
Semi-Algebraic Constant Reset Hybrid Automata - SACoRe

Alberto Casagrande∗†, Carla Piazza†, Bud Mishra‡§
∗PARADES, Via S.Pantaleo, 66, 00186 Roma, Italy
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Abstract— In this paper we introduce and study a special
class of hybrid automata,Semi-Algebraic Constant Reset hybrid
automata(SACoRe). SACoRe automata are an extension of O-
minimal automata over the reals in the case of flows obtained
from non-autonomous systems of differential inclusions. Even
though SACoRe automata do not have the finite bisimulation
property, they do admit decision procedures for reachability
and model checking for a limited fragment of CTL, by com-
bining Tarski’s decidability result over the reals and Michael’s
selection theorem.

I. I NTRODUCTION

The notion ofHybrid Automatawas first introduced in [1]
as a model and specification language for hybrid systems,
i.e., systems consisting of a discrete program within a
continuously changing environment. Since their introduction
they have been widely used for the automatic verification of
both natural and engineered systems.

In this paper we introduce and study a special class of such
automata,Semi-Algebraic Constant Reset hybrid automata
(SACoRe), whose characterizing conditions are based upon
first-order theory over(IR, 0, 1, +, ∗, =, <). In particular, a
hybrid automaton of dimensionk can be defined using only
formulæ overk dimensional vectors of reals. The dynamics
are defined through formulæ which can be obtained as solu-
tions of non-autonomous systems of differential inclusions.
The reset conditions have to be constant as in the case
of O-minimal hybrid automata [2]. Even though SACoRe
automata do not have the finite bisimulation property, the
conditions we impose on their dynamics allow us to combine
Tarski’s result [3] and Michael’s selection theorem [4] to
translate reachability problems into first-order satisfiability
problems over the reals.

The approach of exploiting Tarski’s result and quantifier
elimination to study hybrid automata has begun to be widely
investigated in the last few years. For instance, Jirstrand [5]
demonstrated, in the context of non-linear control system
design, the use ofQepcad for the problems of computing
reachability, stationarizable sets, range of controllable output,
and curve-following. Subsequently, Anai [6] and Franzle [7]
independently suggested the use of quantifier elimination for
the verification of polynomial hybrid systems. Franzle went
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on to prove that progress, safety, state recurrence and reacha-
bility are semi-decidable using quantifier elimination [8] and
developed “proof engines” for bounded model checking [9].
More recently, Lafferiere et al. [10] have again described
a method based upon quantifier elimination for symbolic
reachability computation of linear vector fields.

Lately, Ratschan and She [11] have suggested a new
constraint propagation based abstraction refinement for the
safety verification of hybrid systems with autonomous differ-
ential equations. Other recent developments include Becker
et al.’s integration of bounded model checking and inductive
verification [12]. Lanotte and Tini [13] have recently proved
that the semi-algebraic hybrid automaton obtained by ap-
proximating each formula in any hybrid system definition
with its Taylor polynomial is an over-approximation.

The novelty of our approach mainly lies in the use of
continuous selection results [14] which allow us to consider
non-autonomous differential inclusions. Moreover, as a direct
consequence of continuous selection results, we can derive
first-order formulæ to encode reachability problems with low
structural complexity.

The paper is organized as follows. In Section II we
introduce the syntax and the semantics of SACoRe automata.
In Section III we show how to decide reachability. The fact
that SACoRe automata do not have the finite bisimulation
property is proved in Section IV. Section V is devoted to
model checking of a fragment of CTL for SACoRe automata.
Finally, Section VI ends the paper with some considerations
about the use of SACoRe automata to study stability and
robustness of biological systems. All the missing proofs can
be found in [15].

II. SACORE HYBRID AUTOMATA

A. Syntax

First, we introduce some notations and conventions. Cap-
ital letters Zm, Z ′m, and Zn

m, where n, m ∈ IN denote
variables ranging overIR. Analogously,Z denotes the vector
of variables〈Z1, . . . , Zk〉; Z ′ denotes the vector〈Z ′1, . . . ,
Z ′k〉; andZn denotes the vector〈Zn

1 , . . . , Zn
k 〉. The temporal

variablesT and T ′ model time and range overIR+. We
use the small lettersp, q, r, s, . . . to denotek-dimensional
vectors of real numbers.

Occasionally, we will use the notationϕ[X1, . . . , Xm] to
stress the fact that the set of free variables of the first-order
formula ϕ may be included in the set of variables{X1, . . .,



Xm}. By extension, if{X1, . . ., Xn} is a set of variable
vectors,ϕ[X1, . . ., Xn] indicates that the free variables of
ϕ are included in the set of components ofX1, . . ., Xn.
Moreover, given a formulaϕ[X1, . . ., Xi, . . ., Xn] and a
vector p of the same dimension as the variable vectorXi,
the formula obtained by component-wise substitution ofXi

with p is denoted byϕ[X1, . . ., Xi−1, p, Xi+1, . . ., Xn].
If in ϕ the only free variables were the components ofXi,
after the substitution we can compute the truth value ofϕ[p].

We are now ready to formally introduce hybrid automata.
For each state of a discrete automaton we have an invariant
condition and a dynamic law. This dynamic law may depend
on the initial conditions, i.e., on the values of the continuous
variables at the beginning of the evolution in the state. The
jumps from one discrete state to another are regulated by the
activation and reset conditions.

Definition 1 (Hybrid Automata):A hybrid automaton
H = (Z, Z ′, V, E, Inv , Dyn, Act , Reset) of dimensionk
consists of the following components:

1) Z = 〈Z1, . . ., Zk〉 and Z ′ = 〈Z ′1, . . ., Z ′k〉 are two
vectors of variables ranging over the realsIR;

2) 〈V, E〉 is a finite directed graph; the vertexes,V, are
called locations, or control modes, the directed edges,
E, are callededges, or control switches;

3) Each vertexv ∈ V is labeled by the two for-
mulæ Inv(v)[Z] and Dyn(v)[Z,Z ′, T ] such that
if Inv(v)[p] is true then Dyn(v)[p, p, 0] is true;
InvSet = {Inv(v)[Z] | v ∈ V} and DynSet =
{Dyn(v)[Z, Z ′, T ] | v ∈ V};

4) Each directed edgee ∈ E is labeled by
the two formulæAct(e)[Z] and Reset(e)[Z,Z ′];
ActSet = {Act(e)[Z] | e ∈ E} and ResetSet =
{Reset(e)[Z,Z ′] | e ∈ E}.

In our definitions, instead of the classical approach of
using differential equations to define the flow, we use the for-
mulæ inDynSet to describe the continuous evolution with-
out using derivatives. Our approach is similar to that followed
in [16]. For instance, in [2], even though the automata are
defined with differential equations, it is necessary to compute
their solutions in order that the bisimulation algorithm can
be applied, and express these solutions byDyn(v)[Z, Z ′, T ],
whose intuitive meaning is that fromZ after T instants the
continuous flow can reachZ ′. Thus, our hybrid automata
generalize several recently discovered notions in the hybrid
systems theory. Note, as an example, thatO-minimalhybrid
automata [2], [16] are a subclass of our hybrid automata,
since we do not impose restrictions on the formulæ and on
the resets. Moreover, we admit an infinite number of flows,
which can also be self-intersecting. Similarly,Rectangular
hybrid automata [17] can be easily mapped into a subclass
of our definition. In general, we are able to express all
the hybrid automata defined using differential expressions,
provided that either exact or approximated solutions of the
differential expressions can be characterized with a formula.

Example 1:Consider this system of differential equations:
{

Ż1 = 2Z1

Ż2 = Z2 + 3

Its solutions with initial conditionsZ1(0) = z1 andZ2(0) =
z2 are {

Z1(t) = z1e
2t

Z2(t) = (z2 + 3)et − 3

Translated in our notation this system corresponds to the fol-
lowing hybrid automatonH = (Z, Z ′,V, E, Inv ,Dyn,Act ,
Reset) whereZ = 〈Z1, Z2〉 andZ ′ = 〈Z ′1, Z ′2〉 are variables
over IR2; V = {v} and E = ∅; Inv(v)[Z] ≡ true;
Dyn(v)[Z,Z ′, T ] ≡ (Z ′1 = Z1e

2T∧ Z ′2 = (Z2 + 3)eT − 3).
Hence, starting from the pointp0 = 〈1, 1〉 we reach at

time T = 1 the pointp1 = 〈e2, 4e − 3〉 and at timeT = 2
the point p2 = 〈e4, 4e2 − 3〉. Notice that if we start from
the pointp1 at timeT = 1 we reachp2, as we are using an
autonomous system of differential equations.

Consider next the following system:
{

Ż1 = 2t

Ż2 = 1

We can express this in our notation with the hybrid au-
tomaton H ′ in which V, E, InvSet are as inH, while
Dyn(v)[Z,Z ′, T ] is (Z ′1 = T 2 + Z1 ∧ Z ′2 = T + Z2).

Starting from the pointq0 = 〈1, 1〉, we can reach at time
T = 1 the point q1 = 〈2, 2〉 and at timeT = 2 the point
q2 = 〈5, 3〉. Notice that in this case if we start at time0
from q1 at time T = 2 we reach the pointq3 = 〈6, 3〉
which cannot be reached starting fromq0. In fact, as this
example illustrates, when the system of differential equations
is not autonomous and the trajectories are not “transitive”,
the trajectories cannot be split and recombined.

As is well known, the afore-introduced hybrid automata
are “undecidable”, i.e., many of the classical problems re-
garding hybrid automata, such asreachabilityand temporal
logic model checking, remain recalcitrant to a decision pro-
cedure [18] even when specialized to the kind of automata
described above. Many subclasses of hybrid automata have
been explored in the literature with the hope of proving
decidability results under appropriate restrictions, e.g., O-
minimal hybrid automata [2] and Rectangular hybrid au-
tomata [17] are two such well-known examples. In the rest
of the paper, we will focus on decidability results for a new
subclass of hybrid automata, we introduce here.

Following the approach of O-minimal hybrid automata,
we require that the formulæ defining the invariants, the
dynamics, the activations, and the resets be taken from an
o-minimal theory. In particular, we focus on the first-order
theory over the reals, as it suffices for all our areas of
applications. Nonetheless, our results can be also applied to
O-minimal extension of the reals,mutatis mutandis.

Definition 2 (Semi-Algebraic Automata):We call a hy-
brid automatonH semi-algebraicif the formulæ inInvSet ,
DynSet , ActSet , andResetSet are first-order formulæ over
the reals, i.e., over(IR, 0, 1, +, ∗, =, <)).



In order to define this new class of automata, we also
need to characterize the time instants, at which the automata,
starting from a pointp in a locationv, can reach a point
q, while remaining inside the invariant set ofv. Such a
characterization is possible when the automaton is semi-
algebraic. We recall that an interval overR+ is a set of the
form {r ∈ R+ |a ≺1 r ≺2 b}, where≺1, ≺2 are in{<, ≤},
a ∈ R+, b ∈ R+ ∪ {+∞}, anda ≤ b.

Lemma 1:Let H be a semi-algebraic hybrid automaton.
Let p ∈ IRk be such thatInv(v)[p] holds. The set of time
instantsT , satisfying the formula∃Z ′(Dyn(v)[p, Z ′, T ] ∧
Inv(v)[Z ′]), can be expressed as the union of a finite number
of disjoint intervals ofR+. One of these intervals contains
the time instant0.

The above lemma allows us to focus on the intervalIv
p of

time instants, for which there are dynamics that start from
p and remain inside the invariant ofv—these dynamics are
main objects of our interest. We use℘(Rk) to denote the set
of subsets ofRk.

Definition 3 (Iv
p and F v

p ): Let H be a semi-algebraic hy-
brid automaton. Letv be a location ofH andp be such that
Inv(v)[p] holds.Iv

p is the interval of time instants satisfying
the following:∀T ∈ Iv

p ∃Z ′(Dyn(v)[p, Z ′, T ]∧ Inv(v)[Z ′]);
0 ∈ Iv

p , and Iv
p is maximal with respect to the first two

requirements.
Define the functionF v

p : Iv
p → ℘(Rk) as:

F v
p (T ) = {q |Dyn(v)[p, q, T ] and Inv(v)[q]}.

We will need to impose on the functionsF v
p some

continuity conditions—in particular, we requirelower semi-
continuity, as defined below. For a complete treatment of this
notion, please refer to [14].

Definition 4 (Lower semi-continuous function):Let I ⊆
Rk be an interval andF : I → ℘(Rk). We defineF to be
lower semi-continuous(abbreviated, l.s.c.) if for eacht ∈ I,
for each y ∈ F (t), and for each neighborhoodUy of y,
there exists a neighborhoodUt of t (in I) such that for each
t′ ∈ Ut it holds F (t′) ∩ Uy 6= ∅.

We now possess all the ingredients to introduce our class
of hybrid automata.

Definition 5 (Semi-Algebraic Constant Reset Automata):
We say that a hybrid automatonH is a semi-algebraic
constant resethybrid automaton, or simply aSACoRe, if:

1) H is semi-algebraic;
2) For eachv ∈ V, p ∈ IRk such thatInv(v)[p] holds,

the functionF v
p is lower semi-continuous, and for each

t ∈ Iv
p the setF v

p (t) is closed and convex;
3) Each formula Reset(e)[Z,Z ′] is of the form

Reset(e)[Z ′], i.e., it does not depend onZ .

A SACoRe hybrid automaton is defined using first-order
formulæ over the reals, and thus, exploits Tarski’s results
over the reals [3] to get decidability procedures. The con-
dition 2 imposes a certain kind of continuity on the set of

trajectories. Moreover, it requires that for each pointp and
for each time instantt the set of points reachable fromp at
time t is a closed convex set. This condition will allow us to
exploit Michael’s selection theorem [4] to find trajectories.
The condition 3 is exactly the condition imposed on O-
minimal hybrid automata.

Example 2:Let H = (Z, Z ′, V,E, Inv ,Dyn,Act , Reset)
where Z = 〈Z1, Z2〉 and Z ′ = 〈Z ′1, Z ′2〉; V = {v}
and E = {e}, where e goes formv to v; Inv(v)[Z] ≡
(0 ≤ Z1 ≤ 1 ∧ 0 ≤ Z2 ≤ 1); Dyn(v)[Z, Z ′, T ] ≡ (Z ′1 =
T + Z1 ∧Z ′2 ≥ T 2 + Z2); Act(e)[Z] ≡ (Z1 = 1 ∨Z2 = 1);
Reset(e)[Z, Z ′] ≡ (Z ′1 = 1 ∧ Z ′2 = 1).

The formulæ inH are first-order formulæ over the reals.
If p = 〈p1, p2〉, with 0 ≤ p1, p2 ≤ 1, then the function
F v

p is defined asF v
p (t) = {〈q1, q2〉 | q1 = t + p1, q2 ≥

t2+p2, and0 ≤ q1, q2 ≤ 1}. It is easy to see thatp ∈ F v
p (0)

and for eacht the setF v
p (t) is closed and convex, since it is

a segment. Moreover, this function is lower semi-continuous
over the intervalIv

p . Finally,Reset(e)[Z,Z ′] does not depend
on Z. Hence,H is a SACoRe automaton.

O-minimals hybrid automata are easily seen as special
cases of SACoRe automata. Since, in O-minimals hybrid
automata, each point allows only one continuous algebraic
flow from it, in this case, for each time instantt, the set
F v

p (t) reduces to a singleton, which is obviously closed and
convex. The continuity of the flow immediately implies the
lower semi-continuity ofF v

p (t) over Iv
p . On the other hand,

the class SACoRe is not included in the class of O-minimals
hybrid automata, since from each point we allow a set of
flows. Moreover, our flows are not necessarily solutions of
autonomous differential inclusions.

B. Semantics

Let H be a hybrid automaton of dimensionk. The
semantics ofH is presented in terms continuous and discrete
transitions as defined below.

Definition 6 (Hybrid Automata - Transitions):A state `
of H is a pair 〈v, r〉, where v ∈ V is a location and
r = 〈r1, . . . , rk〉 ∈ IRk is an assignment of values for the
variables ofZ. A state 〈v, r〉 is said to beadmissibleif
Inv(v)[r] is true.

The continuous reachability transition relation→C be-
tween admissible states is defined as follows:
〈v, r〉 →C 〈v, s〉 iff
there existsf : IR+ → IRk continuous function such
that r = f(0), there existst ≥ 0 such thats = f(t),
and for eacht′ ∈ [0, t] the formulæInv(v)[f(t′)] and
Dyn(v)[r, f(t′), t′] are true.

The discrete reachability transition relation→D between
admissible states is defined as follows:
〈v, r〉 →D 〈u, s〉 iff
It holds 〈v, u〉 ∈ E and the formulæAct(〈v, u〉)[r] and
Reset(〈v, u〉)[s] are true.

Building upon continuous and discrete transitions, we can
introduce notions oftrace and reachability. A trace is a



sequence of continuous and discrete transitions. A points
is reachable from a pointr if there is a trace starting fromr
and ending ins. We use the notatioǹ→ `′ to denote that
either `→C `′ or `→D `′.

Definition 7 (Hybrid Automata - Reachability):Let I be
eitherN or an initial finite interval ofN. A trace of H is a
sequencè 0, `1, . . . , `i with i ∈ I, also denoted by(`i)i∈I ,
of admissible states such that:

• For eachi ∈ I, i > 0, it holds `i−1 → `i;
• If `i →C `i+1, then`i+1 6→C `i+2.

A point r ∈ IRk reachesa points ∈ IRk if there exists a
trace`0, . . . , `n of H such that̀ 0 = 〈v, r〉 and `n = 〈u, s〉,
for somev, u ∈ V.

We useReachSet (r) to denote the set of points reach-
able from r. Moreover, given a regionR ⊆ IRk we use
ReachSet (R) to denote the set∪r∈RReachSet (r).

We impose the condition that, in a trace, continuous
transitions do not occur consecutively. If we only consider
automata whose flows are solutions of autonomous differ-
ential inclusions, there the continuous transition relation
is transitive, and all their traces, containing sequence of
consecutive continuous transitions, can be reduced to a trace
without such consecutive continuous transitions. In general,
it may be the case that the continuous transition relation is
not transitive (seeH ′ in Example 1). In this case, if we start
from a pointr in a locationv, as long as we remain inside
v, it is reasonable to consider only those points reachable
from r, which satisfy the dynamics conditions imposed onr,
i.e. Dyn(v)[r, Z ′, T ]. Similarly we allow that a pointr may
reach a points passing through a pointu, while s may not be
reachable fromu. Such apparently paradoxical situation can
occur when the dynamics are solutions of non-autonomous
differential inclusions, since in this case the evolution from a
point depends on time instant, at which the point is reached.

Usually two properties hold in temporal semantics [19],
[20]: the suffix closurewhich requires that the suffix of a
trace is a trace; thefusion closurewhich requires that the
concatenation of two traces is a trace. Our semantics is
suffix closed. On the other hand, fusion closure holds in
our semantics only for the following case: when two traces
tr1 and tr2 are concatenated such that eithertr1 ends with
a discrete transition ortr2 starts with a discrete transition.
In fact, fusion closure implies that the system behavior
depends only on the current state, and not on the past. This
property does not always hold in our dynamics, since we
allow solutions of non-autonomous differential inclusions.

We recall that given a finite directed graphG a path of
G is a sequencev0, v1, . . . , vn, . . . of nodes ofG such that
for eachi ≥ 0 there exists an edge ofG connectingvi to
vi+1. Given a trace ofH we can identify a path of〈V, E〉
as follows.

Definition 8 (Corresponding Path):Let H be a SACoRe
automaton. Lettr = 〈v0, r0〉, . . . , 〈vn, rn〉 be a trace ofH.
The corresponding pathof tr is the pathph = v′0, . . . , v

′
m

of the graph〈V,E〉 obtained by considering the discrete

transitions occurring intr. In this case, we also say that
ph correspondsto tr.

Notice that for each tracetr there exists always a unique
pathph which corresponds totr.

C. Reachability and Model Checking

Given a SACoRe hybrid automatonH and a starting
region R ⊆ IRk characterized by a first-order formula
ρ over the reals, we may wish to compute the region
ReachSet (R) ⊆ IRk of points that can be reached starting
from a point inR and following a trace ofH.

More generally, given a formulaQ of a temporal logic, we
may also be interested in determining the points ofR which
satisfyQ. Let us introduce here the syntax and semantics of
CTL−X, CTL without the next operator (see [21]).

Definition 9 (CTL−X - Syntax): Let P be a set ofpropo-
sitional symbolsand P ∈ P. The formulæ of CTL overP
are defined by the following grammar:

Q ::= P |Q1 ∨Q2 | ¬Q1 | E (Q1 U Q2) | A (Q1 U Q2) |
EFQ1 | AFQ1 | EGQ1 | AGQ1

We avoid using the next operator, since it requires the
introduction of a temporized semantics (see, e.g., [22]), thus
taking us out of the scope of this paper.

In the case of O-minimals hybrid automata, reachability as
well as other temporal logic proprieties are checked through
bisimulation (see [2]) as follows: first, a finite discrete au-
tomatonA bisimilar to the hybrid automatonH is computed;
next, the property is checked onA. Since bisimulation
strongly preserves both reachability and temporal formulæ,
the results obtained onA are correct, by definition. This
technique can be applied whenever we consider a classC of
hybrid automata, which has the finite bisimulation property,
i.e., each automaton inC has a finite bisimulation quotient.
Unfortunately, the class of SACoRe does not possess the
finite bisimulation property, as we will show in Section IV.

Our approach will instead exploit both Tarski’s decidabil-
ity result [3] for first-order formulæ over(IR, 0, 1, +, ∗,
=, <) and Michael’s selection theorem for set-valued maps.
More specifically, Michael’s selection theorem will guarantee
the correctness of a translation into appropriate first-order
formulæ of our reachability and model checking problems,
whereas Tarski’s result will provide us the decidability.

III. R EACHABILITY

In this section, we demonstrate how the reachability prob-
lem over SACoRe automata can be reduced to a first-order
satisfiability problem. We start characterizing the setsIv

p .
Lemma 2:Let H be a SACoRe automaton. Consider the

first-order formula

Tp(v)[Z, T ] def= ∀0 ≤ T ′ ≤ T∃Z ′(Dyn(v)[Z, Z ′, T ′]∧
Inv(v)[Z ′]).

Assumer to be such thatInv(v)[r] holds. It follows that:

t ∈ Iv
r iff Tp(v)[r, t] is true.



Theorem 1:Let H be a SACoRe automaton, satisfying
the first-order formula below:

Reach(v)[Z, Z ′] def= Inv(v)[Z] ∧ Inv(v)[Z ′]
∃T ≥ 0(Dyn(v)[Z, Z ′, T ] ∧ Tp(v)[Z, T ]).

Then following holds:

〈v, r〉 →C 〈v, s〉 iff Reach(v)[r, s] is true.

Proof: (⇒) By Definition 6 we have that:
〈v, r〉 →C 〈v, s〉 iff there existsf : IR+ → IRk continuous
function such thatr = f(0), there existst ≥ 0 such that
s = f(t), and for eacht′ ∈ [0, t] the formulæInv(v)[f(t′)]
and Dyn(v)[r, f(t′), t′] are true.

From the fact that for eacht′ ∈ [0, t] Dyn(v)[r, f(t′), t′]∧
Inv(v)[f(t′)] is true, we deduce thatTp(v)[r, t] is true.
Hence we see thatInv(v)[r], Inv(v)[s], Dyn(v)[r, s, t], and
Tp(v)[r, t] are all true, as stated.

(⇐) By hypothesis,Inv(v)[r] and Inv(v)[s] are true
and thus, there existst ∈ IR+ such thatDyn(v)[r, s, t] ∧
Tp(v)[r, t] holds. Hence by Lemma 2 we have thatt ∈
Iv
r . Moreover, s belongs toF v

r (t), which is lower semi-
continuous with convex and closed images. Consider the
function F̃ : [0, t]→ ℘(Rk) defined as:

F̃ (T ) =




{r} if T = 0
F v

p (T ) if 0 < T < t
{s} if T = t

It is immediately seen that for eacht′ in [0, t] F̃ (t′) is
closed and convex. We prove thatF̃ is lower semi-continuous
on [0, t]. Let t′ ∈ [0, t]. We need to consider three distinct
cases: (a)t′ = 0; (b) 0 < t′ < t; (c) t′ = t.

(a) If t′ = 0 and y ∈ F̃ (0), then y = r. Let Ur be a
neighborhood ofr. Since,F v

r is lower semi-continuous there
exists a neighborhoodU0 of 0 in Iv

r such that for eacht′′

in U0 it holds thatF v
r (t′′) ∩ Ur 6= ∅. Since,[0, t] ⊆ Iv

r we
get thatU ′

0 = U0 ∩ [0, t) is a neighborhood of0 in [0, t]. If
t′′ ∈ U ′

0, there are two possible subcases: eithert′′ = 0 or
0 < t′′ < t. If t′′ = 0, thenF̃ (0)∩Ur = {r} 6= ∅. If, on the
other hand,0 < t′′ < t, thenF̃ (t′′)∩Ur = F v

r (t′′)∩Ur 6= ∅.
(b) If 0 < t′ < t andy ∈ F̃ (t′), theny ∈ F v

r (t′). Let Uy

be a neighborhood ofy. SinceF v
r is lower semi-continuous,

there exists a neighborhoodUt′ of t′ in Iv
r such that for each

t′′ in Ut′ it holds thatF v
r (t′′) ∩ Uy 6= ∅. Sincet′ ∈ (0, t) ⊆

Iv
r , we conclude thatU ′

t′ = Ut′ ∩ (0, t) is a neighborhood of
t′ in [0, t]. If t′′ ∈ U ′

t′ , thenF̃ (t′′)∩Ur = F v
r (t′′)∩Ur 6= ∅.

(c) If t′ = t and y ∈ F̃ (t), then y = s. Let Us be a
neighborhood ofs. SinceF v

r is lower semi-continuous, there
exists a neighborhoodUt of t in Iv

r such that for eacht′′ in
Ut, it holds thatF v

r (t′′) ∩ Us 6= ∅. Since [0, t] ⊆ Iv
r , we

get thatU ′
t = Ut ∩ (0, t] is a neighborhood oft in [0, t]. If

t′′ ∈ U ′
t , then there are two possible subcases: namely, either

t′′ = t or 0 < t′′ < t. If t′′ = t, then F̃ (0) ∩ Us = {s} 6= ∅.
If 0 < t′′ < t, then F̃ (t′′) ∩ Us = F v

r (t′′) ∩ Us 6= ∅.
Since F̃ : [0, t] → ℘(Rk) is lower semi-continuous, for

eacht′ in [0, t], F̃ (t′) is closed and convex; and since[0, t]
is a metric space, andRk is a Banach space, by Michael’s

selection theorem [4] we may deduce the following: there
existsf : [0, t] → Rk continuous selection from̃F . Hence,
by definition of continuous selection (see [14]),f is a
continuous function such that for eacht′ ∈ [0, t] it holds
f(t′) ∈ F̃ (t′). From this last statement, we further deduce
that: f(0) = r; f(t) = s; for each0 < t′ < t it holds that
f(t′) ∈ F v

r (t′), i.e., Dyn(v)[r, f(t′), t′] and Inv(v)[f(t′)].
In particular, consider the functioñf : R+ → Rk defined as:

f̃(T ) =
{

f(T ) if T ∈ [0, t]
s if T > t

We have demonstrated that̃f satisfies all the hypothesis
required to conclude that〈v, r〉 →C 〈v, s〉, as desired.

One may observe that for any edge〈v, u〉 ∈ E the discrete
reachability is characterized by the first-order formula

Reach(〈v, u〉)[Z,Z ′] def= Act(〈v, u〉)[Z]∧Reset(〈v, u〉)[Z ′].
Given a pointr ∈ IRk, we see that the first-order formula

Reach(v)[r, Z ′], as defined in Theorem 1, and with free
variables inZ ′, characterizes the set of points reachable from
r in the nodev using only continuous dynamics. Similarly,
the first-order formulaReach(e)[r, Z ′] defines the set of
points reachable fromr using the discrete transitione.

Now suppose that a pointr reaches a points through
a tracetr, whose corresponding path isph = v, u. Since,
by Definition 1,Dyn(v)[r, r, 0] andDyn(u)[s, s, 0] hold, we
see that〈v, r〉 →C 〈v, r〉 and 〈u, s〉 →C 〈u, s〉. Hence,
tr is equivalent totr′ of the form 〈v, r〉 →C 〈v, r1〉 →D

〈u, s1〉 →C 〈u, s〉. Thus, the reachability can always be
expressed through a trace whose corresponding path isph
and results in the following first-order formula:

Reach(v, u)[Z, Z1, Z2, Z ′] def=
Reach(v)[Z,Z1] ∧ Reach(〈v, u〉)[Z1, Z2]

∧ Reach(u)[Z2, Z ′].

If we have a pathph = v0, v1, . . ., vh in the graph〈V, E〉,
then following two cases are possible: either it corresponds to
a trace ofH or it does not. In both cases, we can express the
desired reachability relation with a first-order formula, which
characterizes all the pairs ofIRk that can be connected inH
through a trace corresponding to pathph:

Reach(ph)[Z,Z1, . . . , Z2h, Z ′] def=
Reach(v0)[Z, Z1] ∧ Reach(〈v0, v1〉)[Z1, Z2] ∧ . . .

∧ Reach(vh)[Z2h, Z ′].

In Reach(ph)[Z, Z1, . . . , Z2h, Z ′], we have2h free vari-
ables, and no quantifiers. The following lemma proves that
Reach(ph)[Z,Z1, . . . , Z2h, Z ′] is correct and complete.

Lemma 3:Let H be a SACoRe automaton, letph = v0,
v1, . . ., vh be a path in〈V, E〉. It holds that r reaches
s through a tracetr whose corresponding path isph iff
Reach(ph)[r, Z1, . . . , Z2h, s] is satisfiable.

Hence,r reachess if and only if there exists a pathph of
〈V, E〉 and has a formulaReach(ph)[Z, Z1, . . . , Z2h, Z ′] as
a witness to this fact. So, if we just considered the disjunction



of all the formulæ for all the paths of〈V, E〉, we would
characterize reachability. Unfortunately, if〈V, E〉 has a cycle,
then it has an infinite number of paths. However, we can
exploit the fact that SACoRe have constant resets and ignore
all the paths of〈V, E〉 whose length exceeds|E|.

Definition 10: Let H be a SACoRe automaton. LetP be
the set of paths of〈V, E〉 of length at mostm = |E|. Define
the first-order formulaR[Z,Z1, . . ., Z2m, Z ′] as follows:

R[Z, Z1, . . ., Z2m, Z ′] def=∨
ph∈P Reach(ph)[Z, Z1, . . . , Z2m, Z ′].

Theorem 2:Let H be a SACoRe automaton. It holds that
s ∈ ReachSet (r) iff R[r, Z1, . . ., Z2m, s] is satisfiable.

We can now characterize the set of points reachable from
a first-order definable setR ⊆ IRk.

Corollary 1: Let R ⊆ IRk be the set of points which
satisfies the first-order formulaρ[Z]. The setReachSet (R)
is characterized by the first-order formula

R(R)[Z ′] def=
∃Z(ρ[Z] ∧ ∃Z1, . . ., Z2mR[Z, Z1, . . ., Z2m, Z ′]).

Thus we have reduced our reachability problem to that of
deciding the satisfiability of an existential semi-algebraic for-
mula involvingv = O((|V|+|E|)k)+N(ρ)) variables in total
degreed = max[deg(Inv), deg(Act),deg(Dyn), deg(ρ)]
and involving s = O(|P | + |ρ|) polynomial equations,
inequations and inequalities, whereN and deg denote the
number of variables and total degree, respectively used in
the semi-algebraic description of Inv, Act, Dyn,ρ, etc. In
addition, if we assume that the coefficients of the poly-
nomials can be stored with at mostL bits, then the total
time complexity (bit-complexity) [23] of the decision pro-
cedure is(L log L log log L)(s/v)vdO(v). This exponential
complexity has its origin in Collins’ double-exponential
complexity algorithm and its relatives, all to some degree
based upon a cylindrical algebraic decomposition algorithm
[24]. Later Hoon Hong, using many useful and practical
heuristics, created the first practical quantifier elimination
software Qepcad . Alternative CAD-based methods have
been proposed Grigoriev [25] and Renegar [26] that are
doubly exponential in the number of quantifier alternations
rather than the number of variables. New quantifier elimi-
nation approaches have been proposed by Basu [27]. More
importantly, symbolic algebraic geometry holds many other
powerful tools such as Groebner bases and characteristic sets
in its arsenal, whose utility is just beginning to be examined.

IV. SACORE AND BISIMULATION

In this section we prove that there exists a SACoRe which
does not admit a finite bisimulation quotient. In particular we
prove that the hybrid automatonHinf = (Z, Z ′, V, E, Inv ,
Dyn, Act , Reset) where:

• Z = 〈Z1, Z2〉 and Z ′ = 〈Z ′1, Z ′2〉, whereZ1, Z2, Z ′1
andZ ′2 are variables overIR,

• V = {v} andE = {e}, wheree goes formv to v,
• Inv(v)[Z] ≡ (−1 ≤ Z1 ≤ 1 ∧ Z2 > 0),

p

(−1, 0) (1, 0)

(a) Hinf ’s formula Dyn.

(1, r)

(−1, r
3 )

(1, r
9 )

Prev (L(r/3))

Prev (G(r))

(−1, 0) (1, 0)

(b) Preimages.

Fig. 1. Dynamic and preimage for the automatonHinf .

• Dyn(v)[Z, Z ′, t] ≡ up[Z, Z ′] ∧ up′ [Z,Z ′], where
up[Z, Z ′] ≡ Z ′2 ≥ Z2Z

′
1+Z2(1−Z1) and up′ [Z, Z ′] ≡

Z ′2 ≥ −Z2Z
′
1 + Z2(1 + Z1),

• Act(e)[Z] ≡ (Z1 = 1 ∧ 0 < Z2 ≤ 1),
• Reset(e)[Z, Z ′] ≡ (Z ′1 = −1 ∧ 0 < Z ′2 ≤ 1),

is a SACoRe and does not admit a finite bisimulation.
Lemma 4:Hinf is a SACoRe automaton.
To prove that the automatonHinf does not admit finite

bisimulation, we have to introduce some set definitions.
In particular, let R(e), A(e) and I(v) be subsets ofIR2

such thatR(e) = {p | ∃Z ∈ IR2 Reset(e)[Z, p]}, A(e) =
{p | Act(e)[p]} and I(e) = {p | Inv(v)[p]}, respectively.
Furthermore, for allP ⊆ IR2, for each v ∈ V and for
each 〈v, u〉 ∈ E let Prev (P ) = {p | q ∈ P 〈v, p〉 →C

〈v, q〉} and Pre〈v,u〉 (P ) = {p | q ∈ P 〈v, p〉 →D 〈u, q〉},
respectively. SinceHinf is a SACoRe automaton, it satisfies
the Condition 3 (“constant reset condition”) of the SACoRe
automaton Definition 5 and then it follows that:

Pree (P ) =
{ ∅ if P ∩ R(e) = ∅

A(e) if P ∩ R(e) 6= ∅
Thus, as reported in [2], ifHinf admits a finite bisimulation
then the Algorithm 1 terminates, when started with an initial
partition:Sv = {R(e),A(e), I(v) \ (R(e) ∪A(e))}.

Algorithm 1 Bisimulation Algorithm for Hybrid System
for v ∈ V do

while ∃P, P ′ ∈ Sv such that∅ 6= P ∩ Prev (P ′) 6= P
do

P1 ← P ∩ Prev (P ′)
P2 ← P \ Prev (P ′)
Sv ← (Sv \ {P}) ∪ {P1, P2}

end while
end for
X/ ∼← ⋃

v (v,Sv)

Following lemmas, however, allow us to conclude that the
Algorithm 1 does not terminate onHinf and consequently,
Hinf does not admit finite bisimulation.

Lemma 5:Let G(r) be the subset ofIR2 such thatG(r) =
{〈p1, p2〉 | p1 = 1 ∧ 0 < p2 ≤ r}. For the automatonHinf , it



holds that Prev (G(r)) = {p | 3p2 ≤ r(p1 + 2) ∧ Inv(v)[p]},
wherep = 〈p1, p2〉 andv ∈ V.

Lemma 6:Let L(r) be the subset ofIR2 such thatL(r) =
{〈p1, p2〉 | p1 = −1 ∧ 0 < p2 ≤ r}. The automatonHinf

satisfies Prev (L(r)) = {p |3p2 ≤ r(2− p1) ∧ Inv(v)[p]},
wherep = 〈p1, p2〉 andv ∈ V.

Notice that, for the automatonHinf , L(1) and G(1) are
equal toR(e) andA(e), respectively.

Theorem 3:The automatonHinf does not admit finite
bisimulation.

Proof: Our proof that Hinf does not admit finite
bisimulation relies on showing that the Algorithm 1 does
not terminate onHinf . At the start of the computation, the
Algorithm 1 usesSv = {R(e), A(e), I(v) \ (R(e) ∪A(e))}
as an initial partition. AsL(1) = R(e) andG(1) = A(e), Sv

can be written asSv = {L(1), G(1), I(v) \ (L(1) ∪G(1))}.
If p = 〈p1, p2〉 then, by Lemma 6 andG’s definition:

Prev (L(r)) ∩G(r′) = {Z |p2 ≤ r

3
(2− p1) ∧ Inv(v)[Z]∧

p1 = 1 ∧ 0 < p2 ≤ r′}
= {Z |p2 ≤ r

3
∧ Inv(v)[Z]∧

p1 = 1 ∧ 0 < p2 ≤ r′}
= G

(r

3

)
.

Similarly, by Lemma 5 andL’s definition: Prev (G(r′)) ∩
L(r) = L

(
r′
3

)
. Thus, if r < 3r′ and r, r′ ∈ IR+ then ∅ 6=

Prev (L(r))∩G(r′) 6= G(r′) and then the algorithm removes
G(r′) from Sv and it inserts the setsG

(
r
3

)
andG(r′)\G (

r
3

)
in Sv. Otherwise,r ≥ 3r′ holds and ifr, r′ ∈ IR+ then
3r > r ≥ 3r′ > r′. It follows that∅ 6= Prev (G(r′))∩L(r) 6=
L(r) and then the algorithm removesL(r) from Sv and it

inserts the setsL
(

r′
3

)
and L(r) \ L

(
r′
3

)
in Sv. Hence,

since the initial partition contains bothL(1) and G(1),
during the subsequent computation steps, there will exist
r, r′ ∈ (0, 1] such thatL(r), G(r′) ∈ Sv. Moreover at each
computation steps∃P, P ′ ∈ Sv | ∅ 6= Prev (P ) ∩ P ′ 6= P ′—
in particular, if r < 3r′ then P = L(r) and P ′ = G(r′),
since, Otherwise,P = G(r′) and P ′ = L(r). It follows
then that the Algorithm 1 does not terminate, leading to the
conclusion thatHinf does not admit finite bisimulation.

The next corollary follows from Lemma 4 and Theorem 3.
Corollary 2: There exist SACoRe automata that do not

admit finite bisimulation.

V. CTL M ODEL CHECKING

Despite the absence of a bisimulation result for SACoRe,
we can still show that a substantial and interesting fragment
of CTL−X can be decided over SACoRe automata, building
upon the decidability of reachability. Since this fragment,
we will shortly introduce, is not included in LTL, it is not
possible to use simulation equivalence to reduce the model.

Given a SACoRe automatonH of dimensionk, we con-
sider a setP = {P1[Z], . . ., Pm[Z]} of atomic propositions
whose elements are first-order formulæ over the reals with
k free-variables. The labeling functions associates to each

propositionP [Z] of P the set of states ofH in which P [Z]
holds, i.e.,Label(P [Z]) = {〈v, r〉 | P [r] holds}.

Next, consider the setΨ of formulæ defined by the
following grammar.

Q ::= P [Z] | ¬P [Z] |Q1 ∨Q2 | EFQ1 | AGQ1

Notice that the formula inEFAGP [Z] which belongs to
Ψ distinguishes models which are simulation equivalent (see
[15]).

Given a SACoRe automatonH and a formulaQ ∈ Ψ
we can decide〈v, r〉 |= Q by reducing the problem to a
first-order formula validity problem as follows.

Definition 11: Given Q ∈ Ψ, and a statev of H, let
Ph(v) be the set of paths of〈V, E〉 starting fromv of length
at mostm = |E|. We define the formulaM(Q, v)[Z] by
induction onQ as follows:

• M(P [Z], v)[Z] is Inv(v)[Z] ∧ P [Z];
• M(¬P [Z], v)[Z] is Inv(v)[Z] ∧ ¬P [Z];
• M(Q1 ∨Q2, v)[Z] isM(Q1, v)[Z] ∨M(Q2, v)[Z];
• M(EFQ1, v)[Z] is

∨
ph∈Ph(v)(∃Z∗Z ′(Reach(ph)[Z,Z∗, Z ′]∧

M(Q1, uph)[Z ′]));

• M(AGQ1, v)[Z] is
∧

ph∈Ph(v)(∀Z∗Z ′(Reach(ph)[Z,Z∗, Z ′]→
M(Q1, uph)[Z ′]));

where we useZ∗ for the sequenceZ1, . . ., Z2m, while for
eachph ∈ Ph(v) we useuph ∈ V for the last node ofph.

Since an existential formulaEFQ1 of Ψ requires only
that Q1 be true in one reachable point, whereas a universal
formulaAGQ1 of Ψ requires thatQ1 be true at all reachable
points, we convince ourselves that our translations into first
order formulæ are correct.

Theorem 4:Let Q ∈ Ψ. It holds that:

〈v, r〉 |= Q iff M(Q, v)[r] is true.

VI. CONCLUSIONS

Here, we have presented a new class of hybrid automata,
and dubbed it SACoRe (Semi-Algebraic Constant Reset).
They have many attractive properties, even though they do
not have the finite bisimulation property. For instance, we
discovered that reachability and a limited fragment of CTL
are decidable over SACoRe automata. Our decidability re-
sults are novel as they exploit Tarski’s decidability result over
the reals [3] and Michael’s selection theorem [4]. SACoRe
automata properly extend O-minimal automata allowing non-
autonomous differential inclusions instead of autonomous
differential equations. We can easily extend our class of
automata exploiting other selection theorems (see, e.g., [28]).

SACoRe automata provide a very general framework and
yet allow one to verify properties in many fields of natural
and engineered systems. In particular, they are useful when,
as is often the case, lack of measurements for kinetic
parameters of the underlying system of differential equations



forces one to describe the flows, replacing the equations by
differential inclusions. Many examples, illustrating the power
of this approach, may be found in the study of stability and
robustness of non-autonomous parametric systems. Instead
of using simulations and punctual analysis, our method
allows one to automatically analyze these properties by
checking formulæ of the formEF AGQ1 for an appropriate
Q1, whose choice depends on the system. Consider for
instance the “multi-stage” regulation model for the bac-
terial chemotaxis network presented in [29]. This model
formalizes several important protein-protein interactions in
a bacterial biochemical pathway using a system of dif-
ferential equations. Such a system appears in a parame-
terized form and its parameters represent the number of
receptors of a particular substance, their specific activity
and their influence on overall receptors activity. While in
[29] the verification of the system adaptivity to changes of
the receptor activity level is performed through simulation
and punctual analysis, it would be possible to automate
this verification using a SACoRe automaton. In particular,
in this case, we can assume that from each initial condi-
tion 〈CheYp0, CheAs-CheZ0, CheZ(active)0〉 we can reach at
time t all the points〈CheYpt, CheAs-CheZt, CheZ(active)t〉
such that CheYpt, CheAs-CheZt, and CheZ(active)t are
reachable from CheYp0, CheAs-CheZ0, and CheZ(active)0,
respectively, when the parameterA ranges between0.3 and
0.5. In this way we introduce in the model two approxima-
tions: we assume that if CheYp0.3

t is the value reached at time
t with A = 0.3 and CheYp0.5

t is the value reached at time
t with A = 0.5, then all the values in[CheYp0.3

t , CheYp0.5
t ]

are reachable at timet; we consider reachable at timet the
cartesian product of the intervals reachable from each com-
ponent. These approximations allow to satisfy the condition
imposed on SACoRe automata. Moreover, we can still prove
that CheYp always finally returns to its steady state. Notice
that to perform our analysis we do not need to introduce the
parameterA as a variable of the automaton. It is sufficient
to introduce it as an existentially quantified variable in the
dynamic definitions.

In the future we intend to deeply investigate the appli-
cations of SACoRe automata in the study of both natural
and engineered systems. We also plan to analyze possible
extensions with non-constant resets.
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