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1 Introduction

In the recent years, genome-wide shot-gun restriction mapping of several microorganisms using optical
mapping [Lai99, Lin99] have led to high-resolution restriction maps that directly facilitated sequence
assembly avoiding gaps and compressions or validated shotgun sequence assembly [CMS99]. The
simplicity and scalability of shot-gun optical mapping suggests obvious extensions to bigger and
more complex genomes, and in fact, its applications to human and rice are underway. Furthermore,
a good-quality human map is likely to play a critical role in validating several currently available but
unverified sequences.

The key computational component of this process involves the assembly of large numbers of partial
restriction maps with errors into an accurate restriction map of the complete genome. The general
solution has been shown to be NP-complete, but a polynomial time solution is possible if a small
fraction of false negatives (wasted data) is permitted. The critical component of this algorithm is
an accurate bound for the false positive probability that two maps that appear to match are in fact
unrelated.

The map assembly and alignment problems are related to the much more widely studied sequence
assembly and alignment problems. The primary difference in the problem domains is that the se-
quence alignment problem involves discrete data only in which errors can be modeled as discrete
probabilities, whereas map alignment involves fragment sizing errors and hence requires continuous
error models. However, even in the case of sequence alignment, statistical significance tests play a
key role in eliminating false positive matches and are included in many sequence alignment tools such
as BLAST (see for example chapter 2 in [DEKM98]).

A simple bound using Brun’s sieve can be easily derived [AMS99], but such a bound often fails
to exploit the full power of optical mapping. Here, we derive a much tighter but more complex
bound that characterizes the sharp transition from infeasible experiments (requiring exponential
computation time) to feasible experiments (polynomial computation time) much more accurately.
Based on these bounds, a newer implementation of the Gentig algorithm for assembling genome-wide
shot-gun maps [AMS99] has improved its performance in practice.

A close examination shows that the false positive probability bound exhibits a computational
phase-transition: that is, for poor choice of experimental parameters the probability of obtaining
a solution map is close to zero, but improves suddenly to probability one as the experimental pa-
rameters are improved continuously. Thus careful optimized choice of the experimental parameters
analytically has strong implication to experiment design in solving the problem accurately without
incurring unnecessary laboratory or computational cost. In this paper, we explicitly delineate the
interdependencies among these parameters and explore the trade-offs in parameter space: e.g., sizing
error vs. digestion rate vs. total coverage. There are many direct applications of these bounds apart
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from the alignment and assembly of maps in Gentig: Comparing two related maps (e.g. chromoso-
mal aberrations), Validating a sequence (e.g. shot-gun assembly-sequence) or a map (e.g., a clone
map) against a map, etc. Specific usage of our bounds in these applications will appear elsewhere
[AMAPOQ].

1.1 A Sub-quadratic Time Map Assembly Algorithm: Gentig

For the sake of completeness we give a brief but general description of the basic Gentig (GENomic
conTIG) map assembly algorithm previously described elsewhere in details [AMS99]. Roughly, Gentig
can be thought of as a greedy algorithm that in any step considers two islands (individual maps or
map contigs) and postulates the best possible way these two maps can be aligned. Next, it examines
the overlapped region between these two islands and weighs the evidence in favor of the hypothesis
that “these two islands are unrelated and the overlap is simply a chance occurrence.” If enough
evidence favors this “false positive” hypothesis, Gentig rejects the postulated overlap. In the absence
of such evidence, the overlap is accepted and the islands are fused into a bigger/deeper island.
What complicates these simple ideas is that one needs a very quantitative approach to calculate the
probabilities, the most likely alignment and the criteria for rejecting a false positive overlap—all of
these steps depending on the models of the error processes governing the observations of individual
single molecule maps. Ultimately, the Gentig algorithm can be seen to be solving a constrained
optimization problem with a Bayesian inference algorithm to find the most likely overlaps among the
maps subject to the constraints imposed by the acceptable false positive probability. False Positive
constraints limit the search space, thus obviating full-scale back-tracking and avoiding an exponential
time complexity. As a result, the Gentig algorithm is able to achieve a sub-quadratic time complexity.

The Bayesian probability density estimate for a proposed placement is an approximation of the
probability density that the two distinct component maps could have been derived from that place-
ment while allowing for various modeled data errors: sizing errors, missing restriction cut sites, and
false optical cuts sites.

The posterior conditional probability density for a hypothesized placement H, given the maps,
consists of the product of a prior probability density for the hypothesized placement and a conditional
density of the errors in the component maps relative to the hypothesized placement. Let the M
input maps to be contiged be denoted by data vectors D; (1 < j < M) specifying the restriction site
locations and enzymes. Then the Bayesian probability density for H, given the data can be written
using Bayes rule as in [AMS97]:
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The conditional probability density function f(D;|H) depends on the error model used. We model
the following errors in the input data:

(1) Each orientation is equally likely to be correct. (2) Each fragment size in data D is
assumed to have an independent error distributed as a Gaussian with standard deviation
o. It is also possible to model the standard deviation as some polynomial of the true
fragment size which will be described in a future paper. (3) Missing restriction sites in
input maps D; are modeled by a probability p. of an actual restriction site being present in
the data. (4) False restriction sites in the input maps D; are modeled by a rate parameter
Dy, which specifies the expected false cut density in the input maps, and is assumed to
be uniformly and randomly distributed over the input maps.

The Bayesian probability density components f(#) and f(D;|H) are computed separately for
each contig (island) of the proposed placement and the overall probability density is equal to their



products. For computational convenience, we actually compute a penalty function, A, proportional
to the logarithm of the probability density as follows:

M
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Here m; is the number of cuts in input map Dj;.
For fragment sizing errors, consider each fragment of the proposed contig, and let the contig

fragment be composed of overlaps from several map fragments of length 1, ..., zny. If p. = 1 and
ps = 0 (the ideal situation), it is easy to show that the hypothesized fragment size 1 and the penalty
A are:
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Now consider the presence of missing cuts (restriction sites) with p. < 1. To model the mul-
tiplicative error of p. for each cut present in the contig we add a penalty A. = 202 log[1/p.] and
to model the multiplicative error of (1 — p.) for each missing cut in the contig we add a penalty
A, = 20%10g[1/(1 — p.)]. The alignment computed by a Dynamic Programming algorithm deter-
mines which cuts are missing.

The computation of p is modified in the case of missing cuts by assuming that the missing cuts
are located in the same relative location (as a fraction of length) as in overlapping maps that do
not have the corresponding cut missing. Finally, consider the presence of false optical cuts when
py > 0. For each false cut, we add a penalty Ay = 202 log[1/(psv/270)] in order to model a “scaled”
multiplicative penalty of pr. A modified penalty term is required for the end fragments of each map
which might be partial fragments, as described in [AMS99]. When combining contigs of maps rather
than input maps, the Dynamic programming structure is the same, except that the exact penalty
values are slightly different and computed as the increase in penalty of the new contig over the penalty
of the two shallower contigs being combined.

The resulting alignment algorithm has a time complexity of O(m%m?) in the worst case, but an
average case complexity of O(m; + m;), achieved with several simple heuristics. The basic dynamic
programming is combined with a global search that tries all possible pairs of the M input maps for
possible overlaps. A sophisticated implementation in Gentig achieves an average case time complexity
of O([mM]**¢) (e = 0.40 is typical for the errors we encounter), where m is the average value of m;.
It relies on several heuristics based on “geometric hashing” while avoiding any backtracking.

1.2 Summary of the New Results

Before proceeding further with the technical details of our probabilistic analysis, we summarize the
two main formulae that can be used directly in estimating the false positive probability for a particular
map alignment, or in designing a bio-chemical experiment with the goal of bounding the false positive
probability below some acceptable small value (typically < 10~3).

1.2.1 The formula for false positive probability

Consider a population of M ordered restriction maps with errors of the kind described earlier. As-
sume that the best matching pair of maps (under a Bayesian formulation) has n aligned cuts and r
misaligned cuts, and R is some average of the relative sizing error of aligned fragments in the overlap.
Then FPT, denotes the probability that the two maps are unrelated and the detected overlap is
purely by chance.
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Note that if r = 0 (implying that the best match has all the cuts aligned and the only error source

is sizing error), then FPTy = 4(%) P,. If R < 1 then as n gets larger FPT, exhibits an exponential
decay to 0, and this property remains true for non-zero values of r.

1.2.2 The formula for feasible genome-wide shotgun optical mapping

Consider an optical mapping experiment for genome-wide shotgun mapping for a genome of size G
and involving M molecules each of length L;. Thus the coverage is M L;/G. Let the a fragment of
true size X have a measured size ~ N'(X,02X). Let the average true fragment size be L, and the
digestion rate of the restriction enzyme be Py. Thus the average relative sizing error R = o/ P;/L
and the average size of aligned fragments will be L/P;*. As usual, let 6 represent the minimum
“overlap threshold.” Hence the expected number of aligned fragments in a valid overlap is at least
n = 0L4P,;? /L. Let d = 1/ Py, the inverse of the digest rate. Feasible experimental parameters are
those that result in an acceptable (e.g. < 1073) False Positive rate FPT":
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To achieve acceptable false positive rate, one needs to choose an acceptable value for the experi-
mental parameters: Py, o, Lg and coverage. F'PT exhibits a sharp phase transition in the space of
experimental parameters. Thus the success of a mapping project depends extremely critically on a
prudent combination of experimental errors (digestion rate, sizing), sample size (molecule length and
number of molecules) and problem size (genome length). Relative sizing error can be lowered simply
by increasing L with a choice of rarer-cutting enzyme and digestion rate can be improved by better
chemistry [Reed98].

As an example, for a human genome of size G = 3,300Mb and a desired coverage of 6x, consider
the following experiment. Assume a typical value of molecule length L; = 2Mb. If the enzyme of
choice is PAC I, the average true fragment length is about 25Kb. Assume a minimum overlap? of
6 = 30%. Assume that the sizing error for a fragment of 30kb is about 3.0kb, and hence o2 = 0.3kb.
With a digest rate of Py = 82% we get an unacceptable FPT ~ 0.0362. However just increasing Py
to 86% results in an acceptable F'PT = 0.0009. Alternately, reducing average sizing error from 3.0kb
to 2.4kb while keeping Py = 82% also produces an acceptable F'PT = 0.0007.

Obviously one should allow some margin in choosing experimental parameters so that the actual
experimental parameters will be a reasonable distance from the phase transition boundary. This is
needed both to allow some slippage in experimental errors as well as the possibility that there may
be additional small errors not modeled by the error model.

2 A Technical Probabilistic Lemma

The key to understanding the false positive bound is the following technical lemma that forms the
basis of further computation. Let X = {x1, ..., ) and Y = (y1, ..., yn) be a pair of sequences of
positive real numbers, each sequence representing sizes of an ordered sequence of restriction fragments.
We rely on a “matching rule” to decide whether X and Y represent the same restriction fragments in
a genome, by comparing the individual component fragments. We proceed by computing a “weighted

2This value should be selected to minimize FPT



squared relative sizing error” that is then compared to a specific threshold ©. The “weighted squared

relative sizing error” is simply
(2 XZ + E ?

i=1

where w;’s are chosen to match the error model. For example, if the sizing error variance for a

. . . i 2—p
fragment with true size X is 02 XP, where p = 0..2, we can use w; ~ %

Lemma 2.1 Let X = (X1, ..., Xp) and Y = (Y1, ..., Y,) be a pair of sequences of IID random
variables X;’s and Y;’s with exponential distributions and pdf’s f(x) = %e‘””/ L. Then

1. Pr(|X; - Yi|/(X; + Y;) <©) <0, for all 0 < O and with equality holding, if © < 1.

2. Pr(3r wi(3F)? < 0) < (%(%GW2 for all 0 < © and with equality holding, if © <
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Proof.
The first identity can be shown by integrating the relevant portion of the joint distribution of X;
and Y;:

751

Pr(|X; - Yil/(X; + ;) < ©)

> Xi% 1 Xi+Y;
/ —e ~ I dY;dX; =0.

Note that this means that for each pair of random fragment sizes X;, Y; the statistic U; =
| X; — Yi|/(X; +Y;) is uniformly distributed between 0 and 1.
We can now compute the overall probability P, for all n fragment pairs:

Py

1l

= Xi-Y
Pr(}_wil ) < ©)
i=1 ¢ ¢

PT(Z w;U;* < 0)
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Note that Uy, ..., U, are IID uniform distributions over [0..1], hence this probability is just that
part of the volume of the n-dimensional unit cube that satisfies the condition ) 7 w;U;2 < ©. For
small sizing errors such that ® < min(wy,...,w,), this region is one orthant of an n dimensional
ellipsoid with radius values of 1/O/wj; in the ith dimension. In general this volume is an upper
bound and hence:
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Here n! is defined in terms of the Gamma function for fractional n: n! =T'(n 4+ 1). QED

P,

Lemma 2.2 Let X = (X1, ..., X,) and Y = (Y1, ..., Yy,) be a pair of sequences such that variables
Xi’s and Y;’s are given in terms of IID random variables Z;’s with exponential distributions and pdf’s



fz)= %e‘z/L. In particular, fori =1, ..., n, if we can express X; and Y; in terms of exponential

IID random variables Z1, ..., Zyr,, Zyit1y -« Lrit+s; 0S follows:
1
min(X;,Y;) = 3 > Zrivn
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Then

1. Pr(|X; - Vil /(Xi +Y3) <) < (**7h) e, for all © > 0.
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Proof.
Similar to the previous lemma. QED

3 Model of Random maps

Our model of random maps is that cut sites are randomly and uniformly distributed, so that the
distance between cut sites is a random variable X with an exponential distribution and probability
density f(z) = %e*z/ L. where L is the average distance between cut sites. Here we assume that all
cut sites are indistinguishable from each other.

First we consider the case with no misaligned cuts, so that the only errors in the proposed overlap
region are sizing errors. Thus our alignment data consists of two maps with fragment sizes z1, ...,
2, on one map that align with fragment sizes y1, ..., ¥y, on the other map, where n is the number of
fragments in the overlap region. Here the quality of the alignment will be measured by a weighted
squared relative sizing error, E = Y7 w;(z; — y:)?/(%; + y;)?, where w;’s are chosen as explained
carlier. We need to compute P, = Pr(}_} wi($i3)? < E), where E = Y7 wi(574)%. By an
application of the previous lemma, we have:
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Here, n! = T'(n + 1). For current purposes it suffices to note that (1)! = 4 For example, (3)! =
3Ly = 3vm
2\2): = —4 -

To see more clearly how this probability scales with the sizing errors, let us define the weighted

RMS relative sizing error R,, and the average weight A,:

R, = \/E’— 23“71)2. (1)

= Z Wi. (2)

Then we can rewrite P, using Sterling’s expression for factorials as:
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This shows that asymptotically the n-fragment false positive probability P, will decrease with
the nth power of the RMS relative error R, provided that R, < \/2/em = 0.4839.

To complete our computation of the False Positive Likelihood F'P for a particular pair of maps
D; and D,, we need to consider the multiple possible choices of overlaps of n or more fragments.
Let the two molecules contain N; and N, fragments with Ny < N,. If n < Nj there will be
exactly 4 possible ways of forming an overlap of n fragments. Otherwise, if n = N; there will be
2(Ny — Ny + 1) ways of forming an n fragment overlap. Each such overlap has the same independent
probability P,. Thus with 4 possible overlaps, the probability F' P, of finding at least 1 overlap of n
fragments between two random maps as good as the actual alignment is bounded by the probability
FP,<1-(1-P,)*<4P,.

We also need to consider random overlaps of more than n fragments that are as good as the
actual overlap. Under a typical Bayesian error model such as described in [AMS99], each overlap of
more than n fragments can have slightly larger sizing errors than the actual alignment with the same
probability density, since the prior probability density must be biased towards larger overlaps. For
an error model such as in [AMS99] one can show [AMO00] that the permissible increase in relative
sizing error R,,+1 vs. R,, is given approximately by:

nAnR,> + K/2
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where K is a prior bias parameter, typically in the range 1 < K < 1.4.
Hence for n + k < N1 we can write F'P, as:

k/2
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Here G, is the geometric mean of w;,7 = 1..n.

If n+k > Ny then FP,y;, = 0 and if n + kK = N; we just need to replace the factor 4 by
2(Ny — Ny + 1).

We can now compute F'P by combining overlaps of all possible number of fragments (n..Ny):

Ni—n
FP < Y FPuy
k=0
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where,Z = R, G,

This result applies to the case of two maps. The generalization to a population of many maps is
considered for the more general case of missing cuts in the next section.

4 False Positive Probability with Missing Cuts

When misaligned cuts are present in the actual alignment, the false positive probability becomes
larger. Assuming the maps are random, we have many possible alignments for a given overlap region,
greatly increasing the odds of coming up with a good alignment.

In this case our actual alignment data consists of n pairs of fragment sizes zi,za, ..., z, and
Y1,Y2, -, Yn, as before, plus the total number of fragments m in the overlap region of the two maps,
where m = 2n + r and r > 0 is the number of misaligned cuts.



First consider the case where the number of misaligned cuts is fixed at r = m — 2n and the
number of aligned fragments is fixed at n in each map and we define the probability P, as the
probability that two random maps with an overlap region of exactly m total fragments in both maps
could produce an alignment of n fragments as good as the actual alignment.

The key to computing P, ,, is a systematic way to enumerate possible alignments that can be
applied to each sample of the two hypothesized random maps, then compute the probabilities that a
particular enumerated alignment will have better sizing error than the actual alignment, and combine
these probabilities over all enumerated alignments.

It simplifies matters if we consider random alignments between the left end of two random maps
and compute the probability of finding an alignment involving the first m fragments from the left
(on either of the two random maps) that is as good as the actual overlap.

We now claim that all possible alignments between the left end of two random maps involving m
fragments can be enumerated, independent of the random map sample, as follows:

1. Pick any n + 1 numbers sg, s1, ..., S, and another n + 1 numbers r¢, 7y, ..., 7, subject only to the
constraints s; > 1, r; > 1, Y0 (s; +1;) <m+2

2. Align the two random map samples so that their left ends coincide. Then scan both maps from
the left end and pick the soth cut site encountered on either map. Then scan further to the
right on the other map until another ry cut sites have been encountered and align the roth one
with the previous cut site. This defines the first aligned pair of cuts. The map is now re-aligned
so that this pair of cuts coincide (rather than the left ends of the maps).

3. Repeat this step for ¢ = 1...n: Starting from the previous aligned cut site scan to the right on
both maps until s; sites have been seen and mark the last one, which could be on either map.
Then scan to the right from that cut site on the opposite map only until r; cut sites have been
seen and align the last (r;th) one with the previously marked cut site. This defines the ith set
of aligned fragments. Realign the maps so that this pair of cut sites coincide.

4. After aligning the last ((n + 1)th) cut site, scan right on both maps until a total of m + 2 cut
sites have been seen (including all cut sites seen in previous steps). Mark the boundary of the
aligned region anywhere between the last seen cut site and the next one.

For each enumerated alignment defined by a particular choice of sq, ..., $n, T'g, ---, 'n We can compute
the probability PA,, s, that for two random maps that particular enumerated alignment will have
relative sizing errors better than the actual map alignment. We can then compute an upper bound
for P, ., as the sum of PA,, ,,, s, over all enumerated alignments.

First we compute E,; s, the probability of no overhang as a function of ry and so. An overhang
occurs if the sum of ry random fragments add up to more than the leftmost fragment in the same
molecule. Using ITD random variables 4, ..., . each drawn from fe —X/L to represent the r intervals,
and 7, ..., Zs, also drawn from %e‘X/ L to represent twice the s intervals used to select the first
aligned cut, we can obtain by suitable integration:

1 1 /r+s—2\ 21 /r+k—2
E. = — [— E —
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Using the earlier lemma 2.2, We can write PA, s, as follows:
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and simplify it to

_n_
n+.S

)

r,—1

m|§_

(n+S+1)/2 n
) I

i=1

PApmsr < Ero,soPn(2eRn2An)5/2 (

w|>—t

where N = ma<x r;, and S = Z

i=1

Here P, is the result without misaligned cuts.
We will now sum up PA,, s, over all possible choices of sg, ..., s, while keeping ro, ..., ry, fixed
subject to the constraint Y. (s; + ;) < m + 2 to produce:

PAn,m,r = ZPAn,m,s,r
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Next, we will add up P Ay, ,,r over all possible choices of ry then ry, ..., 7, where r¢ is constrained

byl<ro<m-—-2n-S+1landry,...,r, by S=3" (r; —1) < m—2n. Approximating w; by its
geometric mean G,, where needed we get:
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The resulting expression diverges for large values of r but the bound is quite tight for realistic
values of m,n, R,,.

As a final step in computing the False Positive probability we need to combine the P, ,, just
computed over random alignments involving fewer misaligned cuts (smaller values of r) or more
aligned fragments (larger n), as well as consider the possible ways the ends of two random maps
could be aligned with each other. Using the same approach as for the case without misaligned cuts
to model the permissible change in sizing error we can show that the result is:

r H Jj-1 2n+r+1
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5 False Positive Probability : Population of Maps

Finally if there are multiple maps to choose from, we need to reject the possibility that the proposed
map pair is merely the best matching amongst all possible map pairs. We need not consider maps
with less than n+r/2 fragments. Let the number of maps with at least n+r/2 fragments be M, with
number of fragments N;,i = 1..M arranged in ascending order. For each of the possible M (M —1)/2
map pairs we can compute the probability F' P, just described, but with N;, N, suitably adjusted.
The resulting probability F'PT, is given by:

M-1 M
FPT, < Y % FP(NiN;)
i=1 j=i+l
L
< p (2n+r+2) 1+’"+1 g 24, SR A Gvary
> n r % Gn (2n+rr+1)
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Which is to be used with the previous equations for P, R,,A,,G, and the error model parameter
K (and implicitly o).

6 Experiment Design

In designing a shot-gun genome wide mapping experiment, one needs to ensure that the data allows
correct map overlaps to be clearly distinguished from random map overlaps. If this is done using a
False Positive threshold such as the F'PT we have derived in this paper, the goal is to ensure that the
expected FPT for correct map overlaps does not exceed some acceptable threshold (e.g. 1073). In
this section we will estimate the expected value of F'PT for a valid overlap based on the experimental
error parameters.

In principle we just need to estimate the values of n,r, R,, M for a correct overlap based on the
experimental errors. However given the extreme sensitivity of F'PT on n, the number of aligned
fragments, we will compute F'PT for correct map overlaps of a certain minimum size. By selecting
a suitable value of 6, the minimum “overlap value”, we can control the expected minimum value of
n, at the cost of some reduction in effective coverage by the factor 1 — § [Waterman95].

In addition to 6 assume the following experimental parameters: G = Expected Genome size. Ly =
Length of each map. C' = Desired coverage (before adjustment for ). L = average distance between
restriction site in Genome. o/ X = sizing error (standard deviation) for fragment of size X. Py =
The digestions rate of the restriction enzyme used.

Assuming R < 1 and A,, & G, we can then write F'PT in terms of the experimental parameters
as:

FPT =~ 2M? (L[Z"dJr 2l ) VG <1 +(d- 1)R\/g> (6)

2n(d — 1) vnm
Lgb o —
Where d = g-n = &>, R = m,andM_%—f



7 Conclusion

In this paper we derived a tight False Positive Probability bound for overlapping two maps. This
can be used in the assembly of genome wide maps to reduce the search space from exponential time
to sub-quadratic time with only a small increase in false negatives. The False Positive Probability
bound also can be used to determine if a sequence derived map has a statistically significant match
with a map.

We also showed how the False Positive Probability bound can be used to select experimental
parameters for whole-genome shot-gun mapping that will allow the genome wide map to be assembled
rapidly and reliably and showed that the boundary between feasible and infeasible experimental
parameters is quite narrow, exhibiting a form of computational phase transition.
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