Biology X, Fall 2010 Signaling games

Andreas Witzel

CIMS, NYU

2010-11-01

see Skyrms, Signals and Gintis, Game theory evolving

Vervet monkeys

- Vervet monkeys have distinct alarm calls for different predators
- ► Eagle: "cough" ~> hide in the underbush
- ► Leopard: "bark" ~→ climb on a tree
- ► Snake: "chutter" ~> watch out for snake

- Even inter-species communication exists
- How can such systems come about?
- How can meaning evolve?
- Can we give an explanation that is simple enough to apply even to bacteria and cells?

Sender-receiver games

- Introduced by David Lewis (1969) to explain convention and meaning
- "Worst-case scenario" in which natural salience is absent and signaling is purely conventional
- Two players: sender, receiver
- Sender has a "type" (state, private information)
- Sender chooses a signal (signals have no intrinsic meaning)
- Receiver responds by choosing an action
- Payoffs depend on type and action (and signal)
- A sender strategy maps types to signals
- A receiver strategy maps signals to actions
- An equilibrium is a pair of strategies such that neither can improve by deviating

Basic definitions

- Set of types T, signals S, actions A
- Probability distribution $au \in \Delta T$
- Sender strategy $\sigma : T \rightarrow \Delta S$
- Receiver strategy $\rho: S \to \Delta A$
- Payoff for sender: u(t, s, a), for receiver: v(t, s, a)
- Equilibrium: pair of strategies σ, ρ such that

$$\sum_{t,s,a} u(t,s,a)\tau(t)\sigma(s|t)\rho(a|s) \ge \sum_{t,s,a} u(t,s,a)\tau(t)\sigma'(s|t)\rho(a|s)$$

and

$$\sum_{t,s,a} u(t,s,a)\tau(t)\sigma(s|t)\rho(a|s) \ge \sum_{t,s,a} u(t,s,a)\tau(t)\sigma(s|t)\rho'(a|s)$$

for all σ', ρ'

- One "right" action for each type
- Coordination game
- Signals costless

- One "right" action for each type
- Coordination game
- Signals costless
- Types of equilibria:
 - Separating ("signaling system")

- One "right" action for each type
- Coordination game
- Signals costless
- Types of equilibria:
 - Separating ("signaling system")
 - Pooling

→ aı

- One "right" action for each type
- Coordination game
- Signals costless
- Types of equilibria:
 - Separating ("signaling system")
 - Pooling
 - Partial Pooling

Information

- View the information of a signal as how it changes probabilities
- Signals involve two kinds of information:
 - What state the sender has observed
 - What action the receiver will take
- Information content and quantity
- Information is maximal in signaling system (but also in perfectly *mis*coordinating systems)

Information quantity

- Intuition: should compare probability with vs without observation
- Information quantity of signal s "in favor of" state (type) t:

$$\log \frac{\sigma(t|s)}{\tau(t)}$$

Overall information quantity of signal s:

$$\sum_{t \in T} \sigma(t|s) \log \frac{\sigma(t|s)}{\tau(t)}$$

(Kullback-Leibler divergence)

Information quantity of signal about act is analogous

Example

- Consider two equiprobable states t_1, t_2 and two signals s_1, s_2
- Consider separating sender strategy $\sigma(t_1) = s_1$, $\sigma(t_2) = s_2$
- Information quantity of s₁:

$$egin{aligned} &\sigmaig(t_1|s_1)\lograc{\sigmaig(t_1|s_1)}{ au(t_1)}+\sigmaig(t_2|s_1)\lograc{\sigmaig(t_2|s_1)}{ au(t_2)}\ &=1\lograc{1}{0.5}+0\lograc{1}{0.5}=1 \ (ext{bit}) \end{aligned}$$

- Consider pooling sender strategy $\sigma(t_1) = s_1$, $\sigma(t_2) = s_1$
- Information quantity of s₁:

$$\begin{aligned} \sigma(t_1|s_1) \log \frac{\sigma(t_1|s_1)}{\tau(t_1)} + \sigma(t_2|s_1) \log \frac{\sigma(t_2|s_1)}{\tau(t_2)} \\ &= \tau(t_1) \log \frac{\tau(t_1)}{\tau(t_1)} + \tau(t_1) \log \frac{\tau(t_1)}{\tau(t_1)} = 0 \text{ (bit)} \end{aligned}$$

Information content

- "Meaning" of signal s
- Its information quantity in favor of each respective state

$$\langle \log \frac{\sigma(t_1|s)}{\tau(t_1)}, \dots, \log \frac{\sigma(t_n|s)}{\tau(t_n)} \rangle$$

- Consider two equiprobable states t_1, t_2 and two signals s_1, s_2
- Consider separating sender strategy $\sigma(t_1) = s_1$, $\sigma(t_2) = s_2$
- Information content of s₁:

$$\langle 1, -\infty
angle$$

Evolution

- Replicator dynamics as simple model of evolution
- Differential replication according to Darwinian fitness
- Discrete version proceeds in generations
- Equation to determine new proportion of individuals with strategy s:

$$x_{t+1}(s) = x_t(s) \frac{\text{Fitness}(s)}{\text{Average fitness}}$$

Continuous version:

$$\dot{x}(s) = x \cdot (\mathsf{Fitness}(s) - \mathsf{Average fitness})$$

- Fitness in the simplest case is payoff of random pairing
- For cooperation to evolve, correlation is needed
- For symmetry breaking and exploration, add random mutation

Depiction of replicator dynamics

- Unstable states, rest points, stable and strongly stable states
- Illustrating with Hawk-Dove, Prisoner's dilemma, Inconsequential actions

Rock, scissors, paper

- Each pure strategy is equilibrium, but unstable
- Completely mixed state is stable, but not strongly
- No population that is not already in equilibrium converges

Evolution in signaling games

- Simplest case: two equiprobable types, two signals, two acts
- Sender and receiver have 4 strategies each, or 16 combined
- Signaling system always evolves
- All pooling equilibria are unstable
- Randomness breaks symmetry and creates information

Evolution in signaling games

- Simplest case: two equiprobable types, two signals, two acts
- Sender and receiver have 4 strategies each, or 16 combined
- Signaling system always evolves
- All pooling equilibria are unstable
- Randomness breaks symmetry and creates information
- With unequal probability, (partial) pooling equilibria may evolve
- The greater the inequality, the more likely
- On the other hand, the smaller the impact on the welfare is

Evolution in signaling games

- Simplest case: two equiprobable types, two signals, two acts
- Sender and receiver have 4 strategies each, or 16 combined
- Signaling system always evolves
- All pooling equilibria are unstable
- Randomness breaks symmetry and creates information
- With unequal probability, (partial) pooling equilibria may evolve
- The greater the inequality, the more likely
- On the other hand, the smaller the impact on the welfare is
- Details depend on the exact payoffs, probabilities and mutation rates
- Correlation can destabilize pooling

Deception

- Deception is ubiquitous in nature (e.g. Photuris vs Photinus)
- How can we define it, and how can it be sustainable?
- Deception is only meaningful in the context of an existing signaling convention
- Take the information content of a signal to be its agreed-upon meaning
- A signal whose information content does not reflect the type is misinformation (e.g., alarm call when no predator present)
- A misinformative signal benefitting the sender (and harming the receiver) is deceptive (e.g., Photuris)
- Systematic deception changes the convention (again, Photuris)

Successful deception in equilibrium

Sender always manipulates receiver with "half-truths":

- In t_1 , the sender's signal raises the probability of t_2
- In t_2 , the sender's signal raises the probability of t_1
- These half-truths induce receiver to choose a₃ in t₁ and t₂
- Sender benefits at expense of receiver (who prefers a₁ or a₂)
- Deception can even be seen as "morally good":
- Sender gains 8, receiver loses only 2
- If you don't know your role in advance (or you alternate), you would choose the deceptive equilibrium as universal law

Information bottlenecks can impact efficiency

Both are evolutionarily stable, although the right one is worse

Inventing new signals

- Chinese restaurant process:
 - Restaurant with infinite number of tables
 - Guests enter one by one
 - ▶ If *N* guests are there, each new guest joins the table of any of them with probability $\frac{1}{N+1}$
 - With probability $\frac{1}{N+1}$, he starts a new table
- Pólya urn process:
 - Urn with various colored balls
 - Draw a ball at random, put back two of that color
 - "Neutral" evolution (without selection pressure)
 - Converges to random color
- Hoppe-Pólya urn:
 - Add a black "mutator" ball to Pólya's urn
 - If it is drawn, put it back and add one with a new color
 - Equivalent to Chinese restaurant
 - Model for neutral evolution with invention

Inventing new signals

- Use a Hoppe-Pólya urn to model sender strategy
- Reinforcement learning: add balls depending on communication success (payoff)
- If receiver receives a new signal, he acts at random
- On success, the new signal is reinforced, otherwise removed
- Noisy forgetting to keep number of signals from exploding: at each step remove some ball at random
- In experiments, efficient signaling evolves quite robustly

Further topics

- Logic and information processing
- Complex signals and compositionality
- Teamwork
 - Quorum sensing (e.g. Vibrio fisheri)
 - Myxococcus xanthus
 - Multicellular organisms
- Learning to network
- Cheap talk