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ABSTRACT
The current standard correlation coefficient used

in the analysis of microarray data was introduced
in [1]. Its formulation is rather arbitrary. We give
a mathematically rigorous correlation coefficient of
two data vectors based on James-Stein Shrinkage es-
timators. We use the assumptions described in [1],
also utilizing the fact that the data can be treated
as transformed into normal distributions. While [1]
uses zero as an estimator for the expression vector
mean µ, we start with the assumption that for each
gene, µ is itself a zero-mean normal random vari-
able (with a priori distribution N (0, τ2)), and use
Bayesian analysis to obtain a posteriori distribution
of µ in terms of the data. The shrunk estimator for
µ differs from the mean of the data vectors and ul-
timately leads to a statistically robust estimator for
correlation coefficients.

To evaluate the effectiveness of shrinkage, we con-
ducted in silico experiments and also compared sim-
ilarity metrics on a biological example using the data
set from [1]. For the latter, we classified genes in-
volved in the regulation of yeast cell cycle functions
by computing clusters based on various definitions of
correlation coefficients and contrasting them against
clusters based on the activators known in the litera-
ture.

The estimated “false-positives” and “false-
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negatives” from this study indicate that using the
shrinkage metric improves the accuracy of the
analysis.
[1] Eisen, M.B., Spellman, P.T., Brown, P.O., and
Botstein, D. (1998), Proc. Natl. Acad. Sci. USA
95, 14863–14868.

1 Background

Recent advances in technology, such as microarray-based
gene expression analysis, have allowed us to “look inside the
cells” by quantifying their transcriptional states. While the
most interesting insight can be obtained from transcriptome
abundance data within a single cell under different experi-
mental conditions, in the absence of technology to provide
one with such a detailed picture, we have to make do with
mRNA collected from a small, frequently unsynchronized,
population of cells. Furthermore, these mRNAs will only
give a partial picture, supported only by those genes that
we are already familiar with and possibly missing many cru-
cial undiscovered genes.

Of course, without the proteomic data, transcriptomes
tell less than half the story. Nonetheless, it goes without
saying that microarrays have already revolutionized our un-
derstanding of biology even though they only provide occa-
sional, noisy, unreliable, partial, and occluded snapshots of
the transcriptional states of cells.

In an attempt to attain functional understanding of the
cell, we try to understand the underlying structure of its
transcriptional state-space. Partitioning genes into closely
related groups has thus become the key mathematical first
step in practically all statistical analyses of microarray data.

Traditionally, algorithms for cluster analysis of genome-
wide expression data from DNA microarray hybridization
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are based upon statistical properties of gene expressions and
result in organizing genes according to similarity in pattern
of gene expression. If two genes belong to a cluster then one
may infer a common regulatory mechanism for the two genes
or interpret this information as an indication of the status
of cellular processes. Furthermore, coexpression of genes of
known function with novel genes may lead to a discovery
process for characterizing unknown or poorly characterized
genes. In general, since false-negatives (where two coex-
pressed genes are assigned to distinct clusters) may cause
the discovery process to ignore useful information for cer-
tain novel genes, and false-positives (where two independent
genes are assigned to the same cluster) may result in noise
in the information provided to the subsequent algorithms
used in analyzing regulatory patterns, it is important that
the statistical algorithms for clustering be reasonably robust.
Unfortunately, as the microarray experiments that can be
carried out in an academic laboratory for a reasonable cost
are small in number and suffer from experimental noise, of-
ten a statistician must resort to unconventional algorithms
to deal with small-sample data.

A popular and one of the earliest clustering algorithms
reported in the literature was introduced in [1]. In this pa-
per, the gene-expression data were collected on spotted DNA
microarrays [2] and were based upon gene expression in the
budding yeast Saccharomyces cerevisiae during the diauxic
shift [3], the mitotic cell division cycle [4], sporulation [5],
and temperature and reducing shocks. Each entry in a gene
expression vector represents a ratio of the amount of tran-
scribed mRNA under a particular condition with respect to
its value under normal conditions. All ratio values are log-
transformed to treat inductions and repressions of identical
magnitude as numerically equal but opposite in sign. It is
assumed that the raw ratio values follow log-normal distri-
butions, and hence, the log-transformed data follow normal
distributions. While our mathematical derivations will rely
on this assumption for the sake of simplicity, we note that
our approach can be generalized in a straightforward man-
ner to deal with other situations where this assumption is
violated.

The gene similarity metric employed in [1] was a form
of correlation coefficient. Let Gi be the (log-transformed)
primary data for gene G in condition i. For any two genes
X and Y observed over a series of N conditions, the classical
similarity score based upon Pearson correlation coefficient is:

S(X, Y ) =
1
N

N∑

i=1

(
Xi −Xoffset

ΦX

)(
Yi − Yoffset

ΦY

)
, (1)

where

ΦG
2 =

1
N

N∑

i=1

(
Gi −Goffset

)2 (2)

and Goffset is the estimated mean of the observations, i.e.,

Goffset = Ḡ =
1
N

N∑

i=1

Gi.

Note that ΦG is simply the (rescaled) estimated standard de-
viation of the observations. In the analysis presented in [1],
“values of Goffset which are not the average over observations
on G were used when there was an assumed unchanged or
reference state represented by the value of Goffset , against
which changes were to be analyzed; in all of the examples
presented there, Goffset was set to 0, corresponding to a flu-
orescence ratio of 1.0.” To distinguish this modified corre-
lation coefficient from the classical Pearson correlation co-
efficient, we shall refer to it as Eisen correlation coefficient.
Our main innovation is in suggesting a different value for
Goffset , namely Goffset = γḠ, where γ is allowed to take a
value between 0.0 and 1.0. Note that when γ = 1.0, we
have the classical Pearson correlation coefficient and when
γ = 0.0, we have replaced it by Eisen correlation coefficient.
For a non-unit value of γ, the estimator for Goffset = γḠ
can be thought of as the unbiased estimator Ḡ being shrunk
towards the believed value for Goffset = 0.0. We address
the following questions: What is the optimal value for the
shrinkage parameter γ from a Bayesian point of view? (See
[6] for some alternate approaches.) How do the gene expres-
sion data cluster as the correlation coefficient is modified
with this optimal shrinkage parameter?

In order to achieve a consistent comparison, we leave
the rest of the algorithms undisturbed. Namely, once
the similarity measure has been assumed, we cluster
the genes using the same hierarchical clustering algo-
rithm as the one used by Eisen et al. Their hierarchical
clustering algorithm is based on the centroid-linkage
method (referred to as “average-linkage method” of
Sokal and Michener [7] in [1]) and is discussed further
in section 3. The modified algorithm has been imple-
mented by the authors within the “NYUMAD” microarray
database system and can be freely downloaded from:
http://bioinformatics.cat.nyu.edu/nyumad/clustering/.
The clusters created in this manner were used to compare
the effects of choosing differing similarity measures.
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2 Model

Recall that equations (1) and (2) define a correlation coef-
ficient S(X,Y ) and the corresponding estimated standard
deviation Φ, respectively, and let

Goffset = γḠ for G ∈ {X,Y }.

A family of such correlation coefficients can be parametrized
by 0 ≤ γ ≤ 1.

• Pearson Correlation Coefficient uses

Goffset = Ḡ =
1
N

N∑

j=1

Gi for every gene G, or γ = 1.

• Eisen et al. (in [1]) use

Goffset = 0 for every gene G, or γ = 0.

• We propose using the general form of equation (1) to
derive a similarity metric which is dictated by the data
and reduces the occurrence of false-positives (relative
to the Eisen metric) and false-negatives (relative to the
Pearson correlation coefficient).

Next, we derive the proposed similarity metric. In our
setup, the microarray data is given in the form of the levels
of M genes expressed under N experimental conditions. The
data can be viewed as

{{Xij}N
i=1}M

j=1

where M À N and {Xij}N
i=1 is the data vector for gene j.

We begin by rewriting S in our notation:

S(Xj , Xk) (3)

=
1
N

N∑

i=1

(
Xij − (Xj)offset

Φj

)(
Xik − (Xk)offset

Φk

)
,

Φj
2 =

1
N

∑

i

(
Xij − (Xj)offset

)2

In the most general setting, we can make the following
assumptions on the data distribution: let all values Xij for
gene j have a Normal distribution with mean θj and stan-
dard deviation βj (variance βj

2); i.e.,

Xij ∼ N (θj , βj
2) for i = 1, . . . , N

with j fixed (1 ≤ j ≤ M), where θj is an unknown parameter
(taking different values for different j). To estimate θj , it

is convenient to assume that θj is itself a random variable
taking values close to zero:

θj ∼ N (0, τ2).

The assumed distribution aids us in obtaining the estimate
of θj given in (6).

For convenience, let us also assume that the data are
range-normalized, so that βj

2 = β2 for every j. If this as-
sumption does not hold on the given data set, it is easily
corrected by scaling each gene vector appropriately. Fol-
lowing common practice, we adjusted the range to scale to
an interval of unit length, i.e., its maximum and minimum
values differ by 1. Thus,

Xij ∼ N (θj , β
2) and θj ∼ N (0, τ2).

Replacing (Xj)offset in (3) by the exact value of the mean
θj yields a Clairvoyant correlation coefficient of Xj and Xk.
In reality, since θj is itself a random variable, it must be es-
timated from the data. Therefore, to get an explicit formula
for S(Xj , Xk) we must derive estimators θ̂j for all j.

In Pearson correlation coefficient, θj is estimated by the
vector mean X ·j ; Eisen correlation coefficient corresponds
to replacing θj by 0 for every j, which is equivalent to as-
suming θj ∼ N (0, 0) (i.e., τ2 = 0.) We propose to find an
estimate of θj (call it θ̂j) that takes into account both the
prior assumption and the data.

First, let us obtain the posterior distribution of θj from
the prior N (0, τ2) and the data. This derivation can be done
either from the Bayesian considerations, or via the James-
Stein Shrinkage estimators (see [8], or [9] for a more recent
review). Here, we discuss the former method.

Assume initially that N = 1, i.e., we have one data point
for each gene, and denote the variance by σ2 for the moment:

Xj ∼ N (θj , σ
2) and θj ∼ N (0, τ2).

From these assumptions, we get (see [10] for full details)

E(θj |Xj) =
τ2

σ2 + τ2
Xj

=
(

1− σ2

σ2 + τ2

)
Xj , (4)

V ar(θj |Xj) =
σ2τ2

σ2 + τ2
.

Now, if N > 1 is arbitrary, Xj becomes a vector X·j . In
[10] we show (by using likelihood functions) that the vector
of values {Xij}N

i=1, with Xij ∼ N (θj , β
2), can be treated

as a single data point Yj = X ·j =
∑N

i=1 Xij/N from the
distribution N (θj , β

2/N).
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Thus, following the same derivation with σ2 = β2/N , we
have a Bayesian estimator for θj given by E(θj |X·j):

θ̂j =
(

1− β2/N

β2/N + τ2

)
Yj . (5)

Unfortunately, (5) cannot be used in (3) directly, because
τ2 and β2 are unknown, so must be estimated from the data.
The details of the estimation are presented in [10].

The resulting explicit estimate for θj is

bθj

=

 
1−W ·

cβ2

N

!
Yj

=

 
1− M − 2

MN(N − 1)
·
PM

k=1

PN
i=1(Xik − Yk)2PM
k=1 Yk

2

!
| {z }

γ

Yj (6)

= γX·j ,

where W = M−2PM
j=1 Yj

2 is an estimator for 1/(β2/N + τ2).

Finally, we substitute θ̂j from equation (6) into the corre-
lation coefficient in (3) wherever (Xj)offset appears to obtain
an explicit formula for S(X·j , X·k).

3 Algorithm & Implementation

The implementation of hierarchical clustering proceeds in a
greedy manner, always choosing the most similar pair of el-
ements (starting with genes at the bottom-most level) and
combining them to create a new element. The “expression
vector” for the new element is simply the weighted average
of the expression vectors of the two elements that were com-
bined. This structure of repeated pair-wise combinations is
conveniently represented in a binary tree, whose leaves are
the set of genes and internal nodes are the elements con-
structed from the two children nodes. The algorithm is de-
scribed below in pseudocode.

3.1 Hierarchical clustering pseudocode

Given {{Xij}N
i=1}M

j=1:
Switch:
Pearson: γ = 1;
Eisen: γ = 0;
Shrinkage: {

Compute W = (M − 2)
/∑M

j=1 X ·j
2

Compute β̂2 =
∑M

j=1

∑N
i=1

(
Xij −X ·j

)2
/

(M(N − 1))

γ = 1−W · β̂2/N
}

While (# clusters > 1) do
¦ Compute similarity table:

S(Gj , Gk) =
P

i(Gij−(Gj)offset)(Gik−(Gk)offset)qP
i(Gij−(Gj)offset)

2·Pi(Gik−(Gk)offset)
2 ,

where (G`)offset = γG`.

¦ Find (j∗, k∗) :
S(Gj∗ , Gk∗) ≥ S(Gj , Gk) ∀ clusters j, k

¦ Create new cluster Nj∗k∗

= weighted average of Gj∗ and Gk∗.

¦ Take out clusters j∗ and k∗.

As each internal node can be labeled by a value represent-
ing the similarity between its two children nodes, one can
create a set of clusters by simply breaking the tree into sub-
trees by eliminating all the internal nodes with labels below
a certain predetermined threshold value.

The implementation of generalized hierarchical clustering
with options to choose different similarity measures has
been incorporated into NYUMAD (NYU MicroArray
Database), an integrated system to maintain and analyze
biological abundance data along with associated experimen-
tal conditions and protocols. To enable widespread utility,
NYUMAD supports the MAGE-ML standard (web site at
http://www.mged.org/Workgroups/MAGE/mage-ml.html)
for the exchange of gene expression data, defined by the
Microarray Gene Expression Data (MGED) Group. More
detailed information about NYUMAD can be found at
http://bioinformatics.cat.nyu.edu/nyumad/.

4 Results

4.1 Mathematical Simulation

To compare the performance of these algorithms, we started
with a relatively simple in silico experiment. In such an
experiment, one can create two genes X and Y and simulate
N (about 100) experiments as follows:

Xi = θX + σX(αi(X,Y ) +N (0, 1)), and
Yi = θY + σY (αi(X,Y ) +N (0, 1)),

where αi, chosen from a uniform distribution over a range
[L,H] (U(L,H)), is a “bias term” introducing a correlation
(or none if all α’s are zero) between X and Y . θX ∼ N (0, τ2)
and θY ∼ N (0, τ2) are the means of X and Y , respectively.
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Similarly, σX and σY are the standard deviations for X and
Y , respectively.

Note that, with this model

S(X, Y ) =
1
N

N∑

i=1

(Xi − θX)
σX

(Yi − θY )
σY

if the exact values of the mean and variance are used.

The model was implemented in Mathematica [11]; the fol-
lowing parameters were used in the simulation: N = 100,
τ ∈ {0.1, 10.0} (representing very low or high variability
among the genes), σX = σY = 10.0, and α = 0 representing
no correlation between the genes or α ∼ U(0, 1) representing
some correlation between the genes. Once the parameters
were fixed for a particular in silico experiment, the gene-
expression vectors for X and Y were generated many thou-
sand times, and for each pair of vectors Sc(X,Y ), Sp(X,Y ),
Se(X, Y ), and Ss(X, Y ) were estimated by four different al-
gorithms and further examined to see how the estimators of
S varied over these trials. These four different algorithms es-
timated S according to equations (1), (2) as follows: Clair-
voyant estimated Sc using the true values of θX , θY , σX ,
and σY ; Pearson estimated Sp using the unbiased estima-
tors X̄ and Ȳ of θX and θY (for Xoffset and Yoffset), re-
spectively; Eisen estimated Se using the value 0.0 as the
estimator of both θX and θY ; and Shrinkage estimated Ss

using the shrunk biased estimators θ̂X and θ̂Y of θX and
θY , respectively. In the latter three, the standard deviation
was estimated as in (2). The histograms corresponding to
these in silico experiments can be found in Figure 1. Our
observations are summarized in Table 1.

No Correlation
Low Noise

-0.2 0 0.2
1
2
3
4
Shrinkage

-0.2 0 0.2
1
2
3
4

Eisen

-0.2 0 0.2
1
2
3
4
5
Pearson

-0.2 0 0.2
1
2
3
4
Clairvoyant

No Correlation
High Noise

-0.50 0.5
1
2
3

Shrinkage

-0.50 0.5

1
Eisen

-0.50 0.5
1
2
3

Pearson

-0.50 0.5
1
2
3
4
Clairvoyant
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Low Noise

0 0.30.6
1
2
3
4
Shrinkage

0 0.30.6
1
2
3
4
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0 0.30.6
1
2
3
4
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0 0.30.6

1
2

Clairvoyant

Correlated
High Noise

-0.50 0.5
1
2
3
4
Shrinkage

-0.50 0.5

1

Eisen

-0.50 0.5
1
2
3
4
Pearson

-0.50 0.5
1
2
3

Clairvoyant

Figure 1: Histograms representing the performance of four
different estimators of correlation between genes.

Table 1: Summary of observations from mathematical sim-
ulation of gene expression models of correlated and uncorre-
lated genes. The distributions of S as estimated by Sc (Clair-
voyant), Sp (Pearson), Se (Eisen), and Ss (Shrinkage), are
characterized by the means µ and standard deviations δ.
When there is no correlation (α = 0) and low noise (τ = 0.1),
all methods do equally well. When there is no correlation
but the noise is high (τ = 10), all methods except Eisen do
equally well; Eisen has too many false-positives. When the
genes are correlated (α ∼ U(0, 1)) and the noise is low, all
methods except Pearson do equally well; Pearson has too
many false-negatives. Finally, when the genes are correlated
and the noise is high, all methods do equally poorly, intro-
ducing false-negatives; Eisen may also have false-positives.

Params Distributions

α τ Sc Sp Se Ss

0 0.1 µ -0.000297 -0.000269 -0.000254 -0.000254

δ 0.0996 0.0999 0.0994 0.0994

0 10 µ -0.000971 -0.000939 -0.00119 -0.000939

δ 0.0994 0.100 0.354 0.100

U(0,1) 0.1 µ 0.331 0.0755 0.248 0.245

δ 0.132 0.0992 0.0915 0.0915

U(0,1) 10 µ 0.333 0.0762 0.117 0.0762

δ 0.133 0.100 0.368 0.0999

In summary, one can conclude that for the same clus-
tering algorithm, Pearson tends to introduce more false-
negatives and Eisen tends to introduce more false-positives
than Shrinkage. Shrinkage, on the other hand, reduces these
errors by combining the good properties of both algorithms.

4.2 Biological Example

We then proceeded to test the algorithms on a biological
example. We chose a biologically well-characterized system,
and analyzed the clusters of genes involved in the yeast cell
cycle. These clusters were computed using the hierarchical
clustering algorithm with the underlying similarity measure
chosen from the following three: Pearson, Eisen, or Shrink-
age. As a reference, the computed clusters were compared
to the ones implied by the common cell-cycle functions and
regulatory systems inferred from the roles of various tran-
scriptional activators (see Figure 2).

Note that our experimental analysis is based on the as-
sumption that the groupings suggested by the ChIP (Chro-
matin ImmunoPrecipitation) analysis are, in fact, correct
and thus, provide a direct approach to compare various cor-
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relation coefficients. It is quite likely that the ChIP-based
groupings themselves contain many false relations (both pos-
itives and negatives) and corrupt our inference in some un-
known manner. Nonetheless, we observe that the trends of
reduced false positives and negatives in shrinkage analysis
with these biological data are consistent with the analysis
based on mathematical simulation and hence, reassuring.

Figure 2: Regulation of cell cycle functions by the activators
(Figure 5 in [12]).

In the work of Simon et al. ([12]), genome-wide location
analysis was used to determine how the yeast cell cycle
gene expression program is regulated by each of the nine
known cell cycle transcriptional activators: Ace2, Fkh1,
Fkh2, Mbp1, Mcm1, Ndd1, Swi4, Swi5, and Swi6. It was
also found that cell cycle transcriptional activators which
function during one stage of the cell cycle regulate tran-
scriptional activators that function during the next stage.
This serial regulation of transcriptional activators together
with various functional properties suggests a simple way of
partitioning some selected cell cycle genes into nine clusters,
each one characterized by a group of transcriptional activa-
tors working together and their functions (see Table 2): for
instance, Group 1 is characterized by the activators Swi4
and Swi6 and the function of budding; Group 2 is charac-
terized by the activators Swi6 and Mbp1 and the function
involving DNA replication and repair at the juncture of G1
and S phases, etc.

Upon closer examination of the data, we observed that
the data in its raw “pre-normalized” form is inconsistent
with the assumptions used in deriving γ:

1. The gene vectors are not range-normalized, so βj
2 6= β2

Table 2: Genes in our data set, grouped by transcriptional
activators and cell-cycle functions.

Activators Genes Functions

1 Swi4, Swi6 Cln1, Cln2, Gic1, Gic2,
Msb2, Rsr1, Bud9,
Mnn1, Och1, Exg1,
Kre6, Cwp1

Budding

2 Swi6, Mbp1 Clb5, Clb6, Rnr1,
Rad27, Cdc21, Dun1,
Rad51, Cdc45, Mcm2

DNA replication
and repair

3 Swi4, Swi6 Htb1, Htb2, Hta1,
Hta2, Hta3, Hho1

Chromatin

4 Fkh1 Hhf1, Hht1, Tel2, Arp7 Chromatin

5 Fkh1 Tem1 Mitosis Control

6 Ndd1, Fkh2,
Mcm1

Clb2, Ace2, Swi5,
Cdc20

Mitosis Control

7 Ace2, Swi5 Cts1, Egt2 Cytokinesis

8 Mcm1 Mcm3, Mcm6, Cdc6,
Cdc46

Pre-replication
complex formation

9 Mcm1 Ste2, Far1 Mating

for every j, and

2. The N experiments are not necessarily independent.

Range-normalization and subsampling of experiments were
used prior to clustering in an attempt to alleviate these
shortcomings. The clusters on the processed data set,
thresholded at the cut-off value of 0.60, are listed in Ta-
bles 3, 4, and 5. The choice of the threshold parameter is
discussed further in section 5.

Our initial hypothesis can be summarized as follows:
Genes expressed during the same cell cycle stage, and
regulated by the same transcriptional activators should be
in the same cluster. We compared the performance of the
similarity metrics based on the degree to which each of
them deviated from this hypothesis. Below we list some of
the observed deviations from the hypothesis.

Possible False-Positives:

• Bud9 (Group 1: Budding), Egt2 (Group 7: Cytokine-
sis), and Cdc6 (Group 8: Pre-replication complex for-
mation) are placed in the same cluster by all three met-
rics: (E68, S49, and P51).

• Mcm2 (Group 2: DNA replication and repair) and
Mcm3 (Group 8) are placed in the same cluster by all
three metrics: (E68, S15, and P15),

• For more examples, see [10].
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Possible False-Negatives:

• Group 1: Budding (Table 2) is split into five clusters by
the Eisen metric:
{Cln1, Och1} ∈ E58, {Cln2, Msb2, Rsr1, Bud9, Mnn1,
Exg1} ∈ E68, Gic1 ∈ E29, Gic2 ∈ E64, and {Kre6,
Cwp1} ∈ E33;
into four clusters by the Shrinkage metric:
{Cln1, Bud9, Och1} ∈ S49, {Cln2, Gic2, Msb2, Rsr1,
Mnn1, Exg1} ∈ S6, Gic1 ∈ S32, and {Kre6, Cwp1} ∈
S65;
and into eight clusters by the Pearson metric:
{Cln1, Och1} ∈ P1, {Cln2, Rsr1, Mnn1} ∈ P15, Gic1
∈ P29, Gic2 ∈ P2, {Msb2, Exg1} ∈ P3, Bud9 ∈ P51,
Kre6 ∈ P11, and Cwp1 ∈ P62.

We introduced a new notation to represent the resulting
cluster sets, as well as a scoring function to aid in their
comparison.

Each cluster set can be written as follows:

{
x → {{y1, z1}, {y2, z2}, . . . , {ynx , znx}}

}# of groups

x=1

where x denotes the group number (as described in Table 2),
nx is the number of clusters group x appears in, and for each
cluster j ∈ {1, . . . , nx} there are yj genes from group x and
zj genes from other groups in Table 2. A value of “∗” for
zj denotes that cluster j contains additional genes, although
none of them are cell cycle genes. The cluster set can then
be scored according to the following measure:

FP(γ) =
1
2

∑
x

nx∑

j=1

yj · zj (7)

FN(γ) =
∑

x

∑

1≤j<k≤nx

yj · yk (8)

Error score(γ) = FP(γ) + FN(γ) (9)

Table 2 contains those genes from Figure 2 that were
present in our data set. The following tables contain these
genes grouped into clusters by a hierarchical clustering algo-
rithm using the three metrics (Eisen in Table 3, Shrinkage in
Table 4, and Pearson in Table 5) thresholded at a correlation
coefficient value of 0.60. Genes that have not been grouped
with any others at a similarity of 0.60 or higher are absent
from the tables; in the subsequent analysis they are treated
as singleton clusters.

The subsampled data yielded the estimate γ ' 0.66. In
our set notation, the resulting Shrinkage clusters with the
corresponding error score computed as in (9) can be written

Table 3: RN Subsampled Data, γ = 0.0 (Eisen)

E58 Swi4/Swi6 Cln1, Och1

E68 Swi4/Swi6 Cln2, Msb2, Rsr1, Bud9, Mnn1,
Exg1

Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1,
Rad51, Cdc45, Mcm2

Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1, Arp7

Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

Ace2/Swi5 Egt2

Mcm1 Mcm3, Mcm6, Cdc6

E29 Swi4/Swi6 Gic1

E64 Swi4/Swi6 Gic2

E33 Swi4/Swi6 Kre6, Cwp1

Swi6/Mbp1 Clb5, Clb6

Swi4/Swi6 Hta3

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

E73 Fkh1 Tel2

E23 Ace2/Swi5 Cts1

E43 Mcm1 Ste2

E66 Mcm1 Far1

as follows:

γ = 0.66(S) =⇒
{1 → {{6, 6}, {3, 2}, {2, 5}, {1, ∗}},
2 → {{6, 6}, {2, 5}, {1, 1}},
3 → {{5, 2}, {1, ∗}},
4 → {{2, 5}, {1, 3}, {1, 6}},
5 → {{1, ∗}},
6 → {{3, 1}, {1, 6}},
7 → {{1, ∗}, {1, 4}},
8 → {{1, ∗}, {1, 1}, {1, 4}, {1, 6}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.66) = 76 + 88 = 164

The error scores for the Eisen (γ = 0.0) and Pearson (γ =
1.0) cluster sets, computed according to (9), are

Error score(0.0) = 370 + 79 = 449
Error score(1.0) = 69 + 107 = 176

From the data shown in the tables, as well as by com-
paring the error scores, one can conclude that for the same
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Table 4: RN Subsampled Data, γ = 0.66 (Shrinkage)

S49 Swi4/Swi6 Cln1, Bud9, Och1

Ace2/Swi5 Egt2

Mcm1 Cdc6

S6 Swi4/Swi6 Cln2, Gic2, Msb2, Rsr1, Mnn1,
Exg1

Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1,
Rad51, Cdc45

S32 Swi4/Swi6 Gic1

S65 Swi4/Swi6 Kre6, Cwp1

Swi6/Mbp1 Clb5, Clb6

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

S15 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S11 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S60 Swi4/Swi6 Hta3

S30 Fkh1 Arp7

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S62 Fkh1 Tem1

S53 Ace2/Swi5 Cts1

S14 Mcm1 Mcm6

S35 Mcm1 Ste2

S36 Mcm1 Far1

clustering algorithm and threshold value, Pearson tends to
introduce more false-negatives and Eisen tends to introduce
more false-positives than Shrinkage, as Shrinkage reduces
these errors by combining the good properties of both algo-
rithms. This observation is consistent with our mathemati-
cal analysis and the simulation presented in section 4.1.

We have also conducted a more extensive computa-
tional analysis of Eisen’s data, but omitted it from this
paper due to space limitations. This analysis appears
in a full technical report available for download from
http://www.cs.nyu.edu/cs/faculty/mishra/ ([10]).

5 Discussion

Microarray-based genomic analysis and other similar high-
throughput methods have begun to occupy an increasingly
important role in biology, as they have helped to create a
visual image of the state-space trajectories at the core of the
cellular processes. This analysis will address directly to the
observational nature of the “new” biology. As a result, we

Table 5: RN Subsampled Data, γ = 1.0 (Pearson)

P1 Swi4/Swi6 Cln1, Och1

P15 Swi4/Swi6 Cln2, Rsr1, Mnn1

Swi6/Mbp1 Cdc21, Dun1, Rad51, Cdc45, Mcm2

Mcm1 Mcm3

P29 Swi4/Swi6 Gic1

P2 Swi4/Swi6 Gic2

P3 Swi4/Swi6 Msb2, Exg1

Swi6/Mbp1 Rnr1

P51 Swi4/Swi6 Bud9

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

Ace2/Swi5 Egt2

Mcm1 Cdc6

P11 Swi4/Swi6 Kre6

P62 Swi4/Swi6 Cwp1

Swi6/Mbp1 Clb5, Clb6

Swi4/Swi6 Hta3

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

P49 Swi6/Mbp1 Rad27

Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P10 Fkh1 Tel2

Mcm1 Mcm6

P23 Fkh1 Arp7

P50 Fkh1 Tem1

P69 Ace2/Swi5 Cts1

P42 Mcm1 Ste2

P13 Mcm1 Far1

need to develop our ability to “see,” accurately and repro-
ducibly, the information in the massive amount of quanti-
tative measurements produced by these approaches—or be
able to ascertain when what we “see” is unreliable and forms
a poor basis for proposing novel hypotheses. Our investi-
gation demonstrates the fragility of many of these analysis
algorithms when used in the context of a small number of
experiments. In particular, we see that a small perturbation
of, or a small error in, the estimation of a parameter (the
shrinkage parameter) has a significant effect on the overall
conclusion. The errors in the estimators manifest themselves
by missing certain biological relations between two genes
(false-negatives) or by proposing phantom relations between
two otherwise unrelated genes (false-positives).

A global picture of these interactions can be seen in Fig-
ure 3, the Receiver Operator Characteristic (ROC) figure,
with each curve parametrized by the cut-off threshold in the
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range of [−1, 1]. An ROC curve ([13]) for a given metric
plots sensitivity against (1−specificity), where

Sensitivity = fraction of positives detected by a metric

=
TP(γ)

TP(γ) + FN(γ)
, (10)

Specificity = fraction of negatives detected by a metric

=
TN(γ)

TN(γ) + FP(γ)
, (11)

and TP(γ), FN(γ), FP(γ), and TN(γ) denote the number
of True Positives, False Negatives, False Positives, and True
Negatives, respectively, arising from a metric associated with
a given γ. (Recall that γ is 0.0 for Eisen, 1.0 for Pearson,
and is computed according to (6) for Shrinkage, which yields
0.66 on this data set.) For each pair of genes, {j, k}, we
define these events using our hypothesis (see section 4.2) as
a measure of truth:

TP: {j, k} are in same group (see Table 2) and {j, k} are
placed in same cluster;

FP: {j, k} are in different groups, but {j, k} are placed in
same cluster;

TN: {j, k} are in different groups and {j, k} are placed in
different clusters; and

FN: {j, k} are in same group, but {j, k} are placed in dif-
ferent clusters.

FP(γ) and FN(γ) were already defined in equations (7) and
(8), respectively, and we define

TP(γ) =
∑

x

nx∑

j=1

(
yj

2

)
(12)

and

TN(γ) = Total− (TP(γ) + FN(γ) + FP(γ)) (13)

where Total=
(
44
2

)
= 946 is the total # of gene pairs {j, k}

in Table 2.
The ROC figure suggests the best threshold to use for each

metric, and can also be used to select the best metric to use
for a particular sensitivity.

The dependence of the error scores on the threshold can
be more clearly seen from Figure 4. It shows that the conclu-
sions we draw in section 4.2 hold for a wide range of threshold
values, and hence a threshold value of 0.60 is a reasonable
representative value.
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Figure 3: Receiver Operator Characteristic curves.
Each curve is parametrized by the cut-off value θ ∈
{1.0, 0.95, . . . ,−1.0}
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Figure 4: FN and FP curves, plotted as functions of θ.

As a result, in order to study the clustering algorithms
and their effectiveness, one may ask the following questions.
If one must err, is it better to err on the side of more
false-positives or more false-negatives? What are the
relative costs of these two kinds of errors? In general, since
false-negatives may cause the inference process to ignore
useful information for certain novel genes, and since false-
positives may result in noise in the information provided
to the algorithms used in analyzing regulatory patterns,
intelligent answers to our questions depend crucially on how
the cluster information is used in the subsequent discovery
processes.
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