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Abstract

A wide variety of strategies have been proposed for the aisabf gene expression data, many of these
approaches, especially those that focus on identifying aletoexpressed (or potentially coregulated)
genes, have been based on some variety of data clusteringe Ugeful, many of these techniques
have limitations that are related to the fact that gene esgiwa data sets generally show correlations
in both genes and conditions. Specifically, with respecin@ tseries microarray data, often there are
intervals of time in which gene expression is more more os tEmrelated for various sets of genes
followed by intervals for which the correlation changes magpears. This structure suggests that a
clustering approach that partitions both genes and timapsimultaneously might be profitable. Using
techniques from information theory, one may charactetizé & biclustering of the data in terms of how
much various regions of the data set can be compressed. &by these considerations, we have
developed a biclustering algorithm, based on techniques information theory and graph algorithms,
that finds a partition of time course data such that sets aftetad genes are found for an optimally
disjoint windowing of the dataset in time. This windowingapés the boundaries between temporal
regions at points in time for which gene expression activitglergoes substantial reorganization and
thus sheds light on the process level dynamics in the bickdgiata. We validate the method against
more traditional techniques on both simple synthetic dataell as actual time course microarray data
from the literature and show that while computationally exgive, our method outperforms others in
terms of accuracy. Further, the method outlined here sawadirst step in the construction of automata
based models of gene interaction as discussed in the pgdper [8



Background

Clustering

Clustering data [16] is a major topic of research within tleeighlines of statistics, computer science and
machine learning. It is also an important practical techaigsed for data analysis and finds application in
fields as diverse as biology, data mining, document undatstg, object recognition and image analysis.
Currently, many approaches under research are a respotseldgical questions related to microarray

analysis of gene expression and genetic regulatory netveadastruction [25].

Clustering is characterized as a form of unsupervised ilegmuherein the elements of a dataset are or-
ganized into some number of groups. The number of groupstroggknown apriori or might be discovered
during the clustering process. Clustering is generalharggd as a form of statistical learning executed
without the benefit of known class labels (i.e. unsuperyistitt finds a natural partition of a dataset that
is optimal in some respect (where optimality makes senskdrcontext of the data under consideration).
Such techniques contrast with classification achieved pgrsised methods, in which a set of labeled data
vectors are used to train a learning machine that is thentosgdssify novel unlabeled patterns. Clustering
methods discover groups in the data without any advancedlkdge of the nature of the classes (except
perhaps their number) and are thus entirely data drivens hbstractly, clustering is the classification of
feature vectors or patterns into groups when we do not havbehefit of patterns that are marked up with
class information. It is generally exploratory in naturel ariten makes few assumptions about the data.
When clustering, one is interested in finding a groupingstelting) of the data for which elements within
the same group are similar and elements associated witeiff groups are different (by some measure).
There are a wide variety of methods and similarity measurasdre used to this end, some of which are
discussed below.

Algorithmically, clustering methods are divided into a riagn of classes (e.g. hierarchical, partitional,
model-based, density-based, grid based, etc. [16]). Marently, a number of techniques based on spectral
methods and graphs [27] have also been developed, as wekt®ads relying on information theoretic
principles. Additionally, clustering may be hard (eachtgat belongs to a single group) or soft (each
data vector belongs to each cluster with some probabilligrarchical clustering (common in biological
applications) produces a nested family of more and moreyfigrained groups, while partitional clustering
finds a grouping that optimizes (often locally) some objectunction. As mentioned above there are a wide
variety of clustering techniques that have been developedtechnique is an iterative partitional method
that use techniques from information theory to formulagdptimization problem and that expects data in
the form of a multivariate time series.

Additionally, there has been much recent interest in s@ddliclustering techniques (see below), espe-
cially in the context of biological research. This reportdses on methods related to partitional algorithms,
and the current work can be seen as a relative of biclustedopgrithms that partition data by optimizing
some measure of energy or fitness. What is unique to this veothe emphasis on creating a partition
specifically for ordered temporal data (i.e. time seriesy] eharacterizing the partition using the language
of lossy data compression. In our specific case, we are Igdkina windowing or “segmentation” of a
time series dataset into intervals, within each of which wggym a clustering. In this way we achieve a
biclustering of our data for which each window of the datagsroally clustered.

Partitioning algorithms divide (i.e. partition) the dat&#d some number of clusters such that some
measure of the distances between the items in the clustetgisal while the dissimilarity between the
clusters is maximal. The number of clusters is usually digecby the user, but there are techniques for
automatically discovering model size (see below). Exaspfepartitioning algorithms include the popular



k-means and k-medians algorithms.

The present work develops an iterative biclustering methadtl builds on previous partitioning algo-
rithms, optimization techniques, and traditional grapdrsle in order to find a set of partitions in both genes
and time. It minimizes an energy term developed using this wfdnformation theory and results in a set of
clusterings for a corresponding set of disjoint temporaddews that cover the dataset and share only their
endpoints.

Within the computational biology community, clusteringshfaund popularity as a means to explore
microarray gene expression data, aiding the researchiee iattempt to locate groups of coexpressed genes
(with the hope that coexpression might imply - at least in s@incumstances - coregulation). However,
this objective is difficult to achieve as genes often showyimgr amounts of correlation with different sets
of genes as regulatory programs execute in time. It is thistsbiming that motivated the development of
biclustering within the context of computational biologyd again there has been much work in this area.
Part of the problem with many biclustering techniques haxeis that they are computationally complex
and they do not take special characteristics of the dataaicdount. Our algorithm is specifically designed
to work with time series data and to locate points in the diatehich significant process level reorganization
occurs. Furthermore, our technique differentiates sngdit tlusters, from large loose clusters of less related
data elements, an important quality when dealing with lgicial data.

Historically, two important steps in any clustering task @attern representation (possibly including
feature extraction) and the definition of a similarity maasundeed these two tasks are related since the
definition of distance between data elements may be seen@gitnfeature selection (e.g. Euclidean
distance treats distance in any component as equally iammdrt We try to make few assumptions here
other than that the data is temporal in nature (i.e. a timeseand that correlation captures proximity
between vectors in a manner that we are satisfied with. Sgabjfiin what follows we present a model-
free procedure for time series segmentation that makesswrgmions about the underlying distributions
that generate our data. While we do rely on correlation as asare of similarity, it should be pointed
out in advance that we are not wedded to it and that one coudsehto use another basis for distortion
calculations if one preferred.

Finally, it is often the case that clustering proceduresiireca number of necessary parameters that must
be supplied by the user. We have based our times series segimeprocedure on a clustering subprocedure
that does not need any such additional inputs. As we will s@ealgorithm attempts to search for the best
values of such tuning parameters in a natural way.

Precision vs. Complexity

Discussions related to learning from data often begin withcdptions of curve fitting as an example that
illustrates the trade-off one must make between precisiohtlae complexity of data representation. If one
fits a curve of too high a degree (high complexity represemtptone risks over-fitting and an inability to
generalize, whereas if one uses too low a degree (low coibplepresentation), one risks a poor descrip-
tion of the data. In unsupervised learning a similar probienften met. Determining the appropriate model
size and type are difficult enough when the data is labeledsanl considerations become only more sig-
nificant when one is dealing without the benefit of such infation. The method below sidesteps the issue
of model type by making few suppositions about the data, leitguestion of model complexity remains.
How many clusters should one use to describe the data? Werexqir specific solution to these problems
in the discussion related to model size below, but make aéemarks now to clarify the issues at hand.

For our purposes, model complexity generally correspoadbke cardinality of out clustering variable
|T'|. The more we compress the data (i.e. the sméll¢ror, as we will see, the lowel(T; X)), the less
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Figure 1: An example of the precision complexity trade-dffihich clustering better captures the basic

structure of the data? The red clustering achieves more @ssipn (i.e. has lower complexity) but losses

its ability to discriminate the subclusters (i.e. has leg=cigion). Conversely, the green clustering has
greater precision at the cost of increased complexity. Buoistbn about model size, here one between 2 or
4 clusters, will be discussed below.

precision and more expected distortion will obtain. Cosedy, if |T'| is too large we might be modeling
noise and overfitting which leads to a lack of ability to getiege to new examples.

The data analysis solution that we explore in this repoava!for a consistent comparison of various
descriptions of the data with respect to precision and cerilyl In fact, the clustering subprocedure that
we use, which is based on various recent extensions to igttatibn theory [10, 29], can be understood as
an algorithm that captures just this trade-off, charazitegi the problem in terms of similarity of clusters
and compactness of representation (model size and amouatrgiression). In essence, one agrees to this
trade-off and then attempts to do the best one can by formglan objective function whose optimization
finds the most compressed representation while strivingtecision. This formalism offers a convenient
way to define significant transition points in a large setwigtiseries data as locations at which the amount
of data compression one can do fluctuates. If one is motilateddesire to capture biologically significant
changes in such sets of data, this formulation is quite beakfor it can be used to capture times for which
biological processes undergo significant reorganization.

Microarray Data and Critical Time Points

Over the last decade, gene expression studies have emergegawerful tool for studying biological
systems. With the emergence of whole genome sequencesgamays (i.e. DNA chips) allow for the
simultaneous measurement of a large number of genes, tiewtiole genome of an organism. When
used repeatedly, microarray studies allow one to build up#irof expression measurements for which
rows correspond to gene’s expression levels and colummespmnd to experimental conditions or time
points for which a sample is taken. Thus, one may make cosgeibetween rows (vectors of expression



values for various genes), and columns (vectors of diftegeme’s responses at a specific time or under a
specific condition). In our study, we are interested in macray data for which the columns are ordered
in time, possibly (but not necessarily) at regular intesvah this case, the rows are (possibly nonuniform)
time series, that is, they are the expression profiles foirtigidual genes under study and they capture
the history of the gene’s dynamic behavior across time. Aeturarea of research activity in computational
biology is the effort to use such time course microarray taeucidate networks of gene interaction, that
is, to pull from the data a coherent picture of how groups ofegeexecute in a coordinated fashion across
time and how the behavior of one group of genes influencesemdates the the behavior of other groups
of genes. In our context we are interested in contributingpitogeneral area of research by considering the
points in time at which significant reorganization of genpression activity takes place, for if we can locate
these crucial points in time, we can aid biologists in fonggheir analysis on the portions of the data that
might be the most informative.

As indicated above, clustering has proved to be a powerfllftr data analysis and continues to be
an active area of research. However when applied to miapalata, conventional clustering is somewhat
limited. The problem derives from the fact that when analgza microarray data matrix, conventional
clustering techniques allow one to cluster genes (rows)tlamsl compare expression profiles, or to cluster
conditions (columns) and thus compare experimental santpleare not intended to allow one to accom-
plish both simultaneously. Often this becomes a problempeaally when one is attempting to track the
development of groups of genes over time, that is, when the of the data matrix may be viewed as mul-
tivariate time series. In this case, biological intuitioowd suggest that as biochemical programs execute,
various groups of genes would flow in and out of correlatiothveiach other. That is, one would expect
genes to show correlation with certain genes during somedseof time, and other genes during other peri-
ods. Additionally, there might be times when a gene’s exgioesmight not show a high degree of similarity
with any other identifiable group of genes. For this reaswnply clustering genes across conditions (time
points) does not make sense, as one would like to capturelyhesmic aspect of the data. Moreover, one
might even be explicitly interested in identifying timeg fehich these critical points of gene expression
reorganization take place. Locating such critical timengoand understanding the gene activity related to
them might shed light on network level arrangements andgsses that are too difficult to discern when
looking at all of the time points simultaneously.

Biclustering and Biological Data

Recently progress has been made on some of the limitaticagpbfing clustering to microarray data anal-
ysis. Specifically, so called biclustering algorithms hbeen introduced that aim to find a clustering simul-
taneously in both the genes and columns of a data matrix.eTieedniques locate submatrices in the data
for which subsets of genes exhibit correlated activity asrsubsets of conditions. There has been much
research in this area in the recent past and several excetdews compile surveys of this work [19].
There are a substantial number of approaches to biclugtérat result in various types of clustered data.
Much of the work has centered on finding biclusters in mia@aidata for which the conditions are not
necessarily ordered. We are interested in a specific typaustecing of our temporally ordered data, one
that respects the ordering of the columns and that searohdsoicks of time for which coordinated gene
activity takes place. One assumption that we are workingeuiglthat the signals in our biological data
show varying compression across points of critical reaegdion. Here we are using compression in the
technical sense found in the communication theory liteeatas discussed below). While there has been
some work concerned with finding biclusters in time series de.g. [34]), a biclustering algorithm that
finds clusters of concerted gene activity within temporaidews that are optimal in the objective just men-



tioned (i.e. data compression) has not, to our knowledgen li@/estigated. Our interest is in a specific
constrained biclustering problem for which the order obadjt time points is respected. We have the twin
objectives of clustering the data within temporal windowsd deducing the correct window endpoints (i.e.
“critical time points”). Thus, we offer a biclustering aldgihm for time series microarray data that locates
clustered gene activity in regions of time (i.e. windowsjtthre optimal in terms of the total amount of data
compression that may be responsibly done on the data. Austgtng produces clusters of genes in each
of a number of disjoint temporal windows that partition treadin time. The windows are optimal in the
amount of compression one can do on the underlying biolbgigaals (i.e. expression profiles). We will
clarify and make explicit these concepts in the discusseiavia
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Figure 2: A simple example of entropy for the binary case.slaiplot of the binary entropyls(z) =
wlog 3 — (1 — x)log (725; as a function of:.

Theory

Information theory [10] is the standard tool for discussitada compression in a quantitative manner. Re-
cently [32, 29], a novel approach to clustering that reliesnéormation theory to characterize the precision

vs. complexity trade-off has been introduced and appliedatious data types (e.g. neural spike trains,

microarray expression data, text). We will see that a mesiodlar to these is suitable for use as a sub-

procedure for our time series segmentation algorithm affdtsoone a measure of goodness that includes
notions of both data compression and clustering fitnesst kawever, we must introduce some basic facts,
definitions and concepts from the field of information theory

Entropy

Information in the abstract is a difficult concept to definegisely. In the seminal 1948 paper [26] that both
defined and solved many of the basic problems related tonEtion theory, Claude Shannon defined the
notion of entropy, which captures much of what is usually még “information”:

X)=-> plx)logp(x Zp log (1)

Entropy may be regarded as a measure of uncertainty (i.ernaftion) related to an event (or signal).
It measures the expected number of bits (binary digits)iredwon average to describe the signal. In the
context of data compression, the entropy is known to be tipeagd limit of lossless compression, that
is, given a random variabl&’, one cannot generally compre&spastH (X) without loss. The definition
above makes accessible a clear development of the conceptropy based on the notion of “surprise”. On
an intuitive level, one would want a definition of informatito capture what we experience subjectively as
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surprise. Thatis, suppose one receives a message buteadyaknows the message’s text. In this case there
is no information transmitted via the message, as the receaiveady knows what is being sent. Similarly,
imagine observing a coin flip. If the coin is unbiased, witlOg®rcent chance of coming up heads, then the
coin flip is generally more surprising than a flip of a biaseth¢bat has a 99 percent chance of coming up
heads. There is more information conveyed by a flip of an weltiaoin than there is by a flip of the biased
coin. (In fact, it can be shown that an unbiased coin maximihe entropy (or information) related to the
coin flip, and that the uniform distribution generally maxes the entropy related to an event.) We can see
then that we would like the information content of the coisstto correspond to the amount of surprise one
should expect upon the event taking place. But how does amracterize a surprising event? Generally, all
other things being equal, one is more surprised when an aitma small probability takes place than when
an event that is very likely happens. Thus, we want the infdion content of an event to be proportional
to the inverse of the likelihood of the ev%, that way the less likely the event the more information is
conveyed. Taking the expectation of the log of this quantiglds Shannon’s concept of entrog(X),
which is intended to measure the information content of doemvariableX. Note that entropy as defined
here is a functional, that is, a function of the distributmrer X, rather than a function of a variable. One
could also writeH [p(z)] to emphasize this point.

Additionally, one may define the entropy of two (or more) ramdvariables, also known as the “joint
entropy”:

1
H(X,Y)=-> p(x,y)logp(z,y) = pry & ) 2
T,y ’
The joint entropy is the uncertainty (or information) asated W|th a set of random variables (in the above
case two).
Finally, the conditional entropy is the expected uncetyafor information) associated with one random
variableY’, given that we know the value of another random variableThat is:

H(T|X) = Zp H(T|X =) = Zp )Y plt]z) log p(t]x) €)

These definitions are natural and follow the “chain ruleéttis, the entropy of a pair of random variables
is the entropy of one plus the conditional entropy of the oth&( X, 7) = H(X) + H(T|X).

KL Divergence and Mutual Information

The relative entropy or Kullback Leibler divergence (KL eiigence) is a measure of the “distance” between
two probability distributions, it is the expected loganittof the likelihood ratio and is defined:

Dl = 3-pte) % @)

One can immediately see that if the distributipn= ¢ for all =, then D[p||q] = 0. One can use
the relative entropy to define yet another information measalled the mutual information. The mutual
information is a measure of the amount of information tha mmdom variable contains about another, and
is defined:

_ p(x,y)
=2_plwplos Lorts ©
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Figure 3: A pictorial representation of the various infotima quantities defined so far. Adapted from [10].

With the help of a little algebra it is not hard to show [10]ttkize following identities hold as well:
I(X;Y) = H(X) - HX|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y) (6)

Thus, mutual information is the relative entropy between jtint distribution and the product of the
marginal distributions. It is symmetric and always gredlem or equal to zero [10]. It is equal to the
uncertainty of one random variable left over after subingcthe conditional entropy with respect to another
random variable.

In some sense, mutual information seems even closer thaopgrb our colloquial notion of “infor-
mation”, since in most cases we speak of one thing contaiimfogmation about another rather than just
information in the abstract. This idea of shared informai®exactly what mutual information formalizes
and its role in what follows is crucial.

The following diagram, adapted from [10], is a useful pi@brepresentation of the the information
measures that we have defined so far.

Rate Distortion Theory

In looking for the appropriate formalism to characterize time series segmentation problem, it is useful to
review rate distortion theory (RDT). Traditionally, RDTdbeen the main tool that information theorists use
to address lossy compression in a rigorous manner. Giveérligtering can be viewed as a form of lossy
compression, and since the main component of our method iisf@mation based clustering algorithm,
it makes sense to review RDT and build on it as necessary. \Wse® that various recent extensions to
RDT form the heart of our method and provide a powerful framvthat we may use to attack our specific
biclustering problem.
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In rate distortion theory [10], one desires a compresserkeseptatiori’ of a random variableX that
minimizes some measure of distortion between the elememrtsX and their prototypes € T. Taking
I(T; X), the mutual information betweeh and X, to be a measure of the compactness or degree of com-
pression of the new representation, and defining a distonieasure!(x, t) that measures distance between
“cluster prototypes” and data elements, traditionallyeimris of Euclidean distance, one can frame this prob-
lem as a trade-off between compression and average distoiithe main idea is that one balances the desire
to achieve a compressed description of the data with thespracof the clustering, as measured by the av-
erage distortion, and strikes the appropriate balancentla@ttains enough information while eliminating
noise and inessential details.

In rate distortion theory, this trade-off is characterizedthematically with the rate distortion function
R(D), which is the minimal achievable rate under a given constia the expected distortion:

R(D) = i I(T: X 7
(D) [p(tfe):<dlat)><D) (5 X) ")

Where average distortion is defined to be:

<d(z,t)> = p(x)p(tlx)d(x,t) (8)

and is simply the weighted sum of the distortions betweernl#ta elements and their prototypes.
To find R(D), we introduce a Lagrange parameterfor the constraint on the distortion, and solve the
variational problem:
Fminlp(tlr)] = I(T; X) + B<d(2,1)> pa)p(t|2) 9)

This functional captures the compression-precision t@&tl@nd allows one to use an iterative method,
based on Blahut-Arimoto [11, 4, 6] to calculate pointsi(D).
The solution to this problem [10]:

oF

=0 10
an o)
under the constraints_ p(t|z) = 1,Vz € X has the form:
p(tia) = 2 e )
ACNE)

whereZ (z, 3) is a partition function, and the Lagrange multipligris positive and determined by the upper
bound on the distortion D:

OR

I (12)
That is, the slope of the rate-distortion curve-ig. This is an implicit solution#(¢) depends om(t|z))
and is defined for a fixed set of prototypes. Different prgies/will change the solution obtained and for
this reason selecting the correct prototypes is an impbgaestion. The joint optimization over cluster
assignmentg(t|z) and prototypes is in general more difficult to solve and dagdave a unique solution.

One can see from (11) that if the expected distance betweeatiaaetement: € X and a prototype

t € T is small, then the cluster assignmeiit|x) will be large for that pair and: will be assigned to the
cluster with centroict. However, choosing these centroids so that one achievesaptompression is a
more complicated task and rate distortion theory unfortielgaloes not provide the solution.
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d(a,b)
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Figure 4: An example of the Blahut-Arimoto alternating mimzation, in this case between two convex
sets inR? and the Euclidean distance. Since the minimization is ofre@ofunction over convex sets, the
algorithm is guaranteed to converge to the global minimugardess of starting conditions.

We can calculaté?(D) using an iterative technique based on Blahut-Arimoto [116]4in which we
consider two convex sets and a convex distance functiontbeen that is simultaneously convex in both
of its arguments. We alternately minimize the distance betwpoints chosen from the two sets, which has
been shown to converge to the global minimum. An illustratié the procedure is provided in Fig. 4.

In the specific case of calculating the rate distortion fiomatl, we define two sets:

1. A =the set of all joint distributiong(t, =) with marginalp(z) such thatd(z,t)> < D
2. B =the set of product distributiongt)p(x) with normalizedp(t)

We can then reformulate the rate distortion functioR4D) as the double minimization of the KL diver-
gence between elements chosen from these sets:

R(D) = minwin Dicc[a || 5 (13)

We can rewriteR(D) in this way because it can be shown that at the minimum, thisdkiergence
Dy r[p(x)p(tlx) || p(z)p(t)] equalsI(T; X), thus theDg, bounds the information, with equality when
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Achievable
region

I(T;X)

R(D)

<d(x,t)>

Figure 5: A typical rate-distortion curve, illustratingettrade-off between compression and average distor-
tion. One can see that in order to achieve high compressioall($(7’; X)) a larger upper bound on the
expected distortion must be used.

p(t) equals the margindl__ p(z)p(t|x). One can apply Blahut-Arimoto to sets A and B aR@D) of (13).
This allows one to fix3 which, in turn, fixes the upper bound on the distortion We then pick a point in

B and minimize the KL divergenc&(D), thus determining a point im € A. We subsequently minimize
the KL divergence again, this time holding our paintixed and generating a new poiht B. We iterate
this until the algorithm converges to a limit, which is guaeeed by [11]. Doing this procedure for various
[ values allows one to trace out an approximation to the rat@dion curveR(D). An example of such

a curve can be seen in Fig. 5. The points above the curve apofsible rate-distortion pairs, that is, they
correspond to achievable amounts of compression for vatipper bounds on the average distortion. We
call this the “achievable region”. The parameteis related to the derivative of the rate-distortion funatio
and as one changes the valuespbne traces out the entire cuni® D).

I nformation Based Clustering

From the discussion of rate distortion theory above, it &aclthat one would like to have a formulation
of the clustering problem that involves only relations bedw data elements, rather than prototypes. This
would allow one to sidestep the thorny issue of how to colyettioose the cluster centers, which is one
of the major drawbacks of conventional RDT. The informati@sed clustering of [29] is just such a clus-
tering scheme. Information based clustering is a methadish&imilar in many respects to RDT but that
makes modifications to the distortion term that result in ember of important gains. The functional that
characterizes information based clustering looks degagtsimilar to RDT, but the distortion term masks
an important difference. To perform information basedtetisg one minimizes the functional:

Fonin = I(T; X) + 6<dinfo> (14)
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This method replaces thed> term in the RDT functional with an overall measure of distrt<d,,, s, >
that is defined only in terms of pairwise relations betwedn dements (rather than relations between data
elements and prototypes). Here agaiserves as a parameter controlling the trade-off betweep@ssion
and precision, and sets the balance between the numbes oéditired to describe the data and the average
distortion between the elements within the data partitions

In information based clustering;d;, r,> is defined as the average distortion taken over all of the clus

ters:
Ne

<dinfo> = _ p(ti)d(t;) (15)

i=1

WhereN., is the number of clusters (i.€I'|) andd(t) is the average (pairwise) distortion between elements

chosen out of cluster.
N N
=3 pl@ilt)p(s[t)d(w:, z)) (16)
i=1 j=1
In the aboved(z1,z2) is @ measure of distortion between 2 elements in a cluster ¢thuld instead be
a measure forn > 2 elements, or some more complicated measure of multi-waygrtin between ele-
ments). In our present case, we use a pairwise distortiosunegdefined below) based on correlation.
The central idea is that one wants to choose the probabitifitster assignments(t|z) such that the
average distortion<d;,, ,> is minimized, while simultaneously performing compressid his is accom-
plished by constraining the average distortion tetay,, ;,> and minimizing the mutual information be-
tween the clusters and the ddigX’; 7') over all probability distributiong(¢|z) that satisfy the constraint on
the compression level. The crucial difference betweenrttéthod and RDT is located in the average dis-
tortion terms. For the example of pairwise clustering, we easily see the difference. In RDT the average
pairwise distortion is defined as:

N. N
<dRDT—pair> = ZP ZP zjlti)d(z;, t:) (17)
=1

=1

Where the prototypé; (the cluster centroid) is calculated by averaging over tements in a single cluster:

N
t; = Zp(wk\ti)xk (18)
k=1

Whereas in information based clustering the average tlimtais defined as:

Nc

N N
<d1nfofpai7‘> - Zp(tl) Z ZP x]|t Ik|ti)d(Ijvxk) (19)

i=1 j=1k=1

The important thing to recognize is that #drpr—pqir> the sum over k takes place before the call
to d(xz;,t;) in the sense that the prototypes are calculated by averagi&lgmembers in the cluster as in
equation (18). However, iRd y, fo—pair > the sum over Kk is outside of the call &z, x). Thus, in RDT
the distortion is pairwise between data elements and st whereas in information based clustering we
have eliminated any reference to prototypes and only cengidirwise distortions between data elements.

For our purposes, the most important aspects of charaoggrctustering in the above way are that
there are explicit numerical measures of the “goodnesshi@ttustering (i.e. the average distortiai>)
as well as of the trade-off captured in the functional vaMMe can make use of these values to perform a
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“segmentation” of our time series data such that we prodsegias of time windows that capture transitions
between major stages in the data or “interesting” events.

As in traditional rate distortion theory, in informationdel clustering one computes updates to the
matrix of conditional probabilitiep(t|x) (i.e. the cluster assignments) by using an iterative praeethat
calculates a Boltzmann distribution. Again, this methothased on Blahut-Arimoto and the form of the
distribution is found by differentiating the clusteringnfttional and setting it equal to zero. A proof for
our case is provided below, however one should note thabtine 6f the distribution contains an important
difference that distinguishes it from traditional ratetdion theory. The form of the distribution is:

__p(t) —B(d(t)+2d(x,t
pltle) = 775 o (e +2d(m,t)) (20)

This form is for a pairwise distortion measure and diffecsfr(11) above in that it contains an additional
termd(t) (the average distortion for a clustgr as well as a factor of 2 in the exponent. This form is a result
of the differences in the original clustering functionatldhadds an important notion of cluster “tightness”
to the cluster assignment updating function. That is, égbtusters (with low average distortion) are more
desirable than diffuse clusters (high average distortaom the clustering should try and produce clusters
with low average pairwise distortion.

Time Series Segmentation

Given a set of time series gene expression data, we wantaéomaee a sequence of windows in the dataset
that capture important aspects of the temporal regulatidheosampled genes. We define a wind(Wﬁ:

as a set of consecutive time points beginning at time pQi@nd ending at time point.. Given a time
series dataset with time poirts= {t, o, ..., t,}, the task is to segment the time series into a sequence of
Windows{Wff, ij, ..., Wy} such that each window represents some unique temporaltagiiee data.
Note that adjacent windows meet at their boundary pointsibutot overlap. This problem is basically a
special case of the biclustering problem discussed ablakig, we desire a biclustering that maintains the
correct ordering of the elements in time but that finds chsstédata elements that are similar in informative
temporal intervals. In the end, we have a number of windoah evith its own set of clusters. The clusters
in each window are composed from the data subvectors thetsgmnd to each window. The goal is to
find the optimal such windowing that results in the maximabant of data compression while preserving
the important features in the data. The start and end pofrésaih windows (i.e.t; andt.) correspond

to points in the time series dataset where significant rei@gdon among genes has occurred. We would
like to highlight such points in time, where the amount of goession changes significantly, for further
investigation into the underlying biology.

We have attempted to create a method that relies on as fewnakigmarameters as possible while re-
taining flexibility. Thus, if one happens to have a good guesshe model size or temperature (i.8)
parameters, then such values can be supplied. If no redsamadss exists, we attempt to locate good val-
ues automatically (at additional cost in the running timfé)e one input that must be given, of course, is the
distortion matrix that describes how similar various pairslata elements are. We discuss the construction
of this input below.
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Distortion M easure Details

To create our distortion matrix, we used a pairwise sintifameasure that is common in gene expression
studies, the Pearson correlation coefficient [12]. Whitag well known deficiencies (e.g. alack of ability to

capture nonlinear relations between the profiles that ibisgaring), it also has various strengths, including
its ability to function well as a measure of similarity betmeprofiles that have a small number of points.
Our approach is to form the distortion matrix directly fronetvalues of the correlation coefficient:

SN (X — X)) (X, — X))
Sx,Sx,

d(i,j) =1~ (21)

Where N, = |X;| = |X;| andSx = \/NLP Zgil(Xn — X)? is the standard deviation of. We can
calculate the (pairwise) distortion matrix based on thectireelation coefficients and feed this input into the
clustering subprocedure of our time series segmentatgoritim. Here the values in the distortion matrix
take O if the vectors are perfectly correlated and 2 if theomscare perfectly negatively correlated.

If an objective measure of clustering goodness is requiiiddmthe windows, one may measure the co-
herence [25] with respect to Gene Ontology terms, this giges good idea of how well the basic algorithm
partitions the data with respect to an external qualitagiaiping (we discuss this in further detail below).

Our notion of biological similarity is derived from the ldbgjiven in the Gene Ontology [5], and can be
added to the distortion measure to augment distortion hasestly on correlation of time series profiles. This
allows us to validate our method in the manner common to gepeession clustering (i.e. by measuring
coherence) and then to use these same ontology annotatiaiw our algorithm to cluster based on
both correlation of time series profiles as well as prior kiealge about the functional characteristics of the
gene products themselves. Thus, we capitalize on the dmomstgorovided by biological specialists as well
as on the underlying characteristics of the data, and wasiartd automating a process that is ordinarily
accomplished by hand (namely, choosing genes with speci@ioik function and clustering around them to
find potential functional partners).

Based on these concepts, we have begun to experiment witheamelated idea: namely, using an addi-
tional labeling (e.g. GO terms) in the clustering algorithself. Future work will include the construction
of a similarity matrix that takes both correlation as welpagximity on the graph of GO terms into account.
Initial experiments have included taking a weighted sumisfodtion matrices, where one is a pairwise
correlation matrix\/, with entries defined as in (21) above, and the other is a mafixwith entries that
correspond to how similar two genes’ ontology labels araeH®thA/, and M, have N rows (whereN is
the number of genes under consideration), Ancblumns. An entry;; in matrix A/, is in the interval[0, 1]
and takes on values closer to one the more the correspondnigi@s are shared betwegnandg; in the
ontology. The entry is zero if no terms are shared. When ubisgstrategy, we create a distortion matrix by
using a weighted combination of the above matrides:= aM, + (1 —a) M, wherea € [0, 1], and useM/,
as the input to our clustering method. In fact, this methaglise general and can be used to add any type
of prior similarity information we like to the algorithm. Ehdifficulty here, of course, relates to choosing
the relative weights on the various matrices appropriaaely deciding how to weigh the contributions of
the various ontology terms i/, (i.e. more specific labels should count more than extremehernl ones).

The flexibility of the distortion term also allows for proypies to be selected by the user, thus forcing
clusters to consolidate around specific profiles, this isulisethe researcher is interested in a single well-
understood gene and wishes to find out what other genes negieldited to it. In such a case, one would
simply define a measure of pairwise distance that relied enfao apart genes’ profiles were from some
third target profile.
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Previous work [29] has shown that using information meas(gey. mutual information) to characterize
distortion works well in practice. In our case we have st@eway from this approach due to the short
lengths of the time windows we would like to consider. Witmdows as short as four or five time points,
estimating probability distributions well enough to cdéte mutual information becomes too error prone.

Model Selection and M odel Fitting

In addition to the question of how to generate the initiatatiion matrix, there are also choices to be made
about both the trade-off parameter beta and the underlyiodeircomplexity (i.e. the number of clusters
N.). Although these questions have been explored to somealf&Bé& including in the context of infor-
mation bottleneck [30], we use a straight forward appro&elh flavors simplicity and ease of interpretation
in terms of rate-distortion curves. That is, we perform mogintary model selection by iterating over the
number of clusters while optimizing (line search) over befais procedure, while somewhat expensive,
results in a fairly complete sampling of the rate-distortimurves (i.e. the plots of(X;T) vs. <d>) at
various resolutions. Essentially, we trace the phaseitiams (corresponding to different numbers of clus-
ters) while tunings and choose the simplest model that achieves minimal cogtrieximal compression)
as measured by the the target functional. In this way, byrupiing the target functional over beta and the
number of clusters, we obtain for each window a score thdtastinimum cost in terms of model size
and model fit, based on the trade-off between compressiompruision. Obviously, for this method, run
times can be substantial and for this reason we have dewklpénplementation that can take advantage
of parallel hardware if it is available. We have used the MgessPassing Interface [13], to provide parallel
implementation on a cluster of machines. This offers theodpipity to decompose the larger problem into
a set of clustering tasks to be performed on multiple mashama consolidated during the final stages of
execution.

One aspect of the problem as we have formulated it above ithwoentioning here, that is, the rela-
tionship betweers and the clustering solution produced by the clusteringralyn. We have stated that
[ parameterize®(D) and controls the trade-off between information preseswaéind compression. A$
goes to 0, we focus on compression (in the limit we find jusinglsi cluster with high distortion). Alter-
natively, asg goes to infinity, we focus on eliminating expected distart{at the cost of increased mutual
information). Thus, if we know before we run the algorithimattwe would prefer a very compressed rep-
resentation of the data, we can gkaccordingly. Similarly, if we know that we want to conceiéran
minimizing distortion we can do that as well. We do not havexbaustively search acrogsif we know
what kind of solution we are looking for in advance, but if wanwto try and determine the best possible
minima, optimizing over this parameter is a reasonable. task

Graph Search for Optimal Windowing

LetT = {t1,t2,...,t,} be the time points at which a given time series dataset is lsanandl,,,;,, and
limaz D€ the minimum and maximum window lengths respectively. demh time point, € 7', we define a
candidate set of windows starting framassS;, = {ijﬂmm < tp — ta < lmas }- Each of these windows
may then be clustered and labeled with a score based ongfhland the cost associated with the value of
the clustering functional. Following scoring, we formelahe problem of finding the lowest cost windowing
of our time series in terms of a graph search problem and usertest path algorithm to generate the final
set of (non-overlapping) time windows that fully cover thregmal series.

To score the windows, we use a variant of the information dbatestering procedure described above.
We want to maximize compression (by minimizing the mutu&rimation between the clusters and data
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E . =(7-5)*minF

5,17 5,17

E . =(10-6)*minF 6.10

Figure 6: A portion of an example of the graph of weighted feeergies, the output of the segmentation
procedure. Edges are labeled with the clustering fundtiealaes weighted by window lengths. We use
Dijkstra’s algorithm to search for the minimum cost pathotigh the graph (in the terms of the weighted
free energy). In this way we find the lowest cost windowing wf data from the first time point to the last.
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elements), while at the same time forcing our clusters t@ mawimal distortion. In such a framework, the
measure of distortion is left up to the user, and while in thst phe performance has been studied using a
distortion term based on information estimation [28], wesz (due to the small lengths of our windows
and the difficulty of accurately estimating mutual inforinatbetween short sections of time series) to use
a measure of similarity based on the Pearson correlatioffi@eat that is common in gene expression
studies [12], and augment it with optional terms that measimilarity based on biological characteristics
(as described above).

Once these scores are generated, we pose the problem offthdifowest cost tiling of the time series
by viewing it as a graph search problem. We consider a g€aph (V, E') for which the vertices represent
time pointsV = {¢4,t2,...,t,} and the edges represent windows with associated sﬁbﬁeqwfj} (see
Fig. 6). The fully connected graph has N vertiges, . .. ,tn) andn? edges, one between each pair of
vertices. Each edge,;, € E represents the corresponding Windng from time pointt, to time pointt,,
and has an initially infinite (positive) cost. The edges aentlabeled with the costs for the windows they
represent, taken from the scores for {#, } computed earlier, each edge cost gétg, ( length) where
I, is the minimum cost found by the information based clusteprocedure and length is the length of the
window (@ — b). The edge weights are computed using a function that &erater the number of clusters
and optimizes ovef and computes a numerical solution to equation (14) in arriloog that tries multiple
initializations and chooses the one that converges to thedwst. This algorithm is depicted in Fig. 7. In
this way, we simultaneously label and “prune” the graph beeaedges that correspond to windows that
have illegal length are left unlabeled and their costs ranmdinite, while edges with finite cost are labeled
appropriately. Our original problem of segmenting the tiseeies into an optimal sequence of windows
can now be formulated as finding the minimal cost path fromvidnéext¢; to the vertext,,. The vertices
on the path with minimal cost represent the points at whiahogtimal windows begin and end. We may
apply Dijkstra’s shortest path algorithm to generate otio$@ptimal windows. We use the shortest path
algorithm and generate a windowing that covers all of owgipal time points in a disjoint fashion and as
such, segments our original time series data into a sequdragimally selected windows which perform
maximal compression in terms of the information based ehugj cost functional. One thing to note is that
if one desired to provide a set number of clusters or a spdwte based on some prior knowledge, one may
easily do so. See Fig. 7 for a complete description of the sagation algorithm in psuedocode.

Algorithmic Complexity

Dijkstra’s algorithm is a graph search method with a worsecainning time of)(n?) for a graph withn
vertices. The clustering procedure used to score the wiads®W (N3 - N.), where N is the number of
time points in the window andV. is the number of clusters. One can see this by noting that & tmop

of size N iterated over the rows of the conditional probability mataind updates each entry (one for each
of the N, columns. Each update is of orda# since a call to the Boltzmann procedure, which generates
the entriesp(t|x) in the matrix, must computé(¢) the average distortion of cluster t, which contains two
summations ovelN elements. This clustering procedure is nested in a looptdrates over a small number
of model size$)(1)[= constant < N] and a line search over potential valuesfaaO(1) operation. This
clustering procedure is run for each window of legal lentitare are@—2 of these in the case of no restrictions
on length. Creating the distortion matrix requires that alealate the correlation coefficient for each/of
entries of the matrix wherd’ is the number of genes in the dataset (larger than pairwsterdon measures
would require many more computations). The graph searchditortion matrix creation complexity are
dominated by the iterated clustering wittDd/N> - N..) cost.
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Baseline Implementation

Motivated by a desire to provide a comparison between owarimdtion based approach and an existing
clustering method that “discovers” the correct number o$t@rs, and so that we might have a fast segmen-
tation algorithm for very large datasets, we have also impleted a baseline method for the time series
segmentation that relies on the popular K-means algorith®) §nd the Bayesian Information Criterion
(BIC) [24] for discovery of the correct number of clusterseWous results [14, 21] indicate that a combi-
nation of K-means (or MoG) and BIC have worked well as a mearsuitomatically discover clusterings
along with the model size. However, such techniques dosfirfien making assumptions about the process
that generates the data. For example, in the case of K-mearis assuming data that can be fit by spherical
Gaussians. That said, K-means is substantially fasterdhaiterative information based clustering subpro-
cedure and for large datasets run times are substantialigrféor the baseline implementation. For many
simple test cases however, the information based methodsgered the correct number of clusters while the
K-means BIC combination did not. Given the fact that the Kameimplementation exhibits run times that
are often many orders of magnitude faster, one approach it tine future might be to seed the information
based clustering with the solution obtained using K-meankBIC and then allow the information based
clustering to converge to a more optimal solution if it exist
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I nput:

Time series matrix withV series sampled over time points, ..., ¢,,].
Range for the number of clusterS,. € [L,...,U], whereL,U € Z.
Convergence parameter,

Output:

An optimal windowing of the data, each interyal, ¢;] of which contains a
soft partition of thelV elements intaV,., clusters.

Algorithm:

For each sub-intervél,, ¢,] of our time seres:
For everyx;,xo =1,..., N :
Create distortion matrix for this sub-interval, calculdfe; , x2)
ForeveryN. =L,...,U :
Line Search Ove#:
Initialize each row of the the conditional probability matwith a random distribution.
Frest =00,m =10
Loop:
Foreveryx =1,...,N :
Foreveryt =1,..., N, :

p(m+1)(t|x) - p(m)(t) exp —ﬁ[d(m) (t) + 2d(m) (t, X)]};.

(m+1) P (t%)
p (t|X) — Zi\/fczl p(m+1)(t/|x) I
me«—m-+1.
If Vx=1,..,N, Vt=1,.. N.we havep™* (t[x) — p™ (t|x)| < e,

Break.

EvaluateF.,,.rent = I(T; X) + 3 < d >, using the conditional probability matrix aboye.
If: Fcum‘ent < fbesti then]:best - fcurrem&-

SaveF.s,, for each sub-intervat,, t;].
SaveN.,,, the model size for the best clustering[on tp].

Construct grapliz = (V, E), with verticesV' = {t1,t2,...,t,} and edge
weightsE,, = N,,, - exp”testas -(b — a).

Perform Dijkstra’s algorithm over this graph to find the miril cost windowing
of the time series and the critical time points at the windourdaries.

Figure 7:Pseudo-code of the rate-distortion based algorithm. Watéever the model siz¥.., optimize over3, and
repeat this procedure for different initializations, chimg the solution which minimizes the functional value. sThi
clustering procedure is executed for each time window aaduhctional values are used to generate the cost graph.
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Derivation of the Clustering M ethod

The derivation of the variational principle underlying @lgorithm is similar to that of rate distortion theory
[10], or the related information-based clustering [29]efénis a trade-off between the amount of compres-
sion one may achieve (i.e. the rate of the quantization) hadverage distortion. The more bits we use to
encode the representation, the smaller average distavigoran achieve.

This trade-off is captured through the modified rate digiarfunction, R(D). The rate distortion func-
tion is defined to be the minimum rate (maximum compressiomeu a given constraint on the average
distortion:

R(D) = min 1(X;T) . 29
( {p(t|z):(dinfo) <D} ( ) (22)

That is, we want to minimize the number of bits used to encbdalata, given a constraint on the distortion
function (which for our purposes is a pairwise mappinf: X x X — R*1). The partitioning ofX
induced by the mapping(t|=) has an expected distortior;,, s,>, which is defined as the average pairwise
distortion taken over all of the clusters:

<dinfo>= Y _p(t)d(t) (23)
t

Where the sum is taken over the number of clusters|i’g.andd(t) is the average distortion between
pairs of elements chosen from cluster

d(t) = pla|t)p(ast)d(e:, w2) (24)

r1 T2

The expected distortion between x and a single member dkclus defined to be:

d(t,z) = p(xi[t)d(z1, ) (25)
The probability of a clustet is:
p(t) =3 pltla)p(a) (26)

The pairwise distortion may be defined in any of a number ofsydgpending on the data and the type
of differences one wants to focus on. For example, we canttekpairwise distortion to be the Euclidean
distance between two data vectors (as often done in vectottigation), or as the correlation (as popular
in biological clustering applications), another pos#ils to use the mutual information as in [29], which
works well as long as one has a sufficient number of data pdintsis not a good choice for our specific
application.

To solve the rate distortion function we introduce a Lageangultiplier 3, for the constrained average
distortion. Thus, we want to minimize the functional:

fmin :I(T,X)+6<dznfo>+ZV(I)Zp(t|«r) (27)
T t

=5 Y pttlowta) o S + 5 b0 Sl lplealt)den ) + 3 vle) Y plei) (28)

x ¢ r1 w2 t
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over all normalized distributions(t|z). Where the last term in the expression corresponds to thetredmt
thatp(t|x) is a probability distribution. We carry this out with the wrdtanding that:

p(t) = 3 pltlo)p(a) (29)

and thus that:
op(t) 0>, p(tlz)p(x)

Soltle) ~ opttle) ) G0
and that by Bayes' rule:
plait) = L) (31)

To find the solution of the variational problem above we tdike derivative with respect to our free

variables (i.e. the(t¢|x)’s). The solution,
OF

Bptia) 42
for normalized distributiong(t|z), takes the form:
plthe) = 2% exp [ 5(2d(a, 1) + dl0)] (@)
whereZ is a normalization function:
Z(x) = p(t) exp [-B(2d(x, 1) +d(t))] , (34)

t
The Lagrange multiplieg, determined by the value of the expected distoriigns positive and satisfies

SR

sp- P (39)

Proof. Taking the derivative of (28) above with respect to the fragablesp(t|x) one obtains:

oL p(t|z)

SplHe) p(z)log ) + p(2)B2d(t, x) + d(t)] + v(z) (36)
To show (36), one breaks (28) up into three terms and takedettieatives. Considering the three terms
separately, we obtain:
1)
Sp(t|z) [Z Zt:P(ﬂ:U)P(:U) log pz(;'t?] (37)
1)
Sp(t|z) [ﬁ Zt:p(t) ; ;p($1 |)p(x2|t)d(xq, ZEQ)] (38)

o
20 [Z v() ;pmx)] (39)
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For (37) we have:

J p(t]z)
s | S vt s
-3 |5

p(t|z)p(x) log p(t|z) — p(t|z)p(t) logp(t)]

x T

555

p(t|z)
p(t)

= p(x)[1 + log p(t[x)] — p(z)[1 + log p(t)] = p(z)log

That is, the first term of (36).

For (38) we have:
0
5p(t|;p)[ B p(H) YD plai|p(walt)d wl,xz)]

1 T2

— ﬁz [5]9 t|3} ZZp 1’1|t 1’2|t :El,:EQ)]

r1 T2

Fixing ¢ and using the product rule,

r1 T2 1 X2

= Bp(x)[2d(t, z) + d(t)]
That is, the second term of (36).

For (39) we have:
)
=D [Z (@) Etjpmx)]

)
-XX [ S u(w)p(tm]

Fixing x and t,

V(w)p(t!w)] = v(x)

That s, the third term of (36).

Setting (36) equal to zero, lettinge Z (x) = ”Exg and factoring out the(x) we have,

=0

(@) llog PO 1 pl2d(e, ) + (1] + 1og 210
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p(t]z)p(x logptlw] ZZ[ P ) ()logp(t)]

:L'1|t :L'2|t 1’1,3}2 —I—p (5]9 t|:L' Zzp :L'1|7f l’2|t :L'l,l’g)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)



this implies,

log p(t|x)

o0 Z(x) = —p[2d(t, x) + d(t)] (52)
taking exponentials and rearranging we obtain the sol(88ix
plthe) = % exp [ 5(2d(a,1) + dlo)] (59)

Chapter 13 of [10] illustrates the proof thak 3, which follows from the convexity of the rate distortion
function. The relationship betwed®(D) and from Eq. (35) is also discussed in the reference.
O
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Evaluating the Clustered Windows

One important question that comes up when using the techsidescribed above to locate interesting time
points is how one should best determine the quality of thensegations produced by the algorithm. We
save the complete discussion of this problem for followiegt®ns and focus here on characterizing the
quality of the clusterings that are produced by the inforombased subprocedure. That is, all things
being equal, how may one compare two different clusteriffghie same subset of our time series data?
Here, two considerations are helpful. The first approacb igdualize the trade-off between compression
and distortion with the help of rate-distortion curves (coamly used in information theory). This visual
depiction provides a global understanding of the outpuhefaigorithm across a range of parameter values.
The second approach is to complement such visual insighksméasurements of the "objective” quality
of the clustering by comparing it to "hand made” qualitatgreupings of the data produced by experts. A
method that has gained some popularity for this purposeoiodpical applications is the "coherence” [25].

Rate-distortion Curves

It is illustrative to plot the trade-off curves for variousmbers of clusters to see how the clustering func-
tional behaves over a range of conditions. In Fig. 8 we pleséhcurves fofT'| = 2,3,4,5,7,10, 15, 20,

this is for a clustering of the restricted Tu dataset diseddselow. In the lower right hand corner of the
figure, one can see the green curve correspondiny.te= 2 (that is,|7'| = 2). Obviously, for such a
limited precision, the average distortion will remain higissuming the actual number of clusters in the data
is greater than 2). The next curve to the left (dark blue wigtmebnd glyphs), has far greater performance.
This curve, representing three clusters, achieves a mugr laverage distortion @§7'; X ) increases. This
improvements is due to the fact that the majority of the stmecin half of our test dataset falls into 3
basic categories (genes corresponding to Ox, R/B and R/QheAother extreme, if one is willing to use
20 clusters (cyan curve on far left), one can achieve sigmiflg lower average distortion, in this case the
compression is not as significant (i.e. higli¢f’; X)). For the form of the trade-off functional we usef
corresponds to the slope of the compression-distortiomecuNote that the upper left corner of the figure
corresponds t@ — oo, whereas the lower right corner of the figure corresponds-te 0. As we increase

0 the clusters become more deterministic, with most of théaiodity mass occupying a specifict|x) for
eachz. Conversely, as we decreasethe clustering becomes “softer”, with each x being iderdifigth

a variety of clusters with nonzero probability. It is alsopontant to note that as we incregse¢he curves
begin to saturate, achieving a minimal distortion that deljsdess and less on the number of clusters used.
In the limit, once|T’| > | X| adding additional clusters is no longer significant, as edstalready identified
(for the most part) with its own cluster.

Rate-distortion curves offer a good way to visually sumaethe trade-off between the goodness of the
clustering and the amount of data compression, howeveraregompletely quantitative in the sense that
they only use the numerical characteristics of the datahénniext section we briefly discuss a technigue
that has been used to characterize the performance of arahgstnethod’s ability to produce the “correct”
qualitative description of the data (i.e. the correct @ust

Coherence

A technique known as measuring the coherence [25] of a clogtés a good way to assess the overall
quality of a clustering method. That is, one wishes to enthmea clustering method produces the same
qualitative groupings that a human expert would while araly the same data. Slonim et al. [29] have
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Figure 8: Compression vs. distortion curves for a subset@fTu dataset for various numbers of clusters
(7| = 2,3,4,5,7,10,15,20). The vertical axis represenfg7’; X) (i.e. compression), whilecd> (i.e.
average distortion) is plotted on the horizontal axis. Feeanumber of clusters, a single curve traces out
the trade-off between compression and information presiery, for example, the bottommost cyan curve
represents the trade-off for 20 clusters. Note how as omeases the cardinality of T, the curves begin to
saturate along thed> axis. That is, there is a lower bound on the size of the avalagertion and even if
one is willing to use a large number of clusters (high I(T;&)es minimal distortion is bounded.
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used coherence to validate the general strategy of infewméaiased clustering and have shown that such
clustering techniques produce good qualitative groupimgen compared to those produced by a human
(and indeed outperform many other popular clustering &lyos). The basic idea of evaluating coherence
is that one looks at the ratio of “enriched” items in a clustegr the total number, where an item is enriched
if it is labeled with an annotation that occurs with a sigrafidy high frequency (as measured using the
hypergeometric distribution, P-values and the Bonferamriection [29, 25]). In our case, this technique

is useful for determining the relationship between our timiiedows and biological events that they might

correspond to. For example, we can use the MIPS FunCat databaletermine whether our windowing

of the Tu dataset (described below) maps cleanly onto theactaistics of the data described previously in
the literature. Or we can use the GO biological process atinos to describe our temporal segmentation

of the data in terms of biological events.

28



Results

We have tested our method on both simple synthetically g¢egitime series, as well as real biological
data, and have confirmed that our clustering procedure toleed locate important temporal structure in
the data. We mention that the present work is preliminarythatthe overall motivation of the segmentation
algorithm is related to the larger goals of developing awtanike models from biological data [8] that one
may use in further activities (e.g. model checking [9] angdthesis generation/investigation).

Rather than simply focusing the biologist's attention ots s& genes, our central aim is to produce
a process level summary of the aggregate gene expressionfo€us is on determining points in time
during which processes undergo significant reorganizatimhon grouping coexpressed processes together
between such points. This emphasis underscores the maimpissn of this work: that at critical time
points the amount of compression that can be effectivelpraptished on the data is likely to fluctuate,
and that such situations will be evident in the values takethé optimum of the clustering cost functional
across temporal windows. The clustering functional cagstihe goodness of the clustering (in the average
similarity term) as well as the amount of compression (inrthéual information term). Its optimal value,
taken over various model sizes and “temperature” paraméter3’s), represents the best compression one
can achieve while striving for an accurate (i.e. minimatatison) representation of the underlying data.
At locations where this optimal value changes, or where iitesponds to a different sized model, some
biological reorganization could likely be taking place.

We are concerned with finding the time points at which suchukttons occur and relating them back to
biological facts and hypotheses. Further, we would evdytlike to move past simple clustering to develop
automata based models of gene expression, as well as tablsé¢hcan use to reason about and validate
various hypotheses with respect to the data. We have repsdme preliminary efforts in this direction
in [8, 17], but the bulk of the formal methods have yet to beellgyed. We would like to add however,
that the time series segmentation below may be seen as arda&sging step on the way to building more
complicated models of biological systems (e.g. in the cdraéthe GOALIE project [3]). As a preliminary
step in this direction, we use hybrid automata as generaivdels to create our synthetic test cases, and
attempt to use our segmentation algorithm to extract thetiparof the data that most closely matches the
graphical structure of the automaton that generated thedss. We discuss the strategy in detail below but
we should underscore that this approach allows us to valalat segmentation algorithm on cases for which
a “correct” partition is known (as the structure of the hylmodel that generates the synthetic data defines
the appropriate segmentation of the generated data setevaloate how closely the segmentation our
information-based algorithm outputs matches the corrauttipn, we again turn to the tools of information
theory, and characterize the distance between varioushalitees in the space of segmentations using a
metric based on mutual information. We discuss this metnt the space of segmentations below, and
show that our distance measure is in fact a genuine metric.

We use synthetic data to validate that our algorithm workié avel then demonstrate its usefulness on a
recently investigated set of cyclic metabolomic data frarast [33], as well as a life-cycle data set related to
malaria [7]. In the case of synthetic data, we have focusedtbention on verifying that simple examples of
the types of events we would like to determine are indeedéalcay our algorithm. We generate these cases
using hybrid automata augmented with splines and noisghiisons. In the context of the biological data
(taken from yeast and malaria gene expression microari@griements previously reported in the literature),
we extracted interesting temporal structure directly fithie data without the use of any of the additional
methods that are conventionally used, nor any other ingtiaprocessing of the time series. In doing so,
we have replicated some results from earlier papers [7, S8Bguechniques that are altogether different
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from those employed in the original analysis. The two exasblelow both involve determining structure
in the data using only our time series segmentation algurifihe work agrees strongly with independently

reported results in the literature found using frequencedaanalysis [7, 33] and has been written up for
publication [31, 17].
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Generation of Synthetic Data via Hybrid Automata

We would like to determine the sensitivity of our algorithmrioise present in the data. That is, we want
to determine how the quality of the critical points and awistgs that our algorithm produces vary as the
time series become more and more corrupted by noise. Tdigagsthis, we require a means to generate
datasets that are similar, yet are in some sense “noisy £opfecach other. A typical example of such
data is illustrated in Fig. 11. We would like to generate mdifferent data sets in this manner, so that we
may validate the quality of the partitions that our methotpats. In order to do this we use a construction
called ahybrid automatonwhich is a dynamical system with both continuous and disatemponents. We
use these hybrid automata, which we define shortly, as giveeraodels, and rely on them to generate the
various noisy copies of our data.

A hybrid systenis a system with both discrete and continuous componentsybfichautomaton [15]
is a formal model of such a system. In a hybrid automaton wealnibd mixed discrete and continuous
dynamics of some hybrid system using a graph for which therelis state of the system is modeled by the
nodes of the graph, and the discrete dynamics, that is thsitians between discrete states, are modeled
by the edges of the graph. The continuous state of the hylotioheaton is modeled by points in real
coordinate space of some dimension (&) and the continuous dynamics are modeleditwy conditions
for example, differential equations that specify how thetowious state of the hybrid system being modeled
varies continuously inR™ for the discrete state in question. Each node in the grapérdéetes a flow
condition (e.g. differential equation, spline or some otlm@del of continuous dynamics) and each edge
of the graph may cause a discrete change in the state of thigl lytiomaton via gump condition that is,
some condition that when satisfied, causes the automatanittthdetween discrete states. In our case we
use simple hybrid automata with straightforward chaie-ldtaphical structure to generate our data. Each
type of data vector in our data set is generated by a noisg wathe underlying hybrid automata. That
is, we augment the flow conditions (in our case splines) antites with noise distributions (in our case
Gaussians with some specified standard deviation) so thabtayegenerate noisy traces of our automata.
The flow conditions specify the mean of the Gaussian for aitertode at a specified point in time.

The study of hybrid automata is an active area of researdmafidmuch work has gone into character-
izing their use for applications such as model checking @], anore recently, systems biology [1, 22, 2].
Our present requirements are quite modest, we use hybithate to generate data sets for which a there
exists (at least one) natural partition that is obviouslyrect. In this way, we can validate the success of our
algorithm’s attempts to extract the graphical structur¢hefunderlying processes that generated the data
by measuring the distance between the correct partitiorttengartitions that our segmentation algorithm
produces.
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Figure 9: An example of three simple (noisy) hybrid autonthad we use as generative models. The models
themselves are standard, but we augment the automata vgthdistributions at each node. The continuous
dynamics at the nodes are generated via the “shapes” (linespr some other continuous functions that
can be sampled at our time points of interest). The tracesarke noisy by the addition of small values
sampled from the noise distributions located at the nodes.u¥éd the three models illustrated above to
generate the data depicted in Fig. 11 by varying the variahtiee noise distributions. In the figure above
there are three hybrid models, each depicted in a color tragésponds to the color of the noisy traces in
Fig. 11. The red arrows indicate nodes that share the santiewons dynamics modulo noise (i.e. the same

underlying shape, for exampﬂel(}) ~ S%)).
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M easuring Distances Between Segmentations via M utual I nformation

Comparing two clusterings of the same underlying data idf@wli problem that may be approached from
a number of perspectives. One may consider the assignmematirsfof data elements to various clusters
in different clusterings (as in Rand’s criterion [20] or thecard index [20]), such methods, which work by
considering how pairs of data elements are grouped witteod$p each other, have enjoyed great popularity
as a means to evaluate how close or similar two differentelings of the same data set are. Contrastingly,
one may consider probabilities associated with the assghiwf data elements to different clusters in the
clustering solutions and use the formalism of informatiwetry to quantify the relationship between various
clusterings of the data. It is this second approach that we fudlowed, relying on the concepts of entropy
and mutual information defined earlier to address the etialuaf proximity between various clusterings.
In this way we can determine how well our method does withees the correct partition of the data. Of
course, for real world data, there is not generally a “cdfrelastering of the data, however we can do this in
the case of our synthetic examples by construction. Thaesause we use our augmented hybrid automata
as generative models, the synthetic data sets have naturattpartitions that depend on the underlying
automata that generated them. To reiterate, for our syaottests, there is a definite correct answer to the
clustering problem, that is, our hybrid automata generata dets for which a correct partition is known
(since it is implicit in the construction of the data set vilydrid automata of known structure). In what
follows we will introduce an information theoretic techon@&from the literature, variotaion of information,
that has been used sucessfully to compare individual ciogteolutions. We will briefly state some known
properties of this measure (e.g. that it is a metric on theesd clustering solutions). Finally, we will
provide an extension to this technique which will allow usmeasure distance between solutions to our
time series segmentation problem, and show that our meaédistance, basically a sum of varioation of
information terms, is a metric on the space of time seriesrsegtations (i.e. the space of cross products of
clustering solutions).

In the discussion below we will need a few definitions, we ad&isthem now. In what follows we
consider a hard partition of the data for simplicity, but thiscussion also applies, with minor adjustments,
to soft partitions of the data as well.

A clusteringT is a partition of a data seY into setsty, to, ...t;. Thet;’s are termed clusters. We can
associate with each a numbem; that is the number of datapoints that correspond to theatrltisin our
clustering solution. Thus, ik containsn elements, we have:

k
i=1
Additionally, we consider a second clusteriitj of the same data, that is, a partition of a data$et
into setst}, t,, ... t;. Many of the competing methods for determining distanceimilarity between

different clusterings of the same data rely on a contingeable (also referred to as a confusion matrix).
This matrix is of dimensiort: x [, where an element in the ith row and jth column is the numbgoafts in
the intersection of the clustetsandt;.:

mi; = ‘ti N t;‘ (55)

In order to use the tools of information theory to addressdibance between various clusterings of a
data set we need to discuss what our information measune®lyna&ntropy and mutual information, mean
with respect to clustering solutions. We begin by defining easure of the amount of uncertainty in a
cluster, that is, the entrop#{ (¢) of a clustert. To do this, we need to define what probability distribution
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we are working with. We want to capture the uncertainty esldb the cluster assignment for a specific data
element, that is, we want the probability that a data elemdmglongs to a clustef,. Assuming that each

has an equal chance of being picked, the probability of thtt dlement being in clusteyis p(t;) = ==,
that is, the ratio oft;| to | X|, the total number of data elements in our data set. Thisyeldiscrete random
variable associated with the clusterifigthat takes ork values. The uncertainty or information associated

with the clusterindl is then:

H(T)

k
—> " p(ti)logp(ts) (56)
i=1

When there is only one cluster, the entropy is equal to 0, @sdndinality of the clustering increases,
so does the uncertainty (assuming that each cluster has clofime data assigned to it). Additionally, the
uncertainty increases as the data is distributed more mmlijoover the clusters, rather than one cluster
accounting for the majority of the probability mass. A ckrsig with data uniformly spread over two
clusters has an entropy of one bit.

In order to define the mutual information we need some notiojoiot probability between cluster-
ing solutions. In order to define this we use the elementsémptieviously mentioned contingency table.
Following [20], we define the joint probability that a datamlent belongs to both in T’ andt;- in 7" to be:

s
tit Y 57
p(ti, t;) = - (57)
This allows us to define the mutual information between thedlusterinfs” and7” as follows:
p(ti, 1)
p(ti, ;) log ———~ (58)
Z j p(tz)p( )

Where the index runs over the elements if and the index j runs over the elementg/in

We know from our earlier review of information theory thaétimutual information is non-negative and
symmetric, further it is bounded by the minimum of the clustetropiesH (7') and H(T"), with equality
occuring when one clustering completely determines theradfire. when one clustering is obtained my
merging some number of clusters from the other). Two cligsrare equal if and only if (7, 7") =
H(T) = H(T"). In [20], Meila proposed theariation of informationas a comparison criterion for two
clusterings of the same data set.

VI(T;T') = H(T) + H(T") — 2I(T; T") (59)

Which by the definition of conditional entropy above implies

VI(T3T') = [H(T) - I(T3T)] + [H(T') - I(T;T')] = H(T|T') + H(T'|T) (60)

That is, VI(T; T") measures the sum of the amount of information atiwte lose and the amount
of information about” that we still need to gain, when moving from clusterifigto clusteringZ”. In
[20], various properties of variation of information areptoted, including positivity, symmetry and the
triangle inequality (i.eV I is a metric on the space of clusterings of a given data set)wNVeee that one
can readily extend these results to our problem of time sed@gmentation to achieve a distance measure
between segmentations of a set of time series data, anchibatatural distance (i.e. the sumWf terms
corresponding to individual time slices of the data set)risedric on the space of possible segmentations.
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One may consider the result of our time series segmentatimiolgm (i.e. the clustered windows that
are output by the search across the graph of weighted chgstiemctional values) aa clustered slices of
the original data set. That is, assuming that the data is leahgt time pointsl, 2, ... n, then one may
consider just the cluster assignments for slices of the alaaime point in width. In order to measure the
distance between two segmentations of the same data seaivo.€ifferent sets of clustered windows), we
construct a confusion matrix for each slice of the segmiemtsitand calculate the variation of information
for each slice. We can then sum the per slicEs across each segmentation and compare the values to each
other. In general, let us assume that our data set is samdietegpointst,, to, . . . t,, and that we have two
segmentations (i.e. clustered windowingsand S’ of the data. We construct confusion matridel$ and
M" for each slicdt;, t;11] of the data and calculate the variation of informatién(7’; 7") for each of the
n slices using the definitions given above. The measure anlistbetween segmentatiafisind S’, or the
segmentation variatiotsV' (S, S’), is the square root of the sum of the squares of the indivitiUaterms
over alln time slices:

SV(S; 8" = J > VT 170)2 (61)
i=1

WhereT®) and7’(%) are the clusterings of theh time slice found by segmentatiossand S’ respec-
tively. This definition is motivated by the desire for a metoin the space of segmentations, which can be
seen to be the product space of the clustered windows, ovaguily, the product space of the individ-
ual clustered time slices (since the clustered windowsuiuip our algorithm are themselves simply cross
products of contiguous time slices). Since a direct prodfi¢ttvo metric spaces is a metric space (along
with the square root of the sum of square distances in thénatigpaces, i.e. the metric in the new space),
we define (61) in such a way that we obtain a metric space ofggries segmentations, that is, the space in
which S and S’ live. In this way we immediately obtain from the definition\afriational information:

n 3
SV (S;9) = (Z[H(T(i)) + H(T’(i)) _ ZI(T(");T’("))F) (62)
i=1
Or, rewriting once more in terms of conditional entropies:
" :
V(8 5) = (Z[H (T0) = 1@ 7'0)  H(T') - 170570 )]2> (63)
i=1
i=1

The segmentation variation equals 0 if the segmentattoasd S’ are equal, otherwise it is positive. We
can measure the competetiveness of two different segnrgat; and.S, to a correct reference segmen-
tation .S by determining which o6V (51;.5) andSV (.S5; S) is minimal. The smaller of th€V (S!; S)’s is
the more correct segmentation of the given data.

Results that follow directly from the analysis in [20] indlr SV (S; S’) is positive (this follows from
the positivity of VI), symmetric (which follows from the symetry of VI) and the triangle inequality holds
(i.e. SV(Sy;82) + SV(Sq; S3) > SV(S1;S3). Thus,SV(S;S’) is a metric on the space of time series
segmentations (i.e. on the cross product space of windoViisedeby W, x Wy x ... W}, where each
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of the W;’s looks like ™ for some integemn;, wheren; is equal to the length of th&h window in the
segmentation). Equivalently, since tHé's are themselves cross product spaces composed direcigbsod
of time slicesT;, we could also say th&tl” is a metric on the product space of time slices. Furtheriesd
have include: the boundsV/ (S; S’) < mlogn (for a data set with n elements sampled at m time points), as
well as the property that the value of the segmentation tran@epends only on the sizes of the clusters and
not on the size of the data set. Many of the other results fi2@hdeneralize to our segmentation problem
as well as the extension to soft cluster assignments.
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Figure 10: A simple test case composed of fifteen synthetilps used to test the information-based
biclustering. Each color corresponds to a set of 5 randoralyetated profiles, created by generating a
trace from the underlying hybrid automata and adding Ganssbise with a standard deviation of 2 to an
underlying shape vector. Here one would expect a bicluggeahat finds interesting time pointsiat ¢ and

t10, where the number of clusters jf, t7] is 2, the number of clusters i, ¢10] is 2 and the number of
clusters int1p,t16] iIs 3. This expected partition corresponds to the naturalaimtained from the hybrid
automata structure illustrated in Fig. 9.

Synthetic Data

In order to validate our method we constructed a number diteeses that illustrated many of the types of
temporal events that we would like to extract from time sedata. We discuss a representative example.
As we are interested in situations in which new processesiiated as well as situations in which some
coordinated movement is occurring between groups of detaeaxits, we created test cases that captured
simplified versions of these types of scenarios. Ultimateky would like to be able to extract networks of
interaction and reason about them precisely, as such, a&fvark that focuses one’s attention on the most
informative regions in time is necessary. We begin by disiaigsour results on a simplified “toy” data set
that, while trivial in structure, serves to illustrate theskr ideas behind the method and our testing strategy.

Consider the fifteen profiles in Fig. 10. They were createddnegating three hybrid automata (Fig. 9)and
sampling each five times while adding Gaussian noise to eamipanent. Each color (blue, cyan, magenta)
corresponds to five profiles, all generated from the samaraitto (and thus having the same underlying
mean shape), but with different sampled noise subsequaddgd to the signal.

Further, the automata were constructed (i.e. the profilee baen generated) such that during some
time intervals profiles show similarities that are not presuring other intervals. For example during the
interval [t1, 7], the ten blue profiles have the exact same mean as the ten fdesy although their noise
components are different. Betweenandt,, the blue profiles fall to join the magenta vectors and between
t1p andtig they form a third cluster that is no longer similar to the otheofiles. One characteristic that
a quality biclustering of this data would show, is that atdipointst; andt;y some interesting events take
place that result in a change in the overall behavior of téilps. Indeed, when we tested this example, our
biclustering clustered the profiles as expected. In intdtyat;] it found two clusters (the twenty blue and
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Figure 11: Additional examples of the previous 15 synthptiafiles generated by increasing the standard
deviation of the noise distributions associated with theegative model. As before, each different color
corresponds to a set of 5 randomly generated profiles, crégte¢he addition of noise to the traces from
the underlying hybrid automata used to generate the datainAgne would expect a biclustering that finds
interesting time points at, ¢7 andt;o, where the number of clusters|in, ¢7] is 2, the number of clusters in
[t7,t10] is 2 and the number of clusters fihg, t16] is 3. However, as the examples become more noisy, we
would expect the partitions to become more distant from tieect segmentation, especially as the clusters
in the the intervalt;, t10] become more difficult to discriminate between.
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Figure 12: A plot of segmentation variation vs. variancehef moise distributions for the segmentations of
the data sets illustrated in Fig. 11 (and additional data fegtvalues ofo not shown in the figure). As

is increased we initially (i.e., fos < 7) observe that the partitions found all have the same segti@mt
variation (i.e. the partitions converged to are the samentipaithreshold of approximately = 8). As the
data sets become progressively noisier, the segmentdgjoritm has a more difficult time discerning the
correct partition although there are a few places (e.g.-at12 ando = 14) where the partitions found are
still fairly close to the correct one.

cyan profiles in one and the ten magenta profiles in the otimeinterval [t7, t1o] it discovered two clusters
and during time point$ g, t16] it found three clusters as expected. Again, it is importanmtdte that the
number of clusters is not an input to the algorithm, but iadta parameter that is discovered (along with
the cluster membershipgt|z)) by the algorithm as it progresses.

In this case, each location in the underlying hybrid autentizdt generated the data had a Gaussian noise
distribution with a standard deviation of 2 associated \iitfThis relatively mild noise, added component-
wise to the traces from the model, allowed high quality fiaris of the data to be generated with every run
of the algorithm.

In order to study the robustness of our segmentation in #egnice of noise, we consider various closely
related data sets, each also with fifteen profiles, display€&iy. 11. These data sets were similarly created
by generating three mean profiles (via the hybrid automaiésampling each five times while adding noise.
In these cases, however, we varied the variance of the n@s#@udtions, creating versions of the original
data set with increasingly corrupted signal.

Again, each color (blue, cyan, magenta) corresponds to fovfilgs, all generated using the same mean
but with different sampled noise added to the signal. We diexbect a good partition to divide the data
as described above, however, it is unclear how the perfarenahthe segmentation algorithm will suffer as
we perturb the data with larger noise components. In FigwE2plot the correctness of our segmentations
(as measured by the segmentation variation) with respdbetstandard deviation of the underlying noise
distributions. We see that for larger valuescoperformance does indeed suffer, however, the partitions
obtained for modest amounts of noise are generally agrdemitelthe correct solution.

We should point out that the above example is an extreme sicagion of the type of data one might
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meet in biological applications, especially given the éarmimber of seemingly completely noisy vectors
that arise in such data sets. We have, however, done expesisimilar to the above but with large numbers
of completely random noise vectors added to the data (egatgrthan half of the data set). Generally,
we obtain similarly accurate partitions of the data in suakes. We have chosen the above example for
simplicity of discussion and graphical presentation, wk s&e the segmentation performance on larger,
more difficult biological data sets below.

Although this synthetic example is trivial, it does represa simplified version of the type of problem
that we would like to address. That is, at some point an ewak@st place that changes the amount of
compression that we can do responsibly on the data. We wdotdte these points in time and generate
a concise description of what is happening between thens.woirth mentioning that in this toy example,
transitions between regions of differing amounts of coragign often occurred in such a way that the model
size actually changed as well. Such examples were chosandethey illustrate the key ideas most simply.
As we will see when we apply the method to actual biologicéhddifferences in the amount of compression
that can be done often occur in situations for which the medel remains constant.
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Figure 13: Plots of the most cyclic vectors (taken from [38ith an equal number of additional noisy data
vectors added.

Yeast M etabolic Cycle Data

Periodic behavior and biological clocks are common in fiveystems. Examples include the well known
circadian rhythm, found across kingdoms, which facilgadeordination of organisms’ wake/sleep rhythms
with day/night cycles. The budding yeast Saccharomyces/sgae has been shown to exhibit other similar
ultradian cycles in the form of glycolytic and respiratorgcillations. Recently, Tu et al. [33] used a
continuous culture system to investigate a robust, metabgtle in budding yeast. They described a yeast
metabolic cycle (YMC) that drives genome-wide transcoiptand coordination of cellular and metabolic
processes in a manner they characterize as reminiscerg oirtiadian cycle.

We have applied our time series segmentation method to akarze the yeast metabolic cycle using
the data of Tu et al. [33]. This data is a continuous growénvsttion-nutrition culture involving three cycles
(sampled at 36 time points). The data capture the cyclictyeapiratory activity, where cycles (as measured
by oxygen consumption), were 4-5 hours in length (about IBeoutive time points). Each cycle had a
reductive, nonrespiratory phase followed by a oxidatiespiratory phase. The microarray data captures
expression at intervals of 25 minutes over the three cotiseceycles. From this, Tu et al. determined
the cyclic nature of the genes using a periodicity algoritumal determined a large number of genes that
exhibited periodic expression. In the paper [33], autadation based methods were used to capture the
periodic nature of the data. The most common period was 30@ites, however different genes were
maximally expressed at different times. Genes encodinpim®related to energy, metabolism and protein
synthesis were overrepresented in this group of periodiege Finally, cluster analysis was performed
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Figure 14: Heatmap of the most cyclic vectors (as report¢d83t).

Figure 15: Difference matrix for a small test dataset corapasf the most significant cyclic vectors from
the Tu dataset along with an equal number of additional nidégs vectors. The cyclic vectors are in the top
half of the matrix, one can clearly see this in the block gtrec
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in two ways; the first used the most periodic genes as clusttotgpes, an unbiased k-means was also
performed.

One key result of the Tu et al. paper is the determinationrektharge clusters of expression patterns that
oscillate in a coordinated manner throughout the phasdseatetabolic cycle. The first cluster, called Ox
(oxidative) takes place in intervals when dissolved oxygas decreased and contains genes that code for
amino acid synthesis, ribosome, sulfur metabolism and RM#fabolism. The second, called R/B (reduc-
tive, building) peaks when cells begin to increase oxygersomption and involves genes for mitochondria,
DNA replication, histones and spindle poles. Finally, thied cluster, called R/C (reductive, charging) is
reported to encode genes involved in nonrespiratory modest@bolism and protein degradation.

We would like to determine both these clusters and the aftitime points in their genes’ expression
profiles directly from the microarray data, without havingpecify interesting genes or perform preliminary
analysis. Visually, we would expect critical points to @spond to times at which a cluster’s coordinated
expression changes dramatically.

Our biclustering proceeds by sequentially segmenting 8oahcourse data which is followed by deter-
mining the enriched functions in the windows correspondmiformative time intervals. With respect to
the Tu dataset, we would like to use this information to cti@mdze the relationships underlying the cyclic
metabolic events. We attach biological significance to theters in each window by labeling them with
their functional enrichments. From this, one can see thpbmant time points corresponding to the period-
icity of the groups of coexpressed genes are produced Wit®cbur clustering algorithm rather than being
produced via separate frequency analysis or by clusteriognd preproscribed gene expression profiles.
Further, such analysis puts us in a position from which welmegin to think about building richer (e.g.
automata based) models of the underlying biology.

Tu et al. report that expression for the Ox cluster peakethdguime intervals [8-12], [20-24] and
[32-36], expression for the R/B cluster peaked during irgksr [10-14] and [22-26], whereas expression for
the R/C cluster peaked during intervals [2-7], [14-19] aR€f-B1]. Our biclustering algorithm produced
the segmentation [1-6][6-9][9-14][14-17][17-20][20{E&3-26][26-31][31-36]. These nine mined intervals
correspond to the temporal windows for which expressiorkeador each of the three clusters in each of
the three metabolic cycles. Following time series segntiemtawe label the mined windows with their
functional enrichment (for the genes whose clusters’ esgiom peaked in that window). The enrichment
labels correspond to the categories described by Tu.

Again, it is significant to note that Tu at al. performed fregay analysis in addition to other data pro-
cessing (clustering etc.) in order to pull out the biolotjcaignificant structure in the data. Our algorithm
mines much of this structure in an automatic manner and,evthire are still plenty of improvements to
be made, we feel that such a completely automated approace,perfected, will be a valuable tool in the
pursuit of the construction of more complicated modelsatliysfrom data. For example, in cyclic data like
that of Tu, one might hope for an automata that captures thedie nature of the data in terms of states
and transitions between them. A biclustering, such as tioalyzced by our algorithm, puts one in a position
to build such models [8]. Additionally, such an approachldqurove especially useful if the periodicity in
the data is not as obvious as in the above yeast set.
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Figure 16: Plot of the Bozdech dataset (from [7]).

Intraerythrocytic Developmental Cycle of Plasmodium Falciparum

There are currently up to half a billion new cases of malagj@orted annually. The parasite Plasmodium
falciparum, one species of malaria-causing Plasmodiurespecially severe, resulting in as many as two
million deaths each year and is responsible for the majofithe hundreds of millions of malaria episodes
worldwide. While great gains have been made in the fight agamalaria via drugs, vector control and
advances in knowledge and public health, no solution to ibeade has yet been found. With no present
malaria vaccine, the disease continues to affect the limdseaonomies of many nations, taking a particu-
larly devastating toll in many developing countries. Thaame of P. falciparum, recently sequenced, will
provide insight into the function and regulation of P. fpmium’s over 5,400 genes and should bolster the
search for future treatments and a possible vac@rie [

Transmitted by mosquitoes, the protozoan Plasmodiunpilom exhibits a complex life cycle involv-
ing a mosquito vector and a human host. Once the infectionitiated via sporozoites injected with the
saliva of a feeding mosquito, P. falciparum’s major life leyphases commence. These phases are: liver
stage, blood stage, sexual stage, and sporogony. The liagel is characterized by a number of distinct
and carefully programmed substages which include the tiaghozoite and schizont, which are referred to
collectively as the intraerythrocytic developmental ey@DC).

We have used our information based time series segmentatibnique in conjunction with other tools
to investigate the dynamics of the intraerythrocytic depeiental cycle oPlasmodium Falciparunfil7].

In [7], Bozdech et al. study. Falciparum a recently sequenced strain of the human malaria parasite.
The authors describl. falciparunis approximately 5,400 genes, the majority of whose fumdiare still
unknown. It is understood that a large percentagp. délciparunis genome is active during the IDC and
that the regulation pattern is such that as one set of gedesdivated, another is being turned on, resulting
in what the authors refer to as a continuous “cascade” ofigctwhereby transcriptional regulation is
controlled in a tightly synchronized manner. Using our @usag scheme we can reconstruct the main
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Figure 17: Heatmap of the Bozdech dataset, showing 3716rualigeotides over 48 hours (46 time points).

features of the system, including the cascade of genes, lhasstbe stages of the IDC and their associated
processes.

Bozdech et al. conducted their investigation with the hélpaurier analysis, using the frequency and
phase of the gene profiles to filter and categorize the expredata. They used the fast Fourier transform
(FFT) to eliminate noisy genes and those that lacked diftékexpression. Most of the profiles registered a
single low-frequency peak in the power spectrum, which tite@s used to classify the expression profiles.
Classified in this way, the cascading behavior of the genasvied in the IDC was clear. Our method
reproduced this cascade of expression in an automated mandewithout relying on frequency based
methods, we were able to recover the underlying structutbeosystem using an approach based on our
time series segmentation method. We segmented the tines darthe “overview dataset” provided by
Bozdech et al. [7]. This dataset contained 3719 oligonticles (represented by 2714 unique open reading
frames (ORFs)). Bozdech provided an overview of the IDCdtaptome, by selecting all 3,719 microarray
elements whose profiles exhibited greater than 70 % of thepowthe maximum frequency window and
that were also in the top 75 % of the maximum frequency madagu Rather then using hierarchical
clustering for analyzing the expression data, they addcesmmporal order directly within the dataset. To
accomplish this, the authors used the FFT phase to ordexfiession profiles to create a phaseogram of
the IDC transcriptome of P. falciparum, (Fig. 17).

The windowing of the data, discovered using our informatased segmentation method, corresponds
well to the main stages of the FalciparumIDC as described in [7]. When the rate distortion clustering
is run on the overview dataset, critical time points 7, 16,288 43 drop out of the method as points at
which the amount of compression that can be accomplisheleoddta significantly changes. These critical
points signal times at which major functional reorgan@atbf gene expression is likely to be taking place.
Bozdech et al. note that the 17th and 29th hour time pointeespond to the ring-to-trophozoite and
trophozoite-to-schizont stages of the IDC, which agredswith the results of our automated method. As
one may Vverify visually from the plotted data (Fig. 16), ri@s in the aggregate profile of the expression
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Window | Time period(in hours) Number of Clusters Stage
1 1-7 4 End of Merozoite Invasion and Early Ring
2 7-16 5 Late Ring stage and Early Trophozoitg
3 16-28 4 Trophozoite
4 28-43 5 Late Trophozoite and Schizont
5 43-48 5 Late Schizont and Merozoite

Table 1: Clustered windows of the IDC data and their relatom to documented biological stages.

data occur at roughly these locations, which are also thatitots found via frequency analysis [7] to be
transitions between major functional stages (i.e. ringhiozoite and trophozoite/schizont). The first critical
time point produced by our clustering, at hour 7, correspdndhe end of the previous merozoite invasion.
The last critical time point produced by our clustering, atih43, corresponds to the final portion of the
schizont stage overlapping with the early portion of thetrmetiod. We again note that the analysis of
Bozdech was carried out on a phaseogram (like that of Fig.idWhich the data had been sorted based on
the location of peak expression. Contrastingly, our metbeginented the the data with no explicit notion
of phase or frequency and extracted the same general s&uctu

Following the convention used in [17], the notatidn : C is used to denote th€th cluster in thelWth
window. We present the results of our segmentation in tathaten below (Table 2).
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Window:Cluster

Description

1:1

1:2

1:0 and 1:3
2:3and 2:1
2:0

3:3
3.0
3.2
4:3 and 4.0
4:2
4:1

5:3

51

This cluster is entering the ring stage. It is comprised df @RFs and is labeled by
ontology terms related to biosynthesis, glycolysis, andgcription.
This cluster is entering the ring stage. In this clusteratae 835 ORFs, which ane
primarily involved in translation and tRNA and rRNA procigs
Correspond to the end of the previous cycle

These clusters followed from 1:1 and 1:2, and correspondeoing stage.
This cluster exhibits overlap from one stage to the nextsithating the “cascade” g
genetic activity, and is identified with the Early Trophdeostage. This transition i
comprised of 957 ORFs, which is in agreement to the 950 foyri8ldzdech et al.
This cluster contains 1400 genes involved in the ring statpch is tapering off.
Contains Trophozoite ORFs (379)

Contains 1400 genes expressed later in Trophozoite stage

These clusters contain ORFs which were involved in the lad@Aozoite stage
Contains ORFs expressed in the late trophozoite stage

Contains 669 ORFs that correspond to the beginning the@uhstage. 4:1 and 4.
have a total of 1161 ORFs (compared to 1,050 as found by Bbzetea.)
Comprised solely of ORFs from 4:2 and 4:1 (which at this paoinpleting the
schizont stage)

Contains 524 ORFs that are highly expressed in the late mahstage and which
have early-ring stage annotations. This is consistent grithr findings of “approxi-
mately 550 such genes” [7].

U —

D

Table 2: Clusters from the IDC data and their biological desons.
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Conclusion and Further Work

We have suggested an approach to automatically findingréstieg” events in a set of time series microar-
ray data. Our technique relies on recently developed exiiento rate distortion theory, and more generally,
on the formalism of information theory to characterize apdalibe such events. The key assumption that
we make is that interesting time points are locations in #ia avhere fluctuations occur in the amount of
data compression that can be done. By this measure, we camfioatimal set of temporal windows across
the data that capture the major changes in gene expressimthheF;, using some form of external labeling
(e.g. GO or MIPS) we can tie these windows to biological evelfe have demonstrated that our method
shows promise, via performance on simple test cases arnithjpraty work with real biological data sets.
Further, we have reproduced some results from the litexatsing techniques that differ considerably from
those originally used.

Further work will include continued testing with more bigloal data to determine the strengths and
weaknesses of the general method, as well as developingsexte to the approach with an eye toward
building more complicated models of gene expression dataebler, we plan on developing an automated
method that integrates ontology labels from various datedand makes them available to use in the cluster-
ing subprocedure as discussed above. Finally, we wouldi&ksto formalize and make more quantitative
the nature of the agreement and disagreement between thts @sour method and the methods of data
analysis used in the original analysis of the yeast and maad@tasets described above.

I would like to thank Professor Bud Mishra for advising thigsject and offering support throughout the
year. | would also like to thank Dr. Paolo Barbano for his tiamel consideration. Finally, | would like to
thank my parents, whose support has been invaluable.
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