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1 Introduction

1. Improve generalization error (error rate observed on Out of Sample Data
or validation data)

2. Putting extra constraints that are designed to ’not help’ fit the training
set

3. Trade off increased bias for reduced variance

MSE(θ̃) = V ariance(θ̃) + (E[θ̃]− θ)2 + ε2

where, θ̃ is an estimator of θ coming from update equations or solution of
optimization procedure. Variability in θ̃ is because of randomness in data
and bias is due to model mismatch.

Well known bias-variance trade off- As complexity of the model is increased
model mismatch(bias) is decreased while variance in the prediction is in-
creased because of randomness in training inputs.

4. Deep Learning systems have large number of parameters and therefore
have high capacity(complexity) to fit relatively complicated functions.To
address this problem either have huge dataset or carefully regularize pa-
rameters. Regularization plays a major rule in improving generalization
error for such systems by limiting the domain of parameters. (induces bias
and decreases variance because parameters are restricted to a domain)

2 Classical Regularization

Mathematically, the training objective function becomes:

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ)

where, Ω(θ) is some function of θ such that each θi contributes positively
such that optimization is penalized by the parameters.
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Figure 1: Bias Variance Decomposition

2.1 L2 Regularization
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• constant terms are not penalized because it is multiplied by a con-
stant(i.e. 1). Thus, regularizing bias does not reduce variance by
much and instead can increase bias a lot (underfitting)

• What happens mathematically?

Denoting H by Hessian Matrix of J calculated at empirical optimal
solution of J i.e. w∗,

∇wJ̃(w;X, y) = ∇wJ(w;X, y) + α∇wΩ(w)

∇wJ̃(w;X, y) = H(w − w∗) + αw

α = (H + Iα)−1Hw∗

Eigen decomposition of H yields H = QΛQT Thus,

QTw = (Λ + Iα)−1ΛQTw∗

Looking in the same basis we find that original solution is shrunk by a factor of
λi

λi+α

– λi << α implies high shrinkage i.e. gradient change is small so
the parameters are shrunk to small values
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– λi >> α implies no shrinkage i.e. wherever the gradient change
is huge parameters are not affected

2.2 L1 Regularization

Ω(θ) = ||w||1 = |w1|+ |w2|+ ...+ |wn|

J̃(w;X, y) =
1

2
γi(wi − w∗i )2 + βsign(wi)

wi = sign(wi)max(|w∗i | −
β

γi
, 0)

• regularization contribution to the gradient no longer scales linearly
with w , instead it is a constant factor with sign equal to sign(w)

• w∗i ≤
β
γi
⇒ wi = 0. Small w∗i are forced to 0 inducing sparsity

• large w∗i are just shifted by β
γi

3 Regularization with Explicit Constraints

Optimization procedure viewed as Lagrange objective function implying
that penalties can be interpreted as constraints. Thus,

L(θ, α;X, y) = J(θ;X, y) + α(Ω(θ)− k)

θ∗ = min
θ

max
α,α≥0

L(θ, α)

θ∗ = min
θ
L(θ, α∗) = min

θ
J(θ;X, y) + α∗Ω(θ)

Where, α∗ is a function of J(θ) and k such that it increases when ||θ||p > k
and decreases when ||θ||p < k

• α is large ⇒ k is small

• α is small ⇒ k is large

Advantages of using explicit constraints

• Time : In stochastic gradient descent (SGD) we can stop whenever
the constraints are satisfied instead of seaching for α that corresponds
to k

• Preventing local minima: Penalties can cause non-convex optimiza-
tion procedure to get stuck in local minima corresponding to small
θ

Neural Network ends up having lot of dead units i.e. those units
do not contribute much to the behavior of function because weights
going in and coming out of those nodes are all very small. When
training with a penalty on the norm of the weights these configu-
rations can be locally optimal even if it is possible to significantly
reduce J by making weights larger
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4 Under-Constrained Problems

Many algorithms require XTX to be invertible. This is not always the
case as in when number of input features are more than number of obser-
vations or when there is no variation in one direction. We end up inverting
(XTX + αI) instead.

5 Dataset Augmentation

• To generalize better, train on more and more data

• generate fake data either by transformation of inputs (images -rotation,
flip, etc) or adding noise to inputs

• Neural Networks are not found to robust against noise. Thus, to
improve robustness of NN

– train with noise applied to inputs

– apply noise to hidden units (dataset augmentation at multiple
levels of abstraction)

6 Bagging

• Reduce generalization error by combining several models: Model Av-
eraging by ensemble strategy

• Generalization error is reduced when errors from different models are
uncorrelated which can be enforced by making models with different
assumptions, hyperparameters or random start

• Assuming there are k models and εi is the error on an observation
by model i, E[εiεj ] = c, E[ε2i ] = ν then

ei =
1

k

∑
i

εi

E[e2i ] = E[(
1

k

∑
i

εi)
2] =

1

k2
E[

∑
i

(ε2i +
∑
i 6=j

εiεj))] =
ν

k
+
k − 1

k
c

Thus, when errors are uncorrelated, c = 0 thus,

E[e2i ] =
ν

k

• Procedure

– construct k datasets (each has same number of observations)

– train k models
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• Neural Networks have large number of parameters thereby reaching
large number of solutions. These solutions results in practically un-
correlated errors because of random initialization, random selection
of mini-batches and different hyperparameters. Thus Bagging in case
of NN will help in reducing generalization error

7 Early Stopping

• Most commonly used in deep learning: Effective and simple

• also a hyperparameter selection algorithm

• no change in underlying procedure, objective function or set of pa-
rameter values

• requirement of validation set

• instead of looking for a local minimum we run the algorithm until
the error on the validation set has not improved for some amount of
time

• Classification problem has a loss function which differs entirely from
its performance metric. This mismatch problem is solved by early
stopping procedure as performance metric on validation set can be
used instead of using same loss function on validation set.

8 Dropout

• inexpensive approximation to training and evaluating a bagged en-
semble of exponentially many neural networks

• train the ensemble consisting of all sub-networks that can be formed
by removing units from NN

• easily adapted to backpropagation

• Criple NN by removing hidden units stochastically

– each hiddne unit is set to 0 with probability 0.5

– use random binary mask

– Prediciton : Masks are replaced by expectation. In single hidden
layer, it is geometric mean of all models (i.e. all possible masks)

9 Multi-Task Learning

• improve generalization by pooling the examples arising out of several
tasks

• Shared parameters improve statistical strength
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Figure 2:
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Figure 3:

• In deep learning among the factors that explain the variations ob-
served in the data associated with different tasks some are shared
across 2 or more tasks

• Any model can be divided into two kinds of parameters:

– Task-specific parameters - upper layers of NN (benefits from the
examples of their tasks to achieve good generalization)

– Generic parameters - shared across all the tasks (benefits from
pooled data of all the tasks)
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