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1 Continuous Time Markov Chains

In this lecture we will discuss Markov Chains in continuous time. Continuous time Markov Chains are used to
represent population growth, epidemics, queueing models, reliability of mechanical systems, etc.

In Continuous time Markov Process, the time is perturbed by exponentially distribolkgidg timesn each
state while the succession of states visited still follows a discrete time Markov chain. Given that the process
is in statei, the holding time in that state will be exponentially distributed with some parametevhere:
can represent the current population size, the number of altglés the population, etc. These holding times
basically control how rapidly the movements (changes of states) of the chain take place. Additionally, given the
knowledge of visited states, the holding times are independent random variables.

For a Continuous Markov Chain, the transition probability functiortfor 0 can be described as

Pyy(t) = P(X(t+u) = j| X (u) = i)

and is independent af > 0. In fact, P(X(t + u) = j|X(u) = i) is a function oft and describes &me-
homogeneousansition law for this process.

To construct a Markov process in discrete time, it was enough to specify a one step transition matrix together
with the initial distribution function. However, in continuous-parameter case the situation is more complex. The
specification of a single transition matriy;;(to)] together with the initial distribution is not adequate. This
is due to the fact that events that depend on the process at time points that are not multiplesghft be
excluded. However, if one specifies all transition matrig@$in 0 < ¢ < t, for somety > 0, all other transition
probabilities may be constructed from these. These transition probability matrices should be chosen to satisfy
the Chapman-Kolmogorov equation, which states that:

Pij(t+s) =Y Pu(t)P;(s)
k
Or we can state it in a matrix notation by the following so-callethigroup property
P(t + s) = P(t)P(s)

The (i,j) element of the matriR(¢ + s) is constructed by row of P(¢) multiplied by the;j column ofP(s).
For some time point8 < t; < ty < t3 and arbitrary states, b, ¢, d one has that:

P(Xo=a,X;, =b,Xy, = ¢, Xyy = d) = papap(t1)py,c(ta — t1)pe,a(ts —t2)
as well as
P(Xo =a, Xy, = b, Xy, = d) = papap(t1)pe,a(ts —t1)
The consistency of the Chapman-Kolmogorov Equation would require the following:
Pe,alts —t1) = Zpb,c(tz — t1)Pe,alts — t2)

c



The above postulates give motivation #&olmogorov forward and backward equatigrvshich will be dis-
cussed in later sections in detail. Let us start with introduction of a Continious time Markov Chain called
Birth-and-Death process

2 Birth-and-Death process: An Introduction

The birth-death process is a special case of continuous time Markov process, where the states (for example)
represent a current size of a population and the transitions are limited to birth and death. When a birth occurs,
the process goes from statéo statei + 1. Similarly, when death occurs, the process goes from statstate
i — 1. Itis assumed that the birth and death events are independent of each other.

The birth-and-death process is characterized by the birth{tatg—o . .. and death rat€u;}i=o. .. oo
which vary according to stateof the system. We can definePaire Birth Processs a birth-death process with
u; = 0 for all 4. Similarly, aPure Death Processorresponds to a birth-death process with= 0 for all <.

The general description of the Birth-and-Death process can be as follows: after the process enters state
it holds (sojourns) in the given state for some random length of time, exponentially distributed with parameter
(\i + ui). When leaving, the process enters eithet 1 with probability

ori — 1 with probability

Ai + i

If the next state chosen ist+ 1, then the process sojourns in this state according to the exponential distribution
with parametet\;, 1 + u;41 and then chooses the next state etc. The number of visits back to the same state is
ignored since in a continuous time process transitions from staek to; would not be identifiable.

Imagine having two exponentially distributed random varialil€s) and D(i) with parameters\; and y;
respectively. These random variables describe the holding time in the st&fecan think ofB (i) as the time
until a birth andD(z) is the time until a death (when a population siz&)isThe population increases by one
if the birth occurs prior to death and decreases by one otherwise(:)f D(¢) are independent exponentially
distributed random variables, then their minimum is exponentially distributed with parafheteru; ).

A transition fromi to i + 1 is made ifB(:) < D(4), which occurs with probability

i +
This motion is analogous to a random walk with the difference that here the transitions occur at random times
(as opposed to fixed time periods in random walks).

It is of necessity to discuss the Poisson process, which is a cornerstone of stochastic modelling, prior to
modelling birth-and-death process as a continuous Markov Chain in detail.

P[B(i) < D(i)]

2.1 The law of Rare Events

The common occurrence of Poisson distribution in nature is explaindteldgw of rare eventConsider a large
numberN of independent Bernoulli trials where the probabilitpf success on each trial is small and constant
from trial to trial. Let Xy, be the total number of successesNntrials, whereXy , follows the binomial
distribution, fork = 0,1,...,N.

P(Xnp=k) = (Z)p’“(l -p)" 7t

If we assume thalv. — oo andp — 0, so thatNp = p, then the distribution folX -, becomes the
Poisson distribution:
e Huk
k!
In Stochastic modelling, this law is used to suggest circumstances under which the poisson distribution might
be expected to prevail, at least approximately.

P(X,=k)= fork=0,1,...



2.2 Poisson Process

A poisson distribution with parametgr> 0 is given by
e*“uk

k!

Pk =

and describes the probability of havikgevents over a time period embedded:inThe random variabl&
having a Poisson distribution has the mégX | = 1 and the varianc® ar[X] = p.

The Poisson process entails notions of Poisson distribution together with independence. A Poisson process
of intensity A > 0 (that describes the expected number of events per unit of time) is an integer-valued Stochastic
process X (t);t > 0} for which:

1. for any arbitrary time pointgy < t; < t2 < --- < t,, andtg = 0, the number of events happening in
disjoint intervals (process increments)

X(t1) — X (to), X (t2) — X (t1), X (t3) — X (t2), ..., X (tn) — X(tn_1)

are independent random variables. This means that the number of events in one time interval is independent
from the number of events in an interval that is disjoint from the first interval. This is knowmdegendent
incrementgproperty of the Poisson process.

2. fors > 0andt > 0, the random variabl& (s+t)— X (s) , which describes the number of events occurring
between time ands + ¢ (independent increment), follows the Poisson distribution

()\t)ke—)\t

P(X(s+t)—X(s)=k) = o
3. We assume that at time zero the number of events that have happened already is zero.

In this case, the parameter of the Poisson distribution,i& [ X (¢)] = A, andVar[X ()] = At. Letusfixa
short interval of time:. In Stochastic modelling, it is of a special interest to derive the probability of exactly one
event over the time periokl:

(Ah)e=

PX(t+h) = X(t) =1) = = 1)
= (Yo M @
n=0 :
. 0 - 1 _ 2

E DR EINC U o

— (R)(1— M+ %A?h? ) @

= M +o(h) (5)

(6)

whereo(h) denotes a general and unspecified remainder term of smaller ordeh.théfe can view the
rate) in Poisson procesX (¢) as the proportionality constant in the probability of an event occurring during an
arbitrary small intervah.

In a Poisson Process, the waiting time between consecutive events is cadigien timeS; = W, 1 — W,
wherelV; is the time of occurrence of thiéh event. BasicallyS; measures the duration that the Poisson process
sojourns in state.

The Sojourn timessy, S1,. .., S,_1 are independent random variables, each having the exponential proba-
bility density function

fsi (s) = Ae ™A



2.3 Definition of Birth-and-Death process

We let{X (t)},>0 be a Markov chain and define a very short interval of time, 0, during which there exist
observable changes in a chain. We would like to calculate a probability of seeing some particular changes
occurring at time + h, given that we started at time Over such a short interval of timle ™\, 0, it is nearly
impossible to observe more than one event; in fact, the probability to see more than one e{/ent is

If we are to describe a pure birth process with the birth pateve would name it a Poisson process with
parameter\;h so that); is the expected number of birth events that occur per unit time. In this case, the
probability of a birth over a short intervalis A;h + o(h).

Similarly, if in state X (¢t) = ¢ a death rate ig;, then the probability that an individual dies in a very small
time interval of lengthh is p1;h + o(h).

In the case of birth-and-death process, we have both birth and death events possible, with aatks;
accordingly. Since birth and death processes are independent and have poisson distribution with pargmeters
andy;h, their sum is a Poisson distribution with parametéx; + ;).

Let us analyze changes which might occur in birth-and-death process over the time ihteGiaken that
there are currently people in the population, ds™\, 0, the probability that there will be an change of size 1 is
basically represented by the probability of one birth and no death (which is a main probabilitic component) or
other combinations (two birth and one death, three birth and two death, etc) chances of which however are very
small,o(h) :

Piip1(h) = P(X(t+h) — X(t) = 1|X(t) =) @)
K\l ,— ik H\0,—uih
= (Ajh)e Mhemrit 4 o(h) )
— ()\ih)e—h()\rﬂti) (10)
n=0 :
= ()1 =B 1)+ SH2 O+ ) — )+ ofh) (12)
= \;h+ o(h) (13)

In this casep(h) term represents the fact that there are two birth and one death, 3 birth and 2 death, etc . As
h gets really, the probability that(») possibilities occur vanishes.
Similarly, the probability that there will be a decreasing change of size 1 is

Pi1(h)=P(X(t+h) — X(t) = —1|X(t) = i) = u;h + o(h)
Basically, the above postulates assume that the probabilities of population increasing or decreasing by 1 are
proportional to the length of the interval. In general, the process is called a birth-and-death process if:

1) P(X(t+h)—X(t)=1X({) =1) = Mih 4+ o(h)
(2 P(X(t+h)—X(t)=-1X(t) =1) = p;h + o(h)
(@) P(X(t+h) = X ()] > 1[X(t) = i) = o(h)

@) po=0,20>0; p;, N >0,i=1,23,...

These postulates support the notion that the events are rare and almost exclude the possibility of simultaneous
occurrence of two or more events. Basically, only one event can occur in a very small interval éf tinel
even though the probability for more than one event is non-zero, it is negligible.

The above implies that

() P(X(t+h)—X(t)=0|X(t) =1i) =1~ (uu; + \;)h + o(h)

We will postulateP;; (k) for h small and then derive a system of differential equations satisfidg) Ajy) for
all't > 0.



3 Sojourn times

Let S; be a random variable describing a sojourn timeXdf) in statei. That is, given that a process is in state
1, what is the distribution of the timg; the process first leaves stdte
Let us defing7,(t):
Gi(t)=P(S; > t)

Then by the Markov property it follows that as\ 0,

Gi(t+h) = Gi(t)G;(h) = G;(t)[Pi(h) + o(h)] (14)
= Gi(t)[L — h(Ai + )] + o(h) (15)
= Gi(t) — Gi(t)h()\i + Ni) + O(h) (16)

Subtracting7;(¢) from both sides and dividing by h gives

Gi(t+h) —Gi(t) _ Gi(t) = Gi(t)h(Xi + i) + o(h) — Gi(t) 17)
h h

Gilt + hg —Gil _ G0 + )] + 0(1) (18)

Gi(t) = —Gi(t) (N + i) (29)

We can solve the above by applying the fact th@t'(fz;) = Ay(x), theny(z) = e*4 1. Using the condition
G;(0) = 1, the solution to the equations is

Gi(t) = e t(Aitpi)

Using the facts thaf?;(z) = 1 — P(S; < ) and the cumulative distribution function of the exponential
distribution isP(X < x) = 1 — e~**, we conclude thaf; follows exponential distribution with parameter
(\i + p;) and mean (expectatioty \; + ;.

4 Infinitesimal Generator of the Birth-and-Death process

The birth-and-death process is defined as

Aih + o(R), if j=i+1
ih+ o(h), if j=i-1
pig(hy = § il ¥ olh) e
L= h(Xi + ;) +o(h), if j=i
o(h), otherwise

We can condense this notation by writing

pij(h) = 6ij + hqij + o(h)

where
A, if j=i+l
17 .] =1 His if j:i-l
dij = . qij = o
Oa J # ? 7(>\1 + ,LLl)v If J_I
0, otherwise

Thed;; is called a Kronecker’s deltd;; = lim;|op; ;(¢). Itis given byd;; = 1if i = j andd;; = 0if ¢ # j.
This condition is reasonable in most circumstances: it requires that with probability one the process spends a

1Since%((;)) = A, itimplies that%ln(y(x)) = A. Integrating both sides givéa(y(z)) = Az + c.

Now, y(z) = e+ = efeA? = geA®,




possible (but variable) amount of time in the initial state i before moving to a different state j. This relation can
also be expressed in matrix notation

limy op(t) = |
wherel is the identity matrix (with 1's along the diagonals and 0’s elsewhere). We shall also write
p(0) =1

Theg;; are calledransition rates and[g; ;] define the matrix, which is also called thifinitesimal genera-
tor of the process. This matrix has the properties of the continuous time (Markov) mggrix:—q; = Z#j Qij-

—Xo Ao 0 0
w1 — (A4 p) A1 0
Q=10 2 —(A2 + p2) A2

0 0 M3 —(A3 + p3)

Solvingp;;(h) = d;; + hgij + o(h) with b\, 0 for ¢;; gives:

g = pij(h) — dsj
1] h
We can writed;; = p;;(0) since we go from statéto state; in zero time steps with probability 1, and fronto
Jj (different froms) in zero time steps with probability. Therefore,

LS CUBYD

Herep;j(o) is a derivative op;; (t) with respect t@d evaluated at 0. Therefore,
Q= [Qij] = [pij(o)] =P (0)
Sincep;;(t) are transition probabilities we have:
> pis(t) =1

J
Differentiating the above term by term and setting 0, will give us

Z q; =0

J
Note that )
Qij:pij(o)zo fori?éj

qii = p;;(0) <0
which characterizes the infinitesimal transition ma@ixiescribed above.

5 Differential Equations of Birth and Death processes
Now, let us move to deriving’;(t) by using the knowledge abot;;(%). In the case of pure birth and death

process (or more generally Continuous time Markov process), the transition probabilj{igssatisfy a system
of differential equations known as forward and backward Kolmogorov differential equations.



5.1 Backward Kolmogorov differential equation

Thebackward Kolmogorov differential equatiaescribes the transition probabilities in their dependence on the
initial point i. Basically, it analyzes the time interval (0,t+h) by the "first step analysis”. It decomposes the (0,t+h)
into two intervals (0,h) and (h, t+h), where the first interkas short and positive.

Formally speaking,

Z sz Pk] (20)
= Pii—1(h)Pi—1,;(t) + Py iv1(h) Piy1 j(t) + Ppi(h) P (1) (21)
+ Z Pit.(h) Py (1) (22)

where the last summation is ovies i — 1,4, i+ 1. By using the facts tha®, ;11 (h) = A\;h+o(h), P, i—1(h) =
wih +o(h), andP; ;(h) = 1 — h(\; + u;) + o(h), we rewrite

Pij(t +h) = (uih + o(h)) Pi—1 ;(t) + (Aih + O(h))Pz’—H J(t) (23)
+ (1= h(\;+ ;) +o(h )+ Zsz ) Prj(t) (24)

Let us solve forz;C P (h)Pyj(t):

> Pi(h)Pyj(t) < Z Py (h (25)

k
=1—[Pii(h) + P,i—1(h) + P;i+1(h)] (26)
=1 —[1 = h(\i + i) + o(h) + pih + o(h) + X\ih + o(h)] (27)
=o(h) (28)

Therefore

Pij(t+h) = pihPioy j(t) + AihPig1 (8) + [1 = (X + )] Py ;5 (t) + o(h) (29)
= ph iy j(t) + NilPrsa (1) + Pog(t) = Pos(Oh(Ni + o) + o(h) (30)

Let us transpos®; ;(¢) to the right and divide both sides by h, then

Pij(t+h) = Pij(t)  pihPi1;(t) + NPy () — P j(#)h(Ai + pi) + o(h)
h N h (31)
= piPi—1j(t) + A Pig1,;(t) — P (t) (N + ) + o(1) (32)
(33)
Thus )
Py (t) = piPio1j(t) + NiPiy1,j(t) — Pij(£)(Ni + i)
We can now derive a system of differential equations (knowingthat 0)
P(;j(t) = proPi—15(t) + AoPoy1,5(t) — Poj(t)(Xo + po) (34)
and
Pilj(t) = piPi—1(t) + NP1, (t) — Py () (N + ) (36)

with the initial conditionP;; (0) = 4.



5.1.1 Using Infinitesimal generator

Similarly, we will now derive a backward Kolmogorov equation by using the matrix notation: nedg;;] =
[p;;(0)] = P'(0) and by Chapman-Kolmogorov equation

p’L] s+ t szk pkg
we can differentiate with respect tcso that
pZJ s+ t Zka ka

Settings = 0 gives

i (t) =" pi(0)ps (1) (37)
k

= qipr;(t) (38)
k

This gives ,
P (t) = QP(¢)

which defines &olmogorov backward equatian

5.2 Forward Kolmogorov differential equation

On the other hand, tHerward Kolmogorov differential equatiordescribes the probability distribution of a state
in timet keeping the initial point fixed. It decomposes the time interval (0,t+s) into (0,t) and (t, t+h) by a so-called
“last step analysis”. Similarly to the backward Kolmogorov differential equation:

h) =Y Py(t)Pe;(h) (39)
k=0
=P, j-1(t)Pj-1,;(h) + Pi j11(8) Pjy1,5(h) + P; () P () (40)
+ ) Pi(t)Pej(h) (41)
k

The last summation is fdt # j — 1, 4,7 + 1. Then,
Pij(t+h) =P, j_1(t)\j—1h+ P; j11(t)pjr1h + P j(t)[1 — h(X; + p5)] + o(h) (42)

Similarly to the previous analysis, by translocat®n(t) and dividing both sides by, we get two differential
equations

’

Py(t) = Pij—1()Xj—1 + Prjsr (e — Pig(t)(A; + )]

’

Py(t) = Pia(t)p1 — Pio(t)No
with the same initial conditior®;; (0) = d;;.



5.2.1 Using Infinitesimal generator

This time we differentiate with respettwhich gives
p;j(s +1t) = Zpik(s)p;gj (t)
k

Settingt = 0 gives

pi; () =3 pir(s)pi; (0) (43)
k

= Zpik(s)Qk:j (44)
k

The right-hand side is the sum of the elements in the (i) ro®R(ef multiplied by the the (j) column of).
Thus

P'(s) = P(5)Q

which defines &olmogorov forward equationThe left-hand side is the (ij) element /f(s).

5.3 Exponential method of solving the backward Kolmogorov equation

Let us try to solve the backward Kolmogorov equati@f*(() = QP(t)) to obtain the explicit expression f&x¢).
Let us use the fact that if

p (t) = qp(t)

then
p(t) = €™
We can use this fact and the condition thé&t) = | to solve forP(t):

P(t) = e

where the matrix?? is defined by the power series

6 Application to Poisson process

Let us apply the above equations to general Poisson process with. ratee infinitesimal transition rates for
Poisson process then are

Giitl = A,
Qi = — N
gij =0, Jj# i+ 1}
Observe that such a Poisson process models a pure birth process. A transitiotoffiamn steps resembles
a Bernoulli trial performedh times with the probability of success(this is the probability of increase by one,

which is essential in transition froato j).
By induction it follows that

S _ LGN if o< —isn
Y 0, otherwise



We can re-write

Therefore the formula

— n! ot n!
gives
1 2
pij(t) = b + 1%+ 5%2]- +.. (45)

= ,qu‘) (46)
n=0
s t" n i n—(j—1

Zn'('—z’)/\j (=) (i—1) (47)
n=0 J
>t n! (i

=Y = N =i (=) 48
DB e vy vy (49)
e tn i

= , N (=) 49
DBy e vy 55
a6 ) B (R )

— Jj—i _ (3—19)
2 G <n—<j—z'>> R 0

$i= & (n—(i—1))
- J—Z'Z J—Z) &1

(52)

Observe, however, thatcannot start fron) since we needt leastj — ¢ transitions to acquirg¢ — ¢ changes.
Thereforeyn should go fromj — i instead. If we defing = j — 4, then

(At)U—9) i (=\t)(n=G=2)

Poll) =G r 2 m 59
( i)

(j —]z ] Z (54)

(AH)U- )efms (55)

=TG-

Thus, the transition probabilities coincide with those defined by the Poisson process. In this-casspresent
the number of events (changes) over the interval of time of lehgth

7 Correspondence to Moran process (short)

Moran process can be described as a death-and-birth process. The populatioim $iee general birth-and-
death process corresponds to the number of alléle the populations. It follows that; corresponds to the
probability of increase in the number df; alleles by onep; ;1, when theA, allele is chosen to die and,
allele is chosen to reproduce. Similarly, corresponds t@; ;_;, the probability that4, is chosen to die while
A, is chosen to reproduce.

10



8 Next Lecture

In the next lecture, we will discuss probability of fixation and mean time to absorption in Death-and-Birth pro-
cess, and their applications to Moran process.
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