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ABSTRACT In the original work on cluster-

ing due to Eisen et al., in which they performed one

of the most highly-re-analyzed microarray dataset of

gene expressions, the authors claimed to have “found

in the budding yeast Saccharomyces cerevisiae that

clustering gene expression data groups together effi-

ciently genes of known similar function.” However,

they measured similarity between any pair of genes

using a somewhat non-standard definition of corre-

lation coefficient instead of Pearson’s correlation co-

efficient, an unbiased estimator. Eisen et al.’s paper

remains mysteriously silent about how drastically

the clusters of genes would change if one changed

the definition of similarity back to Pearson’s cor-

relation coefficient, or to any other from a larger

family of estimators between Pearson’s and Eisen et

al.’s, obtained by a “shrinkage coefficient” taking a

value between 0 and 1. Their approach raised sev-

eral issues: what would be the best shrinkage coef-

ficient; how can one compute it and whether it can

be computed quickly in a closed-form. Mishra and

his students answered these questions in a recent pa-

per, but left it for future research to understand if

there is even a wider family of similarity metrics,

even though such metrics may not be computable in

closed form. We take up this problem in this pa-

per and suggest how to compute a somewhat better

similarity metric using an MCMC algorithm; how to

define an intuitively clear Bayesian risk assessment

and finally, how to interpret the empirical results

obtained through simulation.

∗To whom correspondence should be addressed. E-mail:

mishra@nyu.edu

1 Problem Formulation

In the post-genomic biology, clustering genes by their sim-
ilarity has now occupied many biologists and statisticians
for almost half a decade. Although the relevance of such a
succinct representation in understanding fundamental prin-
ciples of biology is yet to be firmly established, there is much
less disagreement that the resulting data reorganization may
add clarity to the subsequent bioinformatic analysis and ex-
periment design, e.g., interpreting ChIP-Chip experiments,
looking for cis-regulatory elements, etc. There is now a
rapidly mushrooming body of genomics literature devoted
to clustering, co-clustering, bi-clustering, etc., with random
or designed sets of conditions and different definitions of sim-
ilarity, and yet, there is much less attention paid to derive a
statistically robust definition for similarity of genes.

In the usual setting, starting with a series of expression
microarray experimental data, one wishes to estimate simi-
larity between the expression levels of a pair of genes because
it is frequently indicative of functional relationships between
them. Highly correlated transcriptomic behavior of a group
of genes often suggests the presence of causal relationships,
usually through common regulatory mechanisms. Identify-
ing such potential relationships is of primary importance

1. In understanding and modeling microarray and other
genetic data, and

2. In inferring functional relationships crucial to predictive
and other kinds of inference.

These identifications frequently arise from partitioning genes
into closely related groups, called clusters. Traditionally, al-
gorithms for cluster analysis of expression data are based on
statistical properties of gene expressions and result in orga-
nizing genes according to similarities between their patterns
(see [1]).
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One of the earliest and most popular clustering algorithms
reported in the literature and due to Eisen et al. ([6] and [8])

1. Associates genes with expression vectors consisting of
the logarithms of ratios of the amounts of transcribed
mRNA under various conditions with respect to their
values under normal conditions, and

2. Clusters these expression vectors using a hierarchical
clustering algorithm with ‘an appropriate’ (see [6]) sim-
ilarity metric.

In Eisen et al.’s paper [6], the authors claimed to have “found
in the budding yeast Saccharomyces cerevisiae that cluster-
ing gene expression data groups together efficiently genes of
known similar function,” but did not address how best the
similarity between a pair of genes is to be estimated. Eisen et
al. used a somewhat non-standard (biased) definition of cor-
relation coefficient instead of the usual unbiased estimator
of Pearson. Mysteriously, this paper remained silent about
how drastically the clusters would change if one changed the
definition of similarity back to Pearson’s estimator of cor-
relation coefficient or to one of an infinite family of biased
estimators between Pearson’s and Eisen et al.’s that could
be obtained by introducing a “shrinkage coefficient” (as dis-
cussed below) taking a value between 0 and 1.

Note that, with a large data samples, the best unbiased
estimator for similarity is obtained through Pearson’s Corre-
lation Coefficient, referred to above. The similarity metric,
proposed by Eisen et al. [6], is obtained by setting the mean
expression value µ in Pearson’s correlation coefficient to 0.
The motivation for this modification was provided by their
prior knowledge that the logarithm of mean expression ratios
for genes was often known (apart from noise) to be 0. To
avoid confusion between parameters below, we refer to the
mean expression µ as the baseline value and employ a dif-
ferent parameterization for it. Cherepinsky et al. [3] argued
that, in view of the Bayesian paradigm, prior knowledge re-
garding these baseline values should be combined with the
observed gene expression levels for purposes of estimating
the baseline. Intuitively, their definition implied modifying
the baseline value to β̂ · µ (0 ≤ β̂ ≤ 1), where the shrinkage

parameter β̂ gives rise to a family of estimators with Eisen’s
and Pearson’s being two extrema, for β̂ = 0 and β̂ = 1,
respectively. In doing so, Cherepinsky et al. introduced flex-
ible similarity metrics which depend on the data, but also
raised several important questions:

1. What would the ‘best ’ shrinkage coefficient be in this
context; and

2. How can such coefficients be computed.

While [3] addressed these questions in this limited setting,
they left it for future research to characterize and solve these
questions in general statistical settings, in which similarity
metrics can depend on the (assumed) statistical model as
well as the data.

In this paper, we take up this problem by,

1. Characterizing the ‘true’ baseline (or offset) values as
parameters whose estimation leads to the determination
of intergene correlation and clustering (section 2),

2. Defining prior distributions over these intergene corre-
lations using this characterization (also, section 2), and

3. Comparing Bayes risks for different intergene correla-
tion estimators (section 3).

Different statistical models (see, section 3) arise depending
on,

• Whether we assume all baseline parameter for the same
gene are equivalent and/or

• Whether we assume baseline parameters for different
genes are mutually independent.

We examine these models to compare the different correla-
tion and estimators arising from them. We also assess the
fitness of the statistical models devised in this paper and
examine robustness properties which they enjoy (section 4).
We also evaluate the global accuracy of our method by cata-
loging false positives and negatives in the clustering as sim-
ilarity metrics and models are varied.

As mentioned earlier, algorithms for clustering expression
data are designed to organize genes according to similari-
ties in their pattern of expression. Coexpression of genes of
known functionality with new genes leads to a discovery pro-
cess designed to characterize the functionality of unknown or
less-well-known genes. False negatives result when pairs of
coexpressed genes are assigned to distinct clusters; false pos-
itives result when pairs of independent genes are assigned to
the same cluster. The former indicates that the discovery
process is ignoring useful information while the latter adds
noise to the discovery process.

In this paper we employ self-organizing maps (SOM) [7]
for clustering genes; they are specifically designed to pro-
duce clusters whose members have a high degree of similarity,
according to the (parameter dependent) metric introduced
below. We index the clustering procedures used below by
specifying a smallest level of similarity (between an expres-
sion vector and its cluster center) necessary to belong to a
cluster; we denote this by α (0 < α < 1). Clustering pro-
cedures associated with large cutoff values are more robust



2 MODEL FORMULATION 3

to the introduction of spurious expression features; those
with smaller cutoff values are less robust to the introduction
of these features. Procedures of the former variety tend to
produce more clusters; these tend to exclude false positives.
Procedures of the latter variety produce fewer clusters; these
tend to exclude false negatives.

Our results demonstrate conclusively that, in such set-
tings, the shrinkage estimators introduced by Cherepinsky
et al. [3] more accurately estimate intergene similarity.

2 Model Formulation

We assume that the observed expression data consists of the
matrix

X = {Xg,c}g=1,...,G;c=1,...,C
,

with g = 1, . . ., G indexing the genes and c = 1, . . ., C in-
dexing the conditions (of the expression vectors). Our goal is
to estimate the similarities between the observed expression
vectors, Xg

(Xg = (Xg,1, . . . , Xg,C) , g = 1, . . . , G).

One class of quantitative measures of similarity take the
form,

rbaseline(Xg,Xh) (1)

=

PC

c=1
(Xg,c − baselineg)(Xh,c − baselineh)qPC

c=1
(Xg,c − baselineg)2

PC

c=1
(Xh,c − baselineh)2

where ‘baselineg’ denotes the (central) baseline (or offset)
value associated with expression vector (g = 1, . . ., G). We
note that all such quantities take values in the closed inter-
val [−1, 1]; they differ only in regards to what is assumed
regarding the baseline values for the given vectors. A more
general class of quantitative measures of similarity can be
constructed if the baseline values baselineg are allowed to
depend on both the gene ‘g’ and the condition ‘c’.

Examples of such measures include:

1. Pearson’s Correlation, defined by:

rp(Xg,Xh) (2)

=

PC

c=1
(Xg,c −Xg)(Xh,c −Xh)qPC

c=1
(Xg,c −Xg)2

PC

c=1
(Xh,c −Xh)2

We note that the baseline values are given, in this set-
ting, by the corresponding (vector) sample means.

2. Eisen’s Correlation, defined [6] by:

re(Xg,Xh) (3)

=

PC

c=1
(Xg,c)(Xh,c)qPC

c=1
(Xg,c)2

PC

c=1
(Xh,c)2

We note that the baseline values are all taken to be 0
in this setting.

3. Linear Correlation estimators, [2] defined by:

rLC(Xg,Xh) (4)

=

PC

c=1
(Xg,c −

bβXg)(Xh,c −
bβXh)qPC

c=1
(Xg,c −

bβXg)2
PC

c=1
(Xh,c −

bβXh)2

where β̂ is a real-valued coefficient estimated from the
full data set as shown below. We note that this defini-
tion is motivated by using baseline values which shrink
the sample mean vector toward 0.

More generally, we can construct linear correlation esti-
mators which shrink the sample mean vector toward an
alternative fixed vector; this is done below.

4. Compound Linear Correlation estimators, defined by:

rCLC(Xg,Xh) (5)

=

PC

c=1
(Xg,c −

bBgXg)(Xh,c −
bBhXh)qPC

c=1
(Xg,c −

bBgXg)2
PC

c=1
(Xh,c −

bBhXh)2

where B̂ = (B1, . . . , BG) is a vector of real-valued co-
efficients estimated from the full data set as described
below in more details. We note that this definition is
motivated by using baseline values which shrink each
component of the sample mean vector toward 0 by the
(respective) factors B1, . . ., BG

Note that when B1 = · · · = BG = β̂ then it becomes
rLC , and if in addition β̂ = 1 (respectively, = 0) then it
becomes rp (respectively, re).

Each of these similarity measures (arguably) provides an
appropriate measure of dependence between expression vec-
tors in settings appropriate to its application. In order to
facilitate comparisons between them, it is necessary to de-
fine what is, in effect, being estimated by these quantities.
Pursuant to this purpose, we define a ‘true’ baseline value
for each gene. Measures of similarity between each given
pair of observed expression vectors are computed in terms of
these true baseline values; the resulting values are referred
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to below as their ’true’ similarities (similar to ‘clairvoyant’
similarity metric of [3]) .

Procedures for simultaneously estimating the similarity
between each given pair of genes are assessed by how closely
they approximate the ‘true’ similarities between them. As-
sessing the efficiency of such procedures requires the assump-
tion of a statistical model. Below, we describe three such
models.

2.1 Statistical Models of Type I

Let
{
θg

}
be (real valued) parameters representing the ‘true’

baseline values for the (respective) observed expression vec-
tors

{Xg}g=1,...,G
.

We assume that the baseline value θg is the common ex-
pected value

{
Xg,c

}
of the components of the vector Xg

(g = 1, . . ., G) (i.e., EθXg,c = θg; g = 1, . . ., G; c = 1, . . .,
C). We also let

{
σg

}
denote additional parameters which

characterize the distribution of the observations. It is as-
sumed that the parameters,

{θg, σg}g=1,...,G

are independent and identically distributed (i.i.d.) with
prior distribution π(•|Γ); Γ denotes the model’s hyperpa-
rameter(s). The true similarity between vectors Xg, and
Xh is defined, in this setting, to be:

r(Xg,Xh; θg, θh) (6)

=

PC

c=1
(Xg,c − θg)(Xh,c − θh)qPC

c=1
(Xg,c − θg)2

PC

c=1
(Xh,c − θh)2

Estimates r(Xg ,Xh; θ̂g, θ̂h) of the true similarity (between
expression variables) Xg and Xh) are formed by replacing
the baseline parameters, θg, θh with the (respective) esti-

mates, θ̂g, θ̂h which depend on the observed data. We note
that

• For Pearson similarity estimates, θ̂g = Xg ;

• For Eisen similarity estimates, θ̂g = 0;

• For linear correlation estimates, θ̂g = β̂ · Xg,

(g = 1, . . ., G).

2.2 Statistical Model: Type II

Model II differs from Model I in dropping the assumption
that the parameters θ1, . . ., θG are mutually independent and

identically distributed (i.i.d.). As an example, assume the θ
parameters have a prior Gaussian distribution with common
mean µ, common variance τ2 and common correlation ρ.

2.3 Statistical Model: Type III

Let

{Θg}
G

g=1

(with Θg = (Θg,1, . . ., Θg,C)) be (vector valued) param-
eters representing the ‘true’ baseline component values for
the (respective) observed expression vectors

{
Xg

}
g=1,...,G

.

We assume that the baseline value Θg,c is the expected value
of the component, Xg,c of the vector Xg (g = 1, . . ., G) —
i.e.,

EθXg,c = Θg,c; g = 1, . . . , G; c = 1, . . . , C.

We also let
{
Σg

}
denote additional parameters which char-

acterize the distribution of the observations. It is assumed
that the parameters,

{Θg, Σg}g=1,...,G

are independent and identically distributed (i.i.d.) with
prior distribution π(•|Γ); Γ denotes the models hyperparam-
eter(s). The true similarity between vectors Xg, and Xh is
defined, in this setting, to be:

r(Xg,Xh; Θg, Θh) (7)

=

PC

c=1
(Xg,c −Θg,c)(Xh,c −Θh,c)qPC

c=1
(Xg,c −Θg,c)2

PC

c=1
(Xh,c −Θh,c)2

Estimates r(Xg ,Xh; Θ̂g, Θ̂h) of the true correlation (be-
tween variables Xg and Xh) are formed by replacing the
baseline parametric vectors, Θg, Θh with the (respective)

estimates, Θ̂g, Θ̂h which depend on the observed data. We

note that for compound linear correlation estimates, Θ̂g =

B̂′Xg, (g = 1, . . ., G). As an example of a model of this type
let c0 (between 1 and C) be a fixed cutpoint and assume the
parametric vectors Θ1, . . ., ΘG are mutually independent
and identically distributed with prior distribution described
by:

Θg,c =

{
θg,1, if 1 ≤ c ≤ c0;
θg,2, if c0 < c ≤ C.

and

θg,1 = µ + ǫg,1;

θg,2 = µ + γ · (θg,1 − µ) + ǫg,2;
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ǫg,1, and ǫg,2 are independent errors; and µ, and γ are inde-
pendent parameters.

Our results concern the advantages of estimating similar-
ity in model I and model II settings. We are currently explor-
ing the advantages of Model III settings. Models of type III
may be advantageous if there is a wide difference between
conditions (i.e., if the array columns are non-homogeneous).
Henceforth, in this paper, we assume a model I and/or II
setting only, unless otherwise specified.

3 Model Assessment for the Ob-

served Data

We initially assess the models described above for the data
set described below. One mechanism for doing so involves
the computation of cross-validated residuals [2]. Cross-
validated residuals traditionally measure the difference, for
each observation, between what is observed and what the
model predicts (without benefit of the given observation).
Since the similarities between pairs of expression vectors, as
defined above, are not observed we need to alter this defini-
tion slightly. Keeping this in mind, for each (unordered) pair
of expression vectors, we calculate residuals by comparing,
for each unordered pair of observations, its marginal simi-
larity with what we predict it to be (without benefit of the
given pair of observations). In other words, if CORR(θ)(•)
denotes the similarity between observations for fixed baseline
values θ, EbΓ denotes expectation with respect to the prior
distribution over θ when hyperparameters Γ are estimated
using their empirical Bayes estimates Γ̂, x−A denotes the
full set of observations with the index set A removed, and
Θg denotes the vector all of whose components are θg, we
define,

Residual(g, h) = EbΓ {CORRΘ (Xg,Xh)} (8)

−EbΓ {CORRΘ (Xg,Xh) |X−g,−h} ;

where 1 ≤ g < h ≤ G

Large residual values suggest lack of fit between the data
and the model for the correlation between the given pair
of observations. We can measure residual size in the units
of the problem or in standardized units; below, our results
measure these in standardized units.

3.1 Clustering Assessment

We employ a self-organizing map (SOM) algorithm [7] for
clustering, described in 4.4. This map yields a clustering of
the gene expression data for each given baseline value θ and

each critical value α (thus, distinguishing the measure of sim-
ilarity needed for a gene to be placed in a given cluster). In
such settings, the ‘true’ sensitivity (i.e., the fraction of true
positives given the baseline value) and the ‘true’ specificity
(i.e., the fraction of true negatives given the baseline value)
must be estimated. Using the terminology e.g., TP (θ, α) for
the number of true positives given the baseline value θ and
critical value α, the true sensitivity of a clustering procedure
is given by the formula;

TSens(α) =

{
TP (θ, α)

TP (θ, α) + FP (θ, α)

}
(9)

The true specificity is given by the formula;

TSpec(α) =

{
TN(θ, α)

TN(θ, α) + FN(θ, α)

}
(10)

An empirical Bayes estimate of the True Sensitivity is given
by the formula:

ESens(α) =
TP (θ̂, α)

TP (θ̂, α) + FP (θ̂, α)
, (11)

and an empirical Bayes estimate of the true specificity is
given by the formula:

ESpec(α) =
TN(θ̂, α)

TN(θ̂, α) + FN(θ̂, α)
. (12)

We can then provide (estimated) ROC curves consisting
of graphs of points with x-coordinate given by the estimated
specificity and y-coordinate the estimated sensitivity. We as-
sess clustering procedures by examining the relationship be-
tween confidence intervals for the true specificity/sensitivity
and the corresponding values of specificity/sensitivity for
Pearson and Eisen procedures (having the same critical
value).

3.2 Bayes Risk Assessment

We assess estimates of the true similarity between expres-
sion vectors using a Bayes risk formulation. The Bayes risk,
employed below, is the expectation of the sum of the squared
differences between the estimated and true similarity mea-
sures averaged over the marginal distribution of the obser-
vations. It measures how well we can predict the similar-
ity between gene pairs ‘on average’ under the given (like-
lihood/prior) model. The use of the Bayes risk, as a mea-
sure of estimator assessment avoids the bias implicit in using
the observed vectors themselves to assess their own relation-
ships to one another ([2] and [4]). Below, we argue that this
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Bayes risk assessment is entirely general, applying as it does
to all observations in which the same likelihood/priors are
assumed. We begin by constructing the Bayes risk for esti-
mating the similarity between expression vectors, Xg, and
Xh. The Bayes risk, employed to estimate this using the
baseline estimates θ̂g, θ̂h is given by:

BAYESRISKbθ
(g, h) (13)

= E(π) E(•|θ,σ)

{

r(X∗
g , X∗

h, θ̂∗g , θ̂∗h) − r(X∗
g , X∗

h, θg, θh)

}2

, (14)

where (1 ≤ g < h ≤ G).

The inner expectation on the right hand side of equa-
tion 15 is over the assumed likelihood conditional on the
parameters; the outer expectation is over the assumed
prior. The notation ‘X∗

g, and X∗
h’ (respectively, ‘θ̂∗g , and

θ̂∗h’) refers to simulated observed vectors (respectively, func-
tions of observed random vectors) having the same condi-
tional distribution as that assumed for the observed vec-
tors ‘Xg, and Xh’ (respectively, ‘θ̂g, and θ̂h’). The quantity,

r(X∗
g , X∗

h, θ̂∗g , θ̂∗h) is the estimate (obtained under simulation)
of the similarity measure, r(Xg, Xh; θg, θh).

The Bayes risk for simultaneously estimating all similari-
ties is given, in the notation introduced in 15, by,

BAYESRISKMODEL I
bθ

(15)

=
∑

1≤g<h≤G

BAYESRISKMODEL I
bθ

(g, h).

3.2.1 Model I setting

In what follows we employ the notation, ‘N (λ, η)’ in refer-
ence to the normal distribution with mean λ and variance
η. We assume that all gene expression levels are (condition-
ally) i.i.d. (independent and identically distributed) Gaus-
sian with respective gene expression level means θ1, . . ., θG

— i.e.,

Xg,c ∼ N (θg, σ
2
g); g = 1, . . . , G; c = 1, . . . , C.

Below, we use standard maximum likelihood estimates

σ̂2 =
1

C

C∑

c=1

(Xg,c − Xg)
2

for σ2
g (g = 1, . . ., G). We assume that the mean level param-

eters θ1, . . ., θG are themselves i.i.d. with common Gaussian

prior distribution N (µ, τ2). Standard empirical Bayes the-
ory [2] shows that, in this setting, the hyperparameters µ, τ
should be estimated respectively by,

µ̂ =

∑∑
Xg,c

G · C
and τ̂2 =

σ̂2 · (1 − B̂)

C · B

with,

B̂ =
(C − 2) · G

∑G

g=1

∑C

c=1(X
2
g,c)

(16)

The empirical Bayes correlation estimator is constructed by
estimating the baseline parameters by

θ̂g = (1 − B̂) · Xg.

The Bayes risks for such procedures are given in figures 1
and 2 below.

3.3 Robustness

Below, we employ the notation, φ(X, λ, ω) for the normal
Gaussian density with (component) mean(s) λ and (com-
ponent) variance(s) ω. We examine the robustness of the
Model I empirical Bayes similarity estimators for models in
which the parameters θ1, . . ., θG are assumed to have an
ǫ-contamination prior [2] — i.e., a prior taking the form,

π(θ) =

{
φ(X, µ, τ2), wprob 1 − ǫ;
φ(X, µ, large), wprob ǫ;

(17)

with ǫ fixed at various small and large at various large
values. Below, we refer to those expression vectors Xg hav-
ing a priori variance τ2 as ‘ordinary,’ and those having a
priori variance large as ‘outliers’. The hyperparameter τ
whose estimate plays a role in the estimation of correlation
is estimated (to maximize the contaminated marginal likeli-
hood) using expectation-maximization (EM) via a gradient
ascent strategy, i.e., using the notation L(X|τ) for the log of
the marginal likelihood and π(X|τ) for the probability that
vector X is ‘ordinary’ (in the sense described above). The
gradient ascent step then takes the form:

τ (new) (18)

= τ (old) −
(1/C)

∑
g

∂L(Xg|τ (old)) · π(Xg|τ (old)

∂τ (old)

∑
g

∂2L(Xg|τ (old)) · π(Xg|τ (old)

∂[τold]2

with

π(X|τ) (19)

=
φ
(
X, µ̂, (σ2/C) + τ2

)

φ
(
X, µ̂, (σ2/C) + τ2

)
+ φ

(
X, µ̂, (σ2/C) + large2

) .
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Figure 1: Comparison Between Bayes risks of Empirical Bayes versus Pearson Correlation estimates for prior mean= 0.0
and prior standard deviation between 0.2 and 4.0. in a Model I setting (Example 1)

Our results demonstrate that, in settings where the as-
sumed prior is contaminated by noise, the correlation esti-
mates given by the empirical Bayes estimator are no less
accurate than Pearson’s estimator. To demonstrate this, we
have (separately) explored comparisons between the afore-
mentioned Bayes risks when the amount of contamination
varies between 0.01 and 0.1 and when the outlier standard
deviations vary between 2.0 and 22.0 (see section 4 ).

3.3.1 Assessing similarity in Model II setting

We assume, as above, that all gene expression levels are
(conditionally) (independent and identically distributed)
i.i.d. Gaussian with respective mean expression levels, θ1,
. . ., θG — i.e.,

Xg,c ∼ N (θg, σ
2
g); g = 1, . . . , G; c = 1, . . . , C.

We drop our assumptions (cf, 3.2.1) regarding the mutual
independence of the mean gene expression level parameters

(θ1, . . ., θG) and assume instead that they have a common
correlation ρ, called the prior correlation (see e.g., [5] for a
discussion of settings like this one). This parameter, together
with the prior variance τ , is estimated using a Model II Max-
imum likelihood procedure; these estimates are employed in
the calculation of the Bayes risk. The resulting Bayes risks
are given in figures 4 and 5 below.

4 Biological Examples of ‘Simul-

taneous’ Estimators

Below, we consider two examples of microarray data.

Microarray Data Example 1 : This data was selected from
the Arabidopsis Data generated by the Coruzzi group.
Ninety genes observed under 20 conditions having the
smallest noise to signal ratio were selected. The ratio
of their expression values with normal ones were log
transformed to form the complete data set.



4 BIOLOGICAL EXAMPLES OF ‘SIMULTANEOUS’ ESTIMATORS 8

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Prior Standard Deviation tau

B
ay

es
 R

is
k

Bayes Risks of Empirical Bayes versus Eisens Correlation Estimator

Bayes Risk of Empirical Bayes Correlation Estimator
Bayes Risk of Eisens Correlation Estimator

Figure 2: Comparison Between Bayes risks of Empirical Bayes versus Eisen’s Correlation estimates when the outlier prior
standard deviation varies between 0.2 and 4.0. in a Model I setting (Example 1)

Microarray Data Example 2 : Expression
data was selected from that available at
http://genome-www.stanford.edu/clustering/.
Forty four Genes were grouped by transcriptional
activators and cell cycle functions (see [3] for a full
table of these). Similarity measures were evaluated
against this “ground truth” clustering.

4.1 Bayes Risk: Example 1

In the example analyzed below, G = 90 and C = 19. We
compute the Bayes risk associated with using the empiri-
cal Bayes versus Pearson correlation estimators when the
true prior variance τ2 takes on values between 0.2 and 4.0
(see 3.2). Results comparing empirical Bayes with Pearson
correlation estimators are given in figure 1; those comparing
empirical Bayes with Eisen correlation estimators are given
in figure 2. Our results demonstrate that,

1. Empirical Bayes estimator have smaller Bayes risk than
Pearson and Eisen estimators;

2. Improvements of the Bayes risk for empirical Bayes es-
timators over those for their Pearson counterparts are
clearly greater for smaller values of the prior variance.

.

4.2 Residuals: Example 2

Using the microarray data from example 2, we calculated
residuals for each pair of genes (as discussed in 3). In figure
3 we construct a histogram for the set of paired standardized
residuals. We note that the overwhelming bulk (99.9% of the
residual data) are smaller in absolute value than 2, lending
credence to the good fit of the model. This suggests that
the model adequately describes correlation for most pairs of
genes.
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Figure 3: Histogram of the (8100) Bayesian residuals in a Model I setting. (Example 2)

4.3 Clustering: Example 2

Using the microarray data from example 2, we calculated
confidence intervals for the true sensitivity/specificity for our
procedures and compared this with sensitivity/specificity es-
timates for Pearson’s estimator and Eisen’s estimator. The
results demonstrated that empirical Bayes estimator per-
forms better for values of α < 0.6, in the sense that the
true sensitivity/specificity was superior. (Data not shown.)

4.4 Robustness: Example 1

For analyzing the robustness of empirical Bayes estimates,
we calculate similarity measures in settings where the prior
distribution is contaminated by a Gaussian distribution with
high variance (see section 3.3). We calculate correlation in
this setting when the amount ǫ of contamination is 5% and
the a priori variance is between 0.1 and 4.0. Our results
demonstrate that empirical Bayes estimators do as well as

Pearson’s estimator in such settings. (Data not shown.)
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Figure 4: Comparison Between Bayes risks of Empirical Bayes versus Pearson Correlation estimates for prior mean= 0.0,
prior intergene correlation ρ = 0.3 and prior standard deviation varying between 0.1 and 0.7 in a Model II setting (Example
1)

A Self-Organizing Map Cluster-

ing with Similarity at θ

We base our discussion on the Self-Organizing Map algo-
rithm of Kohonen [7]. For given baseline vector θ, and ref-
erence vectors µ1, . . ., µt we use the notation

ρ(X(j, :), µl) (20)

=

∑
c(X(j, c) − θ(j))(µl(c) − θ(j))√∑

c(X(j, c) − θ(j))2
√∑

c(µl(c) − θ(j)2

for the similarity between the expression vector X(j, :) and
the reference vector µl. We employ the notation,

µc[j] = argmax
{
ρ(X(j, :), µt)

}
(21)

and use ǫ as a smoothness factor. At stage j, we update the

reference vector µ
(old)
c[j] by

µc[j] (22)

= µ
(old)
c[j] + ǫ ·

{

(
X(j, :) − θ(j)

)
− ρ(X(j, :), (23)

θ(j)) ·
(
µ

(old)
c[j] − θ(j)

)‖X(j, :) − θ(j)‖

‖µ
(old)
c[j] − θ(j)‖

}
(24)

We continue to update the reference vectors in this fashion
until convergence. In order to adjust this procedure to have

critical value α, we only transform µ
(old)
c[j] if the similarity

between X(j, :) and µ
(old)
c[j] is greater than that of the critical

value.
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Figure 5: Comparison Between Bayes risks of Empirical Bayes versus Eisen’s Correlation estimates for prior mean= 0.0,
prior intergene correlation ρ = 0.3 and prior standard deviation varying between 0.1 and 0.7 in a Model II setting (Example
1)
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