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Bayesian Interpretation of Probabilities
Bayes & Information Information Theory

Multicellularity

@ In a multicellular organism, a group of cells must work
together to accomplish a particular “function.”

@ No single cell can perform the entire function, but only its
“component” of the function: action .

@ The appropriate action depends upon the global state:
microenvironment, stress, oxygen, pH, etc.

@ No single cell may know the global state: but only some
“component” of the state: type.
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Bayesian Interpretation of Probabilities
Bayes & Information Information Theory

Sender-Receiver Game

@ A sender cell or ECM (extra-cellular matrix) knows the
type, and based on it sends a subset of few available
signals .

@ Areceiver cell receives the signals and activates kinases,
transcriptional factors to turn on certain genes to perform
certain actions .

@ Sender wants the signals to carry as much information as
possible, and specific actions to be carried out as a result
of the signals.

@ Receiver wishes the signals to encode the global sate as
best as possible, and the actions to confirm to the state as
informatively as possible.
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Bayesian Interpretation of Probabilities
Bayes & Information Information Theory

Signaling

@ Intracrine (within a cell)

@ Autocrine (originating from the same cell)
@ Paracrine (originating from nearby cells)
@ Endocrine (system-wide)
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Bayesian Interpretation of Probabilities
Bayes & Information Information Theory

Growth Factors (Kinases)

Motility (Integrin)

Apoptosis (Caspases)

Metabolism (Hypoxia, Anoxia, etc.)

Autophagy

Metaplasia (Transdifferentiation, Dedifferentiation)
Meta-signals (Mutators?)
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Information theory

@ Information theory is based on probability theory (and
statistics).

@ Basic concepts : Entropy (the information in a random
variable) and Mutual Information (the amount of
information in common between two random variables).

@ The most common unit of information is the bit (based log
2). Other units include the nat, and the hartley .
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@ The entropy H of a discrete random variable X is a
measure of the amount uncertainty associated with the
value X.

@ Suppose one transmits 1000 bits (Os and 1s). If these bits
are known ahead of transmission (to be a certain value
with absolute probability), logic dictates that no information
has been transmitted. If, however, each is equally and
independently likely to be 0 or 1, 1000 bits (in the
information theoretic sense) have been transmitted.
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@ Between these two extremes, information can be
guantified as follows.

@ If X is the set of all messages x that X could be, and p(x)
is the probability of X given x, then the entropy of X is
defined as

H(x) = Ex[I(x)] = = > _ p(x)logp(x

xeX

Here, I(x) is the self-information, which is the entropy
contribution of an individual message, and Ey is the
expected value.
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@ An important property of entropy is that it is maximized
when all the messages in the message space are
equiprobable p(x) = 1/n, i.e., most unpredictable, in which
case H(X) =logn.

@ The binary entropy function (for a random variable with two
outcomes € {0,1} or € {H, T }:

Hp(p,q) = —plogp —qlogg, p+q=1.
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Joint entropy

@ The joint entropy of two discrete random variables X and Y
is merely the entropy of their pairing: (X,Y).

@ Thus, if X and Y are independent, then their joint entropy
is the sum of their individual entropies.

H(X,Y) = Exy[~logp(x,y)] = = > _logp(x,y).
X,y

@ For example, if (X,Y) represents the position of a chess
piece N X the row and Y the column, then the joint entropy
of the row of the piece and the column of the piece will be
the entropy of the position of the piece.
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Conditional Entropy or Equivocation

@ The conditional entropy or conditional uncertainty of X
given random variable Y (also called the equivocation of X
about Y) is the average conditional entropy over Y :

H(XY) = Ey[H(X]y)]
= = p(y)D_p(xly)logp(xly)

yey xeX

_ p(X,y)
= ;y:p(x,y)log o)

@ A basic property of this form of conditional entropy is that:

H(X]Y)=H(X,Y)—H(Y).

B Mishra Computational Systems Biology: Biology X



Mutual Information (Transinformation)

@ Mutual information measures the amount of information
that can be obtained about one random variable by
observing another.

@ The mutual information of X relative to Y is given by:

p(X,y)

I(X:Y) = Exy[SI(x,y)] = >_p(x.y)log S-S5

X7y

where Sl (Specific mutual Information ) is the pointwise
mutual information.
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@ A basic property of the mutual information is that
I(X;Y)=HX)-H(X]Y)=HX)+H(Y)-H(X,Y) = I(Y; X).

That is, knowing Y, we can save an average of I(X;Y) bits
in encoding X compared to not knowing Y . Note that
mutual information is symmetric .

@ It is important in communication where it can be used to
maximize the amount of information shared between sent
and received signals.
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Kullback-Leibler Divergence (Information Gain)

@ The Kullback-Leibler divergence (or information
divergence, information gain, or relative entropy) is a way
of comparing two distributions: a “true” probability
distribution p(X), and an arbitrary probability distribution

q(X).
D (P a(X)) = > p(x) ;
xeX
= Y _[-p(x)logq(x)] — [-p(x)log p(x)]
xexX
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@ If we compress data in a manner that assumes q(X) is the
distribution underlying some data, when, in reality, p(X) is
the correct distribution, the Kullback-Leibler divergence is
the number of average additional bits per datum necessary
for compression.

@ Although it is sometimes used as a ‘distance metric,’ it is
not a true metric since it is not symmetric and does not
satisfy the triangle inequality (making it a
semi-quasimetric).
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@ Mutual information can be expressed as the average
Kullback-Leibler divergence (information gain) of the
posterior probability distribution of X given the value of Y
to the prior distribution on X:

I(X;Y) = Ep)[Dxe(p(X]Y =y)[p(X)]
= D (p(X,Y)lIp(X)p(Y))-

In other words, mutual information I(X,Y ) is a measure of
how much, on the average, the probability distribution on X
will change if we are given the value of Y. This is often
recalculated as the divergence from the product of the
marginal distributions to the actual joint distribution.

@ Mutual information is closely related to the log-likelihood
ratio test in the context of contingency tables and the
multinomial distribution and to Pearson’s y? test.

B Mishra Computational Systems Biology: Biology X



Source theory

@ Any process that generates successive messages can be
considered a source of information.

@ A memoryless source is one in which each message is an
independent identically-distributed random variable,
whereas the properties of ergodicity and stationarity
impose more general constraints. All such sources are
stochastic.
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Information Rate

@ Rate Information rate is the average entropy per symbol.
For memoryless sources, this is merely the entropy of each
symbol, while, in the case of a stationary stochastic
process, it is

r = Iim H(Xn‘Xn_l,Xn_Z...)
n—oo
@ In general (e.g., nonstationary), it is defined as

1
r=lim =H(Xn, Xp_1,Xn_2...)
n—oo N

@ In information theory, one may thus speak of the “rate” or
“entropy” of a language.
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Rate Distortion Theory

@ R(D) = Minimum achievable rate under a given constraint
on the expected distortion.

@ X =random variable; T = alphabet for a compressed
representation.

@ Ifx € X isrepresented by t € T, there is a distortion d(x,t)

R(D) = min (T, X).
{P(tIx):(d(x,)) <D}
(d(x,t) = prt (x,1)

= Zp ()p(tx)d(x,t)
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@ Introduce a Lagrange multiplier parameter 5 and
@ Solve the following variational problem

Lnin[P(E1X)] = (T X) + B{d (X, 1)) px)p(tix)-

@ We need

% ~o.
Since
L= Zp Z t|x)|og +ﬁZp Z (tx)d (x, 1),
we have
p(x) [Iog F()t(‘t)) +0d(x, )} =0.
- % x eI,
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@ In summary,

(x,5)

Z(x,B3) = > p(t) exp[—-pd(x,t)] is a Partition Function.
@ The Lagrange parameter in this case is positive; It is
determined by the upper bound on distortion:

p(th) = 5Pl e 00 p(t) = 37 po)p(tix).

OR

o
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Redescription

@ Some hidden object may be observed via two views X and
Y (two random variables.)

@ Create a common descriptor T
@ Example X = words, Y = topics.

R(D) = min I(T; X)
p(t|x):1(T:Y)>D
L = KT :X)=pKT;Y)
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@ Proceeding as before, we have

p(tjx) = %e_ﬁDKL[p(HX)HP(YO]

pt) = S p(X)p(tlx)
p(y[t) = %;pmymmx)

p(X,y)
p(x)

@ Information Bottleneck =T.

p(ylx) =
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Blahut-Arimoto Algorithm

@ Start with the basic formulation for RDT; Can be changed
mutatis mutandis for IB.

@ Input: p(x), T,and g3
@ Output: p(t|x)
Step 1. Randomly initialize p(t)
Step 2. loop until p(t|x) converges (to a fixed point)
Step 3. p(t[x) := —Z'C(’S)ﬁ)e—ﬁd(xv‘)
Step 4. p(t) == >, p(x)p(tx)
Step 5. endloop

Convex Programming: Optimization of a convex function over
a convex set — Global optimum exists!
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[End of Lecture #8]
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