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1 Higher Order Transition Probabilities

Very often we are interested in a probability of going from stdtestate; in n steps, which we denote p{;;?).
For example, the probability of going from the state statej in two steps is:

p” Z PikPkj

wherek is the set of all possible states. In other words it consists of probabilities of going from stesay

other possible state (in one step) and then going from that sgepriterestingly, the probabilityl(.?) corresponds
to (4, j)'th entry in the matrix

P?=PxP
Similarly, going from: to j in n steps is defined as
py = ZpL i =3 kg

k

and correspond to the, j)'th entry in P™ matrix (therefore we can compute transition probabilities by taking
matrix powers).
We define then-step transition probabilities for the Markov Chain by

P[Xn = j|X0 = z]
Since we know that
P[Xpi1 =kt . . Xpsm = km|Xn =i] = P[X1 = k1, ..., Xpn = k| X0 = i

then
P[Xn :j|X0 = Z} :p[Xn+m = ]‘Xm = Z}
In other words, the probability that a path started amd ended at does not depend on the time at which it

is initiated. Therefore
pE;L) PXy, = j|Xo = 1]

(n+M) szk p(m)

which is also calledChapman-Kolmogorogquation.
It follows that we can computeaniconditionalprobability (of X,, taking a value ofj)as

PIX, =j] =p{" = szp“’

We can also write

Frequently we are interested in the time the system goes from some initial state to some terminal critical
state, called absorbing state.



2 Absorption Probabilities

The state is called absorbing ip;; = 1. In other words, once the system hits stati stays there forever not
being able to escape.

The most interesting absorbing states which arise in population geneticsiatretaind at; = M. Let us
assume the population of 2N haploids , each having either allglar allele A,. In this caseM = 2/N. And let
X be arandom variable which describes the frequency of allel@ a given population. In population genetics,
it is of interest to find out how fast the allele will go to either absorption state ( or i = 2N) given that the
population started withallelesA; .

Many functionals (including absorption probabilities) on Markov Chain are evaluated by a technique called
first step analysis This method proceeds by the analyzing the possibilities that can arise at the end of the first
transition.

Let us now fixk as absorbing state. The probability of absorption in this state depends on the initial state
Xo = i. Let us defindJ;;; as the probability of eventually reaching statgiven that we started in state First
possibility would be to go from stat&, = i to X; = k immediately, which is described hy,.. However, if the
statek is not entered ak;, then we must go to some other statg k. Once we enter statg the probability of
ultimate absorption it is U, by definition. Weighting all the possibilities gives

M M
Uk=pix+ Y, piiUir=_ pijUjk 1.1
J=0&;j#k =0

sinceUy, = 1.
If we write u; as the probability of absorption (say, in 2N), then we write

M
U; = Zp,;juj (12)
7=0

3 Mean time until absorption

It is more difficult to assess the properties of the (random) time until absorption. However, it is common to
evaluate themean timeuntil X reaches 0 02N starting from (it is called mean absorption time).
We wish to make a calculation of a mean time until absorption for a general starting.pd@now introduce
a concept, which is central in calculating the mean absorption time: Let us observe that startinthgaystem
will visit state j some number of times before absorption. This fact it true fof @kcept 0 and 2N). Therefore,
if we know the number of times the system visits stat@or all j) before absorption, then we can obtain an
average time until absorption by summing up over average times the system is in a specific state, for each state.
Let us now formally define mean number of times tiatakes the valug before absorbtion i or 2V
(given that it started i) as{t,; }. Then the mean time to absorption given that we started atistathe sum:

M-1
ti=> L
j=1

We will proceed by a first step analysis: if the system starisaad then proceeds toat its next step, then
the mean number of visits to stat@rior to absorption starting from statenow is{¢,; } by definition. However,
observe that in this case, we miss the case whery. Therefore, there is a need to define an additional variable
0;; = 1if i = j, and O otherwise. As a result, weighting by the probability of going to a statehe first step,
we obtain

M
tij = Zpik{kj + dij, to; = tar; =0
k=0
By summing up the meant times the system is in stdte all j, we obtain



M—-1 M-1 M M—-1

tij = Z Zpikfkj + Z dij
=1

j=1 j=1 k=0

By definitioan]‘i}1 t;; = 1; so that

M
tiZZPiktk+1, to=1tm =0
k=0
Observe that sincg ;" " d;; will equal to 1 only once (when = j), theny" 7" 7" 5;; = 1 in the above
equation.
Now, we will discuss two most important models in population genetics, which describe the evolution of
allele frequencies: Wright-Fisher model and Moran model.

4 Wright-Fisher Model

Let us assume a simple haploid model of the population of 2N genes (or alternatively — N diploid organisms)
of random reproduction, with each haploid possessing either alleler allele A,. Let us, for start, disregard
mutation pressures and selective forces. At every time-step, each gene (allele) gives birth to some number of
offsprings (which are the exact copies of himself) and dies immediately after that, thus living only one generation.
This process describes how the genes get transmitted from one generation to the next. However, the processed of
birth and death will have to remain unseen behind the curtain for a moment. Instead, we will only observe how
the frequency of alleles will change from generation to generation.

We will fix our attention at frequency of alleld; in the population oRN haploids. Let us think of this
process of going from one generation to the other as a Markov Chain, where th¥ stfitee chain corresponds
to the number of haploids (genes) of type. Clearly, in any generatioX takes one of the valués 1,...,2N,
which constitutes a state space. We will denote the value takéfibpygenerationt as X;,.

The model assumes that genes for the generatipii are derived by sampling with replacement from the
genes of generatian Thus, the make up of the next generation is determinexi\bindependent Bernoulli trials
so thatX; is a binomial random variable. Let the initial generation consist génes of typed; and2N — i
genes of typed,. Then we define a probability of success (resulting in allelep; and a probability of failure
q; (resulting in alleleAs) for each Bernoulli trial as

} ?

= =1 —
Pi=ony 4 N

We generate a Markov ChainX,, }, whereX,, is the number of4; genes in the n'th generation, among a
constant population size of 2N individuals. Basicalk.; is a binomial random variable with ind&V and
parameter (probability of succes&) /2N. Observe that the transition probabilities frofs = i to X; 11 = j
for this Markov Chain are computed according to the binomial distribution as

P(Xiy1 = j| X = i) = pij = (25\[) plg" = <2jv ) (i/2N) {1 — (i/2N)}*N

Observe now that states 0 and 2N are completely absorbing. In other words, no matter what the ¥glue of
is, eventuallyX; will take the value 0 o2 N. And once this happen& will stay in that state forever. In the case
of X; = 0, the population will consist only ofls genes, while in the case of, = 2N the population will be
purely A;-gene population.

1In this model, the allele frequency of the next generation is manipulated mainly by a genetic drift (a Genetic drift can be defined as a
force that reduces heterozygosity by the random loss of alleles).



4.1 Absorption probability in Wright-Fisher model

Let us discuss absorption probabilities in Wright-Fisher model. In fact, the population can attain fixation and be
composed of onlyd;-genes X; = 2N) or A;-genes &, = 0). It can be shown that with probability one, either
of the absorbing states (either 0 or 2N) is eventually entered (and this is true for both Wright-Fisher and Moran
models). And therefor&m; ... P(X: = j) = 0.

We will discuss two cases of absorption: at 0 and at 2N.

4.1.1 Absorption at zero:
We write the probability of extinction (absorption at 0) of a gene given that it started adthies agim,, .. P(X,, =
0| X0 = i)

Let us find the probability of absorbing in state 0 by usitigX,,). We expressZ(X,,) by using the expecta-
tion of a conditional expectation

E(X,)=E[E(X,|Xn-1)]=E(Xp-1)=E(Xp—2)=---=E(Xo) =i

This property is called theonstancy of expectatiqand is also true for Moran model). Further we can write
E(X,)as
E(Xn) =0x Us,0 + 2N x (1 — ui70)

Now, sincelim,,— .. E(X,) = 1,
1 =0X U@O‘FQNX (1—ui70)
and therefore )
2N — 1
U; 0 =
0T 9N
Observe that we ignorB(X; = j) since they are equal to zero as n goes to infinity.

4.1.2 Absorption at 2N:

We want to calculate probability that; eventually becomes fixed in the population (absorption at 2N)and follow
a similar argument;

i1=0Xx (1 — ui,gN) + 2N x Ui 2N
so that )
1
2N
A different argument (which is more relevant to a genetical point of view) is that eventually every gene in the
population is descended from the unique gene in generation zero. The probability that such a gene (4llele) is
is simply the initial fraction of4; alleles, namely/2N, and this also must be a fixation probability of allele.

Ui 2N =

4.1.3 Absorption starting with one A, allele

Suppose that in a population of pu#e alleles a single new mutant; allele (gene) arises. There are no more
new mutations and therefore we can assume that we start with a population with aflele and2N — 1 A,

alleles. According to the previous result, the probability of fixation for this allele is
i1
2N T 9N T ON

. On the other hand, the probability that the allele is lodtis1/2N.



4.2 Mean time until absorption in Wright-Fisher model

The calculation of the mean time until absorption for the Wright-Fisher model is very computationally expensive.
Therefore, it is useful to approximate this quantity, which will be described in the next section. However, it is
relatively simple to derive the mean time until absorption starting with one allele ofAyfbefore the mutant

is lost or before the mutant is fixed).

For this calculation we use the same analysis as before. We will use the expected number of visits to a
statej along the path to absorption, starting from staig= 1. We denote the mean number of generations to
absorption in 0 or 2N , given that we started with one alléle ast;. We need to sum up the expected number
of such visits for allj, avoiding states 0 arizlV:

2N—-1
=1

wheret, ; is the mean number of times when the numbedptlleles takes the value gf(system is in state
j) before reaching either 0 @V. Both Fisher and Wright found that
_ 2
lij~ =
starting ati = 1. SinceZlN:1 1 =log(N) + v wherev is a Euler’s constant (0.5772 ...), we derive

2N—-1 2N—-1 2N—-1

_ _ 2

ty = Z t1,; = Z - =2
j=1 i
=2(log(2N — 1) +7)

4.3 Approximating Mean Time until Absorption

Even though in principle we can find solutions of the mean time to absorption for a génierpractice these
solutions seem extremely difficult, and simple expressions for these mean times have not yet been found. Let us
now present a simple approximation for We again apply the first step analysis , where we start from state
in the first step attend some intermediate gtelve defineM = 2N, i/M =z, k/M = z + §z, andt; = t(z).

Then we can rewrite the equation

M
ti=> pirte+1
k=0

as

t(z) = Z P{z — x + dz}(x + dz) + 1 1)
= E{t(z +dz)} + 1 (2)
3

Now assuming thaf(z) is a twice differentiable function of a continuous variableve can use Taylor series
to approximate the above quantity. The Taylor series states that

> £(n)(q
fy =3 g @
n=0 ’
Z%(y—a)o—&-{ﬂﬁ)} (y_a)1+{f(;)} (y_a)2+ (5)
= f(@) + (@) - a) + @) -0+ .. ©



We re-writet(x) by applying Taylor’s series (showing three leading terms):

t(r) = E{t(z+dx)} +1 (7)
~ E(z) + E(@x){fz)} + %E(axf{z(x)}” 41, ®)
9)

All expectations are conditional an Using the fact that the expectation of the binomial random variable is
E(Y) = np, we can rewrite then
E(j) Mx4 i

B(x+da) = B(j/M) = > = =M — =

, Wherep = ;. We can as well use the fact established before B{&,, | X, 1 = i) = i. At the same time
r = ;7 andE(z) = x; thereforeE(6z) = 0. As a result the ternk (6z){#(x)} = 0.
Let us calculateF(5z)?. In our case, theé”(dx)? = Var(dz) sinceVar(dz) = E(5x)? — [E(6x)]* and
[E(6x)]? = 0, as shown from the previous result.
The variance of the binomial random variable
Var(j)  2Nzy(1—355)  z(1—2)

Var(z + éx) = Var(j/2N) = N = N2 = 3N

The above gives

_ la(l—2) —, v
T)+ 5o {t(x)} +1

la(l—a)
P )

—4N =~ 2(1 — 2){i(z)}"

The solution to this equation, subject to the boundary condifigis= (1) = 0 is

Hx) = / / 4Nﬁ (10)
i
wf ()
([ f i)

_ N / (In(z) + In(1 — 2)) (14)
= —4N {/zn(x) +/ln(1 x)} (15)
= —4ANA{(zin(z) —z)+ (1 —2)In(l —z) — (1 — 2))} (16)
~ —4N{zlogx + (1 — x)log(1l — z)} (17)

wherez = 5%, the initial frequency of allelel;. This is also is callediffusion approximation to the mean

absorption time

When we initially start with oned; allelex = ﬁ then the mean time to absorption is



t N =—4 %log N +(1—ﬁ)log I*E } (18)
t< }V) N{ < 1 > 1 ( 1 >

~ 2+ 2log2N (19)

(20)

At the same time, when = 1, then
i
2

Observe that for equal initial frequencies£ %), the mean time is relatively long.

) ~ 2.8N

5 Moran model

In each generation of the Moran model, one gene is chosen at random to give 2 offsprings and one gene is chosen
to die (all other genes survive to the next generation). As opposed to Wright-Fisher model, Moran model has
overlapping generations. This model is also known as a birth-and-death model. We still consider a constant
population size o2 N haploids, each of which has either allele or allele A,. Let us (for now) ignore mutation

or selection pressures.

Again, we defineX to be a random variable, which represents the number of alleles ofAypa the
population. It is of interest to calculate transition probabilities for the implied Markov chain. Suppose that in
populationt (which corresponds to staf€; in underlying Markov chain) the number of allelds is . Then in
populationt + 1, the number of allelesl; can be either{=i— 1), (j =i+ 1), 0rj =i.

The system can go frofito ¢ — 1 if A, individual is chosen to give 2 offsprings ard individual is chosen

to die:
= (P (L
Piit =\ N IN

To go fromi to i + 1, the opposite should be trud; is chosen to die and, is chosen to reproduce:

(2N
pz,z+1— 2N 2N

and for going fromi to 4, it takes eitherd; to reproduce and die ot to reproduce and die:

2N —i 2N —i i i 2 + (2N —i)?
Pii = X + =
' 2N 2N (2N)2

_— X —_—
2N 2N
Observe thap;; = 0 for all other values of since it is impossible to make other transitions.

5.1 Properties of a Continuant matrix in Moran model.

In the case of Moran model, the transition probability matrix is Continuant, which meang;that 0 iff
|i — j] > 1. Now we can apply the standard Continuant matrix theory to our model so that the probability of
fixation and mean time to absorption can be found explicitly.

In particular, we can use a “birth-and-death” process concepts to calculate the desired quantities. The birth-
death process is a special case of Continuous-time Markov process where the states represent the current size of
a population and where the transitions are limited to births and deaths. When a birth occurs, thgostat®
state; + 1, defined by the birth ratg; ;-1 = A;. When the death occurs, the process goes from statstate
i — 1, defined by the death ratg ;1 = ;.

For now, we will just use facts from the theory of birth-death processes, without proving them; however, we
would like to return to formal definitions and proofs in one of the future lectures.

We define
_ Hip2 .. Hg

VS VY



andpy = 1. If0 and M = 2N are both absorbing states, then the probability of absorption in either of them
becomes

i—1 M—-1

wi =y pr/ Y P
k=0 k=0

Proceeding further with the above argument, we can calculate the mean number of times the system is in state
Jj given that it started in stateas

- T—w) I b e
LT

Y piy

)

w M
. i 2 ik=j .

Foo= k=g TR Gyt M — 1
i oy (j=1i+ )

from this we can derive;

]VIZ i 1_uz Ek 0pk+ Z chwjlpk
Jj=1 J

— Pj—1H;j PN

S+

j=i+1

5.2 Probability of fixation in Moran model

Let us now observe that in the Moran model
Ai = pi = i(2N —i)/(2N)?

so that
M1 M2 Hi

AV VD

fori =0,1,...,2N. It can be shown that, similarly to Wright-Fisher modB[,X;) = i.
Following all of the above, the probability of fixation (given that we started withpied ofA,) is

=1

{
Uy = ——

2N
given thatM = 2N.

5.3 Expected absorption time

Using the fact thap; = 1, we can derive the following

forj=1,...,4
= (1 — ui) lec;%) Pk (21)
! Pj—1Hj
(1 55) 3io!
Sy @)
1 2N 2N
(205=4)j x 2N x 2N
- 2N —j)j (23)
2N — i) x 2N
-GN i 4

andforj=¢+1,..., M —1



M—
_ Uq zk:jl Pk

L= ——= "~ (25)
! PiNj
i M-—1 1
k=
= ”Vmifj (26)
1 2N 2N
S (2N — 2N x 2N
(2N —J)j
i x 2N
=X (28)
J
(29)

Now we can calculate the expected time to absorption as

t = Z ti; (30)

Z 1_uz Zk 0pk+ Z Zi\/[jlpk

(31)
j=1 Pi—1Hj j=it1 Pidi
i M-1 .
(2N — i) x 2N i X 2N
32
Z 2N —j + z J (32)
J=1 Jj=i+1
i
1
= (2N —1)2N 2N - 33
(2N — i) ; vt z];l (33)

It is possible to condition on the fact that, sdy eventually fixes. In this case, it is not difficult to derive
simpler expressions for mean absorption times. Such derivations will be discussed in the future lectures.
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