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What we know & what we do not  

“Cancer is a disease of the 
genome.” 
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Cancer Initiation and Progression 

Mutations, Translocations, 
Amplifications, Deletions 

Epigenomics (Hyper & Hypo-
Methylation) 

Alternate Splicing 

Proliferation, Motility, 
Immortality, 
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•  Cancer is a stepwise process, typically 
requiring accumulation of mutations in 
a number of genes. 

•  ~6-7 independent mutations typically 
occur over several decades: 
– Conversion of proto-oncogenes to 

oncogenes 
–  Inactivation of tumor suppressor gene 
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•  Obtain a comprehensive 
description of the genetic basis of 
human cancer.  
–  Identify and characterize all the sites of 

genomic alteration associated at significant 
frequency with all major types of cancers. 
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•  Increase the effectiveness of research 
to understand 
–  tumor initiation and progression, 
– susceptibility to carcinogensis, 
– development of cancer therapeutics, 
– approaches for early detection of tumors & 
–  the design of clinical trials. 
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•  Identify all genomic alterations 
significantly associated with all major 
cancer types.  

•  Such knowledge will propel work by 
thousands of investigators in cancer 
biology, epidemiology, diagnostics and 
therapeutics. 
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•  Create large 
collection of 
appropriate, 
clinically 
annotated 
samples from all 
major types of 
cancer; and 

•  Characterize each sample in 
terms of: 
–  All regions of genomic loss or 

amplification, 
–  All mutations in the coding 

regions of all human genes, 
–  All chromosomal 

rearrangements, 
–  All regions of aberrant 

methylation, and 
–  Complete gene expression 

profile, as well as other 
appropriate technologies. 
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•  Cancer is a heterogeneous collection of 
heterogeneous diseases.  
– For example, prostate cancer can be an 

indolent disease remaining dormant 
throughout life or an aggressive disease 
leading to death. 

– However, we have no clear understanding 
of why such tumors differ.  
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•  Cancer is fundamentally a disease of genomic 
alteration. 
–  Cancer cells typically carry many genomic 

alterations that confer on tumors their distinctive 
abilities (such as the capacity to proliferate and 
metastasize, ignoring the normal signals that block 
cellular growth and migration) and liabilities (such 
as unique dependence on certain cellular 
pathways, which potentially render them sensitive 
to certain treatments that spare normal cells). 



Human Cancer 
Genome  
Project 

•  1960s 
–  The genetic basis of cancer was clear from cytogenetic studies that 

showed consistent translocations associated with specific cancers 
(notably the so-called Philadelphia chromosome in chronic 
myelogenous leukemia). 

•  1970s 
–  Recognize specific cancer-causing mutations through recombinant 

DNA revolution of the 1970s. 
–  The identification of the first vertebrate and human oncogenes and 

the first tumor suppressor genes, 
–  These discoveries have elucidated the cellular pathways governing 

processes such as cell-cycle progression, cell-death control, signal 
transduction, cell migration, protein translation, protein degradation 
and transcription. 

•  For no human cancer do we have a comprehensive 
understanding of the events required. 
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•  Gene resequencing. 
–  Specific gene classes (such as 

kinases and phosphatases) in 
particular cancer types.  

•  Epigenetic changes. 
–  Loss of function of tumor 

suppressor genes by epigenetic 
modification of the genome — 
such as DNA methylation and 
histone modification. 

•  Genomic loss and 
amplification.  
–  Consistent association with 

genomic loss or amplification in 
many specific regions, 
indicating that these regions 
harbor key cancer associated 
genes 

•  Chromosome 
rearrangements. 
–  Activate kinase pathways 

through fusion proteins or 
inactivating differentiation 
programs through gene 
disruption. 

–  Hematological malignancies: a 
single stereotypical 
translocation in some diseases 
(such as CML) and as many as 
20 important translocations in 
others (such as AML). 

–  Adult solid tumors have not 
been as well characterized, in 
part owing to technical hurdles. 
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•  Equal amounts of biotin-labeled 
tumor DNA and digoxigenin-labeled 
normal reference DNA are 
hybridized to normal metaphase 
chromosomes 

•  The tumor DNA is visualized with 
fluorescein and the normal DNA 
with rhodamine 

•  The signal intensities of the 
different fluorochromes are 
quantitated along the single 
chromosomes 

•  The over-and underrepresented 
DNA segments are quantified by 
computation of tumor/normal ratio 
images and average ratio profiles  

Amplification Deletion 
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•  Representations are reproducible 
samplings of DNA populations in 
which the resulting DNA has a new 
format and reduced complexity. 
–  We array probes derived from low 

complexity representations of the 
normal genome 

–  We measure differences in gene 
copy number between samples 
ratiometrically 

–  Since representations have a lower 
nucleotide complexity than total 
genomic DNA, we obtain a stronger 
specific hybridization signal relative 
to non-specific and noise 

Normal DNA 

Normal LCR 

Tumor DNA 

Tumor LCR 

Label 

Hybridize 
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•  Given 500K human SNPs to be measured, select 10 
25-mers that over lap each SNP location for Allele A. 

–  Select another 10 25-mers corresponding to SNP Allele B. 
–  Problem : Cross Hybridization 

DNA 

25-mers 
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•  Each SNP “probeset” measures 
absense/presence of one of two Alleles. 

•  If a region of DNA is deleted by cancer, 
one or both alleles will be missing! 

•  If a region of DNA is duplicated/
amplified by cancer, one or both alleles 
will be amplified. 

•  Problem : Oligo arrays are noisy. 
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•  Consider a genomic location L and two “similar” 
nucleotide sequences sL,x and sL,y starting at that 
location in the two copies of a diploid genomes… 
–  E.g., they may differ in one SNP. 
–  Let θx and θy be their respective copy numbers in the whole 

genome and all copies are selected in the reduced 
complexity representation. The gene chip contains four 
probes px in sL,x; py in sL,y; px’, py’ not in G. 

–  After PCR amplification, we have some Kx * θx amount of 
DNA that is complementary to the probe px, etc. K' (~ K’x) 
amount of DNA that is additionally approximately 
complementary to the probe px. 
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I’ = U - µn  
 – [α σn

2 - φN(0,1)(a’/b’)/ΦN(0,1)(a’/b’)]  
£{(1 + β’ Bσn

/ΦN(0,1)(a’/b’)}-1  
 + [bσn

/Bσn
] )]  

£{(1 + ΦN(0,1)(a’/b’)/(β’ Bσn
)}-1, 

– Where a’ = U-µn -α σn
2; b’ = σn, and 

– bσn
 = ∑ [Ii,j – U + µn] φN(0,1)([Ii,j – U + µn] ) 

– Bσn
 = ∑ φN(0,1)([Ii,j – U + µn] ) 
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•  If the probe has an affinity φx, then the 
measured intensity is can be expressed as  

[K
x
 θx + K’] φx +noise  

= [θx + K’/Kx] φ’x + noise  
–  With Exp[µ1 + ε σ1], a multiplicative logNormal noise, 

 [µ2 + ε σ2] an additive Gaussian noise, 
 and φ’x = Kx φx an amplified affinity. 

•  A more general model: 
Ix = [θx + K’/Kx] φ’x eµ1+ε σ1 + µ2 + ε σ2
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•  In particular, we have four values of 
measured intensities: 

Ix = [θx φ’x + Nx]e µ1 +ε σ1 +µ2 + ε σ2 
Ix’ = [Nx] e µ1 +ε σ1 +µ2 + ε σ2 

Iy = [θy φ’y + Ny] e µ1 +ε σ1 +µ2 + ε σ2  
Iy’ = [Ny] e µ1 +ε σ1 +µ2 + ε σ2  
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•  Good news: For each 25-bp probe, the 
fluorescent signal increases linearly with the 
amount of complementary DNA in the sample 
(up to some limit where it saturates). 

•  Bad news: The linear scaling and offset differ 
for each 25-bp probe. Scaling varies by 
factors of more than 10x. 

•  Noise : Due to PCR & cross hybridization and 
measurement noise. 
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•  Scaling varies across probes: 
–  Each 25-bp sequence has different thermodynamic properties. 

•  Scaling varies across samples: 
–  The scanning laser for different samples may have different 

levels. 
–  The starting DNA concentrations may differ; PCR may amplify 

differently. 

•  Offset varies across probes: 
–  Different levels of Cross Hybridization with the rest of the 

Genome. 

•  Offset varies across samples: 
–  Different sample genomes may differ slightly (sample 

degradation; impurities, etc.) 
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•  Our data model fails for few data points 
(“bad probes”) 
– Soln (1): Improve the model… 
– Soln (2): Discard the outliers 
– Soln (3): Alternate model for the outliers… 

Weight the data approprately. 
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•  The true copy number (Allele A+B) is 
normally 2 and does not vary across the 
genome, except at a few locations 
(breakpoints). 

•  Segmentation can be used to estimate the 
location of breakpoints and then we can 
average all estimated copy number values 
between each pair of breakpoints to reduce 
noise. 
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•  Local Approach 
–  Change-point Detection 

•  (QSum, KS-Test, Permutation Test) 

•  Global Approach 
–  HMM models 
–  Wavelet Decomposition 

•  Bayesian & Empirical Bayes Approach 
–  Generative Models 

•  (One- or Multi-level Hierarchical) 

–  Maximum A Posteriori 
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data points. 
Small Sample statistics a 
Overfitting, Convergence to 
local maxima, etc. 
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Model with a very high degree 
of freedom, but not enough 
data points. 
Small Sample statistics a 
Overfitting, Convergence to 
local maxima, etc. 
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We will simply 
model the 
number of 
break-points by 
a Poisson 
process, and 
lengths of the 
aberrational 
segments by an 
exponential 
process. 
Two parameter 
model: pb & pe 

=2 

≠ 2 

pb 

1-pb 

1-pe 

pe 

Advantages: 
1.  Small Number of 

parameters. Can be 
optimized by MAP 
estimator. (EM has 
difficulties).  

2.  Easy to model 
deviation from 
Markvian properties 
(e.g., 
polymorphisms, 
power-law, Polya’s 
urn like process, 
local properties of 
chromosomes, etc.) 
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Amplification, c=4 Amplification, c=3 

Deletion, c=0 Deletion, c=1 

Breakpoints, Poisson, pb 
Segmental Length, Exponential, pe 
Copy number, Empirical Distribution 
Noise, Gaussian, µ, σ
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•  The likelihood function for first n probes: 
•  L(< i1, µ1, …, ik, µk >)  

= Exp(-pb n) (pb n)k  
 * (2 π σ2)(-n/2)∏i=1

n Exp[-(vi - µj)2/2σ2]  
 * pe

(#global)(1-pe)(#local) 
–  Where ik = n and i belongs to the jth interval. 
–  Maximum A Posteriori algorithm (implemented as 

a Dynamic Programming Solution) optimizes L to 
get the best segmentation 

•  L(<i*1, µ*1, …, i*k, µ*k >) 
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•  Generalizes Viterbi and Extends. 
•  Uses the optimal parameters for the generative model: 
•  Adds a new interval to the end: 
•   h i1, µ1, …, ik, µk i ± h ik+1, µk+1 i = h i1, µ1, …, ik, µk, ik+1, µk+1 i  
•  Incremental computation of the likelihood function: 

– Log L(h i1, µ1, …, ik, µk, ik+1, µk+1 i)  
= –Log L(h i1, µ1, …, ik, µki)  

+ new-res./2σ2 – Log(pbn) +(ik+1 – ik) Log (2πσ2) 
– (ik+1 – ik) [Iglobal Log pe + Ilocal Log(1 – pe)] 
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13q13.1  13q31.3  

CGH Explorer v.2.43 

DNAcopy 

GLAD 

vMAP 

Olshen, AB et al. 
Biostatistics 5: 557-72 

Lingjaerde, OC et al. 
Bioinformatics 21: 821-2 

Hupe, P et al. 
Bioinformatics 20: 3413-22 

Daruwala et al. 
Proc Natl Acad Sci U S A. 2004   
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•  LOH/Deletion Analysis analysis 
•  Hypothesize a TSG (Tumor Suppressor Gene) 
•  Score function for each possible genomic region containing the 

TSG 
–  Evolutionary history 
–  Interactions 
–  Parameters 

•  This score can be computed using estimation from data and 
also prior information on how the deletions arise. We use a 
simple approximation; we assume there is a Poisson process 
that generates breakpoints along the genome and an 
Exponential process that models the length of the deletions. 
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•  For an interval I (set of consecutive probes) we 
define a multipoint score quantifying the strength of 
associations between disease and copy number 
changes in I.    

•   

where A is the event “I amplified’’ (for oncogenes) and 
“I deleted’’ (for tumor suppressor genes).  
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•  The first part can be estimated from data: 

•  The second part depends on the marginal 
probability of amplification (for oncogenes) 
and deletion (for tumor suppressor genes)  
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•  In order to compute the marginal, we 
rely on the generative model assumed 
to have produced the data, as follows:  
– Breakpoints occur as a Poisson process at a 

certain rate µa, µd 
–   At each  of these breakpoints, there is an 

amplification/ deletion with length 
distributed as an Exponential random 
variable with parameter λa, λd 
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•  Assuming the generative process above, we can 
compute the second part. It depends on the 
parameters of the Poisson and Exponential random 
variables.These parameters are estimated from data. 
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Oncogene TSG 
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•  So far we have shown how to compute the score for 
a certain genomic intervals 

Intervals with high scores are interesting 
–  Given a larger genomic region, for example a chromosome 

arm, we compute the scores for all possible intervals up to a 
certain length 

–  The maximum scoring interval in a region is the most likely 
location for a cancer gene 

•  We propose two methods to estimate the location of 
possible cancer genes in this region: 

The Max method & 
The LR (left-right) method 
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•  High scoring intervals are obvious 
candidates for cancer genes. 
– We assign significance based on the 

estimated number of breakpoints in a 
genomic region with high score. 

– We obtain an approximate p-value using 
results from scan statistics. 
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•  We now know how to estimate the most likely 
location of a cancer gene in a genomic region 
of interest. Let us say the interval is Imax 

Is this finding statistically significant? 
•  We rely on an empirical way to compute an 

approximate p-value 
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•  The p-value is estimated from the observed 
distribution of breakpoints along the 
chromosome 
–  Intuitively, in the null hypothesis, which assumes 

that no tumor suppressor gene resides on the 
chromosome, the breakpoints are expected to be 
uniformly distributed 

–  However if indeed Itsg is a tumor suppressor gene, 
then its neighborhood should contain an unusually 
large number of breakpoints, signifying a region 
with many deletions 
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•  If N is the total number of breakpoints on the 
chromosome and k is the number of breakpoints in 
Itsg, then we can compute the probability of 
observing k out of N breakpoints in a window of 
length |Itsg|(=w) if these breakpoints are uniformly 
distributed ¸ p-value        
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Pre-cancerous Cell with a Causative 
Copy-Number Aberration 

Random Copy-Number Variations 

70% Tumor Cells 30% Normal Cells 
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•  We simulated data on diseased people assuming different 
scenarios. We vary the relative proportions of types of patients 
in a sample; some patients are diseased because of 
homozygous deletions of the tumor suppressor gene (a), other 
because of hemizygous deletions (b) and the rest are diseased 
because of other causes (c).  

•  We measure the performance using the Jaccard measure of 

overlap between the estimated TSG and the true position:                   
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•  Dataset of Zhao et al. 2005 
– 70 lung tumors 
– DNA copy number changes across 115,000 

SNPs  

•  First, we infer the copy-number values 
at these probes and decide which of 
them are deleted or amplified… 
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•  Most of the regions detected have been 
previously reported as implicated in lung 
cancer (e.g. 5q21, 14q11). 

•  Most significantly, some of the intervals found 
overlap some good candidate genes, that 
may play a role in lung cancer (e.g. MAGI3, 
HDAC11, PLCB1). 

•  Also, the regions 3q25 and 9p23 have been 
found for the first time to be homozygously 
deleted by Zhao et al. (2005). 
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Chromosome Comments 
1p13.2 MAGI3 
3p25.1 HDAC11 
3q25.1 Homozygous Del 
4q34.1 Del Lung Cancer 
5q14.1 
5q21.3 Del Lung Cancer 
16q24 CDH13 
17q21 BRCA1, HDAC5 
19p13.3 LKB1 
20p12 PLCB1 
21q21.2 Del Lung Cancer 

TSG 
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Chromosome Comments 
3q28 Over-expression in LC 
5p15.3 LOC389267 (similar to 

MUC4) 
6p22.3 
8q24 PVT1/MYC 
11p15 OR51A2 
12p11 Amplification in Zhao et 

al. (2005) 
20q11.23 Amplification in Zhao et 

al. (2004) 

Onco-
gene 


