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Abstract

This paper describes how to classify a family of biochemical pathways and circuits in terms of their temporal behavior

by systematic application of time-frequency analysis and temporal logic based model checking. There are two immediate

pay-offs for this approach. First, a family of models obtained by systematic perturbations of an archetypal (e.g., wild-type

or ancestral) model, when classified in this manner, can help in identifying various incorrect or implausible features of

the model. Second, specific hypotheses about various features of a given model can be automatically generated from such

analysis and then subjected to experimental verification. We illustrate, by two examples, how our approach can be used

(1) to understand the behavior of any individual topologically distinct circuit among the set of 125 synthetic biological

circuits created out of similar elements, or (2) to ascertain the correctness of a well known Yeast Cell Cycle model by

checking a family of perturbed models created through single and double mutations. We also show how this tool interacts

with a propositional temporal logic model-checking system to present qualitative distinctions among the groups within the

family of biological circuits or among the different multi-modal behaviors of a single pathway. The paper also poses several

challenging open problems in computer science, related to our basic generate and test framework (with heuristics) used for

systematically producing a set of temporal logic sentences that can be tested against different datasets.
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1 Introduction

Understanding biology by modeling cellular processes and genome evolution has emerged
as a challenging new area: “systems biology.” Sitting at the interface of mathematics and
biology, this subject aims to address many questions requiring consilience of elegant ideas
and concepts from applied mathematics, theoretical computer science, logic and physical
modeling. The impulse has come from better understanding of processes involved at
molecular level, technology at meso- and nano-scale, ability to perform high through-put
experiments and amount of genomic and proteomic data that can now be generated and
made publicly available for processing.

Answering the questions posed by this challenge requires a comprehensive approach
leveraging several technologies and mathematical tools. As an example of this class of
challenges we tackle an interesting problem posed by the analysis of the series of exper-
iments of Leibler and Elowitz [6] and Guet et al. [7], in which the authors design and
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implement in vivo a family of combinatorial circuits. Our long term goal is to solve the
problem of mapping and reconstructing a mathematically sound and complete model to
a set of wet-lab observations. In the specific case of Guet’s 125 combinatorial in vivo

circuits, we want to be able to map the behavior of each of them to a model representing
one of the standard Boolean gates.

The original motivation for designing such a family of synthetic networks by combina-
torial variations of the network topology were given as follows [7]: “A central problem in
biology is determining how genes interact as parts of functional networks. Creation and
analysis of synthetic networks, composed of well-characterized genetic elements, provide
a framework for theoretical modeling. ... Combinatorial synthesis provides an alternative
approach for studying biological networks, as well as an efficient method for producing
diverse phenotypes in vivo.” Nonetheless, lack of efficient tools for modeling and analysis
of such synthetic networks has hindered many possible applications of these networks.
Clearly, with appropriate tools, one could foresee applications where millions of randomly
generated networks could be screened for selection of primitive circuits with specific prop-
erties (robustness, immunity to noise, etc.), or as building blocks of larger circuits with
specific temporal properties, or even as scaffold structures for measuring kinetic param-
eters of a component as it operates in vivo. Here, we suggest that Simpathica/XSSYS

and the ancillary modules NYUSIM and NYU BioWave along with their planned software
progenies respond to these demands quite well. I.e., we show how the combination of
Simpathica modules can be employed synergistically to analyze the set of Guet’s biological
combinatorial circuits, by providing a semi-automated way to classify them based on the
profiles of their behaviors. The classification of behaviors is accomplished by a careful
application of time-frequency clustering techniques and by a modified model-checking ap-
proach that directly tests for the truth value of Boolean expressions over traces of the
system. Following such demonstration, we introduce an extension of this approach based
on a generate-and-test procedure for temporal logic formulæ in order to automate a dis-

covery system that can further aid a working biologist. We also examine how well our
procedures work on a model of the Yeast Cell Cycle [13,14], for which a preliminary group
of three datasets had been produced.

1.1 Guet’s Biological Circuits

As an example of how the Simpathica set of tools (NYU BioWave and NYUSIM) may be
used in analyzing biological systems, we will focus on a “bio-circuit” originally designed
by Guet and others [7].

In the scheme created by Guet and colleagues, the authors used a combinatorial method
to generate a library of networks with varying connectivity and implemented them as
plasmids capable of transfecting Escherichia coli . These networks were composed of genes
encoding the transcriptional regulators LacI, TetR, and λ CI, as well as the corresponding
promoters. Although the networks had time-varying output trajectories for a fixed input
and implemented sequential circuits, Guet et al. characterized their phenotypic behaviors
as resembling binary logical/combinatorial circuits, with two chemical “inputs” and a
fluorescent protein “output.” Nevertheless, the biological experiments indicated a rich and
diverse set of functions dependent on network connectivity and raised questions about how
to design appropriate computational tools to analyze them.

In [7], the authors generated a combinatorial library composed of a small set of tran-
scriptional regulatory genes and their corresponding promoters and varied their connectiv-
ity in a combinatorially exhaustive manner. They chose genes of three well-characterized
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prokaryotic transcriptional regulators: LacI , TetR, and λ cI. The binding state of LacI and
TetR can be changed with the small molecule inducers, isopropyl β-D-thiogalactopyranoside
(IPTG) and anhydrotetracycline (aTc), respectively. In addition, they also selected five
promoters regulated by these proteins (i.e. LacI, TetR, and λ CI), which span a rather
broad range of regulatory characteristics—e.g., repression, activation, leakiness, and strength.
Two of the promoters are repressed by lac (to be referred to as PL1 and PL2), one is re-
pressed by tet(to be referred to as PT), and finally, the last two are regulated by λ ci, one
positively (Pλ+) and one negatively (Pλ−). Their genetic assembly scheme ensured that
each network in the library has the following structure: Pi-lac-Pj-λ ci-Pk-tet, where each
Pi, Pj, and Pk ∈ {PL1, PL2, PT, Pλ+, Pλ−} is implemented as any of the five promoters.
Thus, the regulatory genes on each plasmid interact (i.e., activate or repress) with one
another, generating networks with diverse connectivities. A separate plasmid consisting
of a reporter gfp and repressed by λ ci is used to measure the biological activity of the
synthetic network through the fluorescence of gfp.

In this paper, we will model all possible 53 = 125 different networks and by examin-
ing their trajectories group them into various classes and examine how well this grouping
coincides with the others based on topology. Since the networks constructed this way en-
compass a wide range of motifs (including negative and positive feedback loops, oscillators,
and toggle switches) they present an interesting family of trajectories to NYU BioWave.

In summary the system to be analyzed consists of the following:

(i) There are combinations of four genes: lac, λ ci, tet and gfp, of which the first three
interact with each other by pair-wise activation or repression and the last one (gfp)
is used as an output. The corresponding proteins are denoted as lac, λ ci, tet

and gfp. Their concentrations will be indicated by the notation [x] (e.g., [lac] is
the concentration of lac-mRNA and [lac] is the concentration of lac-protein). The
temporal rate of change of concentration will be denoted as [ẋ].

(ii) The small molecule inducers IPTG and aTc act as the inputs to the system through
their inactivation of the lac and tet genes, respectively.

(iii) There are five Operons: two lac-based: PL1, PL2; two λ ci-based: Pλ−, Pλ+; one
tet-based: PT.

(iv) Total 53 = 125 different combinatorial circuits are possible. A circuit is denoted as
Pi-lac-Pj-λ ci-Pk-tet, indicating that Pi determines the transcriptional state of lac;
Pj determines the transcriptional state of λ ci and Pk determines the transcriptional
state of tet.

(v) For instance the circuit Pλ+-lac-PL1-λ ci-PL1-tet has the following connections:
(a) lac is activated by λ ci.
(b) λ ci is repressed by lac, and lac is inactivated by IPTG.
(c) tet is repressed by lac, and lac is inactivated by IPTG.
(d) gfp is repressed by λ ci.

In our analysis we will make several simplifying assumptions: (1) All genes have similar
time constants; (2) mRNA’s instantaneous concentration depends on the transcription
process, its leakiness and its instability (i.e., how it degrades); (3) A protein’s instantaneous
concentration depends on the translation process and its degradation. Their dynamic
state-evolution equations can be written in terms of two intrinsic parameters α (governing
mRNA) and β (governing protein) as well as Hill-coefficient like terms (n and k), leakiness
term (ρ) and saturation terms (θ).

If x denotes a gene and X its corresponding protein, we have the following equation
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for x’s transcription:

[ẋ] =−[x] + α[ρ + fx(θ, [Y ], [uy ])]

where fx(θ, [Y ], [uy ]) =
1 + θ[Y ]n + [uy]

k

1 + [Y ]n + [uy]k
. In this equation, the transcription is activated

or repressed by a protein Y and Y itself is modulated by a small molecule uy. Note that,
for small values of [uy], fx shows a sharp transition from a value of 1 (when [Y ] = 0) to a
value of θ (when [Y ] = ∞), as Y increases. However, for large values of [uy], fx remains
at 1 (when [uy] = ∞), thus inactivating the effect of Y .

Similarly, we have the following equation for X’s (corresponding proteins) translation:
[Ẋ] = −β([X] − [x]).

Going back to our example circuit Pλ+-lac-PL1-λ ci-PL1-tet, we can write down in a
straightforward manner the corresponding ODE’s as shown below:

˙[lac] =−[lac] + αρ + α
1 + θa[λ ci]n

1 + [λ ci]n

˙[lac] =−β([lac] − [lac])

˙[gfp] =−[gfp] + αρ + α
1 + θs[λ ci]n

1 + [λ ci]n

˙[gfp] =−β([gfp] − [gfp])

˙[tet] =−[tet] + αρ + α
1 + θs[lac]n + [IPTG]k

1 + [lac]n + [IPTG]k

˙[tet] =−β([tet] − [tet])

˙[λ ci] =−[λ ci] + αρ + α
1 + θs[lac]n + [IPTG]k

1 + [lac]n + [IPTG]k

˙[λ ci] =−β([λ ci] − [λ ci])

The two top-left equations model the fact that lac is activated by λ ci. The two bottom-
left equations model the fact that gfp is repressed by λ ci. The two top-right equations
model the fact that tet is repressed by lac, and lac is inactivated by IPTG. The last two
bottom-right equations model the fact that λ ci is repressed by lac, and lac is inactivated
by IPTG. We used the following parameters and simulation functions:

˙[IPTG](t) =− exp(−t)[IPTG](0)

[IPTG](0) = x0 = 3

˙[aTc](t) =− exp(−1.1t)[IPTG](0)

[aTc](0) = y0 = 3

θs = 0 implying suppression

θa = 2 implying amplification

α = 5 β = 1 ρ = 0.1 n = 2 k = 2

and note that in our normalized equations, α is the concentration of proteins per cell
from unrepressed promoter; αρ is the concentration of proteins per cell from repressed

promoter; β is the protein:mRNA decay rate ratio; n is the Hill (cooperativity) coefficient
of the repressor; and k is the Hill (cooperativity) coefficient of the small molecule.

1.2 The Yeast Cell Cycle Model

In [14,13], Tyson and colleagues have published some fundamental works on modeling cell

cycle genes. In Tyson’s model, the transition between phase G1 of the cell cycle to the
S-G2-M phase was analyzed as a bifurcation of a dynamical system.

The “traditional” model used in Tyson’s work may be described as follows: the main
control element of the yeast cell cycle is the protein dimer of Cyclin B (CycB) and Cyclin-
Dependent Kinase (Cdk). Other proteins, CKI, Cdh1, and SK, also play a role. At
the beginning of a cell cycle (early G1), both CKI and Cdh1 levels are high. CKI can
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bind to CycB/Cdk to inactivate the latter, while Cdh1 rapidly degrades CycB. Thus Cdk
is in inactive state. As cell grows, cell mass increases over time, which makes CycB
accumulate gradually in the cell nucleus. In late G1, SK raises sharply, degrading CKI,
and CycB becomes more and more active. Eventually, CycB overcomes Cdh1 and get
fully activated. Active Cdk/CycB triggers several events allowing the cell to enter S-phase
and DNA synthesis to start. Cdk remains inactive until the cell enters M-phase, when
Cdc20 is activated and destroys enough CycB to allow Cdh1 (as well as Cdk inhibitor,
CKI) to become active. As a test for the model, in SK mutant cells, CycB/Cdk cannot be
activated, thus preventing the cell from entering S-phase and resulting in a fatal explosive
cell mass growth. However, in SK/CKI double mutant, the cell cycle behavior is restored.

The model is described in terms of a set of nonlinear differential equations with values
for kinetic parameters that have been experimentally verified.

The analysis of the Yeast Cell Cycle model in [14,13] aims at comparing the behavior
of different mutants vis-a-vis the wild-type control, to ascertain various hypotheses. We
used this model to test a preliminary prototype of our “generate-and-test” framework.

2 The Simpathica System

The NYU/Courant Bioinformatics Group has developed and implemented a com-
putational system, Simpathica, which allows a user to construct and rigorously analyze
models of biochemical pathways composed out of a set of basic reactions. Each reaction
is thought of as a module and belongs to one of many types: reversible reactions, synthe-

sis , degradation, and reactions modulated by enzymes and co-enzymes or other reactions
satisfying certain stoichiometric constraints. If the stochastics in these reactions are ig-
nored (i.e., mass-action models), each of these reactions can be described by a first order
algebraic differential equation whose coefficients and degrees are determined by a set of
thermodynamic parameters. As an example, reaction modulated by an enzyme leads to
the classical Michaelis-Menten’s formulation of reaction speed as essentially differential
equations for the rate of change of the product of an enzymatic reaction. The parameters
of such an equation are the constants Km (Michaelis-Menten Constant) and Vmax (max-
imum velocity of a reaction). In a simple formulation, such as in S-system [15,16], this
approach provides a convenient way of describing a biochemical pathway as a composition
of several primitive reaction modules and then automatically translating them into a set
of ODE’s with additional algebraic constraints. Simpathica and XS-system [11,2,4] (an
extension of the basic S-System) retains this modular structure while allowing for a far
richer set of modules.

The Simpathica architecture is composed of two main modules and several ancillary
ones. The first main module is a graphical front end that is used to construct and simulate
the networks of ODE’s that are part of the model being analyzed. Simpathica uses, among
other, the SBML format [12] for exchange. The second module, XSSYS is an analysis
module based on a branching time temporal logic, that can be used to formulate questions
about the behavior of a system, represented as a set of traces (time course data) obtained
from wet-lab experiments or computer simulations.

Starting with a trace of a bio-chemical pathway, (i.e. a time-indexed sequence of
state vectors representing a numerical simulation of the pathway) as input, Simpathica can
perform the following operations.

• Simpathica answers complex questions involving several variables about the behavior of
the system. To this end we defined a query language based on a branching time temporal
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logic formalism.

• Simpathica stores traces in an ancillary database module, NYUSIM, and allows easy
search and manipulation of traces in this format. The analysis tools allow these traces
to be further examined to extract interesting properties of the bio-chemical pathway.

• Simpathica classifies several traces (either from a single experiment or from different ones)
according to features discernible in their time and frequency domains. Multi-resolution
time-frequency techniques can be used to group several traces according to their fea-
tures: steps, decreases, increases, and even more complex features, such as, memory.
Simpathica contains a prototype subsystem (called NYU BioWave), which implements
these classification procedures using Matlab.

With these tools, Simpathica provides an environment to suggest plausible hypotheses
and then, refute or validate these hypotheses with experimental analysis of time-course
evolution. It also allows investigating conditions or perturbations under which a metabolic
pathway may modify its behavior to produce a desired effect (an instance of a control
engineering problem).

2.1 Temporal Logic Model Checking

The XSSYS Simpathica back-end implements a specialized model checking labeling algo-
rithm that, given a “model trace” and a temporal logic formula expressed in an extended
CTL form, can state whether the formula is true or false, in which case a counterexample

is provided: i.e. the system gives an indication at which point in time the formula becomes
false.

A full description of the syntax and semantics of the temporal logic language manipu-
lated by Simpathica/XSSYS is beyond the scope of this paper and hence, omitted. For the
purpose of the present discussion, it suffices to assume that all the standard CTL operators
are available in a somewhat anglicized form 3 . The main operators in XSSYS (and CTL)
are used to denote possibility and necessity of propositions over time. In our case such
proposition involve statements about the value of the variables representing concentrations

of molecular species. E.g. to express the query asking whether a certain protein p level
will eventually grow above a certain value K we write eventually(p > K).

We also augment the standard CTL language with a set of domain dependent queries.
Such queries may be implemented in a more efficient way and express typical questions
asked by biologists in their daily data analysis tasks.

As an example, we can formulate queries like

eventually(not always(LacI < 1.3) or always(LacI > 4.0)).

The query expresses the fact that the value of the ‘LacI’ variable “oscillates” between the
two values of 1.3 and 4.0. The system being analyzed is the repressilator system of Elowitz
and Leibler. The analysis tool provides counter examples when input query fails to hold
true or restricts the conditions under which the query can be satisfied.

A more through introduction to XSSYS and its capabilities can be found in [3,4].

3 We have provided an English form to the standard operators in order to make the content of resulting
language to be easily manipulated by the intended audience—in this case biologists with no exposure to
the notations of Temporal Logic. We also note that, technically, we are missing EG, since we have only
provided always as a representation of AG.
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Fig. 1. A view of the NYU BioWave user interface. There are three windows visible. In the background there is the dialog

showing the connection to NYUSIM, in the foreground there are the two windows that constitute the “classifier inspection

tool”. The group being reviewed comprises various step functions from a test data set of functions of various shapes (the

functions are normalized before being plotted.)

2.2 Time-Frequency Analysis within NYU BioWave

Many biological experiments (especially in silico experiments) produce time course data

which can be analyzed both in time and frequency domains to extract interesting func-
tional properties. To this end we have constructed NYU BioWave, a tool that can find
similarities in the ‘shape’ of time course data, that is, it can easily group together mea-
surements of different quantities based on their time-course behavior. As an example, it
can group together all trajectories that present a ‘step’ feature, thus easing the detection
of relationships among observed variables. Moreover, it can do so across several datasets
(e.g. datasets corresponding to different values of controlled parameters.)

The mathematical theory behind the NYU BioWave tool is primarily based upon Multi-

resolution Time-Frequency Analysis through Wavelet Decompositions [10]. In Figure (1)
we show a simple and artificial test case used to validate NYU BioWave capabilities, and
the NYU BioWave user interface.

NYU BioWave utilizes a multi-scale basis selection algorithm. The first example in this
class of algorithms, the best basis algorithm can be found in [5]. There, given bi-orthogonal
wavelet filter denoted by [v, w], the best basis algorithm defines a method for searching
a subset of O(M) (the set of orthogonal transformations in R

M). O(M) is generated by
wavelet filter trees [v, w], and has a number of interesting mathematical properties, which
we do not discuss here (again, cfr. [5]).

NYU BioWave defines a method for searching a subset of O(M) that uses a tree pruning
algorithm whose operation is governed by the function α. The original best-basis algorithm
is then an instance (with α being the entropy function) of the algorithm implemented in
NYU BioWave.

NYU BioWave eventually associates a ‘score’ si ∈ R to each trajectory fi examined, with
i = 0 . . . n. Currently, the ‘score’ is a value derived from the entropy of the trajectory. The
set of scores is simply S = 〈si〉. These scores are then partitioned in groups, according to
the characteristics of their distributions. At present, NYU BioWave implements a simple
grouping scheme that optimizes gaps between the groups. The scheme is based on the
computation of a “moving average” µ̂ and relative standard deviation σ̂ of the “distances”
DS = 〈si+1 − si〉 between the scores. Two scores si and sj are grouped separately if
|sj − si| > µ̂ + 2σ̂. Of course, this method of clustering entropy scores is rather coarse
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IPTG aTc IPTG aTc IPTG aTc IPTG aTc

0.0 0.0 0.0 3.0 3.0 0.0 3.0 3.0

Table 1
Initial concentrations of the input molecules (to be interpreted as µMol) IPTG and aTc. The concentrations of IPTG and
aTc decay exponentially in each experiment. Each set of inputs is fed in turn to the 125 circuits. Each simulation run until

a steady state is reached.

and arbitrary and requires further research. However, we note that this approach works
well when there is a known correlation among the fi’s (as is the case with the example
described in Section 1.1).

An alternative and a more sophisticated way to assign a score to each trajectory would
be to compute the set {ǫij} defined as the “entropy of the coefficients of the representation
of fi, with respect to the best basis computed for fj .” We could then group fi and fj

together, based on ‖ǫij − ǫii‖ ≤ κ, for a given parameter κ. In other words, we consider
a pair of functions similar, when they are ‘close’ with respect to their representation in
terms of the optimal basis associated to the function 4 .

Finally, we note that, this clustering problem is quite difficult to solve in a complete
general way, and we will explore it in more detail in a different setting.

3 Analysis

We ran simulations for each of the 125 circuits with the inputs listed in Table 1. The
simulations were run using Matlab standard Ordinary Differential Equations integrators
In each run all 125 circuits were tested until a steady state was reached. The result was a
set of 125 trajectories for each input pair 〈IPTG, aTc〉 (i.e. 4 sets). Two kinds of analysis
were performed on the resulting sets of data: a time-frequency analysis using NYU BioWave

and a classification of combinatorial circuits using Simpathica/XSSYS.

Analysis: Time-Frequency. The motivating example was taken from the work of
Guet et al. We analyzed the ODE behavior using the non-linear projection discussed in
Section 2.2. The results are 125 projection points in the range [1.3905 × 10−2, 2.6561 ×
10−2] which are then divided into four groups with our multi-resolution-adaptive binning
algorithm. Figure (2) shows Group 4. There is consistency in the groups both in qualitative
description of the element functions as well as the derived circuit topology. Thus the low-
dimensional clustering of the 125 function encodes the underlying circuitry.

Analysis: Temporal Logic. As a simple test of our Simpathica/XSSYS system, we
ran a non-traditional analysis of the four sets of trajectories using Simpathica Tempo-
ral Logic analysis tool: XSSYS. Simpathica/XSSYS sorted the circuits according to the
following properties.

• Circuits exhibiting switch-like properties.

• Circuits exhibiting a Boolean behavior (i.e. showing a combinatorial function of the
inputs).

We modified our tool to handle all these cases and proceeded in the following way.

(i) Find good candidate circuits, call this set C.
These are the circuits that present a variation in outputs given different inputs 5 .

4 We also note that the criteria we described is not symmetric. We will describe the detail of our approach
in a different setting.
5 This was not really necessary with respect to step 2, as the circuits eliminated would have been classified
as one of the Boolean constants: either true, or false.)
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Circuit Comment

Circuit 71 〈PT, Pλ+, PL1〉

Fig. 2. Group 4 includes the trajectories whose shape is dominated by the topological arrangement of the plasmids in

which λCI (C) activates its own transcription and neither LAC (A) nor TETR (B) have an effect on the transcription of

λCI. This feature clearly eliminates the significance of the topological arrangement of the promoters before LAC and TETR.

The sample diagram of this group shows λCI activating its own transcription, while the relationship is arbitrary, as long as

they do not affect λCI. Circuit 71 is a sample of the diagrams representing these functions. The triple of promoters denotes

the structure of the circuit.

(ii) Find which circuit c ∈ C implements one of the basic 2-inputs Boolean functions 6 .

(iii) Find which circuits admit more than 2 output values.

To test for the first property we used the following method. Each circuit was simulated
given one of the input pairs in Table 1. The result is a quadruple of traces for each circuit.
Next we ran a simple script testing whether the steady state value of each member of the
quadruple was above or below a threshold. This corresponded to formulating the following
TL query on each element of the quadruple.

eventually(always(c < threshold)).

threshold was varied in the range [0.5 . . . 5.0] with 0.1 increments. Any circuit c which
failed the query for some element of the quadruple was marked as “potential circuit .”

The next step was to test which of the potential circuits actually represented a Boolean
function. This step immediately posed a problem, as certain circuits exhibit a two-valued
response to the inputs from Table 1, while other exhibit three-valued response. Moreover,
the choice of what constitutes a high and low response appeared rather arbitrary. To cope
with this problem we devised a procedure that automatically constructs TL formulæ of
the form

eventually(IPTG = 0 and aTc = 0 ==> eventually(always(low(c))))

and eventually(IPTG = 0 and aTc = 3 ==> eventually(always(high(c))))

and eventually(IPTG = 3 and aTc = 0 ==> eventually(always(high(c))))

and eventually(IPTG = 3 and aTc = 3 ==> eventually(always(high(c)))).

The formula checks whether circuit c represents an OR gate 7 . Mixing the low and high

functions yields tests for all the other 15 two inputs Boolean functions. However, the
results of the tests depend on a threshold which can be changed. Table 2 shows which

6 Given two inputs i1 and i2 there are 16 possible Boolean functions: 0, 1, i1, i2, ¬i1, ¬i2, OR, AND,
NOR, NAND, XOR, NXOR, IF 1 2, IF 2 1, NIF 1 2, NIF 2 1.
7 The outer eventually operator is introduced mostly as a technicality to take into account the “start
up” time of the simulated systems.
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Boolean Function Circuit

¬ IPTG 51 52 56 57 76 77 78 79 80 81 82 83
85

aTc 14 39 64 89 114

aTc → IPTG 61 62

Table 2
The classification of potential Boolean circuits given a threshold of 1.3 µMol. Each number denotes one of the circuits

described in [7].

Circuit Function Comment

¬ IPTG Circuit 85 〈Pλ−, PL2, Pλ+〉

aTc Circuit 114 〈Pλ+, PT, Pλ−〉

aTc ⇒ IPTG Circuit 61 〈PT, PT, PL1〉

Table 3
Some of the circuits implementing the logic-combinatorial circuits found with threshold parameter equal to 1.3µMol. Again

the triple of promoters denotes the structure of the circuit.

circuits have been identified as which Boolean circuit, given a threshold of 1.3 µMol.

4 Generating Biological “Facts” from a Set of Traces

The analysis of Guet’s circuits using our temporal logic analyzer suggested a generalization
of the approach to analyze more complicated behavior in a combination of experiments.
The natural generalization lies in the application of a time tested generate and test frame-
work, where temporal logic formulæ are constructed in increasing order of complexity and
tested against the data available (i.e. the set of traces.)

Given a set VS of “variables” in a dataset, the generation algorithm must use several
heuristics to constrain the size of the set F of formulæ to be analyzed, as a simple counting
argument on the structure of the concrete syntax of CTL formulæ reveals that the number

of formulæ of syntactic depth d is Ω
(

22d

)

: obviously too large a number to consider, even

for the simple case of d = 3. Given a number of relatively straightforward heuristics, the
formula generation and testing procedure can be kept under control, although the worst
case scenario still applies.

The set of heuristics HF involved are based on (a) a (arbitrary) lexicographic ordering of
the variables, (b) an accounting of the symmetries in the binary operators of the underlying
temporal logic language, (c) a special interpretation of the time variable, (d) the singling
out of a set of “special” formulæ, (e) imposing limits on the number of disjunction used, (f)
a heuristic to check only the formulæ involving small connected components of variables
(e.g. vi → vj → vk) based on what is known about the structure of the model pathway,
and, finally (g) allowing user intervention in establishing an a priori “ranking” of formulæ
to be examined. Also, user supplied ranges for the values of the variables involved are
taken into account. In essence the procedure performs the steps shown in Figure (3).

Because of the set of heuristics used, the resulting set of formulæ has limited size. Once
the set of formulæ F has been generated, each of its members can be checked against the
datasets comprising an experiment. The result will be a set of valuations for each f ∈ F
with respect to each dataset considered; e.g. a dataset corresponding to the Guet’s circuits.
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Procedure Formula Generation:

(i) Input: a set of variable VS from an experiment.

(ii) For each formula template from the set:
(a) Represses(P1, P2).

(b) Activates(P1, P2).

(c) Steady state().

(d) Constant(P, t1, t1).

(e) Formulæ representing the response of the system to a particular input at time ti (e.g. an impulse or a sustained
input.)

generate the set F of all possible combinations of instantiated formulæ using only the elements of VS and constrained
by the heuristics set HF .

Fig. 3. The formula generation procedure.

Report on “Test Experiment Tyson WT, 1 Mutant, 2 Mutants.”

RESULTS

The results refer to the following datasets:

• The first dataset is named “Ian’s Experiment/Tyson Yeast Dataset WT.”

• The second dataset is named “Ian’s Experiment/Tyson Yeast Dataset Mut1.”

• The third dataset is named “Ian’s Experiment/Tyson Yeast Dataset mut2.”

. . .

84. CDH1 less than or equal to 1.0071783 will always hold until CDH1 activates CYCB, is true in the first dataset, is true
in the second dataset, and is false in the third dataset.

85. CDH1 represses CYCB implies CYCB is greater than or equal to 0.65, is false in the first dataset, is true in the second
dataset, and is true in the third dataset.

86. CDH1 greater than or equal to 1.0071783 will always hold until CDH1 activates CYCB, is false in the first dataset, is
true in the second dataset, and is true in the third dataset.

87. eventually, CDH1 is less than or equal to CYCB, is false in the first dataset, is true in the second dataset, and is true
in the third dataset

Table 4
A fragment of the “biologically interesting factoid” story produced by the generation system. The system actually
produced 234 such sentences involving the species CDH1 and CYCB and a number of “interesting values” they can

assume. Each “sentence” is a simple transliteration of a temporal logic formula into English, for the benefit of the reader.

We have some preliminary tests available for our formula generation procedure and
they suggest several promising future developments, especially in conjunction with natu-
ral language based user interfaces [1]. Given a number of datasets and a set of “interesting”
values for the variables in VS, the “factoid generation” system produces an HTML for-
matted output. Table 4 shows an excerpt from the output produced by analyzing three
datasets obtained by simulation of the Yeast Cell Cycle models described in [13,14].

5 Discussion

In this paper, we have described a set of tools within Simpathica system, specifically
designed to perform temporal analysis of the trajectories of bio-chemical pathways and to
classify them into groups for further characterization. The capabilities of these tools are
illustrated through a detailed analysis of a combinatorial approach to bio-circuit design,
following the scheme suggested by Guet et al. [7]. A generalization of the analysis approach
that can semi-automatically generate and test a set of formulæ F was also briefly discussed
in conjunction with Tyson’s Yeast Cell Cycle model [13,14].

Arguably, much research remains to be done before biological circuit design can be
fully and faithfully carried out in this manner, but this style of analysis may ultimately
provide a better scheme over other competing approaches based on tedious hand design
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or in vitro evolution. Furthermore, these ideas suggest that our approach will also allow
one to study phenotypical properties of a genetic network in wild type, by concomitantly
studying a family of mutants and double-mutants obtained by combinatorial knock-outs.
Same approach also suggests that the functional properties of a novel gene can be studied
by combinatorially mixing it with a family of artificial genetic networks that have already
been characterized. Thus, such combination of biological experiments with computational
and mathematical tools promises to open up new and exciting opportunities.
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