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ABSTRACT In this paper, we consider PLAINS, an algorithm that provides
efficient alignment over DNA sequences using piecewise-iar gap penalties that closely
approximate more general and meaningful gap-functions. Th innovations ofPLAINS
are fourfold. First, when the number of parts to a piecewiselinear gap function is
fixed, PLAINS uses linear space in the worst case, and obtains an alignmethiat is
provably correct under its memory constraints, and thus hasan asymptotic com-
plexity similar to the currently best implementations of Smth-Waterman. Second, we
score alignments inPLAINS based on important segment pairs; optimize gap parame-
ters based on interspecies alignments, and thus, identify one significant correlations
in comparison to other similar algorithms. Third, we describe a practical implemen-
tation of PLAINS in the Valis multi-scripting environment with powerful and intu-
itive visualization interfaces, which allows users to viewhe alignments with a natural
multiple-scale color grid scheme. Fourth, and most importatly, we have evaluated the
biological utility of PLAINS using extensive lab results; we report the result of com-
paring a human sequence to a fugu sequence, wheR:AINS was capable of finding
more orthologous exon correlations than similar alignmentools.

1 INTRODUCTION

To a rough approximation, DNA sequence alignment probldfardimarginally from pro-
tein sequence alignment problem. (For instance, at a sapétBvel, one may note that
DNA alignment is over an alphabet of 4 letters whereas pnakgnment is over an alpha-
bet of 20 letters). However, two key differences are thatligye are 3 bp DNA code per
amino acid, and that (2) genes in DNA sequences that ultlyngét transcripted and trans-
lated into proteins can be separated by intergenic regibfmaothousands of base pairs
that do not get expressed, and perhaps, are subject tangtyildifferent (or no) selection
constraints. Thus these intergenic regions typically varg greater extent in one species
compared to another. Therefore, we may expect the gap kengNA alignments to be
larger, more variable, and have specie-specific distobstiMoreover, these distributions
characterizing the gap-lengths may not be memory-less é@gonential distributions).
There have been suggestions that power-law distributicans lme more appropriate. The
evolutionary processes governing the genomes of speciésha log-likelihood of certain
indel gaps occurring when comparing one species againgtemsuggest that a logarithmic
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gap function is more appropriate for DNA sequences. Becal$gs, the traditional affine
(or linear) gap functions used for aligning proteins areatisfactory for DNA sequences,
as the ultimate results may be biologically misleading.

In order to exploit the fidelity of general non-linear gap dtians for DNA sequences,
without suffering performance penalites associated wggint, we have chosen to use piecewise-
linear gap functions modeled to approximate the gap funstio a dynamic programming
approach. Here, we present an implementation of an alighaigarithm that uses rea-
sonable amount of memory, avoids a major shortcoming associvith generalized gap
penalties, and only demands a loss of constant factox (6f6) in time complexity com-
pared to the best algorithm using an affine-gap model. Thave heen other algorithms
that also proposed piece-wise linear gap model (see Mlgrs [9]), but we present
several additional theoretical innovations in terms of stamase upper-bound memory us-
age, alignment optimization, and visualization of data. Ndge the algorithm available
in a powerful bioinformatic environment, calladhlis. Our algorithm uses an innovative
learning-heuristic to determine the best score functiamear-optimal gap-penalty model,
and a scheme to computevalues for reporting alignment reliabilities.

As we hope to demonstrate here by an extensive set of expgahresults, our algo-
rithm works satisfactorily for DNA sequences, and can bettgeal the underlying bio-
logical significances than other existing algorithms (engedle, swat, emboss, etc.). As
a concrete example, we present our alignment results fayghemic sequences of a pair
of orthologous genes in Human and Fugu. While all the alterm@lignment algorithms
either fail by mis-aligning the exons in the Fugu sequencéymot identifying important
correlations, PLAINS is able to recover the orthologouatieh between exons in the Fugu
and Human sequences with good reliability. (See Fig. 2)

2 THE MAIN ALGORITHM OVERVIEW

2.1 CREATING AN ALIGNMENT

Using a mismatch penalty.s, a p-part piecewise-linear gap penalty functiem(-), and
reward per match fixed af PLAINS generates an alignment for two sequengesndY” of
lengthsm andn using a method similar to Miller-Meyers [9], except that dese RAINS
exclusively uses piecewise-linear gap functions (as oggts general gap functions), it is
able to take advantage of an algorithm of its very own, and @3ep) space in the worst-
casé. Further details of how A INS generates an alignment, and the proofs oflitap)
space bound and the correctness of the computed alignmened can be found in the
Unabridged PLAINS paper, which can be obtained from theasthpon request.

2.2 PLAINS LOG APPROXIMATION AND PARAMETER OPTIMIZATION

PLAINS is capable of converting any log function of log-bas@and y-intercepts into a
d-approximatep-part piecewise-linear function. Hence, for fixgda set of gap/mismatch
paramters is dictated hy= («, 3, d, ms).

5 For all practical purposes,is fixed at some constant valse10, and hence we can say that4INS uses worst-case
linear space.
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Let f(v) denote theR-score (explained later) resulting from alignidgandY with
gap/mismatch parameters taken fromAt the user’s request,LRINS can find thev to
optimize f (v) using either Simulated Annealing or Genetic Algorithm.Bate explained
in [4]. Empirical runs over PAINS have shown that Simulated Annealing yields better
results, but Genetic Algorithm explores the space ofiore thoroughly. However, all of
this should come of no surprise, since (1) Monte Carlo rdlatethods are successful in
optimizing Hidden Markov Models (which are similar to seqoe alignments), and (2)
Genetic Algorithms typically consider subsequent sohgim a more random manner than
Simulated Annealing. RAINS is designed so that any algorithm to optimize gap/match-
mismatch parameters can easily be plugged in instead d# thesmethods; for instance,
one may search parameters with a somewhat time consuming®&pyroach, or variants
such as Gibbs sampler or EM.

2.3 THE PLAINS SCORING SYSTEM

For a fixed set of gap/match-mismatch parametgrBLAINS creates an alignment and
scores it by identifying segment pairs that yields “goodires. The sum of these segment
pairs’ scores (which we calR) is the value PAINS reports, and not the score obtained
from the dynamic table. This approach results in a more nnggmliresult, because, when
we observe an alignment, it is the segment pairs of high sdbed are the only true items
of significance.

There are many ways to optimally select segment pairs. Thieadehosen by ERINS
creates the alignment first, and uses the alignment to othtaisegment pairs. Unlike nost
other alignment algorithms,LRINS avoids selecting segment pairs from the dynamic ta-
ble, becauseRAINS uses linear space in memory, and “grabbing” segment pans the
dynamic table would typically require quadratic space imeowvay or another. Further-
more, RAINS assumes that both mismatches and gaps are allowed in thesepgairs
(though sparingly, since the segment pair has to be corsidetgood” one).

Using fixed constant8l’, w, andp, PLAINS iterates over an alignment, collecting
scores from a moving window of siZé’. This identifies the segments with scores of a
certain percentage above the avefaigeA. Next, we trim the ends of these segments to
begin and end with a match. Then, we merge any overlappingeets, recompute the
scores for all segments, and get each segment’s probaBjliof having its scores occur
by coincidence. Any segments witt{ > p are removed. Any segments that remain are the
“good” ones. For those “good” segments that remain, we conclude by compufingnd
¢, whereR is the sum of the scores of ouf‘good” segments, and is the Karlin-Atschul
coincidental probability that “good” segments have a total score at leBstA further
explanation forP; and¢ are mentioned in appendix B.

Settingl = 50, w = 0.5, p = 0.5 empirically yields segments that are reasonably
long, and have significantly higher matches than the aligrirfisackground”. With these
values forl/ andw, we ran RAINS over900 pairs of randomly generated sequences, each
with lengths ranging frons00 thru 4000, and observed the “good” segments compdted.

5 Note:w dictates this percentage. Furthermore, the choice to useafqtage above average instead of a fixed-constant
cutoff score gives PaINs the flexibility to catch important regions from any two sences, regardless of how ho-

mologous they are to each other.
" Note: We temporarily ommitted thefiltering step here.
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From this empirical study, it was estimated thiéat= 3.31 * 10~* and\ = 0.0762, where
K and) are the Karlin-Altschul constants used to normalize seds®res.

Using our knowni', A\, W, w, p values, RAINS can take any prespecified gap/mismatch
paramters, and report the overall alignment obtained for sequences andY’, along
with all the “good” segment pairs, their scores @ndalues, and thé: score and value.

In the event that = 0, thenk = 0 and R.AINS will report that no “good” segments were
obtained.

2.4 THE PLAINS COLORGRID METHOD

For visualization of the computed alignments, thenlRs program ported in Valis uses
a coloring grid to summarize high and low matched areasXfdound in the alignment.
It works as follows: For som@/, we color in a grid with at mosd/ spots. We set color
spot1 based on the match percentage foundifi, ..., m/M] in the alignment; we set
spot2 to a color based on the match percentage foundlfim/M + 1,...,2m/M] in the
alignment; we set spoto a color based on the match percentage found|in—1)m /M +
1,...,i9m/M]inthe alignment; and so on. The coloring grid ioworks in a similar way.

Notice how here, the number of match percentages found is@$ize. The color com-
putations in this way has many advantages, such as how itdsathe limited resolution of
the computer screen compared to the size¥ @indY’.

In addition to visualizing color grids for all oK andY’, users also have the option
to view portions ofX or Y by specifying a substring range for eith&ror Y, with the
Colorgrid of the unspecified sequence automatically reiiaeepresent the corresponding
area in the specified sequence’s substring.

3 EMPIRICAL RESULTS

Two set of experiments were performed and used to compiakenB to the similar lo-
calized DNA alignment tools of EMBOSS, LAGAN, and LALIGN. €Hirst set of ex-
periments involve related sequences. The second set éuakelated sequences. Tables 1
and 2 explain details and results on both sets of test rumsappendix A features tables
and figures that elaborate further. LAGAN uses piecewiseali gap functions just like
PLAINS, whereas EMBOSS and LALIGN use linear gap functions. Figusaows the gap
functions for RAINS and the other tools.

Based on the results, we see that for the humanHomol runseuvinere are small gaps
and an expectation of medium to high homology levelsAIRs and the other tools give
close and consistent results. For the HumanPseudo runse \iliere are slightly larger
gaps and lower expected homology levelsalRs begins to show its advantages over the
other tools. For the HFugu2r and HFortho runs, where thexevarry large gaps and very
low homology levels, but still a biological relation, RINS is the only tool that can identify
importances in such relations. Figures 2 and 3 further coemesults for the HFortho2 and
HumanPseudo5 rurs.

8 Figures 2 and 3 are examples of this, with brighter colorsifiigng high-match areas, and darker colors signifying
lower-match areas. Black is used to signify areas of littleo match, as well as nucleotides Xfor Y that were

unaligned.
% The latter of these two figures is in appendix A.



Name Species Lengths |Sequence Gap | E(Id%) [PLAINS|[EMBOSSLAGAN |LALIGN
Nature | Size r ¢ e o e
humanHomol_15 | Human vs 8K vs. cDNA | small |86%(nt)|1 0.894{1 0.686|1 0.745(1 0.686
humanHomol_16| Mouse | 400-3000 90%(nt)|1 68.3432 48.256|1 64.3704 32.441
MousePseudol Mouse | 2.4K-9.6K 62%(nt)|2 3.168|2 3.087|2 3.169|1 2.965
MousePseudo2 VS. VS. genomicmedium55%(nt) |1 0.562|2 0.784|1 0.658|1 0.650
MousePseudo3 |Pseudogene 400-500 56%(nt)l0 X [0 X [0 X |0 X
HumanPseudol 83%(nt)|3 1.881|3 1.437|1 0.470|1 0.502
HumanPseudo2 | Human |1.5K-11.2K 74%(nt)(3 1.37210 X |1 0.332(0 X
HumanPseudo3 VS. VS. genomicimedium85%(nt)|8 21.8275 11.9988 16.8582 5.415
HumanPseudo4 |Pseudogerje 400-4000 74%(nt)|1 05380 X [0 X [0 X
HumanPseudo5 75%(nt) |3 2.909|1 0.901|1 1.046/1 0.689
HFugu2r 58%(aa)|2 252310 X |0 X [0 X
HForthol Human 6K-12K 55%(aa)|2 1.38110 X |0 X |0 X
HFortho2 VS. VS. genomic large |52%(aa)|2 6.158|1 3.808|1 3.182|0 X
HFortho3 Fugu 1.8K-3.6K 64%(aa)|4 3.8940 X |0 X |0 X
HFortho4 52%(aa)|4 6.071/0 X |0 X |0 X
HFortho5 73%(aa)|1 33280 X |0 X |0 X

Table 1. Sequence Descriptions and Results for the Related Expetsni®gan. All the sequences are retrieved from
ENSEMBL database [www.ensembl.org]. Note for the E(Id%uom: E(Id%) stands for Expected Identity Percentage
in the Homologous Regions, arfdt) indicates match percentage of nucleotides, @nd indicates match percentage
of amino acids after the two DNA sequences are transcriktedpiroteins. Shown here are theand¢’ values obtained
from the “good” segments of each run (wh&fe= —log(¢)). The alignment-evaluation criteria of.RINS was used

to evaluate the alignments of the other tools. Because dfithality in arbitrarily generating highR scores, we instead
look for higher¢’ values to indicate better quality alignments. When no “gasgjments are found, an X is placed as the
¢’ value.

Name Species Lengths | SequencéPLAINS|[EMBOSSLAGAN |LALIGN

Nature [» ¢ |r ¢ |r ¢ |r (¢
HFncdl Human 10K-20K 0 X |0 X |0 X |0 X
HFncd?2 VS. VS. noncodingd X X X |0 X [0 X
HFncd3 Fugu 6K-10K 0 X |X X |0 X |0 X
FFcdl 0O X |0 X |0 X |0 X
HFcd1 Human, Fugu, |1.5K-4.8K 0 X |0 X [0 X |0 X
HHcd1 and Mouse VS. coding |1 15680 X |0 X |0 X
HMcd1 [(All six combinations)1.5K-4.8K 2351770 X |0 X |0 X
MFcdl 0O X |0 X |0 X |0 X
MMcd1 0O X |0 X |0 X |0 X

Table 2. Sequence Descriptions and Results for the Unrelated BErpats Ran. All the sequences are retrieved from
ENSEMBL database [www.ensembl.org]. Note: In the HFncd2 ldRncd3 experiments, an X is placed as trend(’
values for EMBOSS because EMBOSS ran out of memory aligriinget experiments. Here, the unrelated sequences
show that the sensitivity of IRINS is not caused by compromised specificity. Furthermorepatih not shown here,
PLAINS, EMBOSS, LAGAN, and LALIGN all catch no correlations wherven randomly generated DNA sequences
of lengths up taB000. Please note that the correlations thanRs caught in the HHcd1 and HMcd1 experiments are
protein codon homologies, most of them being a short stretgerfect matches located relatively close to each other.
Although these runs were meant to check hawiRs behaves with unrelated sequences, the correlatioas\® caught
could ironically hold some sort of importance that has besrally ignored.
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Fig. 1. Gap-parameters GraphLRNS optimizes the best gap/mismatch parameters based on thef gpecies aligned,
and the nature of the sequence. This is resemblant of LAGA&d¢kniques to account for the nature of species in per-
forming its alignments. Graphed here are some of the gaanpeters PAINS found, along with the gap-parameters of
the other tools, rescaled under the assumptiongafint per match. Note: LAGAN uses a humber of unknown piesewi
linear gap parameters in aligning on a species by speciés ISmwn here is simply the known default gap-parameters
for LAGAN.
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Fig. 2. Match Ratio Color Lines in the HFOrtho2 test for /NS and EMBOSS. Here, the Human and Fugu sequence
used have six exon regions, most with some sort of corregpmadto each other. Here, bothAANs and EMBOSS
correctly identify the correlation of exon region 2 in Fugitiwexon region 3 in Human, but onlyLRINS correctly
identifies the correlation of exon region 5 in Fugu with exegion 5 in Human.

Each run of RAINS to optimize gap/mismatch parameters on a pair of specids too
30 minutes to2 hours. The relatively long time taken by ANS is due to its need for
computing several hundred alignments under various gapiatch parameters before de-
ciding which gap/mismatch parameters are the most optiivaen ran using fixed-set
gap-mismatch parameters,A2NS ran in just under a minute, a constant factor of at most
5.6 times slower thaEMBOSSThe reason for this slowdown is manifold: (1)ANS uses
a linear space table instead of the quadratic space tydidghamic programming, and (2)
there is constant extra overhead in using Linked-List Aaaise (similar to that of [9]) to
help create an alignment.

Plains can easily align a pair of sequences, each with nidésoof up to8Kb. It
can either (1) seek the best gap-mismatch parameters farea gair of sequences and
align with those parameters, or (2) use a user-specifiedfsggmmismatch parameters
to align the pair of sequences. In (1), the runtime typicadligges from30 minutes to2
hours. In (2), the runtime typically ranges fraorh seconds td minute. Plains can either



be used via commandline, or as part of the Valis tool set. Mdogmation can be found at
http://bioinformatics.nyu.edu/ gill

4 CONCLUSIONS

PLAINS is able to catch more important correlations than its coitipet especially in se-
guences with expected large gaps and low homologies likedtiiand Fugu. Furthermore,
PLAINS is also capable of distinguishing related sequence pans imrelated ones. Con-
sequently, we believelRRINS is a promising tool for alignment of long regions of genomes.
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Appendix

A NAMES OF THE SEQUENCESUSED

Tables 3 and 4 list the specific sequences used in the expdsnag on PAINS, EMBOSS,
LAGAN, and LALIGN. Tables 5 and 6 show thg, r, and(’ values obtained from the
“good” segments of each alignment. And, figure 3 elaboratethe comparison between
PLAINS and LAGAN for the HumanPseudo5 experiment.

| Name | First Sequence | Second Sequence
humanHomol_15| ENST00000263253 ENSMUSTO00000050968
humanHomol_16| ENST00000263253 ENSMUST00000068387
MousePseudol |[ENSMUSG0000001672( pseudogene
MousePseudo2 [ENSMUSG00000004039 pseudogene
MousePseudo3 [ENSMUSG00000034321 pseudogene
HumanPseudol | ENSG00000087086 pseudogene
HumanPseudo2 | ENSG00000164104 pseudogene
HumanPseudo3 | ENSG00000079432 pseudogene
HumanPseudo4 | ENSG00000135486 pseudogene
HumanPseudo5 | ENSG00000101210 pseudogene
HFugu2r ENSG00000111845 |SINFRUG00000137119 (reverse-complement)
HForthol ENSG00000183628 SINFRUG00000128815
HFortho2 ENSG00000099937 SINFRUG00000140660
HFortho3 ENSG00000142168 SINFRUG00000132716
HFortho4 ENSGO00000138764 SINFRUG00000152968
HFortho5 ENSGO00000057757 SINFRUG00000123004

Table 3. Sequence Details for the Related Experiments Ran. All thaesgces are retrieved from ENSEMBL database
[www.ensembl.org].

| Name | First Sequence | Second Sequence |
HFncdl| Human NCBI34:1:190164774:190174772 FUGU2:scaffold_5343:1:5999:1
HFncd2 |Human NCBI34:22:32724006:32744004:1 FUGU2:scaffold_3421:1:9999:1
HFncd3|Human NCBI34:10:56721585:56731583:1 FUGU2:scaffold_1415:1:6999:1
FFcd1 SINFRUT00000127255 SINFRUT00000165154
HFcd1 ENSG00000150967.3 SINFRUT00000127255
HHcd1 ENSG00000150967.3 ENST00000259748
HMcd1 ENSGO00000150967.3 ENSMUST00000025930
MFcd1 ENSMUST00000025930 SINFRUT00000165154
MMcd1 ENSMUST00000031354 ENSMUST00000024034

Table 4. Sequence Details for the Unrelated Experiments Ran. Albéluygiences are retrieved from ENSEMBL database
[www.ensembl.org].



Test Name PLAINS EMBOSS LAGAN LALIGN
R r ( R r ( R r ( R r (

humanHomol_15 116.871 1 0.894 110.000 1 0.686 112.000 1 0.745 110.000 160.68
humanHomol_16 2184.956 1 68.343 1751.000 2 48.256 2064.917 1 64.370 1663.32.441

MousePseudol 267.956 2 3.168 265.200 2 3.087 268.000 2 3.169 166.000 152.96
MousePseudo2 106.319 1 0.562 203.200 2 0.784 109.667 1 0.658 109.400 100.65
MousePseudo3 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X

HumanPseudol 281.992 3 1.881 255.200 3 1.437 83.250 1 0.470 84.400 1 0.502
HumanPseudo2 281.851 3 1.372 0.000 0 X 89.000 1 0.332 0.000 0 X
HumanPseudo3 1782.646 8 21.827 1066.700 5 11.998 1383.583 8 16.858 439226.415
HumanPseudo4 110.620 1 0.538 0.000 0 X 0.000 0 X 0.000 0 X
HumanPseudo5 446.425 3 2.909 138.000 1 0.901 142.667 1 1.046 131.000 190.68

3
HFugu2r 322.784 2 2523 0.000 0 X 0.000 0 X 0.000 0 X
HForthol 282933 2 1.381 0.000 0 X 0.000 0 X 0.000 0 X
HFortho2 452.657 2 6.158 234.600 1 3.808 215.667 1 3.182 0.000 0 X
HFortho3 627.357 4 3.894 0.000 0 X 0.000 0 X 0.000 0 X
HFortho4 737.478 4 6.071 0.000 0 X 0.000 0 X 0.000 0 X
HFortho5 217274 1 3328 0.000 0 X 0.000 0 X 0.000 0 X

Table 5. Related Run Scores forLRINS, EMBOSS, LAGAN, and LALIGN.

Test Name PLAINS EMBOSS LAGAN LALIGN
R r ( R »r¢ R r¢ R r(
HFncdl 0.000 0 X 0.000 0 X 0.0000 X 0.0000 X
HFncd2 0.000 0 X X X X 0.0000 X 0.0000 X
HFncd3 0.000 0 X X X X 0.0000 X 0.0000 X
FFcdl 0.000 0 X 0.000 0 X 0.0000 X 0.0000 X
HFcdl 0.000 0 X 0.000 0 X 0.0000 X 0.0000 X
HHcdl 139.604 1 1.568 0.000 0 X 0.000 0 X 0.000 0 X
HMcdl 341.872 2 3.517 0.000 0 X 0.000 0 X 0.000 0 X
MFcd1 0.000 0 X 0.000 0 X 0.0000 X 0.0000 X
MMcdl 0.000 O X 0.000 0 X 0.0000 X 0.0000 X

Table 6. Unrelated Run Scores forLRINS, EMBOSS, LAGAN, and LALIGN.
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LAGAN Alignment
11140bp

Fig. 3. Match Ratio Color Lines in the HumanPseudo5 test forIRs and LAGAN. Here, the Human sequence has 8
exon regions that are similar to areas of the pseudosequesecde and alignments of.RINS and LAGAN for these cases
are similar, even by eyeglance of the ColorGrids. Note tlihbagh R.AINS and LAGAN catch most of these regions in
their alignments, we're only counting the exon regions ffaticipate in “good” segments. With this in mind,ANs and
LAGAN both identify exon region 4 as important, but /NS also deems exon regions 6 and 7 in the Human sequence
as important, which LAGAN misses.

B THE PLAINS PROBABILITY METHOD

The R.AINS approach to estimating the significance of an alignment uadearbitrary
gap model is based on the Karlin-Altschul methods from [G&] §f], and was motivated
by the desire to identify the biological relevance of a gatest alignment instead of just
creating an arbitrary alignment with a set of “good” segmeeiiheir methods provide a
way to approximate reliability without requiring excesshiological information from our
two sequenceX andY'.

The Karlin-Altschul method works on gapless local aligntsexs follows: Suppose for
each letter thatp; is the probability of observing lettélin sequenceX, and for each letter
J thatp; is the probability of observing lettgrin sequencé’, and that the score for pairing
letter 7 with 7 is s;;. We may suppose that for a random pair of sequences, theterpec
alignment scorel; ;p;p’;s;; is negative; and nonetheless, it is possible to generateivgo
score. Also, suppose each high-scoring segment is foureghertiently of each other. Then,
for some), Ei,jpip;-e“if = 1. Also, the maximum segment score, taken from a large num-
ber of independently identically distributed random vialés of segments, tends to have
a normal distribution. In cases of normal distribution, grebability a segment scores at
leastS can be approximated by . However, because the score increases logarithmically
in terms ofmn, the product of the lengths of andY’, and the rate of this increase is
unknown, and since we would also like to accountXam our formulation, we substitug’
instead of our scor§, whereS” = \S — In(K'mn), and hence we say th&t, the proba-
bility a segment scores at leasis e = ¢~ (\S—n(Kmn)) — o=AS+in(Kmn) — [{ppe=2S,
From this, the probability?; that a segment of scorfeoccurs by coincidence is also known
as the probability of observing one or more segments of s€pkghich can be approxi-
mated ad — exp(—Ps) = 1 — exp(—Kmne ).

Building under this assumption, suppose we firfdghest-scoring distinct segments of
scoresSy, S, . . ., S,, and suppose that for eaghS;, = \Sj —In(Kmn). Also assume that
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R=S+5S+...+S.andT = S+ S5+...+ S/ (and hencd" = AR — r x In(K'mn)).
Then,(, the coincidental probability of observimgsegments whose scores total to at least
R, can be approximated for Iargéas%.

Note that everything stated here is built under the assumgtihat we are dealing
with local alignments using little or no gaps, and that thghkscoring segments are ob-
tained from the dynamic programming table. However, erogiobservations have shown
that these results also work when using high-scoring seggadatained directly from lo-
cal alignments with significantly larger and more varied gage., the experiments and
metholodogy used bylRAINS. The K and ) values were calibrated forLRINS based on
observations of higest-scoring segments on alignmentarafamly generated sequences

of lengths randing fron300 to 4000.



