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1 Continuous Time Markov Chains

In this lecture we will discuss Markov Chains in continuous time. Continuous time Markov Chains are used to
represent population growth, epidemics, queueing models, reliability of mechanical systems, etc.

In Continuous time Markov Process, the time is perturbed by exponentially distributedholding timesin each
state while the succession of states visited still follows a discrete time Markov chain. Given that the process
is in statei, the holding time in that state will be exponentially distributed with some parameterλi, wherei
can represent the current population size, the number of allelesA1 in the population, etc. These holding times
basically control how rapidly the movements (changes of states) of the chain take place. Additionally, given the
knowledge of visited states, the holding times are independent random variables.

For a Continuous Markov Chain, the transition probability function fort > 0 can be described as

Pij(t) = P (X(t + u) = j|X(u) = i)

and is independent ofu ≥ 0. In fact, P (X(t + u) = j|X(u) = i) is a function oft and describes atime-
homogeneoustransition law for this process.

To construct a Markov process in discrete time, it was enough to specify a one step transition matrix together
with the initial distribution function. However, in continuous-parameter case the situation is more complex. The
specification of a single transition matrix[pij(t0)] together with the initial distribution is not adequate. This
is due to the fact that events that depend on the process at time points that are not multiples oft0 might be
excluded. However, if one specifies all transition matricesp(t) in 0 < t ≤ t0 for somet0 > 0, all other transition
probabilities may be constructed from these. These transition probability matrices should be chosen to satisfy
the Chapman-Kolmogorov equation, which states that:

Pij(t + s) =
∑

k

Pik(t)Pkj(s)

Or we can state it in a matrix notation by the following so-calledsemigroup property:

P(t + s) = P(t)P(s)

The (i,j) element of the matrixP(t + s) is constructed byi row of P(t) multiplied by thej column ofP(s).
For some time points0 < t1 < t2 < t3 and arbitrary statesa, b, c, d one has that:

P (X0 = a,Xt1 = b, Xt2 = c,Xt3 = d) = papa,b(t1)pb,c(t2 − t1)pc,d(t3 − t2)

as well as
P (X0 = a,Xt1 = b, Xt3 = d) = papa,b(t1)pc,d(t3 − t1)

The consistency of the Chapman-Kolmogorov Equation would require the following:

pc,d(t3 − t1) =
∑

c

pb,c(t2 − t1)pc,d(t3 − t2)
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The above postulates give motivation forKolmogorov forward and backward equations, which will be dis-
cussed in later sections in detail. Let us start with introduction of a Continious time Markov Chain called
Birth-and-Death process.

2 Birth-and-Death process: An Introduction

The birth-death process is a special case of continuous time Markov process, where the states (for example)
represent a current size of a population and the transitions are limited to birth and death. When a birth occurs,
the process goes from statei to statei + 1. Similarly, when death occurs, the process goes from statei to state
i− 1. It is assumed that the birth and death events are independent of each other.

The birth-and-death process is characterized by the birth rate{λi}i=0,...,∞ and death rate{µi}i=0,...,∞,
which vary according to statei of the system. We can define aPure Birth Processas a birth-death process with
µi = 0 for all i. Similarly, aPure Death Processcorresponds to a birth-death process withλi = 0 for all i.

The general description of the Birth-and-Death process can be as follows: after the process enters statei,
it holds (sojourns) in the given state for some random length of time, exponentially distributed with parameter
(λi + µi). When leavingi, the process enters eitheri + 1 with probability

λi

λi + µi

or i− 1 with probability
µi

λi + µi

If the next state chosen isi + 1, then the process sojourns in this state according to the exponential distribution
with parameterλi+1 + µi+1 and then chooses the next state etc. The number of visits back to the same state is
ignored since in a continuous time process transitions from statei back toi would not be identifiable.

Imagine having two exponentially distributed random variablesB(i) andD(i) with parametersλi andµi

respectively. These random variables describe the holding time in the statei. We can think ofB(i) as the time
until a birth andD(i) is the time until a death (when a population size isi). The population increases by one
if the birth occurs prior to death and decreases by one otherwise. IfB(i), D(i) are independent exponentially
distributed random variables, then their minimum is exponentially distributed with parameter(λi + µi).

A transition fromi to i + 1 is made ifB(i) < D(i), which occurs with probability

P [B(i) < D(i)] =
λi

λi + µi

This motion is analogous to a random walk with the difference that here the transitions occur at random times
(as opposed to fixed time periods in random walks).

It is of necessity to discuss the Poisson process, which is a cornerstone of stochastic modelling, prior to
modelling birth-and-death process as a continuous Markov Chain in detail.

2.1 The law of Rare Events

The common occurrence of Poisson distribution in nature is explained bythe law of rare events. Consider a large
numberN of independent Bernoulli trials where the probabilityp of success on each trial is small and constant
from trial to trial. Let XN,p be the total number of successes inN trials, whereXN,p follows the binomial
distribution, fork = 0, 1, . . . , N .

P (XN,p = k) =
(

N

k

)
pk(1− p)N−k

If we assume thatN −→ ∞ andp −→ 0, so thatNp = µ, then the distribution forXN,p becomes the
Poisson distribution:

P (Xµ = k) =
e−µµk

k!
for k = 0, 1, . . .

In Stochastic modelling, this law is used to suggest circumstances under which the poisson distribution might
be expected to prevail, at least approximately.
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2.2 Poisson Process

A poisson distribution with parameterµ > 0 is given by

pk =
e−µµk

k!

and describes the probability of havingk events over a time period embedded inµ. The random variableX
having a Poisson distribution has the meanE[X] = µ and the varianceV ar[X] = µ.

The Poisson process entails notions of Poisson distribution together with independence. A Poisson process
of intensityλ > 0 (that describes the expected number of events per unit of time) is an integer-valued Stochastic
process{X(t); t ≥ 0} for which:

1. for any arbitrary time pointst0 < t1 < t2 < · · · < tn, andt0 = 0, the number of events happening in
disjoint intervals (process increments)

X(t1)−X(t0), X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1)

are independent random variables. This means that the number of events in one time interval is independent
from the number of events in an interval that is disjoint from the first interval. This is known asindependent
incrementsproperty of the Poisson process.

2. fors ≥ 0 andt > 0, the random variableX(s+t)−X(s) , which describes the number of events occurring
between times ands + t (independent increment), follows the Poisson distribution

P (X(s + t)−X(s) = k) =
(λt)ke−λt

k!

3. We assume that at time zero the number of events that have happened already is zero.

In this case, the parameter of the Poisson distribution isλt, E[X(t)] = λt, andV ar[X(t)] = λt. Let us fix a
short interval of timeh. In Stochastic modelling, it is of a special interest to derive the probability of exactly one
event over the time periodh:

P (X(t + h)−X(t) = 1) =
(λh)e−λh

1!
(1)

= (λh)
∞∑

n=0

(−λh)n

n!
(2)

= (λh)(
(−λh)0

0!
+

(−λh)1

1!
+

(−λh)2

2!
+ . . . ) (3)

= (λh)(1− λh +
1
2
λ2h2 − . . . ) (4)

= λh + o(h) (5)

(6)

whereo(h) denotes a general and unspecified remainder term of smaller order thanh. We can view the
rateλ in Poisson processX(t) as the proportionality constant in the probability of an event occurring during an
arbitrary small intervalh.

In a Poisson Process, the waiting time between consecutive events is called aSojourn time, Si = Wi+1−Wi,
whereWi is the time of occurrence of thei’th event. Basically,Si measures the duration that the Poisson process
sojourns in statei.

The Sojourn timesS0, S1, . . . , Sn−1 are independent random variables, each having the exponential proba-
bility density function

fSk
(s) = λe−λs
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2.3 Definition of Birth-and-Death process

We let{X(t)}t≥0 be a Markov chain and define a very short interval of timeh ↘ 0, during which there exist
observable changes in a chain. We would like to calculate a probability of seeing some particular changes
occurring at timet + h, given that we started at timet. Over such a short interval of timeh ↘ 0, it is nearly
impossible to observe more than one event; in fact, the probability to see more than one event iso(h).

If we are to describe a pure birth process with the birth rateλi, we would name it a Poisson process with
parameterλih so thatλi is the expected number of birth events that occur per unit time. In this case, the
probability of a birth over a short intervalh is λih + o(h).

Similarly, if in stateX(t) = i a death rate isµi, then the probability that an individual dies in a very small
time interval of lengthh is µih + o(h).

In the case of birth-and-death process, we have both birth and death events possible, with ratesλi andµi

accordingly. Since birth and death processes are independent and have poisson distribution with parametersλih
andµih, their sum is a Poisson distribution with parameterh(λi + µi).

Let us analyze changes which might occur in birth-and-death process over the time intervalh. Given that
there are currentlyi people in the population, ash ↘ 0, the probability that there will be an change of size 1 is
basically represented by the probability of one birth and no death (which is a main probabilitic component) or
other combinations (two birth and one death, three birth and two death, etc) chances of which however are very
small,o(h) :

Pi,i+1(h) = P (X(t + h)−X(t) = 1|X(t) = i) (7)

=
(λih)1e−λih

1!
(µih)0e−µih

0!
+ o(h) (8)

= (λih)e−λihe−µih + o(h) (9)

= (λih)e−h(λi+µi) (10)

= (λih)
∞∑

n=0

(−h(λi + µi))n

n!
(11)

= (λih)(1− h(λi + µi) +
1
2
h2(λi + µi)2 − . . . ) + o(h) (12)

= λih + o(h) (13)

In this case,o(h) term represents the fact that there are two birth and one death, 3 birth and 2 death, etc . As
h gets really, the probability thato(h) possibilities occur vanishes.

Similarly, the probability that there will be a decreasing change of size 1 is

Pi,i−1(h) = P (X(t + h)−X(t) = −1|X(t) = i) = µih + o(h)
Basically, the above postulates assume that the probabilities of population increasing or decreasing by 1 are
proportional to the length of the interval. In general, the process is called a birth-and-death process if:

(1) P (X(t + h)−X(t) = 1|X(t) = i) = λih + o(h)

(2) P (X(t + h)−X(t) = −1|X(t) = i) = µih + o(h)

(3) P (|X(t + h)−X(t)| > 1|X(t) = i) = o(h)

(4) µ0 = 0, λ0 > 0; µi, λi > 0, i = 1, 2, 3, . . .

These postulates support the notion that the events are rare and almost exclude the possibility of simultaneous
occurrence of two or more events. Basically, only one event can occur in a very small interval of timeh. And
even though the probability for more than one event is non-zero, it is negligible.

The above implies that

(5) P (X(t + h)−X(t) = 0|X(t) = i) = 1− (µi + λi)h + o(h)

We will postulatePij(h) for h small and then derive a system of differential equations satisfied byPij(t) for
all t > 0.
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3 Sojourn times

Let Si be a random variable describing a sojourn time ofX(t) in statei. That is, given that a process is in state
i, what is the distribution of the timeSi the process first leaves statei.

Let us defineGi(t):
Gi(t) = P (Si ≥ t)

Then by the Markov property it follows that ash ↘ 0,

Gi(t + h) = Gi(t)Gi(h) = Gi(t)[Pii(h) + o(h)] (14)

= Gi(t)[1− h(λi + µi)] + o(h) (15)

= Gi(t)−Gi(t)h(λi + µi) + o(h) (16)

SubtractingGi(t) from both sides and dividing by h gives

Gi(t + h)−Gi(t)
h

=
Gi(t)−Gi(t)h(λi + µi) + o(h)−Gi(t)

h
(17)

Gi(t + h)−Gi(t)
h

= −Gi(t)(λi + µi)] + o(1) (18)

G
′

i(t) = −Gi(t)(λi + µi) (19)

We can solve the above by applying the fact that ify
′
(x) = Ay(x), theny(x) = exA 1. Using the condition

Gi(0) = 1, the solution to the equations is

Gi(t) = e−t(λi+µi)

Using the facts thatGi(x) = 1 − P (Si ≤ x) and the cumulative distribution function of the exponential
distribution isP (X ≤ x) = 1 − e−λx, we conclude thatSi follows exponential distribution with parameter
(λi + µi) and mean (expectation)1/λi + µi.

4 Infinitesimal Generator of the Birth-and-Death process

The birth-and-death process is defined as

pij(h) =


λih + o(h), if j=i+1

µih + o(h), if j=i-1

1− h(λi + µi) + o(h), if j=i

o(h), otherwise

We can condense this notation by writing

pij(h) = δij + hqij + o(h)

where

δij =

{
1, j = i

0, j 6= i
qij =


λi, if j=i+1

µi, if j=i-1

−(λi + µi), if j=i

0, otherwise

Theδij is called a Kronecker’s delta,δij = limt↓0pi,j(t). It is given byδij = 1 if i = j andδij = 0 if i 6= j.
This condition is reasonable in most circumstances: it requires that with probability one the process spends a

1Sincey
′
(x)

y(x)
= A, it implies that d

dt
ln(y(x)) = A. Integrating both sides givesln(y(x)) = Ax + c.

Now, y(x) = eAx+c = eceAx = aeAx.
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possible (but variable) amount of time in the initial state i before moving to a different state j. This relation can
also be expressed in matrix notation

limt↓0p(t) = I

whereI is the identity matrix (with 1’s along the diagonals and 0’s elsewhere). We shall also write

p(0) = I

Theqij are calledtransition rates, and[qij ] define the matrixQ, which is also called theinfinitesimal genera-
tor of the process. This matrix has the properties of the continuous time (Markov) matrix:qii = −qi =

∑
i 6=j qij .

Q =

∥∥∥∥∥∥∥∥∥∥∥

−λ0 λ0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 . . .
0 µ2 −(λ2 + µ2) λ2 . . .
0 0 µ3 −(λ3 + µ3) . . .
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥
Solvingpij(h) = δij + hqij + o(h) with h ↘ 0 for qij gives:

qij =
pij(h)− δij

h

We can writeδij = pij(0) since we go from statei to statei in zero time steps with probability 1, and fromi to
j (different fromi) in zero time steps with probability0. Therefore,

qij =
pij(h)− pij(0)

h
= p

′

ij(0)

Herep
′

ij(0) is a derivative ofpij(t) with respect tot evaluated at 0. Therefore,

Q = [qij ] = [p
′

ij(0)] = P
′
(0)

Sincepij(t) are transition probabilities we have:∑
j

pij(t) = 1

Differentiating the above term by term and settingt = 0, will give us∑
j

qij = 0

Note that
qij = p

′

ij(0) ≥ 0 for i 6= j

qii = p
′

ii(0) ≤ 0

which characterizes the infinitesimal transition matrixQ described above.

5 Differential Equations of Birth and Death processes

Now, let us move to derivingPij(t) by using the knowledge aboutPij(h). In the case of pure birth and death
process (or more generally Continuous time Markov process), the transition probabilitiesPij(t) satisfy a system
of differential equations known as forward and backward Kolmogorov differential equations.
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5.1 Backward Kolmogorov differential equation

Thebackward Kolmogorov differential equationdescribes the transition probabilities in their dependence on the
initial point i. Basically, it analyzes the time interval (0,t+h) by the ”first step analysis”. It decomposes the (0,t+h)
into two intervals (0,h) and (h, t+h), where the first intervalh is short and positive.

Formally speaking,

Pij(t + h) =
∞∑

k=0

Pik(h)Pkj(t) (20)

= Pi,i−1(h)Pi−1,j(t) + Pi,i+1(h)Pi+1,j(t) + Pi,i(h)Pi,j(t) (21)

+

′∑
k

Pik(h)Pkj(t) (22)

where the last summation is overk 6= i−1, i, i+1. By using the facts thatPi,i+1(h) = λih+o(h), Pi,i−1(h) =
µih + o(h), andPi,i(h) = 1− h(λi + µi) + o(h), we rewrite

Pij(t + h) = (µih + o(h))Pi−1,j(t) + (λih + o(h))Pi+1,j(t) (23)

+ (1− h(λi + µi) + o(h))Pi,j(t) +

′∑
k

Pik(h)Pkj(t) (24)

Let us solve for
∑′

k Pik(h)Pkj(t):

′∑
k

Pik(h)Pkj(t) ≤
′∑
k

Pik(h) (25)

= 1− [Pii(h) + Pi,i−1(h) + Pi,i+1(h)] (26)

= 1− [1− h(λi + µi) + o(h) + µih + o(h) + λih + o(h)] (27)

= o(h) (28)

Therefore

Pij(t + h) = µihPi−1,j(t) + λihPi+1,j(t) + [1− h(λi + µi)]Pi,j(t) + o(h) (29)

= µihPi−1,j(t) + λihPi+1,j(t) + Pi,j(t)− Pi,j(t)h(λi + µi) + o(h) (30)

Let us transposePi,j(t) to the right and divide both sides by h, then

Pij(t + h)− Pi,j(t)
h

=
µihPi−1,j(t) + λihPi+1,j(t)− Pi,j(t)h(λi + µi) + o(h)

h
(31)

= µiPi−1,j(t) + λiPi+1,j(t)− Pi,j(t)(λi + µi) + o(1) (32)

(33)

Thus
P

′

ij(t) = µiPi−1,j(t) + λiPi+1,j(t)− Pi,j(t)(λi + µi)
We can now derive a system of differential equations (knowing thatµ0 = 0)

P
′

0j(t) = µ0Pi−1,j(t) + λ0P0+1,j(t)− P0,j(t)(λ0 + µ0) (34)

= λ0P1,j(t)− λ0P0,j(t) (35)

and

P
′

ij(t) = µiPi−1,j(t) + λiPi+1,j(t)− Pi,j(t)(λi + µi) (36)

with the initial conditionPij(0) = δij .
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5.1.1 Using Infinitesimal generator

Similarly, we will now derive a backward Kolmogorov equation by using the matrix notation: sinceQ = [qij ] =
[p

′

ij(0)] = P
′
(0) and by Chapman-Kolmogorov equation

pij(s + t) =
∑

k

pik(s)pkj(t)

we can differentiate with respect tos so that

p
′

ij(s + t) =
∑

k

p
′

ik(s)pkj(t)

Settings = 0 gives

p
′

ij(t) =
∑

k

p
′

ik(0)pkj(t) (37)

=
∑

k

qikpkj(t) (38)

This gives
P

′
(t) = QP(t)

which defines aKolmogorov backward equation.

5.2 Forward Kolmogorov differential equation

On the other hand, theforward Kolmogorov differential equationdescribes the probability distribution of a state
in timet keeping the initial point fixed. It decomposes the time interval (0,t+s) into (0,t) and (t, t+h) by a so-called
“last step analysis”. Similarly to the backward Kolmogorov differential equation:

Pij(t + h) =
∞∑

k=0

Pik(t)Pkj(h) (39)

= Pi,j−1(t)Pj−1,j(h) + Pi,j+1(t)Pj+1,j(h) + Pi,j(t)Pj,j(h) (40)

+

′∑
k

Pik(t)Pkj(h) (41)

The last summation is fork 6= j − 1, j, j + 1. Then,

Pij(t + h) = Pi,j−1(t)λj−1h + Pi,j+1(t)µj+1h + Pi,j(t)[1− h(λj + µj)] + o(h) (42)

Similarly to the previous analysis, by translocationPij(t) and dividing both sides byh, we get two differential
equations

P
′

ij(t) = Pi,j−1(t)λj−1 + Pi,j+1(t)µj+1 − Pi,j(t)(λj + µj)]

P
′

i0(t) = Pi,1(t)µ1 − Pi,0(t)λ0

with the same initial conditionPij(0) = δij .
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5.2.1 Using Infinitesimal generator

This time we differentiate with respectt, which gives

p
′

ij(s + t) =
∑

k

pik(s)p
′

kj(t)

Settingt = 0 gives

p
′

ij(s) =
∑

k

pik(s)p
′

kj(0) (43)

=
∑

k

pik(s)qkj (44)

The right-hand side is the sum of the elements in the (i) row ofP(s) multiplied by the the (j) column ofQ.
Thus

P
′
(s) = P(s)Q

which defines aKolmogorov forward equation. The left-hand side is the (ij) element ofP
′
(s).

5.3 Exponential method of solving the backward Kolmogorov equation

Let us try to solve the backward Kolmogorov equation (P
′
(t) = QP(t)) to obtain the explicit expression forP(t).

Let us use the fact that if
p

′
(t) = qp(t)

then
p(t) = etq

We can use this fact and the condition thatp(0) = I to solve forP(t):

P(t) = eQt

where the matrixeQt is defined by the power series

eQt =
∞∑

n=0

Qntn

n!
= I +

∞∑
n=1

Qntn

n!

6 Application to Poisson process

Let us apply the above equations to general Poisson process with rateλ. The infinitesimal transition rates for
Poisson process then are 

qi,i+1 = λ,

qii = −λi

qij = 0, j 6= {i, i + 1}

Observe that such a Poisson process models a pure birth process. A transition fromi to j in n steps resembles
a Bernoulli trial performedn times with the probability of successλ (this is the probability of increase by one,
which is essential in transition fromi to j).

By induction it follows that

q
(n)
ij =

{(
n

j−i

)
λj−i(−λ)n−(j−i)

, if 0 ≤ j − i ≤ n

0, otherwise
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We can re-write (
n

j − i

)
λj−i(−λ)n−(j−i) =

(
n

j − i

)
λn(−1)n−(j−i)

Therefore the formula

P(t) = eQt =
∞∑

n=0

Qntn

n!
= I +

∞∑
n=1

Qntn

n!

gives

pij(t) = δij +
t1

1!
qij +

t2

2!
q2
ij + . . . (45)

=
∞∑

n=0

tn

n!
q
(n)
ij (46)

=
∞∑

n=0

tn

n!

(
n

j − i

)
λj−i(−λ)n−(j−i) (47)

=
∞∑

n=0

tn

n!
n!

(n− (j − i))!(j − i)!
λj−i(−λ)n−(j−i) (48)

=
∞∑

n=0

tn

(n− (j − i))!(j − i)!
λj−i(−λ)n−(j−i) (49)

=
∞∑

n=0

t(j−i)

(j − i)!
λj−i t(n−(j−i))

(n− (j − i))!
(−λ)n−(j−i) (50)

=
(λt)(j−i)

(j − i)!

∞∑
n=0

(−λt)(n−(j−i))

(n− (j − i))!
(51)

(52)

Observe, however, thatn cannot start from0 since we needat leastj− i transitions to acquirej− i changes.
Therefore,n should go fromj − i instead. If we definek = j − i, then

pij(t) =
(λt)(j−i)

(j − i)!

∞∑
n=j−i

(−λt)(n−(j−i))

(n− (j − i))!
(53)

=
(λt)(j−i)

(j − i)!

∞∑
k=0

(−λt)k

k!
(54)

=
(λt)(j−i)

(j − i)!
e−λt (55)

Thus, the transition probabilities coincide with those defined by the Poisson process. In this casej − i represent
the number of events (changes) over the interval of time of lengtht.

7 Correspondence to Moran process (short)

Moran process can be described as a death-and-birth process. The population sizei in the general birth-and-
death process corresponds to the number of allelesA1 in the populations. It follows thatλi corresponds to the
probability of increase in the number ofA1 alleles by onepi,i+1, when theA2 allele is chosen to die andA1

allele is chosen to reproduce. Similarly,µi corresponds topi,i−1, the probability thatA1 is chosen to die while
A2 is chosen to reproduce.
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8 Next Lecture

In the next lecture, we will discuss probability of fixation and mean time to absorption in Death-and-Birth pro-
cess, and their applications to Moran process.
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