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Multicellularity

In a multicellular organism, a group of cells must work
together to accomplish a particular “function.”

No single cell can perform the entire function, but only its
“component” of the function: action .

The appropriate action depends upon the global state:
microenvironment, stress, oxygen, pH, etc.

No single cell may know the global state: but only some
“component” of the state: type .
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Sender-Receiver Game

A sender cell or ECM (extra-cellular matrix) knows the
type, and based on it sends a subset of few available
signals .

A receiver cell receives the signals and activates kinases,
transcriptional factors to turn on certain genes to perform
certain actions .

Sender wants the signals to carry as much information as
possible, and specific actions to be carried out as a result
of the signals.

Receiver wishes the signals to encode the global sate as
best as possible, and the actions to confirm to the state as
informatively as possible.
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Signaling

Intracrine (within a cell)

Autocrine (originating from the same cell)

Paracrine (originating from nearby cells)

Endocrine (system-wide)
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Signal

Growth Factors (Kinases)

Motility (Integrin)

Apoptosis (Caspases)

Metabolism (Hypoxia, Anoxia, etc.)

Autophagy

Metaplasia (Transdifferentiation, Dedifferentiation)

Meta-signals (Mutators?)
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Information theory

Information theory is based on probability theory (and
statistics).

Basic concepts : Entropy (the information in a random
variable) and Mutual Information (the amount of
information in common between two random variables).

The most common unit of information is the bit (based log
2). Other units include the nat , and the hartley .
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Entropy

The entropy H of a discrete random variable X is a
measure of the amount uncertainty associated with the
value X .

Suppose one transmits 1000 bits (0s and 1s). If these bits
are known ahead of transmission (to be a certain value
with absolute probability), logic dictates that no information
has been transmitted. If, however, each is equally and
independently likely to be 0 or 1, 1000 bits (in the
information theoretic sense) have been transmitted.
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Entropy

Between these two extremes, information can be
quantified as follows.

If X is the set of all messages x that X could be, and p(x)
is the probability of X given x , then the entropy of X is
defined as

H(x) = EX [I(x)] = −
∑

x∈X

p(x) log p(x).

Here, I(x) is the self-information, which is the entropy
contribution of an individual message, and EX is the
expected value.
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An important property of entropy is that it is maximized
when all the messages in the message space are
equiprobable p(x) = 1/n, i.e., most unpredictable, in which
case H(X ) = log n.

The binary entropy function (for a random variable with two
outcomes ∈ {0, 1} or ∈ {H, T}:

Hb(p, q) = −p log p − q log q, p + q = 1.
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Joint entropy

The joint entropy of two discrete random variables X and Y
is merely the entropy of their pairing: 〈X , Y 〉.

Thus, if X and Y are independent, then their joint entropy
is the sum of their individual entropies.

H(X , Y ) = EX ,Y [− log p(x , y)] = −
∑

x,y

log p(x , y).

For example, if (X,Y) represents the position of a chess
piece Ñ X the row and Y the column, then the joint entropy
of the row of the piece and the column of the piece will be
the entropy of the position of the piece.

B Mishra Computational Systems Biology: Biology X



Outline
Bayes & Information

Conditional Entropy or Equivocation

The conditional entropy or conditional uncertainty of X
given random variable Y (also called the equivocation of X
about Y ) is the average conditional entropy over Y :

H(X |Y ) = EY [H(X |y)]

= −
∑

y∈Y

p(y)
∑

x∈X

p(x |y) log p(x |y)

= −
∑

x,y

p(x , y) log
p(x , y)

p(y)

A basic property of this form of conditional entropy is that:

H(X |Y ) = H(X , Y ) − H(Y ).
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Mutual Information (Transinformation)

Mutual information measures the amount of information
that can be obtained about one random variable by
observing another.

The mutual information of X relative to Y is given by:

I(X ; Y ) = EX ,Y [SI(x , y)] =
∑

x,y

p(x , y) log
p(x , y)

p(x)p(y)
.

where SI (Specific mutual Information ) is the pointwise
mutual information.

B Mishra Computational Systems Biology: Biology X



Outline
Bayes & Information

A basic property of the mutual information is that

I(X ; Y ) = H(X )−H(X |Y ) = H(X )+H(Y )−H(X , Y ) = I(Y ; X ).

That is, knowing Y , we can save an average of I(X ; Y ) bits
in encoding X compared to not knowing Y . Note that
mutual information is symmetric .

It is important in communication where it can be used to
maximize the amount of information shared between sent
and received signals.
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Kullback-Leibler Divergence (Information Gain)

The Kullback-Leibler divergence (or information
divergence, information gain, or relative entropy) is a way
of comparing two distributions: a “true” probability
distribution p(X ), and an arbitrary probability distribution
q(X ).

DKL(p(X )‖q(X )) =
∑

x∈X

p(x) log
p(x)

q(x)

=
∑

x∈X

[−p(x) log q(x)] − [−p(x) log p(x)]
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If we compress data in a manner that assumes q(X ) is the
distribution underlying some data, when, in reality, p(X ) is
the correct distribution, the Kullback-Leibler divergence is
the number of average additional bits per datum necessary
for compression.

Although it is sometimes used as a ‘distance metric,’ it is
not a true metric since it is not symmetric and does not
satisfy the triangle inequality (making it a
semi-quasimetric).
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Mutual information can be expressed as the average
Kullback-Leibler divergence (information gain) of the
posterior probability distribution of X given the value of Y
to the prior distribution on X :

I(X ; Y ) = Ep(Y )[DKL(p(X |Y = y)‖p(X )]

= DKL(p(X , Y )‖p(X )p(Y )).

In other words, mutual information I(X , Y ) is a measure of
how much, on the average, the probability distribution on X
will change if we are given the value of Y . This is often
recalculated as the divergence from the product of the
marginal distributions to the actual joint distribution.

Mutual information is closely related to the log-likelihood
ratio test in the context of contingency tables and the
multinomial distribution and to Pearson’s χ2 test.
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Source theory

Any process that generates successive messages can be
considered a source of information.

A memoryless source is one in which each message is an
independent identically-distributed random variable,
whereas the properties of ergodicity and stationarity
impose more general constraints. All such sources are
stochastic.
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Information Rate

Rate Information rate is the average entropy per symbol.
For memoryless sources, this is merely the entropy of each
symbol, while, in the case of a stationary stochastic
process, it is

r = lim
n→∞

H(Xn|Xn−1, Xn−2 . . .)

In general (e.g., nonstationary), it is defined as

r = lim
n→∞

1
n

H(Xn, Xn−1, Xn−2 . . .)

In information theory, one may thus speak of the “rate” or
“entropy” of a language.
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Rate Distortion Theory

R(D) = Minimum achievable rate under a given constraint
on the expected distortion.

X = random variable; T = alphabet for a compressed
representation.

If x ∈ X is represented by t ∈ T , there is a distortion d(x , t)

R(D) = min
{p(t|x):〈d(x,t)〉≤D}

I(T , X ).

〈d(x , t)〉 =
∑

x,t

p(x , t)d(x , t)

=
∑

x,t

p(x)p(t |x)d(x , t)
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Introduce a Lagrange multiplier parameter β and
Solve the following variational problem

Lmin[p(t |x)] = I(T ; X ) + β〈d(x , t)〉p(x)p(t|x).

We need
∂L

∂p(t |x)
= 0.

Since

L =
∑

x

p(x)
∑

t

p(t |x) log
p(t |x)

p(t)
+β

∑

x

p(x)
∑

t

p(t |x)d(x , t),

we have

p(x)

[

log
p(t |x)

p(t)
+ βd(x , t)

]

= 0.

⇒
p(t |x)

p(t)
∝ e−βd(x,t).
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Summary

In summary,

p(t |x) =
p(t)

Z (x , β)
e−βd(x,t) p(t) =

∑

x

p(x)p(t |x).

Z (x , β) =
∑

t p(t) exp[−βd(x , t)] is a Partition Function.

The Lagrange parameter in this case is positive; It is
determined by the upper bound on distortion:

∂R
∂D

= −β.
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Redescription

Some hidden object may be observed via two views X and
Y (two random variables.)

Create a common descriptor T

Example X = words, Y = topics.

R(D) = min
p(t|x):I(T :Y )≥D

I(T ; X )

L = I(T : X ) − βI(T ; Y )
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Proceeding as before, we have

p(t |x) =
p(t)

Z (x , β)
e−βDKL[p(y |x)‖p(y |t)]

p(t) =
∑

x

p(x)p(t |x)

p(y |t) =
1

p(t)

∑

x

p(x , y)p(t |x)

p(y |x) =
p(x , y)

p(x)

Information Bottleneck = T .
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Blahut-Arimoto Algorithm

Start with the basic formulation for RDT; Can be changed
mutatis mutandis for IB.

Input: p(x), T , and β

Output: p(t |x)

Step 1. Randomly initialize p(t)

Step 2. loop until p(t |x) converges (to a fixed point)

Step 3. p(t |x) := p(t)
Z (x,β)e

−βd(x,t)

Step 4. p(t) :=
∑

x p(x)p(t |x)

Step 5. endloop

Convex Programming: Optimization of a convex function over
a convex set 7→ Global optimum exists!
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[End of Lecture #8]
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