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1 Probability of absorption in Birth-and-Death process

1.1 Probabilistic method

Since the growth of the population results exclusively from the existing population, it is clear that when the
population size becomes zero, it remains zero thereafter. Let us assume a birth-and-death process with zero as
an absorbing state. The probability of ultimate absorbtion into state O, given that we start inistdemoted as

u;. We will perform a first-step analysis and construct a recursion formula;fofhe first transition will entail

the following movements

Wi + A

i
i + X

i— i+ 1 with probability

i—1—1 with probability

Invoking the first step analysis, we obtain

i

B+ A Bit+ A

Ui—1,0 > 1

Usg (Aitig1 + pitti—1)

YN
/\iui + Hiy = /\7‘,Ui+1 + iU —1
Aitit1 — ANty = pll; — fili—1

Hi
i
whereuy = 1. If now we letv; = u; 11 — u,, then the above formula becomes
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If we let
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andpy = 1, we can obtain
Vi = PiVo

If now we returnu; to u; 1 — u;, then
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Let us sum both sides froin= 1t0i = m — 1,
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Now, in order to solve fot:;, we letm — oo. In such a casey,,, — 0. Thus
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We can now plug ini; to solve for a generah:

uy =

@

)

®)

(4)

®)



um—u1=(u1—1)2pi (6)
i=1
m—1 m—1
Um = U1 szi Zpl+ul (7)
i=1 i
Pi Pi
Um = =1 ) Pi — pi + # (8)
(HZHPZ Z Z 1+ 3220 pi
- Z¢=1Pixzi=1 Pi_Z7 1 p1(1+zz 1P1)+Zz 1 Pi 9)
L+ 3772, pi
e’} m—1
iy = =L L= P (10)
L+, pi
Uy = iz Pi (11)
L4222 pi
(12)

We can obtain similar results by considering an “embedded random walk” associated with this process.

In Moran model, the absorption in one of the states (either 0 or 2N) is definite. It is of interest to compute a
probability of absorbing at 0 and absorbing at 2N (starting at state i) separately. Let us apply a similar analysis
to calculating Absorption Probabilities in Moran process (in whichis the number of4, alleles in a haploid
population of 2N genes). In Moran population model, it is possible to make a transition froni statestates
i+ 1,4, andi — 1. Let us denote the probabilities of going to the corresponding stajgs-as p; ;, andp; ;_1.

By applying the first step analysis, we are able to obtain the recursive equation for the probability of absorption
in 0:
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Observe now that this formula corresponds to one derived in section 1:
Hi
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in which casep; ;_; corresponds t@; andp; ;1 corresponds ta,.
If apply a similar analysis to a Moran model, then the probability of extinction (absorption at zero) becomes

2N —m
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Similarly, the probability of fixation (absorption at 2N) is

Uy =

m
2N
since the probability to absorption at 0 and at 2N should sum up to 1.
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1.2 Absorption probabilities by Matrix Manipulations (finite states)

Let us consider a finite state spage= {0,1,2..., M}. We assume thaty = o = A\yy = pas = 0, and thus 0
and M are absorbing states.

Further we deflneﬁfv1 (11,0,0,. 0),W’2 =(0,0,0,...,Ap—1),andly, 4 = (1,1,1,...,1) as vectors
of size(M — 1) x 1.

Let us consider a matriQ (which is an infinitesimal generator of the process) with two absorbing states 0 and
M; then we can design a matr@ with rows and columns ,which correspond two absorbing states, eliminated.
In particular, theQ would look like matrixQ with deleted rows (0 and M) and columns (0 and M):
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Observe that a matri®Q) can now be expresses in termsﬁbﬁndwl andW, as
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If now we want to calculat®™, then
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Let us now calculat®(t) = ¢?*: consideringQ in this formula
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Similarly, thehg\? can be derived, with respect W/,. Observe thahff) is a vector of absorption probabil-

ities of states(1,..., M — 1} into state O over time and hﬁcl) is a vector of absorption probabilities of states
{1,..., M — 1} into stateM over timet. It follows that
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Furthermore, it would follow tha®(t), which corresponds tQ, is
P(t) = 9

Observe that® — 0 ast — oc; thereforeh, — the vector of ultimate absorption probabilities of the
states{1,..., M — 1} into state O is

ho = lim ) = —6'w,
and the vector of ultimate absorption probabilities of the stétes. ., M — 1} into state M is
har = lim h{) =-Q "W,
Observe that since/; + W, + Q1,1 = 0, then
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This is equivalently to saying that, with probability 1, the stdtes .., M — 1} will eventually be absorbed into
OorM.

Let us ease the computation ef)il and describe it in terms of birth and death ratgsand ;. Let us
denote the inverse ofQ asC. It turns to be that the entry,; (wheret = 1,2,..., M — 1 is the row and
s=1,2,...,M — 1is the column) in the matrix-inver<e is
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Basically, the computation of the probability of absorption into 0 from a statgy, is calculated based on
multiplication of W, andC. In particular, the elemerity, is the product of:; and the elementy:
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Similarly, for the probability of absorption into M is
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It is easy to check thatq, + hase = 1, once again satisfying the condition that the ultimate absorption at
one of the absorbing states is unescapable.
If we apply the above calculations to the Moran model, in which
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then the above probabilities become
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as has been shown before with a probabilistic argument.

2 Mean time to absorption in Birth-and-Death Process

2.1 Probabilistic method

Now, consider a mean time until absorption into state 0 starting from stgtee assume that the absorption is
certain) in a birth-and-death process. In this method we would like to consider time spent in each state for the
calculation of the mean absorption time. We will use the fact that the mean sojourn time spentiiisstate-

Let w;, be the mean absorption time from statéhen taking into account the waiting (sojourn) time in the
states,

1 n i LM >
= w; — Wi-1,1 =2
pit A it A

w;

wherewy = 0.



Rearranging the above gives
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If now we setz; = w; — w;41, then

Iterating this relation gives
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Again, using the notatiopy = 1 and

we obtain
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Plugging in the above into the formula far,, gives
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However, for Moran process we would need to consider a finite state space and two absorption states in order
to calculate a mean time to absorption.

2.2 Mean time to Absorption with Matrix method (finite state)

Let us define a vector of mean time to absorption from states ., M — 1} to either state (0 or M) ais Then,

following the calculations above
A —1

t=-Q 1y

From the previous section we know how to calculate ma@ixvhich is—Q_l. Basically, the elemert, is
equal to the sum of the elements of the k'th row(obf
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When applied to Moran model (recall that = 1; = “0=1) the mean time to absorption becomes
k 1 M-1 1
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3 Appendix

3.1 Calculating transition probabilities by Spectral method
Here we are interested in calculating these transition probability matri@g@ctral Method Let Q be (m +
1)(m + 1) matrix with eigenvaluesy, a1, . . . «,,, (possibly with repetition) and corresponding eigenvectors
Zoo Zom
Xo = e X =
Tmo Tmm

which are linearly independent.
In general the eigenvalues of the Matrix can be calculated as follows:
x is an eigenvector d iff there exists arv so thatQx = ax; then

QX = ax

Qx = (al)x
(Q—al)x=0
wherel is the identity matrix (identity matrix has 1's on its main diagonal and 0's elsewhere).

In order for this equation to have non-trivial solution, it is required that the determiha(® — al) is
zero. This determinant is also called the characteristic polynomial of the matrix. The distinct eigenvalues

g, a1, ..., Q. are given by the zeros of the characteristic polynomial
det(Q — al)
After the eigenvaluesy, a1, . . . ay, are calculated, we can determine eigenvectors (for each eigenvalue) as:
Zoi
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Let us now have a matri® with columns consisting of eigenvectors@f

Zoo Zo1 B Tom
x10 S T1im
B = (XoX1 ... Xm) =
Tmo Tmil s Tmm
SinceQx; = «;X;, it follows that
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QzB = Q(O[0XQ a1X1... Oémxm) = (O{%XO oz%Xl e ozfnxm) (64)
Q"B = (afXo af'Xy ... Xm) (65)
Therefore
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n=0 "
= (e"Xg e'™1X; ... " X,,) (68)
= B diag(e'®,...e'*m) (69)

wherediag(e'®, ... e"*m ) is the(m+1)(m+1) matrix with e’*:s on the main diagonal and zeros elsewhere

etao

diag(e'®,...e'm) =

As aresult
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