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1 Higher Order Transition Probabilities

Very often we are interested in a probability of going from statei to statej in n steps, which we denote asp
(n)
ij .

For example, the probability of going from the statei to statej in two steps is:

p
(2)
ij =

∑
k

pikpkj

wherek is the set of all possible states. In other words it consists of probabilities of going from statei to any
other possible state (in one step) and then going from that step toj. Interestingly, the probabilityp(2)

ij corresponds
to (i, j)’th entry in the matrix

P 2 = P × P

Similarly, going fromi to j in n steps is defined as

p
(n)
ij =

∑
k

pikp
(n−1)
kj =

∑
k

p
(n−1)
ik pkj

and correspond to the(i, j)’th entry inPn matrix (therefore we can compute transition probabilities by taking
matrix powers).

We define then-step transition probabilities for the Markov Chain by

P [Xn = j|X0 = i]

Since we know that

P [Xn+1 = k1, . . . Xn+m = km|Xn = i] = P [X1 = k1, . . . , Xm = km|X0 = i]

then
P [Xn = j|X0 = i] = p[Xn+m = j|Xm = i]

In other words, the probability that a path started ati and ended atj does not depend on the time at which it
is initiated. Therefore

p
(n)
ij = P [Xn = j|X0 = i]

We can also write
p
(n+m)
ij =

∑
k

p
(n)
ik p

(m)
kj

which is also calledChapman-Kolmogorovequation.
It follows that we can compute auniconditionalprobability (ofXn taking a value ofj)as

P [Xn = j] = p
(n)
j =

∑
i

pip
(n)
ij

Frequently we are interested in the time the system goes from some initial state to some terminal critical
state, called absorbing state.
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2 Absorption Probabilities

The statei is called absorbing ifpii = 1. In other words, once the system hits statei, it stays there forever not
being able to escape.

The most interesting absorbing states which arise in population genetics are ati = 0 and ati = M . Let us
assume the population of 2N haploids , each having either alleleA1 or alleleA2. In this caseM = 2N . And let
X be a random variable which describes the frequency of alleleA1 in a given population. In population genetics,
it is of interest to find out how fast the allele will go to either absorption state (i = 0 or i = 2N ) given that the
population started withi allelesA1.

Many functionals (including absorption probabilities) on Markov Chain are evaluated by a technique called
first step analysis. This method proceeds by the analyzing the possibilities that can arise at the end of the first
transition.

Let us now fixk as absorbing state. The probability of absorption in this state depends on the initial state
X0 = i. Let us defineUik as the probability of eventually reaching statek given that we started in statei. First
possibility would be to go from stateX0 = i to X1 = k immediately, which is described bypik. However, if the
statek is not entered atX1, then we must go to some other statej 6= k. Once we enter statej, the probability of
ultimate absorption ink is Ujk by definition. Weighting all the possibilities gives

Uik = pik +
M∑

j=0&j 6=k

pijUjk =
M∑

j=0

pijUjk (1.1)

sinceUkk = 1.
If we write ui as the probability of absorption (say, in 2N), then we write

ui =
M∑

j=0

pijuj (1.2)

3 Mean time until absorption

It is more difficult to assess the properties of the (random) time until absorption. However, it is common to
evaluate themean timeuntil X reaches 0 or2N starting fromi (it is called mean absorption time).

We wish to make a calculation of a mean time until absorption for a general starting pointi. We now introduce
a concept, which is central in calculating the mean absorption time: Let us observe that starting fromi the system
will visit statej some number of times before absorption. This fact it true for allj (except 0 and 2N). Therefore,
if we know the number of times the system visits statej (for all j) before absorption, then we can obtain an
average time until absorption by summing up over average times the system is in a specific state, for each state.

Let us now formally define mean number of times thatX takes the valuej before absorbtion in0 or 2N
(given that it started ini) as{t̄ij}. Then the mean time to absorption given that we started at statei is the sum:

t̄i =
M−1∑
j=1

t̄ij

We will proceed by a first step analysis: if the system starts ati and then proceeds tok at its next step, then
the mean number of visits to statej prior to absorption starting from statek now is{t̄kj} by definition. However,
observe that in this case, we miss the case wheni = j. Therefore, there is a need to define an additional variable
δij = 1 if i = j, and 0 otherwise. As a result, weighting by the probability of going to a statek at the first step,
we obtain

t̄ij =
M∑

k=0

pik t̄kj + δij , t̄0j = t̄Mj = 0

By summing up the meant times the system is in statej for all j, we obtain
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M−1∑
j=1

t̄ij =
M−1∑
j=1

M∑
k=0

pik t̄kj +
M−1∑
j=1

δij

By definition
∑M−1

j=1 t̄ij = t̄i so that

t̄i =
M∑

k=0

pik t̄k + 1, t̄0 = t̄M = 0

Observe that since
∑M−1

j=1 δij will equal to 1 only once (wheni = j), then
∑M−1

j=1 δij = 1 in the above
equation.

Now, we will discuss two most important models in population genetics, which describe the evolution of
allele frequencies: Wright-Fisher model and Moran model.

4 Wright-Fisher Model

Let us assume a simple haploid model of the population of 2N genes (or alternatively – N diploid organisms)
of random reproduction, with each haploid possessing either alleleA1 or alleleA2. Let us, for start, disregard
mutation pressures and selective forces. At every time-step, each gene (allele) gives birth to some number of
offsprings (which are the exact copies of himself) and dies immediately after that, thus living only one generation.
This process describes how the genes get transmitted from one generation to the next. However, the processed of
birth and death will have to remain unseen behind the curtain for a moment. Instead, we will only observe how
the frequency of alleles will change from generation to generation.1

We will fix our attention at frequency of alleleA1 in the population of2N haploids. Let us think of this
process of going from one generation to the other as a Markov Chain, where the stateX of the chain corresponds
to the number of haploids (genes) of typeA1. Clearly, in any generationX takes one of the values0, 1, . . . , 2N ,
which constitutes a state space. We will denote the value taken byX in generationt asXt.

The model assumes that genes for the generationt + 1 are derived by sampling with replacement from the
genes of generationt. Thus, the make up of the next generation is determined by2N independent Bernoulli trials
so thatXt is a binomial random variable. Let the initial generation consist ofi genes of typeA1 and2N − i
genes of typeA2. Then we define a probability of success (resulting in alleleA1) pi and a probability of failure
qi (resulting in alleleA2) for each Bernoulli trial as

pi =
i

2N
qi = 1− i

2N

We generate a Markov Chain{Xn}, whereXn is the number ofA1 genes in the n’th generation, among a
constant population size of 2N individuals. Basically,Xt+1 is a binomial random variable with index2N and
parameter (probability of success)Xt/2N . Observe that the transition probabilities fromXt = i to Xt+1 = j
for this Markov Chain are computed according to the binomial distribution as

P (Xt+1 = j|Xt = i) = pij =
(

2N

j

)
pj

i q
2N−j
i =

(
2N

j

)
(i/2N)j{1− (i/2N)}2N−j

Observe now that states 0 and 2N are completely absorbing. In other words, no matter what the value ofX0

is, eventuallyXt will take the value 0 or2N . And once this happens,X will stay in that state forever. In the case
of Xt = 0, the population will consist only ofA2 genes, while in the case ofXt = 2N the population will be
purelyA1-gene population.

1In this model, the allele frequency of the next generation is manipulated mainly by a genetic drift (a Genetic drift can be defined as a
force that reduces heterozygosity by the random loss of alleles).
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4.1 Absorption probability in Wright-Fisher model

Let us discuss absorption probabilities in Wright-Fisher model. In fact, the population can attain fixation and be
composed of onlyA1-genes (Xt = 2N ) or A2-genes (Xt = 0). It can be shown that with probability one, either
of the absorbing states (either 0 or 2N) is eventually entered (and this is true for both Wright-Fisher and Moran
models). And thereforelimt→∞P (Xt = j) = 0.

We will discuss two cases of absorption: at 0 and at 2N.

4.1.1 Absorption at zero:

We write the probability of extinction (absorption at 0) of a gene given that it started withi copies aslimn→∞P (Xn =
0|X0 = i)

Let us find the probability of absorbing in state 0 by usingE(Xn). We expressE(Xn) by using the expecta-
tion of a conditional expectation

E(Xn) = E[E(Xn|Xn−1)] = E(Xn−1) = E(Xn−2) = · · · = E(X0) = i

This property is called theconstancy of expectation(and is also true for Moran model). Further we can write
E(Xn) as

E(Xn) = 0× ui,0 + 2N × (1− ui,0)

Now, sincelimn→∞E(Xn) = i,

i = 0× ui,0 + 2N × (1− ui,0)

and therefore

ui,0 =
2N − i

2N

Observe that we ignoreP (Xt = j) since they are equal to zero as n goes to infinity.

4.1.2 Absorption at 2N:

We want to calculate probability thatA1 eventually becomes fixed in the population (absorption at 2N)and follow
a similar argument:

i = 0× (1− ui,2N ) + 2N × ui,2N

so that

ui,2N =
i

2N

A different argument (which is more relevant to a genetical point of view) is that eventually every gene in the
population is descended from the unique gene in generation zero. The probability that such a gene (allele) isA1

is simply the initial fraction ofA1 alleles, namelyi/2N , and this also must be a fixation probability of alleleA1.

4.1.3 Absorption starting with oneA1 allele

Suppose that in a population of pureA2 alleles a single new mutantA1 allele (gene) arises. There are no more
new mutations and therefore we can assume that we start with a population with oneA1 allele and2N − 1 A2

alleles. According to the previous result, the probability of fixation for this allele is

u1,2N =
i

2N
=

1
2N

. On the other hand, the probability that the allele is lost is1− 1/2N .
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4.2 Mean time until absorption in Wright-Fisher model

The calculation of the mean time until absorption for the Wright-Fisher model is very computationally expensive.
Therefore, it is useful to approximate this quantity, which will be described in the next section. However, it is
relatively simple to derive the mean time until absorption starting with one allele of typeA1 (before the mutant
is lost or before the mutant is fixed).

For this calculation we use the same analysis as before. We will use the expected number of visits to a
statej along the path to absorption, starting from stateX0 = 1. We denote the mean number of generations to
absorption in 0 or 2N , given that we started with one alleleA1, ast̄1. We need to sum up the expected number
of such visits for allj, avoiding states 0 and2N :

t̄1 =
2N−1∑
j=1

t̄1,j

wheret̄1,j is the mean number of times when the number ofA1 alleles takes the value ofj (system is in state
j) before reaching either 0 or2N . Both Fisher and Wright found that

t̄1,j ≈
2
j

starting ati = 1. Since
∑N

i=1
1
i = log(N) + γ whereγ is a Euler’s constant (0.5772 ...), we derive

t̄1 =
2N−1∑
j=1

t̄1,j =
2N−1∑
j=1

2
j

= 2
2N−1∑
j=1

1
j

= 2(log(2N − 1) + γ)

4.3 Approximating Mean Time until Absorption

Even though in principle we can find solutions of the mean time to absorption for a generali, in practice these
solutions seem extremely difficult, and simple expressions for these mean times have not yet been found. Let us
now present a simple approximation fort̄i. We again apply the first step analysis , where we start from statei and
in the first step attend some intermediate stepk. We defineM = 2N , i/M = x, k/M = x + δx, andt̄i = t̄(x).

Then we can rewrite the equation

t̄i =
M∑

k=0

pik t̄k + 1

as

t̄(x) =
∑

P{x → x + δx}t̄(x + δx) + 1 (1)

= E{t̄(x + δx)}+ 1 (2)

(3)

Now assuming that̄t(x) is a twice differentiable function of a continuous variablex, we can use Taylor series
to approximate the above quantity. The Taylor series states that

f(y) =
∞∑

n=0

f (n)(a)
n!

(y − a)n (4)

=
f(a)
0!

(y − a)0 +
{f(a)}′

1!
(y − a)1 +

{f(a)}′′

2!
(y − a)2 + . . . (5)

= f(a) + {f(a)}
′
(y − a) +

1
2
{f(a)}

′′
(y − a)2 + . . . , (6)
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We re-writet̄(x) by applying Taylor’s series (showing three leading terms):

t̄(x) = E{t̄(x + δx)}+ 1 (7)

≈ t̄(x) + E(δx){t̄(x)}
′
+

1
2
E(δx)2{t̄(x)}

′′
+ 1, (8)

(9)

All expectations are conditional onx. Using the fact that the expectation of the binomial random variable is
E(Y ) = np, we can rewrite then

E(x + δx) = E(j/M) =
E(j)
M

=
M × i

M

M
=

i

M

, wherep = i
M . We can as well use the fact established before thatE(Xn|Xn−1 = i) = i. At the same time

x = i
M andE(x) = x; thereforeE(δx) = 0. As a result the termE(δx){t̄(x)}′

= 0.
Let us calculateE(δx)2. In our case, theE(δx)2 = V ar(δx) sinceV ar(δx) = E(δx)2 − [E(δx)]2 and

[E(δx)]2 = 0, as shown from the previous result.
The variance of the binomial random variable

V ar(x + δx) = V ar(j/2N) =
V ar(j)
4N2

=
2N i

2N (1− i
2N )

4N2
=

x(1− x)
2N

.
The above gives

t̄(x) ≈ t̄(x) +
1
2

x(1− x)
2N

{t̄(x)}
′′

+ 1

−1 ≈ 1
2

x(1− x)
2N

{t̄(x)}
′′

−4N ≈ x(1− x){t̄(x)}
′′

The solution to this equation, subject to the boundary conditionst̄(0) = t̄(1) = 0 is

t̄(x) =
∫ ∫

−4N
1

x(1− x)
(10)

= −4N

∫ ∫
1

x(1− x)
(11)

= −4N

∫ ∫ (
1
x

+
1

1− x

)
(12)

= −4N

∫ (∫
1
x

+
∫

1
1− x

)
(13)

= −4N

∫
(ln(x) + ln(1− x)) (14)

= −4N

{∫
ln(x) +

∫
ln(1− x)

}
(15)

= −4N {(xln(x)− x) + ((1− x)ln(1− x)− (1− x))} (16)

≈ −4N{xlogx + (1− x)log(1− x)} (17)

wherex = i
2N , the initial frequency of alleleA1. This is also is calleddiffusion approximation to the mean

absorption time.
When we initially start with oneA1 allelex = 1

2N , then the mean time to absorption is
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t̄

(
1

2N

)
= −4N{ 1

2N
log

(
1

2N

)
+ (1− 1

2N
)log

(
1− 1

2N

)
} (18)

≈ 2 + 2log2N (19)

(20)

At the same time, whenx = 1
2 , then

t̄(
1
2
) ≈ 2.8N

Observe that for equal initial frequencies (x = 1
2 ), the mean time is relatively long.

5 Moran model

In each generation of the Moran model, one gene is chosen at random to give 2 offsprings and one gene is chosen
to die (all other genes survive to the next generation). As opposed to Wright-Fisher model, Moran model has
overlapping generations. This model is also known as a birth-and-death model. We still consider a constant
population size of2N haploids, each of which has either alleleA1 or alleleA2. Let us (for now) ignore mutation
or selection pressures.

Again, we defineX to be a random variable, which represents the number of alleles of typeA1 in the
population. It is of interest to calculate transition probabilities for the implied Markov chain. Suppose that in
populationt (which corresponds to stateXt in underlying Markov chain) the number of allelesA1 is i. Then in
populationt + 1, the number of allelesA1 can be either (j = i− 1), (j = i + 1), or j = i.

The system can go fromi to i− 1 if A2 individual is chosen to give 2 offsprings andA1 individual is chosen
to die:

pi,i−1 =
(

2N − i

2N

) (
i

2N

)
To go fromi to i + 1, the opposite should be true:A2 is chosen to die andA1 is chosen to reproduce:

pi,i+1 =
(

2N − i

2N

) (
i

2N

)
and for going fromi to i, it takes eitherA1 to reproduce and die orA2 to reproduce and die:

pi,i =
(

2N − i

2N
× 2N − i

2N

)
+

(
i

2N
× i

2N

)
=

i2 + (2N − i)2

(2N)2

Observe thatpij = 0 for all other values ofj since it is impossible to make other transitions.

5.1 Properties of a Continuant matrix in Moran model.

In the case of Moran model, the transition probability matrix is Continuant, which means thatpij = 0 iff
|i − j| > 1. Now we can apply the standard Continuant matrix theory to our model so that the probability of
fixation and mean time to absorption can be found explicitly.

In particular, we can use a “birth-and-death” process concepts to calculate the desired quantities. The birth-
death process is a special case of Continuous-time Markov process where the states represent the current size of
a population and where the transitions are limited to births and deaths. When a birth occurs, the statei goes to
statei + 1, defined by the birth ratepi,i+1 = λi. When the death occurs, the process goes from statei to state
i− 1, defined by the death ratepi,i−1 = µi.

For now, we will just use facts from the theory of birth-death processes, without proving them; however, we
would like to return to formal definitions and proofs in one of the future lectures.

We define
ρi =

µ1µ2 . . . µi

λ1λ2 . . . λi
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andρ0 = 1. If 0 andM = 2N are both absorbing states, then the probability of absorption in either of them
becomes

ui =
i−1∑
k=0

ρk/
M−1∑
k=0

ρk

Proceeding further with the above argument, we can calculate the mean number of times the system is in state
j given that it started in statei as

t̄ij =
(1− ui)

∑j−1
k=0 ρk

ρj−1µj
, (j = 1, . . . , i)

t̄ij =
ui

∑M−1
k=j ρk

ρjλj
, (j = i + 1, . . . ,M − 1)

from this we can derivēti

t̄i =
M−1∑
j=1

t̄ij =
i∑

j=1

(1− ui)
∑j−1

k=0 ρk

ρj−1µj
+

M−1∑
j=i+1

ui

∑M−1
k=j ρk

ρjλj

5.2 Probability of fixation in Moran model

Let us now observe that in the Moran model

λi = µi = i(2N − i)/(2N)2

so that
ρi =

µ1

λ1

µ2

λ2
. . .

µi

λi
= 1

for i = 0, 1, . . . , 2N . It can be shown that, similarly to Wright-Fisher model,E(Xt) = i.
Following all of the above, the probability of fixation (given that we started withi copied ofA1) is

ui =
i

2N

given thatM = 2N .

5.3 Expected absorption time

Using the fact thatρi = 1, we can derive the following
for j = 1, . . . , i

t̄ij =
(1− ui)

∑j−1
k=0 ρk

ρj−1µj
(21)

=
(1− i

2N )
∑j−1

k=0 1

1 2N−j
2N

j
2N

(22)

=
( 2N−i

2N )j × 2N × 2N

(2N − j)j
(23)

=
(2N − i)× 2N

2N − j
(24)

and forj = i + 1, . . . ,M − 1
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t̄ij =
ui

∑M−1
k=j ρk

ρjλj
(25)

=
i

2N

∑M−1
k=j 1

1 2N−j
2N

j
2N

(26)

=
i

2N (2N − j)× 2N × 2N

(2N − j)j
(27)

=
i× 2N

j
(28)

(29)

Now we can calculate the expected time to absorption as

t̄i =
M−1∑
j=1

t̄ij (30)

=
i∑

j=1

(1− ui)
∑j−1

k=0 ρk

ρj−1µj
+

M−1∑
j=i+1

ui

∑M−1
k=j ρk

ρjλj
(31)

=
i∑

j=1

(2N − i)× 2N

2N − j
+

M−1∑
j=i+1

i× 2N

j
(32)

= (2N − i)2N
i∑

j=1

1
2N − j

+ 2Ni
M−1∑
j=i+1

1
j

(33)

It is possible to condition on the fact that, sayA1 eventually fixes. In this case, it is not difficult to derive
simpler expressions for mean absorption times. Such derivations will be discussed in the future lectures.
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