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1. INTRODUCTION

One of the trends within the emerging fields of system biol-
ogy, and its sister field of bioinformatics, focuses on creating
a finely detailed and ”mechanistic” picture of biology at the
cellular level by combining the “part-lists” (genes, regula-
tory sequences, other objects from an annotated genome,
and known metabolic pathways), with observations of both
transcriptional states of a cell (using micro-arrays) and trans-
lational states of the cell (using proteomics tools). It has
become evident that the mathematical foundation of these
systems needs to be explored accurately, while their soft-
ware implementations should trade-off usability, accuracy,
and scalability in order to deal with large amounts of data.
We report here about a work in progress, part of a much
larger project, that aims at constructing an integrated sim-
ulation and reasoning system for Biological Systems Model-
ing.

We assume the following scenario. Imagine a biologist seek-
ing to test some hypotheses against a corpus of data pro-
duced by several in vitro, in vivo, and in silico experiments
regarding the behavior of a given biological system, e.g., a
regulated metabolic pathway in a given organism. A (graph-
ical) metabolic map of the biochemical system under study,
together with a specific associated S-system or GMA-system
[22], is assumed available, and the number of quantities
recorded is large. The biologist can access one or both of
the following items:

e Raw data stored somewhere about the temporal evolu-
tion of the biological system. This data may have been
previously collected by observing an in vivo or an in
vitro system, or by simulating the system in silico.

e Some mathematical model of the biological system®.

The biologist will want to formulate queries about the evo-
lution encoded in the data sets. For example, the biologist
may ask: will the system reach a “steady state”?, or will a
temporary increase in the level of a certain protein repress
the transcription of another? Clearly the set of numerical
traces of very complex systems rapidly becomes unwieldy to
wade through for increasingly larger numbers of variables.

To aid the biologist in this scenario we implemented a pro-

'We note that simulating a system n silico actually requires
a mathematical model. However, we want to consider the
case when such mathematical model is unavailable to both
the biologist and the software system.

totype system called simpathica/xssys. Our computational
tool derives its expressiveness and flexibility by integrating
in a novel manner many tools from numerical analysis, sym-
bolic computation, temporal logic, model-checking, and vi-
sualization. A distinctive feature of our approach is the
“bottom-up” construction of an automaton that simplifies
an abstracted form of qualitative data analysis. Based on
this automaton, we developed a temporal query language
that allows the user to query massive sets of numerical data
in an efficient and natural way. The automaton provides
the “semantic scaffold” for the temporal query language
(c¢f. [12]). Such an automaton can be constructed in several
ways: we proposed elsewhere [2] a simple construction based
on an approzimation of a numerical trace (¢f. [10] and the
references contained therein). We also remark that our pro-
posed framework is relevant to the modeling of regulatory
pathways; this is the subject of future work.

To motivate our approach, we show how we applied our
system to a sizable example: the purine metabolism pathway
as described in [22, 7, 6].

2. AN EXAMPLE: PURINE METABOLISM

Let us revisit in detail the example of purine metabolism
described in [22, 7, 6]. The pathway for purine metabolism
is presented in Figure 1.

The main metabolite in purine biosynthesis is 5-phosphoribosyl-

a-1-pyrophosphate (PRPP). A linear cascade of reactions
converts PRPP into inosine monophosphate (IMP). IMP is
the central branch point of the purine metabolism pathway.
IMP is transformed into AMP and GMP. Guanosine, adeno-
sine and their derivatives are recycled (unless used else-
where) into hypozanthine (HX) and zanthine (XA). XA is
finally oxidized into uric acid (UA). In addition to these pro-
cesses, there appear to be two ”salvage” pathways that serve
to maintain IMP level and thus of adenosine and guano-
sine levels as well. In these pathways, adenine phosphoribo-
syltransferase (APRT) and hypozanthine-guanine phospho-
ribosyltransferase (HGPRT) combine with PRPP to form
ribonucleotides.

The consequences of a malfunctioning purine metabolism
pathway are severe and can lead to death. The entire path-
way is quite complex and contains several feedback loops,
cross-activations and reversible reactions, and thus an ideal
candidate for reasoning with the computational tools we
have developed.
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Figure 1: The metabolic scheme of purine
metabolism in human. (Reprinted from [6], where
a full description and further references may be
found.)

We show how to formulate queries over the simulation traces
of one of the mathematical models presented in [22], in order
to express various desirable properties (or absence of unde-
sirable ones) that the model should possess. Should any of
these queries ”fail”, the model will be marked for further
examination, experimentation and correction.

As an example consider the “final” model for purine metabolism

presented in [22]. The in silico experiment shows that when
an initial level of PRPP is increased by 50-fold, the steady
state concentration is quickly absorbed by the system. The
level of PRPP returns rather quickly to the expected steady
state values. IMP concentration level also rises and HX level
falls before returning to predicted steady state values.

Suppose that we wanted to ask the system how it will re-
spond to a temporary (instantaneous) increase in the level
of PRPP. Such request can be formulated as follows:

always (PRPP > 50 * PRPP1
implies
(steady_state()
and eventually(IMP > IMP1)
and eventually(HX < HX1)
and eventually(always(IMP == IMP1))
and eventually(always(HX == HX1))

an (instantaneous) increase in the level of PRPP will not
make the system stray from the predicted steady state, even
if temporary variations of IMP and HX are allowed. Figure 2
shows how xssys responds to the query.

3. CONCLUDING REMARKS

We have briefly presented a novel framework and software
tool under which we bring together well known tools from
numerical analysis, temporal logic and verification, and vi-
sualization. This is a work in progress whose initial aim
is to construct an effective yet simple and testable tool to
aid biologists analyze experimental results and design new
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Figure 2: The in silico trace of the ”final model”
from [22]. We arbitrarily increased the level of
PRPP (variable X1) to more than 250 at time step
100. The XSSYS system correctly answers both
queries. Because of numerical effects in the float-
ing point equality tests we had to ask a less strin-
gent question about the steady state value of IMP
(variable X2) and HX (variable X13).

ones. There are several open questions in our work that
we need to address. We are now considering how to ex-
tend our automata construction by using more sophisticated
approzimation theory tools, that will allow us to take into
cosideration time and frequency domain aspects of a trace.
More theoretical treatments of the subject are possible as
well (¢f. [4]). Finally, we list a few of the challenges that
Computational Biology needs to address in order to provide
researchers with effective tools.

(1) Hybrid Systems: Certain interactions are purely discrete
and after each such interaction, the system dynamics may
change. Such a hybrid model implies that the underlying au-
tomaton must be modified for each such mode. How do these
enhancements modify the basic symbolic model? (2)Spa-
tial Models: The cellular interactions are highly specific to
their spatial locations within the cell. How can these be
modeled with richer abstractions of automata, e.g., cellular-
automata? How can we account for dynamics due to changes
to the cell volume? The time constants associated with the
diffusion may vary from location to location; how can that
be modeled? (3)Hierarchical Models: Finally, as we delve
into more and more complex cellular processes, a clear un-
derstanding can only be obtained through modularized hi-
erarchical models. What are the ideal hierarchical models?
How do we model a population of cells with related statis-
tics?
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