Modeling Cellular Behavior with Hybrid
Automata: Bisimulation and Collapsing

M. Antoniotti', B. Mishral:?, C. Piazza®, A. Policriti?, and M. Simeoni®

! Courant Institute of Mathematical Science, NYU, New York, U.S.A.

2 Watson School of Biological Sciences, Cold Spring Harbor, New York, U.S.A.
3 Dept. of Computer Science, University Ca’ Foscary of Venezia, Venezia, Italy
4 Dept. of Mathematics and Computer Science, University of Udine, Udine, Ttaly
marcoxa@cs.nyu.edu, mishra@cs.nyu.edu piazza@dsi.unive.it,
policrit@dimi.uniud.it simeoni@dsi.unive.it

Abstract. Many biological systems can be modeled using systems of or-
dinary differential algebraic equations (e.g., S-systems), thus allowing the
study of their solutions and behavior automatically with suitable soft-
ware tools (e.g., PLAS, Octave/Matlab'™). Usually, numerical solutions
(traces or trajectories) for appropriate initial conditions are analyzed in
order to infer significant properties of the biological systems under study.
When several variables are involved and the traces span over a long in-
terval of time, the analysis phase necessitates automation in a scalable
and efficient manner. Earlier, we have advocated and experimented with
the use of automata and temporal logics for this purpose (XS-systems
and Simpathica) and here we continue our investigation more deeply.

We propose the use of hybrid automata and we discuss the use of the
notions of bisimulation and collapsing for a “qualitative” analysis of the
temporal evolution of biological systems. As compared with our previous
proposal, hybrid automata allow maintenance of more information about
the differential equations (S-system) than standard automata. The use
of the notion of bisimulation in the definition of the projection operation
(restrictions to a subset of “interesting” variables) makes possible to
work with reduced automata satisfying the same formulae as the initial
ones. Finally, the notion of collapsing is introduced to move toward still
simpler and equivalent automata taming the complexity of the automata
whose number of states depends on the level of approximation allowed.

1 Introduction

The emerging fields of system biology [21], and its sister field of bioinformat-
ics, focuses on creating a finely detailed and “mechanistic” picture of biology
at the cellular level by combining the part-lists (genes, regulatory sequences,
other objects from an annotated genome, and known metabolic pathways), with
observations of both transcriptional states of a cell (using micro-arrays) and
translational states of the cell (using proteomics tools).

Recently, the need has arisen for more and more sophisticated and mathe-
matically well founded computational tools capable to analyze the models that

are and will be at the core of system biology. Such computational models should
be implemented in software packages faithfully while exploiting the potential
trade-offs among usability, accuracy, and scalability dealing with large amounts
of data. The work described in this paper is part of a much larger project still in
progress, and thus only provides a partial and evolving picture of a new paradigm
for computational biology.

Consider the following scenario. A biologist is trying to test a set of hypothe-
ses against a corpus of data produced in very different ways by several in vitro, in
vivo, and in silico experiments. The system the biologist is considering may be
a piece of a pathway for a given organism. The biologist can access the following
pieces of information:

— raw data stored somewhere about the temporal evolution of the biological
system; this data may have been previously collected by observing an in vivo
or an in vitro system, or by simulating the system in silico;

— some mathematical model of the biological system5.

The biologist will want to formulate gueries about the evolution encoded in the
data sets. For example, he/she may ask: will the system reach a “steady state”?,
or will an increase in the level of a certain protein activate the transcription of
another? Clearly the set of numerical traces of very complex systems rapidly
becomes unwieldy to wade through for increasingly larger numbers of variables.

Eventually, many of these models will be available in large public databases
(e.g. [6,18-20,28,23]) and it is not inconceivable to foresee a biologist to test
some hypotheses in silico before setting up expensive wet-lab experiments. The
biologist will mix and match several models and raw data coming from the public
databases and will produce large datasets to be analyzed.

To address this problem, we have proposed a set of theoretical and prac-
tical tools, XS-systems and Simpathica, that allow the biologist to formulate
such queries in a simple way [3-5]. The computational tool Simpathica derives
its expressiveness, flexibility, and power by integrating in a novel manner many
commonly available tools from numerical analysis, symbolic computation, tem-
poral logic, model-checking, and visualization. In particular, an automaton-based
semantics of the temporal evolution of complex biochemical reactions starting
from their representations as sets of differential equations is introduced. Then
propositional temporal logic is used to qualitatively reason about the systems.
Notice that here the adverb qualitatively does not mean that we completely ab-
stract away from the quantities of the substances involved in the system, but
that we concentrate on particular properties of the system, e.g. will a certain
protein reach level 0.5%

In this paper we continue our research on the computational models at the
core of our approach. We bring in several techniques from the fields of Verifica-
tion, Logic and Control Theory, while maintaining a trade off between the need

® We note that simulating a system in silico actually requires a mathematical model.
However, we want to consider the case when such mathematical model is unavailable
to both the biologist and the software system.

to manipulate large sets of incomplete data® and the requirements arising from
the needs to provide a mathematically well founded system. In particular, we
propose the use of hybrid automata together with the notions of bisimulation
and collapsing. Hybrid automata are equipped with states embodying time-flow,
initial and final conditions, and therefore allow maintenance of more information
about the differential equations (S-system). The use of the notion of bisimulation
in the definition of the projection operation (restrictions to a subset of “inter-
esting” variables) provides a way to introduce reduced automata satisfying the
same formulae as the initial ones. Notice that the idea and potential behind this
use of the notion of bisimulation can be exploited as fruitfully as here also in
the context of standard automata. Finally, the notion of collapsing is introduced
to improve along the direction of a qualitative study of the automata extracted
from the analysis of traces as well as to tame its complexity of the automata
(whose size depends on the level of approximation allowed).

The cellular and biochemical processes analyzed using XS-systems and Sim-
pathica [4, 3] provide a large set of application examples for the framework we
present here. In order to motivate the choices of our modeling framework, we
give some details about one of such examples, the repressilator system described
by Elowitz and Leibler in [13].

We conclude pointing out that the analysis presented in this paper is not
limited to XS-Systems, but could be extended to more general hybrid system
models.

2 Related Works

A survey on the different approaches for modeling and simulating genetic reg-
ulatory systems can be found in [11]: the author takes into consideration dif-
ferent mathematical methods (including ordinary and partial differential equa-
tions, qualitative differential equations and others) and evaluates their relative
strengths and weaknesses.

The problem of constructing an automaton from a given mathematical model
of a general dynamical system has been previously considered in the literature.
In particular, it has been investigated by Brockett in [7]: our approach in [4] is
certainly more focussed, since it deals with specific mathematical models (i.e.
S-systems). Here we take the distance from pure discrete models, and propose
the use of hybrid automata instead of standard automata, with the aim of tak-
ing advantage of their continuous component for allowing quantitative besides
qualitative reasoning.

The use of hybrid automata for the modeling and simulation of biomolecular
networks has been proposed also by Alur et. al. in [1]. In that paper the discrete
component of an hybrid automaton is used to switch between two different be-
haviors (models) of the considered biological system, (for example) depending

5 The range of parameters tested in each in vitro and in vivo experiment is just too
large, and coping with this combinatorial effects is a subject of research (c.f.r. [26]).

on the concentration of the involved molecules. In our case, the continuous com-
ponent is used to regulate the permanence on a given state depending on the
values of the involved variables (reactants), and the discrete component is used
for enabling the transition to another state.

Moreover, in [1], as well as in other formalisms which model biochemical
systems (e.g., [25,10]), the notion of concurrency is explicitly used since the
involved reactants are represented as processes running in parallel. In our case
this kind of concurrency becomes implicit since in all the states of the automaton
representing an S-system the values of all the reactants and their evolutions are
represented.

3 Setting the Context

3.1 S-systems

We begin presenting the basic definitions and properties of S-systems. The def-
inition of S-systems we use in this paper is basically the one presented in [27]
augmented with a set of algebraic constraints. The constraints characterize the
conditions under which a given set of equations is derived from a set of maps
(see also [4]).

Definition 1 (S-system). An S-system is a quadruple S = (DV,IV,DE, C)
where:

— DV ={Xy,...,X,} is a finite non empty set of dependent variables ranging
over the domains D1, ..., D,, respectively;

— IV = {Xn41,---, Xntm} s o finite set of independent variables ranging
over the domains D11, ..., Dy ym, respectively;

— DE is a set of differential equations, one for each dependent variable, of the

form
n+m n+m

X,' = Oy H Xf” —,Bi H X‘;h]
j=1 j=1

with a;, B; > 0 called rate constants;
— C is a set of algebraic constraints of the form

n+m

Ci(X1,e o, Xnam) = > (v [[X5*) =0
k=1
with y; called rate constraints.
In what follows we use X to denote the vector (X1, oy X, Xog1y - Xopm)
of variables and d (@, b,...) to denote the vector (dy,...,dn,dni1,---,dnrm) €

Dy x...x Dy xDpyg X...% Dy of values. Similarly given a set of variables
U={Xv,,..-,Xv,} CDVUIV we use X [U to denote the vector of variables
of U, while d | U denotes the vector of values {(dy,,...,dy,) € Dy, x...x Dy,.

The dynamic behavior of an S-system can be simulated by computing the
approximate values of its variables at different time instants (traces). To deter-
mine a trace of an S-system it is necessary to fix an initial time (tg), the values
of the variables at the initial time (X (fo)), a final time (ty), and a step (s).

-

Definition 2 (Trace). Let S = (DV,IV,DE, C) be an S-system. Let f(t) =
{(f1(t),.- ., fnem(t)) be a (approximated) solution for the S-system S in the time
interval [to,ty] starting with initial values X (to) in to. Let s > 0 be a time step
such that t; = to + j x s. The sequence of vectors of values

— - - -

tr(S, to, X (to), 5, t7) = (F{to), flto + 5),..., [lto + (j = 1) x 5), [(to + j 5))

is a trace of S. When we are not interested in the parameters defining the trace
we use the notation tr.

Notice that f(to) = X (to). A trace is nothing but a sequence of values of
Dy x ... X D,y representing a solution of the system in the time instants
to,to + S,...,tg + j * s. By varying the initial values of the variables, we obtain
different system traces, for the same parameters tg, s and t¢. Simulations of the
behavior of an S-system can be automatically obtained by using the tool PLAS
(see [27]). In fact, PLAS takes in input an S-system and approximates the values
of the system variables, once the parameters in Definition 2 have been specified.
The output is exactly a trace describing the behavior of the given system.

Ezample 1. The following feedback system is taken from [27], Chapter 6, and can
be found in PLAS (see \Book _Examples\Feedback.plc). It represents a system
in which the reactant X; is inhibited by X5, while X3 is an independent input
variable and X4 an independent inhibitor for the degradation of X,. Hence, we
have DV = {Xl,Xg}, IV = {X3,X4}, and

X1 =05X,2X9% —2X; Xy =2X; — X90X;!

Let to = 0 be the initial time, X (to) = (1,1,4,2) be the initial values of the
reactants, s = 1 be the time step, and ¢t; = 18 be the final time. By simulating the
system in PLAS with these values and setting the Taylor method with tolerance
1E — 16 we obtain the following trace
((1,1,4,2),(0.33,1.59, 4, 2), (0.22,1.48, 4,2), . ..
...,{0.28,1.31,4,2),(0.28,1.31,4, 2),(0.28,1.31, 4, 2))

where we have not reported all the decimals and states for space reasons. In this
trace, for instance, we can observe that the quantity of X; is 0.28 in the last
tree steps.

The solutions of an S-system have some nice properties. First of all they
admit all the derivatives everywhere except when they intersect one of the hy-
perplane X; =0, for i = 1,...,n+ m. There could be problems when X; = 0 for
i € {1,...,m+ n} in the case one of the exponent is, for instance, of the form
0.5. As noticed in [1], this corresponds to the fact that at reasonably high molec-
ular concentrations, one can adopt continuum models which lend themselves

to deterministic models, while at lower concentrations, the discrete molecular
interactions become important and deterministic models are more difficult to
obtain. However, the existence of all the derivatives implies that if at a given
instant ¢; all the X;, for i = 1,...,n +m, are different from 0, then there exists
a unique solution in an interval [t1,¢1 + €] and this solution can be extended if
it still holds that all the variables are different from 0. Moreover, if two solu-
tions f(t) and §(t), obtained with different initial values, pass both in a point
cz: possibly at different times, i.e., there exist two instants ¢; and t; such that
f(t1) = §(t2) = d, then from those instants on they always coincide, i.e., for all
p >0, f(ty + p) = §(t> + p). This is a consequence of the fact that the variable
time does not explicitly occurs in the differential equations. What we have just
stated in mathematical terms can be restated from the biological point of view
saying that if the biological system modeled by the S-system reaches a state
d, its evolution does not depend on the states in which the system was before
reaching d (i.e., the system is without memory). In particular, on a set of traces
this last property has the following consequence.

Proposition 1. Let (dy,...,d;) and (50, e, I;z) be two traces of an S-system S
obtained by using the same time step s. If there exist h and k such that dp = gk,
then for all v > 0 it holds Gp4r = bpyr-

Obviously in the above proposition we are assuming that we are using the
same approximation method to obtain both traces. Moreover, it can be the case
that the two traces are equal. This property of sets of traces of an S-system
implies what is known in the area of Model Checking as fusion closure (see
[14]). We anticipate here that all the results we present in the rest of this paper
are consequences of Proposition 1, i.e., they hold every time we deal with a set
of traces satisfying it. We formalize this as follows.

Definition 3 (Convergence). A set of traces Tr is convergent if for all the
traces (Qo,...,d;) and (bg,...,b;) belonging to Tr, if there exist h and k such
that @y, = by, then for all v > 0 it holds @pir = bpir-

Corollary 1. If Tr is a set of traces of an S-system S obtained by using the
same time step s, then Tr is convergent.

Example 2. Let us consider again the simple feedback system described in Ex-
ample 1. If we simulate it using X (to) = (0.33,1.59,4,2), i.e., X (¢,) of the trace
in Example 1, we obtain

((0.33,1.59,4,2),(0.22,1.48,4,2), ...,(0.28,1.31,4,2), (0.28,1.31,4,2))
which is exactly the trace we had before without the first state.

3.2 XS-systems

The basic idea of XS-systems (introduced in [4]) is to associate an S-system
S with a finite automaton, obtained by suitably encoding a set of traces on S.

Essentially, each trace on S can be encoded into a simple automaton, where states
correspond to the trace elements (i.e., the values of the system variables observed
at each step), and transitions reflect the sequence structure of the trace itself
(i.e., there exists a transition from a state v; to a state v; if they are consecutive
in the trace). When more than one trace is involved in the process, coinciding
elements of different traces correspond to the same state in the automaton.

Consider an S-system and a set of traces on it: the automaton derived from
the system traces is defined as follows.

Definition 4 (S-system Automaton). Let S be an S-system and Tr be a set
of traces on S. An S-system automaton is A(S, Tr) = (V, A, I, F), where

-V ={0={v1,...,Untm) | Ftr € Tr: T isin tr} C D1 X ... X Dyt is the
set of states;

A = {(v,@) | 3tr € Tr : 7,7 are consecutive in tr} is the transition relation;
— I ={0|3tr € Tr:Jisinitial in tr} C V is the set of initial states;
F={¢|3tre Tr:visfinal in tr} CV is the set of final states.

Automata can be equipped with labels on nodes and/or edges (see [17]).
Labels on the nodes maintain information about the properties of the nodes,
while labels on the edges are used to impose conditions on the action represented
by the edge (see [8]). In the case of S-system automata edges are unlabelled, while
the label we assign to each node is actually the name (identifier) of the node
itself, i.e. the concentrations of the reactants for that state. In this way S-system
automata maintain qualitative information about the system only in the instants
corresponding to the steps.

We say that an automaton is deterministic if each node has at most one
outgoing edge for each edge-label, i.e., in our case, at most one outgoing edge.
From Proposition 1 we get the following result.

Proposition 2. Let S be an S-system and Tr be a convergent set of traces on
S. The automaton A(S, Tr) is deterministic.

Example 3. The trace shown in Example 1 gives us the following automaton,
where we omit the values of the independent variables.

e <0.33,1.59>, <0.28,1.31>,

The initial state is the one on the left, while final state is the one on the right.
By using both the trace of Example 1 and the trace of Example 2 we obtain
the same automaton, but with two initial states. The automaton represents the
fact that all the simulations of this feedback system with initial values of the
reactants equal to the values in one of the states of the automaton reach a steady
state in which X; = 0.28 and X, = 1.31.

In [4], a language called ASySA (Automata S-systems Simulation Analysis
language) has been presented to inspect and formulate queries on the simulation
results of XS-systems. The aim of this language is to provide the biologists with
a tool to formulate various queries against a repository of simulation traces.
ASySA is essentially a Temporal Logic language (see [14]) (an English version
of CTL) with a specialized set of predicate variables whose aim is to ease the
formulation of queries on numerical quantities. The fusion closure of sets of traces
(see Proposition 1 and Corollary 1) is necessary in order to reflect the behavior
of the set of traces with temporal logic semantics (see [14]). This means that
a formula is true on the S-system automaton if and only if it is true in the
set of traces. Intuitively, the behavior of the traces is not approximated in the
automaton because two traces which reach the same state always coincide in the
future.

Ezample 4. The automaton in Example 3 satisfies the formula
EVENTUALLY (ALWAYS(X5 > 1))

which means that the system admits a trace such that, from a certain point on,
X, is always greater than 1. Similarly, it does not satisfies the formula

ALwWAYS(EVENTUALLY (X7 > X5))
since it reaches a steady state in which X; is less than Xs.

Unfortunately, in the practical cases the automata built from sets of traces
have an enormous number of states. In [4] two techniques have been proposed to
reduce the number of states of an S-system automaton, namely projection and
collapsing.

Definition 5 (Projection). Let S be an S-system and U be a subset of the set
of variables of S. Given a trace tr = (do,...,d;) of S the projection over U of
tr is the sequence tr [U = (dy [U,...,a; | U). Given a set of traces Tr the
projection over U of Tr is the set of projected traces Tr [U = {tr [U | tr € Tr}.
The U-projected S-system automaton from Tr and S is A(S, Tr | U).

The automaton A(S, Tr | U) has usually less states than A(S, Tr). How-
ever, the set of traces Tr | U does not always satisfies neither convergence nor
fusion closure and the automaton A(S, Tr | U) can be non-deterministic. This
can introduce an approximation, i.e., the formulae satisfied by the automaton
A(S, Tr [U) are not the same satisfied by the set of traces Tr [U.

Ezxample 5. As a simple yet very interesting example, consider the repressilator
system constructed by Elowitz and Leibler [13]. First the authors constructed a
mathematical model of a network of three interacting transcriptional regulators
and produced a trace of the interaction using a traditional mathematical package
(Matlab'™). Subsequently, they constructed a plasmid with the three regulators
and collected data from in vivo experiments in order to match them with the

predicted values. In particular, this contains three proteins, namely lacl (X7),
tetR (X3), and cl (X3). The protein lacl represses the protein tetR, tetR represses
cl, whereas cl represses lacl, thus completing a feedback system. The dynamics
of the network depend on the transcription rates, translation rates, and decay
rates. Depending on the values of these rates the system might converge to a
stable limit circle or become unstable. The following S-system represents’ the
repressilator system: rate values have been set in such a way that the system
converges to a stable limit circle.

X1 = X4 X5t — X058
Xz — X5X1_1 _ Xg.578151
X3 = XeX; ' — X9

If we simulate it in PLAS, with t; = 0, X(to) = (0.01,0.2,0.01,0.2,0.2,0.2),
s = 0.05, and t; = 30, we obtain a trace whose automaton reaches the loop
shown on the left of Figure 1: we omit the independent variables and we use
dotted lines to represent the fact that there are other intermediate states.

<0.83,0.29,0.22>) ----- <0.44, 0.18, 0.67>
T i ST .y
! ! ~ A ~ A
I I

Fig. 1. Repressilator: automaton and projected automaton.

The automaton does not satisfies EVENTUALLY (ALWAYS(X; > 0.3)). In fact
in the limit circle reached by the repressilator, the values of X; range in the
interval [0.16,0.83]. Hence, the formula is false also in the projected trace. How-
ever, the formula is satisfied by the projected automaton, partially depicted on
the right of Figure 1. In fact, the projected automaton represents a system in
which it is possible that after a certain instant the variable X; assumes values
in the interval [0.44,0.83].

The collapsing operation is defined in such a way that a state is removed from
a trace when it behaves similarly to the previous one, i.e., when the derivatives
computed in it can be approximated by the derivatives computed in the previ-
ous state (see [4] for the formal definition). Also this operation can introduce
approximation as shown in the following example.

" To be precise the system described in [13] is not an S-system. However, it can be
reasonably approximated through an S-system, as proved by the general theory
presented in [27]. Notice that our automaton-model can be built using directly traces
of the system in [13].

Example 6. Let S be an S-system with dependent variables X; and X,. Let us
assume that S admits a trace of the form ((1,5), (2,4), (3,3), (4,2),(5,1)).

We also assume t_hat the derivative X 1 is 1 in all the states except the last
one, and, similarly, X is —1 in all the states except the last one. By applying
the definitions presented in [4] we can collapse some of the states obtaining the
reduced trace { (1,5),(5,1)). The formula EVENTUALLY(|X; — X3| < 3) is true
in the trace of S, but is false in the collapsed one.

Consider again the repressilator system of Example 5, whose automaton is
partially represented on the left of Figure 1. If all the intermediate states on
the dotted lines are collapsed, then we obtain an automaton with 4 states which
does not satisfy the formula EVENTUALLY (] X1 — X2| < 0.1), while it is easy to
check that the same formula is satisfied by the repressilator system.

In order to avoid these approximations and to obtain a more powerful and
flexible framework in the next sections we propose the use of hybrid automata
together with a reformulation of projection and collapsing.

4 Hybrid Automata to model S-systems

The notion of hybrid automata has been first introduced in [2] as a model and
specification language for hybrid systems, i.e., systems consisting of a discrete
program within a continuously changing environment.

Definition 6 (Hybrid automata). An hybrid automaton H = (Z,V, A, I, F,
init, inv, flow, jump) consists of the following components:

— Z ={Zy,..., 74} a finite set of variables; Z = {Z, ..., Zy} denotes the first
derivatives during continuous change; Z' = {Z1,...,Z} denotes the values
at the end of discrete change;

— (V,A,I,F) is an automaton; the nodes of V are called control modes, the
edges of A are called control switches;

— each v € V is labeled by init(v), inv(v), and flow(v); the labels init(v) and
inv(v) are constraints whose free variables are in Z; the label flow(v) is a
constraints whose free variables are in Z U Z;

— each e € E is labeled by jump(e), which is a constraint whose free variable
are in ZU Z'.

Example 7. Consider the following simple hybrid automaton.

jump: Z =2'=3

init: Z =1
inv:1<Z<3

init: Z =3
jump: Z =2'=1

The initial state is the left one, with Z = 1. In this state Z grows with
constant rate 1. After 3 instants we have Z = 3 and we jump on the right state.
In this second state Z decreases and when Z becomes 1 we jump again in the
state on the left.

The usefulness of hybrid automata has been widely proved in the area of
verification (see, e.g., [22]). In order to exploit the expressive power of hybrid
automata their properties have been deeply studied (see [15]) and model check-
ers have been developed to automatic test temporal logic properties on them.
Among the model checkers which deal with hybrid automata we mention HyTech
(see [16]) developed at Berkeley University, Charon (see [1]) developed at the
University of Pennsylvania.

In the S-system automata introduced in the previous section the only quan-
titative information maintained is the values of the variables in the instants
corresponding to the steps. The values at instants between two steps were lost.
This becomes particularly dangerous when we intend to apply a reduction oper-
ation like the collapsing one. Our idea here is to use the continuous component
of hybrid automata to maintain also some approximate information about the
values of the variables between two steps.

Let us introduce some notations which simplify the definition of an hybrid
automaton modeling a convergent set Tr of traces of an S-system. Given the
vectors X = (X1,..., Xpim) and @ = (v1,...,Unsm) we use the notation X =
i to denote the conjunction X1 = v1 A ... A Xpym = Untm- The notation

< X < 0 has a similar meaning, while X = (& — ¥)/s stands for X; =
(wy —v1)/sN ... AN Xpim = Wnpm — Vntm)/S-

Definition 7 (S-system Hybrid Automaton). Let S be an S-system and Tr
be a convergent set of traces on S. Consider the S-system automaton A(S, Ir).
The S-system hybrid automaton built on A(S, Tr) is H(S, Tr) = (X,V, A, I, F,
init, inv, flow, jump), where:

X ={X1,...,Xnsm} = DVUIV;

— (V,A,I,F) is the automaton A(S, Tr);

— for each T € V let init(¥) = X = ;

— for each U € V such that (¥,%) € A let® inv(¥) =7 < X < w;

— for each T € V such that (7,@) € A let flow(¥) = X = (& — 7)/s;
— for each (7,%) € A let jump((7,%)) = X = X' = .

Notice from the above definition that being in a state ¥ does not necessarily
mean that the values of the variables are exactly ¥: they can in fact assume
values between ¥ and . In particular, they grow linearly in this interval and
when they reach @ the system jump on a new state.

The automaton H(S, Tr) is a rectangular singular automaton and the tem-
poral logic CTL is decidable for this class of automata (see [15]). The model
checker HyTech can be used to check whether a temporal formula is satisfied by
H(S, Tr). Moreover, H(S, Tr) is deterministic, since we require Tr to be conver-
gent and hence A(S, Tr) is deterministic. Notice also that all the information
needed to build H(S, Tr) is already encoded in A(S, Tr), i.e., it is possible to
work on H(S, Tr) by only maintaining in memory A(S, Tr).

& We invert the interval when w; < v;.

Example 8. From the traces of the feedback system of Examples 1 and 2 we
obtain the hybrid automaton shown in Figure 8. In the first state (the one on

nit: X1 = 1A Xg =1

inv: 0.33 < X1 < 1A
1< Xg <1.59

flow: X1 = —0.67 A Xo = 0.59

fnit: X7 = 0.33 A Xg = 1.59

inv: ...

init: X7 = 0.28 A Xg = 1.31

inv: 0.28 < X1 < 0.28 A
1.31 < X5 < 1.31

flow: X1 =0A Xo =0

flow: ...

jump: X; = X} = 0.28
jump: Xg = X4 = 1.31

Fig. 2. Feedback hybrid automaton.

the left) variable X; starts with value 1 and decreases until it reaches value
0.33, while variable X, starts with value 1 and grows until it reaches value 0.59.
Then, we jump on the second state. When we reach the last state the values of
the variables become stable and the system loops forever.

The additional quantitative information stored in each state of an S-system
hybrid automaton allow to deeply investigate the behavior of the system in the
instants within a step. This becomes really relevant when we apply a collapsing
technique to reduce the number of states as we will see in Section 6.

5 Bisimulation and Projection

As pointed out in Example 5 the projection operation can cause incorrect pre-
diction on the reduced automaton. In order to avoid this problem, we define
in this section a projection operator based on the notion of bisimulation. Since
bisimulation is an equivalence relation preserving temporal logic formulae (see,
e.g., [9]), the obtained projected automata will satisfy the same formulae of the
original one.

Let us fix some notations. Given a condition init(¥) (inv(¥), flow(¥), resp.)
and U C DV U IV we use init(¥) [U (inv(v) | U, flow(v) | U, resp.) to denote
that we consider only the conditions relative to the variables in U.

Definition 8 (U-bisimulation). Let H(S, Tr) be an S-system hybrid automa-
ton. Let U C {X1,...,Xnt+m} be a subset of variables. A relation R CV x V is
a U-bisimulation if

— if ORW, then init(0) [U = init(W) [U Ainv(0) [U = inv (@) | UA flow(D) |
U = flow(w) | U;

— if URW and (0,7") € A, then (&,w') € A and ¢'RW';

— if URW and (W,") € A, then (0,7") € A and ¢ Rw'.

The idea is that two states ¢ and @ are U-bisimilar if not only the variables
in U have the same values in ¢ and @, but from # and & the system evolves in the

same way with respect to the variables in U. In fact, for instance,it is possible
that there are two states in which the variables in U have the same values,
but the first state evolves into a state in which the variables are incremented
while the second one evolves into a state in which the variable are decremented.
Intuitively we do not want to consider equivalent these two states.

Lemma 1. There always exists a uniqgue mazimum U -bisimulation =y which is
an equivalence relation. Moreover, if T =y W and (7,7") € A, then (@, d') € A
and jump((7,7")) [U = jump((@, ")) | U.

Proof. The first part follows immediately from the fact that a U-bisimulation on
H(S, Tr) is nothing but a strong bisimulation on A(S, Tr) whose nodes have been
labeled using part of the conditions defining the hybrid automaton H(S, Tr).
The second fact is a consequence of the fact that jump is uniquely defined
once we know init and inv. O

Definition 9 (Projected Hybrid automaton #H(S, Tr,U)). Let H(S, Tr) =
(X,V, A, I, F,init, inv, flow, jump), be an S-system hybrid automaton and U be a
subset of variables. The projected hybrid automaton H(S, Tr,U) = (U, Vy, Av,
Iy, Fy, inity, invy, flowy, jumpy) s defined as follows:

- W =V/=~y;
= Av = {([t], [@]) | 3" € [7], @ € [a] : (UJFJ) €A}l

— for each [0] € Vy let inity ([0]) = init(0) [U;

— for each [0] € Vy let invy ([0]) = mv(o) TU;

— for each [0] € Vi let flowy ([0]) = flow(?) | U;

— for each ([V],[W]) € Ay such that (W, d") € A let jumpy(([9),[d]) =

Jump((v',w")) [U.

The above definition does not depend on the representative element of each
class. This is a consequence of the definition of ~;; as far as the init, inv, and
flow conditions are concerned, and of Lemma 1 as far as the jump conditions are
concerned. For those who are familiar with automata and bisimulation reductions
we can say that the hybrid automaton H(S, Tr,U) is nothing but the hybrid
automaton built on the bisimulation reduced automaton A(S, Tr)/ =y with
conditions defined only on the variables of U.

The automaton H(S, Tr,U) is still a rectangular singular automaton, hence
CTL is still decidable on it. Moreover, H(S,Tr,U) is deterministic, since bisim-
ulation preserves determinism. The fact that we are working on deterministic
automata implies that the bisimulation relation ~y can be computed in linear
(see [12]) time using the procedure defined in [24].

As far as the correctness of the reduction is involved, we have the following
result.

Proposition 3. Let TL be a temporal logic which is a fragment of the u-calculus.
Let ¢ a formula of TL involving only the variables in U. A(S, Tr) satisfies
v if and only if A(S, Tr)/ =y satisfies o. H(S, Tr) satisfies ¢ if and only if
H(S, Tr,U) satisfies .

Proof. The first part is a consequence of the fact that ~y is a strong bisimulation
and strong bisimulations preserve all the formulae of the u-calculus.

The second part is a consequence of the first part and of the fact that
H(S, Tr,U) is basically the hybrid automaton built on A(S, Tr)/ ~y. |

In the following example we show the difference between A(S, Tr | U) and
A(S, Tr)/ ~y. This difference is at the basis of the correctness of H(S, Tr,U).

Example 9. Consider again the repressilator system of Example 5. Part of the
projected automaton we obtain by applying bisimulation is shown on the left
of Figure 3. The two states in which X; = 0.44 do not coincide when we use
bisimulation. In fact, the first state in which X; is 0.44 evolves to a state in
which X is 0.43 (the protein is decreasing), while the second state in which X;
is 0.44 evolves to a state in which X; is 0.47 (the protein is growing). Hence, the
projected automaton does not satisfies the formula EVENTUALLY (ALWAYS(X; >
0.3)). This is correct, since the repressilator system we are simulating reaches a
steady loop in which X oscillates between 0.16 and 0.83. Part of the projected

inv: 0.830 < X7 < 0.832
flow: X1 = —0.04

init: X1 = 0.448
inv: 0.448 < X; < 0.473
flow: Xl = 0.5

init: X1 = 0.168
inv: 0.168 < X; < 0.169
flow: X1 = 0.02

Fig. 3. Repressilator: bisimulation quotiented automata.

hybrid automaton is shown on the right of Figure 3.

6 Collapsing States

In this section we introduce the definition of collapsing of a trace. The definition
we present is similar but not equivalent to the one given in [4]. If fact, we do not
consider the difference between the derivatives calculated in the states, but the
degree of growth within a step. This is inspired by hybrid automaton in which
in the flow condition of a state we do not use the derivatives calculated at the
beginning of a time step, but the coefficients of the lines connecting the values
at the beginning to the ones at the end of a time step. In the following collapsing
definition we use a compact notation similar to the one already introduced in
Section 4.

Definition 10 (Collapsing). Let 5= (015, 0ntm) be a n+ m-vector of val-
ues. Let tr = (do,...,d;) be a trace obtained by simulating the S-system S with
time step s. A d-collapsing of tr is a partition of the states of tr such that:

— the blocks are sub-traces of tr;
— if a block is formed by the states from @; to diyp, and d;,d;41 belong to the
block, then |(@j41 — @;)/s — (Aiy1 — @;)/s| < 6.

The collapsing operation in [4] is based on the difference between the first
derivatives computed in the elements of the trace. Here, instead, we consider as
collapsing criterion the degree of growth within a step. In practice the definition
requires that the lines connecting @; to d;+1 are good approximations of the lines
connecting @; to @;41- As a consequence we obtain that the lines connecting @; to
@;+p are good approximations of all the small lines. In particular, the following
result holds.

Lemma 2. If a block of a g—collapsing is formed by the sequence of states from
d; to dip and @;, 841 belong to the block, then (@41 —Gjtr)/s— (Titn—ai) [/ (h*
s)| < 2x4.

Proof. It is not restrictive to prove that the result holds on the first component.
Let (@itr4+1,1 — Gitr1)/s = coefri1 for r =0,...,h — 1. It is easy to prove that
(@ith,1 —ain)/(hxs) = (1/h)* ((@itn,1 — @Gith-1,1)/8+ (@ith-1,1 — Qitn—2,1)/5+
ot (air11—ai1)/s) = (1/h)*2f;é coefr41. By hypothesis we have coe fi; —d; <
coefry1 < coefi+01, hence we obtain (1/h)xhx(coefi —61) < (@itn1 —asi,1)/(h*
s) < (1/h) xhx(coefr +61), i.e. coefi — 01 < (@iyn1 —ai1)/(hxs) < coefi +61.
From this last we get (coef1 —d1)—(coefi+d1) < coefry1—(aipn1—ai1)/(hxs) <
(coefi+01) — (coefi —d1),1i.e. —=2x61 < coefri1 — (@ixna —ain)/(hxs) < 2x4dq,
which is equivalent to our thesis. O

Given the trace tr and t_’he vector & the partition in which each state consti-
tutes a singleton class is a d-collapsing.

Definition 11 (Maximal Collapsing). Let Cy and Cs be two g—collapsing of
tr. We say that Cy is coarser than Cs if each block of C5 is included in a block of
Ci. We say that the d-collapsing Cy is maximal if there does not exist another
d-collapsing coarser than Cf.

The uniqueness of a coarsest 5—collapsing is not guaranteed. However, we can
give an algorithm to find a maximal g—collapsing. The algorithm performs the
following steps: it starts from dyp, it check if @; can be collapsed with dp, if this
is the case it goes on with @2, and so on. Assume that @; is the first state which
does not collapse with @y, then the algorithm starts another block from @; and
it goes on in the same way.

The following proposition states that if we use maximal J-collapsing, then
two traces which match in one state always match in the future.

Proposition 4. Let Tr be a convergent set of traces of an S-system S. Let Tr/g
be the set of collapsed traces obtained by applying to each trace of Tr a mazimal
0-collapsing. The set Tr/d is convergent.

This property is sufficient to guarantee that taking a set of traces and collaps-
ing them using maximal §-collapsing, the set of collapsed traces can be used to
build automata and hybrid automata as defined in the previous sections. In fact,
as pointed out along the paper, the correctness of our framework holds when-
ever we use convergent sets of traces. This does not mean that the automaton
we build from a set of collapsed traces satisfies the same formulae of the original
set of traces, but that it satisfies the same formulae of the set of collapsed of
traces.

Ezample 10. Consider again the S-system and the trace of Example 6. The col-
lapsed trace we obtain is again { (1,5),(5,1)). The hybrid automaton we build
from this trace has two states. In the first state, let us call it ¥, we have the
conditions

(@) =1<X; <5A1<X,<5 flow@ =X, =1AX,=-1

which make EVENTUALLY(|X; — X»| < 3) true in the automaton, as it was in
the original trace.

Similarly, we can safely collapse the states of the repressilator system and
obtain an hybrid automaton with four states which correctly satisfy the formula
EVENTUALLY (| X; — X3| < 0.1).

This last example shows that the additional information maintained in the
hybrid automaton is particularly useful when we use techniques as collapsing to
reduce the number of states.

7 Conclusions

In this paper we have described how hybrid automata can be used to model and
analyze set of traces representing the behavior of a biological system. Automata
give a qualitative view of a set of traces by abstracting from the time instants,
thus allowing a compact representation in which the properties of the system
can be easily investigated. The use of hybrid automata, instead of standard
ones, improves along the direction of a qualitative, but complete, modeling of the
biological system. In fact, powerful techniques such as (bisimulation-)projections
and collapsing can be “safely” applied to hybrid automata in order to reduce
the number of states. In particular, while the bisimulation based projection we
present could be applied also to standard automata, the “good” behavior of the
collapsing operation w.r.t. the verification of temporal formulae strongly depends
on the information which is stored in each state of hybrid automata. Notice that,
although we have presented a construction of hybrid automata from standard
S-systems, it is not difficult to modify our framework in order to deal with more
complicated systems, e.g., systems whose differential equations change during
the evolution of the system itself.

As future work, we intend to extend our tool set in order to (1) integrate some
Time-Frequency analysis tools to identify the XS-system states by analyzing the

traces, and (2) incorporate a learning scheme in our approach that keeps track
of what automata (read: model) is being manipulated at a given stage of the
analysis carried out by a biologist, and that amends it semi-automatically before
stepping in the next stage. This could be particularly useful in the evaluation
phase for the constant rates involved in the system.

References

1.

*®

10.

11.

12.

13.

14.

15.

16.

R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin, and
J. Schug. Hybrid modeling and simulation of biomolecular networks. In Hybrid
Systems: Computation and Control, volume 2034 of LNCS, pages 19-32. Springer-
Verlag, 2001.

. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Richel, editors, Hybrid Systems,
LNCS, pages 209-229. Springer-Verlag, 1992.

M. Antoniotti, F. C. Park, A. Policriti, N. Ugel, and B. Mishra. Foundations of
a Query and Simulation System for the Modeling of Biochemical and Biological
Processes. In Proc. of the Pacific Symposium of Biocomputing (PSB’08), 2003.
M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. XS-systems: extended S-
systems and algebraic differential automata for modeling cellular behaviour. In
Proc. of Int. Conference on High Performance Computing (HiPC’02), 2002.

M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model Building and Model
Checking for Biological Processes. Cell Biochemistry and Biophysics, 2003. To
appear.

U. S. Bhalla. Data Base of Quatitative Cellular Signaling (DOQCS). Web site at
http://doqcs.ncbs.res.in/, 2001.

R. W. Brockett. Dynamical systems and their associated automata. In Systems and
Networks: Mathematical Theory and Applications, volume 77. Akademie-Verlag,
Berlin, 1994.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 1999.
E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using brancing time temporal logic. In Proc. Workshop Logic of Programs, volume
131 of LNCS. Springer, 1981.

M. Curti, P. Degano, C. Priami, and C. T. Baldari. Casual w-calculus for biochem-
ical modelling. DIT 02, University of Trento, 2002.

H. de Jong. Modeling and simulation of genetic regulatory systems: A literature
review. DIT 4032, Inria, 2000.

A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In G. Berry,
H. Comon, and A. Finkel, editors, Proc. of Int. Conference on Computer Aided
Verification (CAV’01), volume 2102 of LNCS, pages 79-90. Springer-Verlag, 2001.
M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional reg-
ulators. Nature, 403:335-338, 2000.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 995-1072. MIT Press, 1990.

T. A. Henzinger. The theory of hybrid automata. In Proc. of IEEE Symposium
on Logic in Computer Science (LICS’96), pages 278-292. IEEE Press, 1996.

T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: A model checker for
hybrid systems. International Journal on Software Tools for Technology Transfer,
1(1-2):110-122, 1997.

17.
18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

P. D. Karp, M. Riley, S. Paley, and A. Pellegrini-Toole. The MetaCyc Database.
Nucleic Acid Research, 30(1):59, 2002.

P. D. Karp, M. Riley, M. Saier, and S. Paley A. Pellegrini-Toole. The EcoCyc
Database. Nucleic Acids Research, 30(1):56, 2002.

KEGG database. http://www.genome.ad. jp/kegg/.

H. Kitano. Systems Biology: an Overview. Science, 295:1662-1664, March 2002.
O. Miiller and T. Stauner. Modelling and verification using linear hybrid automata.
Mathematical and Computer Modelling of Dynamical Systems, 6(1):71-89, 2000.
Nat. Cent. Genome Resources. Pathdb database. http://www.ncgr.org/pathdb/.
R. Paige, R. E. Tarjan, and R. Bonic. A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science, 40:67-84, 1985.

A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of bio-
chemical processes using the mw-calculus process algebra. In Proc. of the Pacific
Symposium of Biocomputing (PSB’01), pages 459-470, 2003.

D. Shasha, A. Kouranov, L. Lejay, C. Chou, and G. Coruzzi. Combinatorial Design
to study regulation by multiple input signals: A tool for parsimony in the post-
genomics era. Plant Physiology, 127:1590-1594, December 2001.

E. O. Voit. Computational Analysis of Biochemical Systems. A Pratical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

WIT database. http://wit.mcs.anl.gov/WIT2/.

