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ABSTRACT In this paper, we consider PLAINS, an algorithm that provides
efficient alignment over DNA sequences using piecewise-linear gap penalties that closely
approximate more general and meaningful gap-functions. The innovations ofPLAINS

are fourfold. First, when the number of parts to a piecewise-linear gap function is
fixed, PLAINS uses linear space in the worst case, and obtains an alignmentthat is
provably correct under its memory constraints, and thus hasan asymptotic com-
plexity similar to the currently best implementations of Smith-Waterman. Second, we
score alignments inPLAINS based on important segment pairs; optimize gap parame-
ters based on interspecies alignments, and thus, identify more significant correlations
in comparison to other similar algorithms. Third, we describe a practical implemen-
tation of PLAINS in the Valis multi-scripting environment with powerful and intu-
itive visualization interfaces, which allows users to viewthe alignments with a natural
multiple-scale color grid scheme. Fourth, and most importantly, we have evaluated the
biological utility of PLAINS using extensive lab results; we report the result of com-
paring a human sequence to a fugu sequence, wherePLAINS was capable of finding
more orthologous exon correlations than similar alignmenttools.

1 INTRODUCTION

To a rough approximation, DNA sequence alignment problem differs marginally from pro-
tein sequence alignment problem. (For instance, at a superficial level, one may note that
DNA alignment is over an alphabet of 4 letters whereas protein alignment is over an alpha-
bet of 20 letters). However, two key differences are that (1)there are 3 bp DNA code per
amino acid, and that (2) genes in DNA sequences that ultimately get transcripted and trans-
lated into proteins can be separated by intergenic regions of few thousands of base pairs
that do not get expressed, and perhaps, are subject to strikingly different (or no) selection
constraints. Thus these intergenic regions typically varyto a greater extent in one species
compared to another. Therefore, we may expect the gap lengths in DNA alignments to be
larger, more variable, and have specie-specific distributions. Moreover, these distributions
characterizing the gap-lengths may not be memory-less (i.e., exponential distributions).
There have been suggestions that power-law distributions may be more appropriate. The
evolutionary processes governing the genomes of species, and the log-likelihood of certain
indel gaps occurring when comparing one species against another suggest that a logarithmic
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gap function is more appropriate for DNA sequences. Becauseof this, the traditional affine
(or linear) gap functions used for aligning proteins are unsatisfactory for DNA sequences,
as the ultimate results may be biologically misleading.

In order to exploit the fidelity of general non-linear gap functions for DNA sequences,
without suffering performance penalites associated with them, we have chosen to use piecewise-
linear gap functions modeled to approximate the gap functions in a dynamic programming
approach. Here, we present an implementation of an alignment algorithm that uses rea-
sonable amount of memory, avoids a major shortcoming associated with generalized gap
penalties, and only demands a loss of constant factor (of≤ 5.6) in time complexity com-
pared to the best algorithm using an affine-gap model. There have been other algorithms
that also proposed piece-wise linear gap model (see Miller-Myers [9]), but we present
several additional theoretical innovations in terms of worst-case upper-bound memory us-
age, alignment optimization, and visualization of data. Wehave the algorithm available
in a powerful bioinformatic environment, calledValis. Our algorithm uses an innovative
learning-heuristic to determine the best score function, anear-optimal gap-penalty model,
and a scheme to computeP -values for reporting alignment reliabilities.

As we hope to demonstrate here by an extensive set of experimental results, our algo-
rithm works satisfactorily for DNA sequences, and can better reveal the underlying bio-
logical significances than other existing algorithms (e.g., needle, swat, emboss, etc.). As
a concrete example, we present our alignment results for thegenomic sequences of a pair
of orthologous genes in Human and Fugu. While all the alternative alignment algorithms
either fail by mis-aligning the exons in the Fugu sequence, or by not identifying important
correlations, PLAINS is able to recover the orthologous relation between exons in the Fugu
and Human sequences with good reliability. (See Fig. 2)

2 THE MAIN ALGORITHM OVERVIEW

2.1 CREATING AN ALIGNMENT

Using a mismatch penaltyms, a p-part piecewise-linear gap penalty functionww(·), and
reward per match fixed at1, PLAINS generates an alignment for two sequencesX andY of
lengthsm andn using a method similar to Miller-Meyers [9], except that because PLAINS

exclusively uses piecewise-linear gap functions (as opposed to general gap functions), it is
able to take advantage of an algorithm of its very own, and usesO(np) space in the worst-
case5. Further details of how PLAINS generates an alignment, and the proofs of itsO(np)
space bound and the correctness of the computed alignment obtained can be found in the
Unabridged PLAINS paper, which can be obtained from the authors upon request.

2.2 PLAINS LOG APPROXIMATION AND PARAMETER OPTIMIZATION

PLAINS is capable of converting any log function of log-baseα and y-interceptβ into a
d-approximatep-part piecewise-linear function. Hence, for fixedp, a set of gap/mismatch
paramters is dictated byv = (α, β, d, ms).

5 For all practical purposes,p is fixed at some constant value≤ 10, and hence we can say that PLAINS uses worst-case
linear space.
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Let f(v) denote theR-score (explained later) resulting from aligningX andY with
gap/mismatch parameters taken fromv. At the user’s request, PLAINS can find thev to
optimizef(v) using either Simulated Annealing or Genetic Algorithm. Both are explained
in [4]. Empirical runs over PLAINS have shown that Simulated Annealing yields better
results, but Genetic Algorithm explores the space ofv more thoroughly. However, all of
this should come of no surprise, since (1) Monte Carlo related methods are successful in
optimizing Hidden Markov Models (which are similar to sequence alignments), and (2)
Genetic Algorithms typically consider subsequent solutions in a more random manner than
Simulated Annealing. PLAINS is designed so that any algorithm to optimize gap/match-
mismatch parameters can easily be plugged in instead of these two methods; for instance,
one may search parameters with a somewhat time consuming MCMC approach, or variants
such as Gibbs sampler or EM.

2.3 THE PLAINS SCORING SYSTEM

For a fixed set of gap/match-mismatch parametersv, PLAINS creates an alignment and
scores it by identifying segment pairs that yields “good” scores. The sum of these segment
pairs’ scores (which we callR) is the value PLAINS reports, and not the score obtained
from the dynamic table. This approach results in a more meaningful result, because, when
we observe an alignment, it is the segment pairs of high scores that are the only true items
of significance.

There are many ways to optimally select segment pairs. The method chosen by PLAINS

creates the alignment first, and uses the alignment to obtainthe segment pairs. Unlike nost
other alignment algorithms, PLAINS avoids selecting segment pairs from the dynamic ta-
ble, because PLAINS uses linear space in memory, and “grabbing” segment pairs from the
dynamic table would typically require quadratic space in some way or another. Further-
more, PLAINS assumes that both mismatches and gaps are allowed in the segment pairs
(though sparingly, since the segment pair has to be considered a “good” one).

Using fixed constantsW , ω, andρ, PLAINS iterates over an alignmentA, collecting
scores from a moving window of sizeW . This identifies the segments with scores of a
certain percentage above the average6 in A. Next, we trim the ends of these segments to
begin and end with a match. Then, we merge any overlapping segments, recompute the
scores for all segments, and get each segment’s probabilityP ′

S of having its scoreS occur
by coincidence. Any segments withP ′

S > ρ are removed. Any segments that remain are the
“good” ones. For thoser “good” segments that remain, we conclude by computingR and
ζ , whereR is the sum of the scores of ourr “good” segments, andζ is the Karlin-Atschul
coincidental probability thatr “good” segments have a total score at leastR. A further
explanation forP ′

S andζ are mentioned in appendix B.
SettingW = 50, ω = 0.5, ρ = 0.5 empirically yields segments that are reasonably

long, and have significantly higher matches than the alignment “background”. With these
values forW andω, we ran PLAINS over900 pairs of randomly generated sequences, each
with lengths ranging from500 thru 4000, and observed the “good” segments computed.7

6 Note:ω dictates this percentage. Furthermore, the choice to use a percentage above average instead of a fixed-constant
cutoff score gives PLAINS the flexibility to catch important regions from any two sequences, regardless of how ho-
mologous they are to each other.

7 Note: We temporarily ommitted theρ-filtering step here.
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From this empirical study, it was estimated thatK = 3.31 ∗ 10−4 andλ = 0.0762, where
K andλ are the Karlin-Altschul constants used to normalize segment scores.

Using our knownK, λ, W , ω, ρ values, PLAINS can take any prespecified gap/mismatch
paramtersv, and report the overall alignmentA obtained for sequencesX andY , along
with all the “good” segment pairs, their scores andP values, and theR score andζ value.
In the event thatr = 0, thenR = 0 and PLAINS will report that no “good” segments were
obtained.

2.4 THE PLAINS COLORGRID METHOD

For visualization of the computed alignments, the PLAINS program ported in Valis uses
a coloring grid to summarize high and low matched areas forX found in the alignment.
It works as follows: For someM , we color in a grid with at mostM spots. We set color
spot1 based on the match percentage found inX[1, . . . , m/M ] in the alignment; we set
spot2 to a color based on the match percentage found inX[m/M + 1, . . . , 2m/M ] in the
alignment; we set spoti to a color based on the match percentage found inX[(i−1)m/M +
1, . . . , im/M ] in the alignment; and so on. The coloring grid forY works in a similar way.8

Notice how here, the number of match percentages found is a fixed size. The color com-
putations in this way has many advantages, such as how it handles the limited resolution of
the computer screen compared to the sizes ofX andY .

In addition to visualizing color grids for all ofX andY , users also have the option
to view portions ofX or Y by specifying a substring range for eitherX or Y , with the
Colorgrid of the unspecified sequence automatically resized to represent the corresponding
area in the specified sequence’s substring.

3 EMPIRICAL RESULTS

Two set of experiments were performed and used to compare PLAINS to the similar lo-
calized DNA alignment tools of EMBOSS, LAGAN, and LALIGN. The first set of ex-
periments involve related sequences. The second set involve unrelated sequences. Tables 1
and 2 explain details and results on both sets of test runs, and appendix A features tables
and figures that elaborate further. LAGAN uses piecewise-linear gap functions just like
PLAINS, whereas EMBOSS and LALIGN use linear gap functions. Figure1 shows the gap
functions for PLAINS and the other tools.

Based on the results, we see that for the humanHomol runs, where there are small gaps
and an expectation of medium to high homology levels, PLAINS and the other tools give
close and consistent results. For the HumanPseudo runs, where there are slightly larger
gaps and lower expected homology levels, PLAINS begins to show its advantages over the
other tools. For the HFugu2r and HFortho runs, where there are very large gaps and very
low homology levels, but still a biological relation, PLAINS is the only tool that can identify
importances in such relations. Figures 2 and 3 further compare results for the HFortho2 and
HumanPseudo5 runs.9

8 Figures 2 and 3 are examples of this, with brighter colors signifiying high-match areas, and darker colors signifying
lower-match areas. Black is used to signify areas of little-to-no match, as well as nucleotides ofX or Y that were
unaligned.

9 The latter of these two figures is in appendix A.
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Name Species Lengths Sequence Gap E(Id%) PLAINS EMBOSSLAGAN LALIGN
Nature Size r ζ′ r ζ′ r ζ′ r ζ′

humanHomol_15 Human vs. 8K vs. cDNA small 86%(nt) 1 0.894 1 0.686 1 0.745 1 0.686
humanHomol_16 Mouse 400-3000 90%(nt) 1 68.3432 48.256 1 64.3704 32.441
MousePseudo1 Mouse 2.4K-9.6K 62%(nt) 2 3.168 2 3.087 2 3.169 1 2.965
MousePseudo2 vs. vs. genomic medium55%(nt) 1 0.562 2 0.784 1 0.658 1 0.650
MousePseudo3 Pseudogene 400-500 56%(nt) 0 X 0 X 0 X 0 X
HumanPseudo1 83%(nt) 3 1.881 3 1.437 1 0.470 1 0.502
HumanPseudo2 Human 1.5K-11.2K 74%(nt) 3 1.372 0 X 1 0.332 0 X
HumanPseudo3 vs. vs. genomic medium85%(nt) 8 21.8275 11.998 8 16.8582 5.415
HumanPseudo4 Pseudogene400-4000 74%(nt) 1 0.538 0 X 0 X 0 X
HumanPseudo5 75%(nt) 3 2.909 1 0.901 1 1.046 1 0.689

HFugu2r 58%(aa) 2 2.523 0 X 0 X 0 X
HFortho1 Human 6K-12K 55%(aa) 2 1.381 0 X 0 X 0 X
HFortho2 vs. vs. genomic large 52%(aa) 2 6.158 1 3.808 1 3.182 0 X
HFortho3 Fugu 1.8K-3.6K 64%(aa) 4 3.894 0 X 0 X 0 X
HFortho4 52%(aa) 4 6.071 0 X 0 X 0 X
HFortho5 73%(aa) 1 3.328 0 X 0 X 0 X

Table 1. Sequence Descriptions and Results for the Related Experiments Ran. All the sequences are retrieved from
ENSEMBL database [www.ensembl.org]. Note for the E(Id%) column: E(Id%) stands for Expected Identity Percentage
in the Homologous Regions, and(nt) indicates match percentage of nucleotides, and(aa) indicates match percentage
of amino acids after the two DNA sequences are transcribed into proteins. Shown here are ther, andζ′ values obtained
from the “good” segments of each run (whereζ′ = −log(ζ)). The alignment-evaluation criteria of PLAINS was used
to evaluate the alignments of the other tools. Because of thetriviality in arbitrarily generating highR scores, we instead
look for higherζ′ values to indicate better quality alignments. When no “good” segments are found, an X is placed as the
ζ′ value.

Name Species Lengths SequencePLAINS EMBOSSLAGAN LALIGN
Nature r ζ′ r ζ′ r ζ′ r ζ′

HFncd1 Human 10K-20K 0 X 0 X 0 X 0 X
HFncd2 vs. vs. noncoding0 X X X 0 X 0 X
HFncd3 Fugu 6K-10K 0 X X X 0 X 0 X
FFcd1 0 X 0 X 0 X 0 X
HFcd1 Human, Fugu, 1.5K-4.8K 0 X 0 X 0 X 0 X
HHcd1 and Mouse vs. coding 1 1.568 0 X 0 X 0 X
HMcd1 (All six combinations)1.5K-4.8K 2 3.517 0 X 0 X 0 X
MFcd1 0 X 0 X 0 X 0 X
MMcd1 0 X 0 X 0 X 0 X

Table 2. Sequence Descriptions and Results for the Unrelated Experiments Ran. All the sequences are retrieved from
ENSEMBL database [www.ensembl.org]. Note: In the HFncd2 and HFncd3 experiments, an X is placed as ther andζ′

values for EMBOSS because EMBOSS ran out of memory aligning those experiments. Here, the unrelated sequences
show that the sensitivity of PLAINS is not caused by compromised specificity. Furthermore, although not shown here,
PLAINS, EMBOSS, LAGAN, and LALIGN all catch no correlations when given randomly generated DNA sequences
of lengths up to8000. Please note that the correlations that PLAINS caught in the HHcd1 and HMcd1 experiments are
protein codon homologies, most of them being a short stretchof perfect matches located relatively close to each other.
Although these runs were meant to check how PLAINS behaves with unrelated sequences, the correlations PLAINS caught
could ironically hold some sort of importance that has been usually ignored.
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Fig. 1.Gap-parameters Graph. PLAINS optimizes the best gap/mismatch parameters based on the pair of species aligned,
and the nature of the sequence. This is resemblant of LAGAN’stechniques to account for the nature of species in per-
forming its alignments. Graphed here are some of the gap-parameters PLAINS found, along with the gap-parameters of
the other tools, rescaled under the assumption of1 point per match. Note: LAGAN uses a number of unknown piecewise-
linear gap parameters in aligning on a species by species basis. Shown here is simply the known default gap-parameters
for LAGAN.

Fig. 2. Match Ratio Color Lines in the HFOrtho2 test for PLAINS and EMBOSS. Here, the Human and Fugu sequence
used have six exon regions, most with some sort of correspondence to each other. Here, both PLAINS and EMBOSS
correctly identify the correlation of exon region 2 in Fugu with exon region 3 in Human, but only PLAINS correctly
identifies the correlation of exon region 5 in Fugu with exon region 5 in Human.

Each run of PLAINS to optimize gap/mismatch parameters on a pair of species took
30 minutes to2 hours. The relatively long time taken by PLAINS is due to its need for
computing several hundred alignments under various gap/mismatch parameters before de-
ciding which gap/mismatch parameters are the most optimal.When ran using fixed-set
gap-mismatch parameters, PLAINS ran in just under a minute, a constant factor of at most
5.6 times slower thanEMBOSS. The reason for this slowdown is manifold: (1) PLAINS uses
a linear space table instead of the quadratic space typical of dynamic programming, and (2)
there is constant extra overhead in using Linked-List Assistance (similar to that of [9]) to
help create an alignment.

Plains can easily align a pair of sequences, each with nucleotides of up to8Kb. It
can either (1) seek the best gap-mismatch parameters for a given pair of sequences and
align with those parameters, or (2) use a user-specified set of gap-mismatch parameters
to align the pair of sequences. In (1), the runtime typicallyranges from30 minutes to2
hours. In (2), the runtime typically ranges from10 seconds to1 minute. Plains can either



7

be used via commandline, or as part of the Valis tool set. Moreinformation can be found at
http://bioinformatics.nyu.edu/˜gill

4 CONCLUSIONS

PLAINS is able to catch more important correlations than its competition, especially in se-
quences with expected large gaps and low homologies like Human and Fugu. Furthermore,
PLAINS is also capable of distinguishing related sequence pairs from unrelated ones. Con-
sequently, we believe PLAINS is a promising tool for alignment of long regions of genomes.
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Appendix

A NAMES OF THESEQUENCESUSED

Tables 3 and 4 list the specific sequences used in the experiments ran on PLAINS, EMBOSS,
LAGAN, and LALIGN. Tables 5 and 6 show theR, r, andζ ′ values obtained from the
“good” segments of each alignment. And, figure 3 elaborates on the comparison between
PLAINS and LAGAN for the HumanPseudo5 experiment.

Name First Sequence Second Sequence

humanHomol_15 ENST00000263253 ENSMUST00000050968
humanHomol_16 ENST00000263253 ENSMUST00000068387

MousePseudo1 ENSMUSG00000016720 pseudogene
MousePseudo2 ENSMUSG00000004038 pseudogene
MousePseudo3 ENSMUSG00000034321 pseudogene

HumanPseudo1 ENSG00000087086 pseudogene
HumanPseudo2 ENSG00000164104 pseudogene
HumanPseudo3 ENSG00000079432 pseudogene
HumanPseudo4 ENSG00000135486 pseudogene
HumanPseudo5 ENSG00000101210 pseudogene

HFugu2r ENSG00000111845 SINFRUG00000137119 (reverse-complement)
HFortho1 ENSG00000183628 SINFRUG00000128815
HFortho2 ENSG00000099937 SINFRUG00000140660
HFortho3 ENSG00000142168 SINFRUG00000132716
HFortho4 ENSG00000138764 SINFRUG00000152968
HFortho5 ENSG00000057757 SINFRUG00000123004

Table 3. Sequence Details for the Related Experiments Ran. All the sequences are retrieved from ENSEMBL database
[www.ensembl.org].

Name First Sequence Second Sequence

HFncd1 Human NCBI34:1:190164774:190174772 FUGU2:scaffold_5343:1:5999:1
HFncd2 Human NCBI34:22:32724006:32744004:1 FUGU2:scaffold_3421:1:9999:1
HFncd3 Human NCBI34:10:56721585:56731583:1 FUGU2:scaffold_1415:1:6999:1

FFcd1 SINFRUT00000127255 SINFRUT00000165154
HFcd1 ENSG00000150967.3 SINFRUT00000127255
HHcd1 ENSG00000150967.3 ENST00000259748
HMcd1 ENSG00000150967.3 ENSMUST00000025930
MFcd1 ENSMUST00000025930 SINFRUT00000165154
MMcd1 ENSMUST00000031354 ENSMUST00000024034

Table 4.Sequence Details for the Unrelated Experiments Ran. All thesequences are retrieved from ENSEMBL database
[www.ensembl.org].
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Test Name PLAINS EMBOSS LAGAN LALIGN
R r ζ′ R r ζ′ R r ζ′ R r ζ′

humanHomol_15 116.871 1 0.894 110.000 1 0.686 112.000 1 0.745 110.000 1 0.686
humanHomol_16 2184.956 1 68.343 1751.000 2 48.256 2064.917 1 64.370 1568.200 4 32.441
MousePseudo1 267.956 2 3.168 265.200 2 3.087 268.000 2 3.169 166.000 1 2.965
MousePseudo2 106.319 1 0.562 203.200 2 0.784 109.667 1 0.658 109.400 1 0.650
MousePseudo3 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X
HumanPseudo1 281.992 3 1.881 255.200 3 1.437 83.250 1 0.470 84.400 1 0.502
HumanPseudo2 281.851 3 1.372 0.000 0 X 89.000 1 0.332 0.000 0 X
HumanPseudo3 1782.646 8 21.827 1066.700 5 11.998 1383.583 8 16.858 439.200 2 5.415
HumanPseudo4 110.620 1 0.538 0.000 0 X 0.000 0 X 0.000 0 X
HumanPseudo5 446.425 3 2.909 138.000 1 0.901 142.667 1 1.046 131.000 1 0.689

HFugu2r 322.784 2 2.523 0.000 0 X 0.000 0 X 0.000 0 X
HFortho1 282.933 2 1.381 0.000 0 X 0.000 0 X 0.000 0 X
HFortho2 452.657 2 6.158 234.600 1 3.808 215.667 1 3.182 0.000 0 X
HFortho3 627.357 4 3.894 0.000 0 X 0.000 0 X 0.000 0 X
HFortho4 737.478 4 6.071 0.000 0 X 0.000 0 X 0.000 0 X
HFortho5 217.274 1 3.328 0.000 0 X 0.000 0 X 0.000 0 X

Table 5.Related Run Scores for PLAINS, EMBOSS, LAGAN, and LALIGN.

Test Name PLAINS EMBOSS LAGAN LALIGN
R r ζ′ R r ζ′ R r ζ′ R r ζ′

HFncd1 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X
HFncd2 0.000 0 X X X X 0.000 0 X 0.000 0 X
HFncd3 0.000 0 X X X X 0.000 0 X 0.000 0 X
FFcd1 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X
HFcd1 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X
HHcd1 139.604 1 1.568 0.000 0 X 0.000 0 X 0.000 0 X
HMcd1 341.872 2 3.517 0.000 0 X 0.000 0 X 0.000 0 X
MFcd1 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X
MMcd1 0.000 0 X 0.000 0 X 0.000 0 X 0.000 0 X

Table 6.Unrelated Run Scores for PLAINS, EMBOSS, LAGAN, and LALIGN.
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Fig. 3. Match Ratio Color Lines in the HumanPseudo5 test for PLAINS and LAGAN. Here, the Human sequence has 8
exon regions that are similar to areas of the pseudosequenceused, and alignments of PLAINS and LAGAN for these cases
are similar, even by eyeglance of the ColorGrids. Note that although PLAINS and LAGAN catch most of these regions in
their alignments, we’re only counting the exon regions thatparticipate in “good” segments. With this in mind, PLAINS and
LAGAN both identify exon region 4 as important, but PLAINS also deems exon regions 6 and 7 in the Human sequence
as important, which LAGAN misses.

B THE PLAINS PROBABILITY METHOD

The PLAINS approach to estimating the significance of an alignment under an arbitrary
gap model is based on the Karlin-Altschul methods from [6] and [7], and was motivated
by the desire to identify the biological relevance of a generated alignment instead of just
creating an arbitrary alignment with a set of “good” segments. Their methods provide a
way to approximate reliability without requiring excessive biological information from our
two sequencesX andY .

The Karlin-Altschul method works on gapless local alignments as follows: Suppose for
each letteri thatpi is the probability of observing letteri in sequenceX, and for each letter
j thatp′j is the probability of observing letterj in sequenceY , and that the score for pairing
letter i with j is sij . We may suppose that for a random pair of sequences, the expected
alignment scoreΣi,jpip

′

jsij is negative; and nonetheless, it is possible to generate a positive
score. Also, suppose each high-scoring segment is found independently of each other. Then,
for someλ, Σi,jpip

′

je
λsij = 1. Also, the maximum segment score, taken from a large num-

ber of independently identically distributed random variables of segments, tends to have
a normal distribution. In cases of normal distribution, theprobability a segment scores at
leastS can be approximated bye−S. However, because the score increases logarithmically
in terms ofmn, the product of the lengths ofX andY , and the rate of this increase is
unknown, and since we would also like to account forλ in our formulation, we substitueS ′

instead of our scoreS, whereS ′ = λS − ln(Kmn), and hence we say thatPS, the proba-
bility a segment scores at leastS is e−S′

= e−(λS−ln(Kmn)) = e−λS+ln(Kmn) = Kmne−λS .
From this, the probabilityP ′

S that a segment of scoreS occurs by coincidence is also known
as the probability of observing one or more segments of scoreS, which can be approxi-
mated as1 − exp(−PS) = 1 − exp(−Kmne−λS).

Building under this assumption, suppose we findr highest-scoring distinct segments of
scoresS1, S2, . . . , Sr, and suppose that for eachk, S ′

k = λSk−ln(Kmn). Also assume that
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R = S1 + S2 + . . . + Sr andT = S ′

1 + S ′

2 + . . . + S ′

r (and henceT = λR− r ∗ ln(Kmn)).
Then,ζ , the coincidental probability of observingr segments whose scores total to at least
R, can be approximated for largeT as e−T T r−1

r!(r−1)!
.

Note that everything stated here is built under the assumptions that we are dealing
with local alignments using little or no gaps, and that the high-scoring segments are ob-
tained from the dynamic programming table. However, empirical observations have shown
that these results also work when using high-scoring segments obtained directly from lo-
cal alignments with significantly larger and more varied gaps, i.e., the experiments and
metholodogy used by PLAINS. TheK andλ values were calibrated for PLAINS based on
observations of higest-scoring segments on alignments of randomly generated sequences
of lengths randing from500 to 4000.


