR(e) =0

complexity algorithm and its relatives, all to some degree Pre. (P) = { Ale) if PAR(e)£0

based upon a cylindrical algebraic decomposition algorithm

[24]. Later Hoon Hong, using many useful and practicallhus, as reported in [2], iff/iy admits a finite bisimulation

heuristics, created the first practical quantifier eliminatioithen the Algorithm 1 terminates, when started with an initial

software Qepcad. Alternative CAD-based methods havepartition: S, = {R(e), A(e),I(v) \ (R(e) UA(e))}.

been proposed Grigoriev [25] and Renegar [26] that are

doubly exponential in the number of quantifier alternationélgorithm 1 Bisimulation Algorithm for Hybrid System

rather than the number of variables. New quantifier elimi- for v € V do

nation approaches have been proposed by Basu [27]. More while 3P, P’ € S, such that) # P nPre, (P') # P

importantly, symbolic algebraic geometry holds many other do

powerful tools such as Groebner bases and characteristic sets P, < P N Pre, (P')

in its arsenal, whose utility is just beginning to be examined. P, — P\ Pre, (P)
Sy — (S \{P}H U{P1, P}
IV. SACORE AND BISIMULATION end while

In this section we prove that there exists a SACoRe which end for
does not admit a finite bisimulation quotient. In particular we X/ ~=U, (v,S)
prove that the hybrid automataHiy = (Z, Z’, V, &, Inv,

Dyn, Act, Reset) where: Following lemmas, however, allow us to conclude that the
o Z =(Zy, Zy) and Z' = (Z}, Z}), where Z,, Zy, Z;  Algorithm 1 does not terminate ofj;; and consequently,
and Z), are variables ovelR, Hins does not admit finite bisimulation.
o« V={v} and€& = {e}, wheree goes formv to v, Lemma 5:Let G(r) be the subset dR? such thaG(r) =

o Inv(v)[Z]=(-1< 21 <1AZy>0), {(p1,p2) | p1 =1 A0 < pa < r}. For the automatottjys, it



holds that Pre(G(r)) = {p | 3p2 < r(p1 +2) A Inv(v)[p]}, propositionP[Z] of P the set of states off in which P[Z]

wherep = (p1,p2) andv € V. holds, i.e.,Label(P[Z]) = {(v,r) | P[r] holds}.
Lemma 6:Let L(r) be the subset dR? such thatL(r) = Next, consider the setr of formulee defined by the
{{p1, p2) | 1 = =1 A0 < pa < r}. The automatorf;;  following grammar.
satisfies Prg(L(r)) = 3ps <r(2— A Inv(v )
wherep = <fl(’p(2>)zindv{é)\‘7_p2 <r2-m) W)kl Qu= P[Z]|-P[Z]|Q1V Q2 |EFQ1 |AGQy
Notice that, for the automato#fiy;, L(1) and G(1) are Notice that the formula irEFAGP[Z] which belongs to
equal toR(e) and A(e), respectively. ¥ distinguishes models which are simulation equivalent (see
Theorem 3:The automatonHj;s does not admit finite [15]).
bisimulation. Given a SACoRe automatofl and a formulaQ € ¥

Proof:  Our proof that Hiyy does not admit finite we can decide(v,r) = Q by reducing the problem to a
bisimulation relies on showing that the Algorithm 1 doeSirst-order formula validity problem as follows.

not terminate onHns. At the start of the computation, the  Definition 11: Given Q € ¥, and a statev of H, let
Algorithm 1 usesS, = {R(e), A(e),I(v) \ (R(e) UA(e))}  Ph(v) be the set of paths g, £) starting fromv of length
as an initial partition. A< (1) = R(e) andG(1) = A(e), S»  at mostm = |£|. We define the formula\M(Q,v)[Z] by
can be written as, = {L(1), G(1),7(v) \ (L(1) UG(1))}.  induction onQ as follows:

If p = (p1,p2) then, by Lemma 6 and:’s definition: M(P[Z],v)[Z] is Inv(v)[Z] A PZ);

Pre. (L NGY) =12 I < G2 -p) ATzl 2 MO POz Izl n Pz
pr=1A0<py<r'} o M(EFQq,v)[Z] is
={Z |p2 < gA Inv(v)[Z]A Ve ooy (32° 2/ (Reach(ph)[Z, Z*, Z']A
pr=1A0<py <7’} M(Q1,upn)[2'));
:G(§)~ o« M(AGQ1,v)[Z] is

* rz! * /
Similarly, by Lemma 5 and.’s definition: Prg (G(r)) N Nonepn (V22 (ReaCh(ph)[Z’/\Z/l(g ]u—> Z')):
L(r) =L (%) Thus, ifr < 3¢ andr,r’ € RT then() # b 7
Pre, (L(r))NG(') # G(+') and then the algorithm removes Where we useZ* for the sequence!, ..., Z*™, while for
G(r') from S, and it inserts the se (%) andG(r')\G (%) eachph € Ph(v) we useu,, € V for the last node oph.
in S,. Otherwise,r > 3’ holds and ifr,7” € IR™ then _ _ _ _
3r>r >3 > 1. It follows that( # Pre, (G(r'))NL(r) # Since an eX|§tent|aI formul&F @ .of U requires only
L(r) and then the algorithm removdsr) from S, and it that Q; be true in one r_eachable point, whereas a universal
inserts the setd, <L> and L(r) \ L (L in S,. Hence formuIaAGQ1 of.\If requires that); be true at aII.reac.habIe.
since the initial pgrtition contains bgtlﬁ,(l) and G(1) ' points, we convince ourselves that our translations into first

. ) ) .order formulee are correct.
during the subsequent computation steps, there will exist rhaorem 4:Let Q € V. It holds that:

r,r’" € (0,1] such thatL(r), G(r') € S,. Moreover at each

computation step3P, P’ € S, | § # Pre, (P)N P' # P'— (v,ry = Q iff M(Q,v)[r] is true
in particular, ifr < 37’ thenP = L(r) and P’ = G(r'), VI, C
since, OtherwiseP = G(r') and P/ = L(r). It follows - LONCLUSIONS

then that the Algorithm 1 does not terminate, leading to the Here, we have presented a new class of hybrid automata,
conclusion thatH;,; does not admit finite bisimulation. m and dubbed it SACoRe (Semi-Algebraic Constant Reset).
The next corollary follows from Lemma 4 and Theorem 3They have many attractive properties, even though they do
Corollary 2: There exist SACoRe automata that do nofhot have the finite bisimulation property. For instance, we

admit finite bisimulation. discovered that reachability and a limited fragment of CTL
are decidable over SACoRe automata. Our decidability re-

V. CTL MODEL CHECKING sults are novel as they exploit Tarski’s decidability result over

Despite the absence of a bisimulation result for SACoR¢ehe reals [3] and Michael's selection theorem [4]. SACoRe
we can still show that a substantial and interesting fragmeattomata properly extend O-minimal automata allowing non-
of CTL_yx can be decided over SACoRe automata, buildingutonomous differential inclusions instead of autonomous
upon the decidability of reachability. Since this fragmentdifferential equations. We can easily extend our class of
we will shortly introduce, is not included in LTL, it is not automata exploiting other selection theorems (see, e.qg., [28]).
possible to use simulation equivalence to reduce the model. SACoRe automata provide a very general framework and

Given a SACoRe automatoH of dimensionk, we con- yet allow one to verify properties in many fields of natural
sider a setP = {P,[Z], ..., P,,[Z]} of atomic propositions and engineered systems. In particular, they are useful when,
whose elements are first-order formulae over the reals witds is often the case, lack of measurements for kinetic
k free-variables. The labeling functions associates to eagarameters of the underlying system of differential equations



forces one to describe the flows, replacing the equations bjg]
differential inclusions. Many examples, illustrating the power[S]
of this approach, may be found in the study of stability and
robustness of non-autonomous parametric systems. Instegd
of using simulations and punctual analysis, our method
allows one to automatically analyze these properties by
checking formulee of the forn&F AG Q; for an appropriate [g]
@1, whose choice depends on the system. Consider for
instance the “multi-stage” regulation model for the bac-
terial chemotaxis network presented in [29]. This model[9]
formalizes several important protein-protein interactions in
a bacterial biochemical pathway using a system of dii{-
ferential equations. Such a system appears in a parame-
terized form and its parameters represent the number Bfl
receptors of a particular substance, their specific activity
and their influence on overall receptors activity. While in
[29] the verification of the system adaptivity to changes oft2]
the receptor activity level is performed through simulation
and punctual analysis, it would be possible to automate
this verification using a SACoRe automaton. In particularl3]
in this case, we can assume that from each initial condi-
tion (CheYp,, CheAs-Cheg, CheZ(active)) we can reach at

time ¢ all the points(CheYp, CheAs-Cheg CheZ(active))  [14]
such that CheYp CheAs-CheZ, and CheZ(activg) are |45
reachable from CheYp CheAs-Cheg, and CheZ(active)

respectively, when the parametédrranges betweef.3 and 6]

0.5. In this way we introduce in the model two approxima-
tions: we assume that if Che¥p is the value reached at time
t with A = 0.3 and CheYf}® is the value reached at time
t with A = 0.5, then all the values ifiCheY(*, CheYgd"?]
are reachable at time we consider reachable at timehe
cartesian product of the intervals reachable from each com-
ponent. These approximations allow to satisfy the conditio%g]
imposed on SACoRe automata. Moreover, we can still prove
that CheYp always finally returns to its steady state. Noticg&®l
that to perform our analysis we do not need to introduce the
parameterA as a variable of the automaton. It is sufficient20]
to introduce it as an existentially quantified variable in th?ﬂ]
dynamic definitions.

In the future we intend to deeply investigate the appli-
cations of SACoRe automata in the study of both naturdf?]
and engineered systems. We also plan to analyze possipig

[17]

extensions with non-constant resets. [24]
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