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A Stochastic procesis a counterpart of the deterministic process. Even if the initial condition is known,
there are many possibilities how the process might go, described by probability distributions. More formally, a
Stochastic process is a collection of random variapl$¢),t € T'} defined on a common probability space
indexed by the index sét which describes the evolution of some system.

One of the basic types of Stochastic processNaakov processThe Markov process has the property that
conditional on the history up to the present, the probabilistic structure of the future does not depend on the whole
history but only on the present. The future is, thus, conditionally independent of the past.

Markov chainsare Markov processes withiscreteindex set and countable or finite state space.

Let{X,,n > 0} be a Markov chain , with a discrete index set described hyet this Markov process have
a finite state spacé = {0,1,...,m}. At the beginning of the process, the initial state should be chosen. For
this we need an initial distributiofpy, }, where

P[onk] = Pk

pr >0

and) -, pr = 1. After the initial state is chosen, the choice of the next state is defined by transition probabilities
pij, Which is the probability of moving to a stajegiven that we are currently in stateObserve that the choice
of the next state only depends on a current state and not on any states prior to that (in other words, it depends
purely on the recent history).

The transition from state to state is usually governed by the transition nfatrix

Poo  DPo1
P = | Pio P11

wherep;; > 0 is a transition probability from stateto statej. Precisely, it is a probability going to state
4 given that you are currently in state Observe that each row corresponds to transition probabilities from the
statei to all other states and should satisfy the following

Sopiy=1 (LD
j=0

Therefore, if the state space 6 = {0,1,...,m}, then the transition matri® is (m + 1) x (m + 1)
dimensional.
Let us describe some of the formal properties of the above construction. In particular, forafly

As a generalization of the above fact, we show that we may condition on the history with no change in the
conditional probability, provided the history ends in stat®lore specifically,

P[Xn+1 == ]|XO = iOa cee aXn—l = in—17X77, = Z] = Pij (13)
Now we can define a Markov chain formally:



Definition 1 Any procesq X,,,n > 0} satisfying the (Markov) properties of equations 1.2 and 1.3 is called a
Markov chain with initial distribution{p, } and transition probability matrix°.

The Markov property can be recognized by the following finite dimensional distributions:

P[Xo =0, X1 =i1,..., Xk = ik] = pigPigirPiria..ps, s,

1 Some examples of Markov chains

1.1 The Branching process

A Branching process is a Markov process that models a population in which each individual in generation
produces a random number of offsprings for generatian1.

The basic ingredient is a densify } on the non-negative integers. Suppose an organism at the end of his
lifetime produces a random numkbgeof offsprings so that the probability to produkeffsprings is

P& =k) = px

fork =0,1,2,.... We assume that, > 0 and)_,° ,pr = 1. All offsprings are to act independently of each
other.

In a Simple branching process, a population starts with a progenitor (who forms population number 0). Then
he is split into k offsprings with probability,. ;thesek offsprings constitute the first generation. Each of these
offsprings then independently split into a random number of offsprings, determined by the depsiand so
on. The question of ultimate extinction (where no individual exists after some finite number of generations) is
central in the theory of branching processes.

The formal definition of the model follows: let us define a branching process as a Markov{chajn=
Zy, 21, Zs, . .., WhereZ, is a random variable describing the population size at the n'th generation. The Markov
property can be reasoned as: in the n’th generatiothadividuals independently give rise to some number of
offsprings&,+1,1,&n+1,2 - - -, Ent1,2, fOr then + 1st generations,, ; can be though as the number of members
of n'th generation which are offsprings of the j'th member of the— 1) generation. Observe th§f,, ;,n >
1,7 > 1} are identically distributed (having a common distributign, }) non-negative integer-valued random
variables.

Thus, the cumulative number produced for the: 1st generation is

Zn+1 = &nr1,1 Hnvr2 + -+ &1z,

Thus the probability of any future behavior of the process, when its current state is known exactly, is not
altered by any additional knowledge concerning its past behavior.
Generally speaking, we define a branching prodess n > 0} by

Zo=1
A :fl,l
22 25271 +"'+£2,Zl

Zn =&t +&nz,

Observe that once the process hits zero, it stays at zero. In other watgs=if), thenZ, ., = 0.

Itis of interest to show what is the expected size of generatj@iven that we started with one individual in
generation zero. Lt be the expected number of children for each individ&ik] = ;. ando? be the variance
of the offspring distribution} ar[¢] = o2. let us denote the expected size of the generdtipby E[Z,,] and its
variance bW ar[Z,].



1.1.1 Onthe random sums

Let us recall some facts about a random sum of the f&rm & + & + - - - + &n, Where N is a random variable
with probability mass functiopy(n) = P{N = n} and all§; are independent and identically distributed
random variables. LeN be independent of, &, ... We assume thal, and N have finite moments, which
determine mean and variance for the random sum:

Elg] = p
Varlé] = o?
E[Nl=v
Var[N] = 72

Then,E[X] = pv andVar[X] = vo? + p?r2
We will show the derivation for the expectation of X]X], which uses the manipulations with conditional
expectations:

E[X] = i}E[X [N = nlpn(n) @
:2E[§1+£2+"'+€N|N:n]pN(n) 2)
ij:lE[& + &+ -+ &N =nlpy(n) ©)
= iE[& +& 4+ Ealpn(n) )
- i(E[m VY ElG] -+ Bleon(n) ©)
=2(u+u+---+u)pw(n) ®)
= i#”ﬁz\/(”) ()
=1 i npn(n) = pv (8)

" ©

The direct application of the above fact to the branching process gives:

BE[Zp+1] = w = pE[Z,)]

and
Var(Z, 1] = vo? + u?t* = E[Z,)0% + p*Var|[Z,)

Now, if we apply recursion to the expectation (with the initial conditign= 1 at F[Z,] = 1), we obtain:
E[Z,] = p"

Therefore, the expected number of members in generatisrequal tou™, wherey is the expected number
of offspring for each individual.



Observe that the extinction time directly depends on the valye ¥¥heny > 1, then the mean population
size increases geometrically; howeveruif< 1, then it is decreases geometrically, and it remains constant if
w=1.

The population extinction occurs if the population size is reduced to zero. The random time of extinction N is
the first time n for whichz,, = 0 andZ, = 0 for all ¥ > N. In Markov chain, this state is called thbésorbtion
state

We define

u, = P{N <n}=P{Z, =0}

as the probability of extinction at or prior to the n’th generation.

Let us observe the process from the beginning: we begin with the single individual in generafigr=0L.
This individual then gives rise tb offsprings. Each of these offsprings will then produce its own descendants.
Observe that if the original population is to die out in generatipthen each of theselines of descent must die
out in at most: — 1 generations.

Since allk subpopulations are independent and have the same statistical properties as the original population,
then the probability that any of them dies outin- 1 generation is.,—;. And the probability that all of them
will die out in then — 1'th population (with the independence assumption) is

(un—l)k

Then, after weighting this by the probability of having of k offsprings and summing according to the law of
total probability, we obtain:

oo
Un =Y pr(un-1)*
k=0

forn =1,2,.... Itis not possible to die out in generation 0 since we must have the first individual (parent). For
generation one, however, the probability of being extinetis= pg, which is the probability of having no (zero)
offsprings.

Usually, the Branching process is used to model reproduction (say, of the bacteria) and other system with
similar to reproduction dynamics (the likelihood of survival of family names (since it is inherited by the son’s
only; in this casey;, is the probability of having: male offsprings), electron multipliers, neutron chain reaction).
Basically, it can be thought as a model of population growth in the absence of environmental pressures.

1.1.2 Branching Processes and Generating Functions

Generating functions are extremely helpful in solving sums of independent random variables and thus provide a
major tool in the analysis of branching processes.
Let us again consider an integer-valued random vari@ltbose probability distribution is given by

P{§ =k} =psk

fork=0,1,....
The generating function is basically a power series whose coefficients give (define) the sdguences, . . . },
such as

oo

¢(s) = po+sprL+ s°p2 + - - ZZPkS
k=0

To specify that a specific generation function corresponds to a sequence (in our case, probability distribution),
we write

k

(Po,p1,p2,-..) < Do + sp1 + s%pa+ ...

We call¢(s) a generating function of the distributidpy }; sometimes it is also called a generating function
of £&. We denote

o(s) = Zpksk = E[s*]
k=0

4



for0 < s <1.
Example: Say for a sequencd, 1,1,1...), the generating function is+ s + s* + s® + -+ = 7
Differentiation of the above function gives

E(1+5+52+s3+...) d( ! >

dx Tdx\1-s
14254352+ =( ! )?
1—=x
(1,2,3,4...) ( L )2
b B ] 171’

In fact, now it is a generating function of the sequefice, 3,4 . ..)
Let us observe the following relationship between the probability mass funigtidrand generating function
p(s):
_ 1d¥g(s)
Tkl dsk 40

Pk

For example, let us derivg:

B(s) = po + sp1 + s%pa + ...
If we let s = 0, then itis clear thapy = ¢(0). Now, let us derivep;. For this purpose we take a derivative of

o(s):

d
9(5) _ p1+ 2pas + 3p3s? + ...
ds
And again lettings be 0, we get
_ do(s)
P = ds o
Letussaythatif;, &, . . ., &, areindependent random variables, which have generating fungtioss ¢»(s), . . ., on(s),

then the generating function of their suth= &; + & + - - - + &, is the product

¢z(s) = d1(s)da(s) ... dn(s)

Additionally, the moment of nonnegative random variable may be found by differentiating the generating
function and evaluating it at = 1, which actually equivalent to the expectation of the random variable. Taking
the derivative ofby + p1s + pas® + ... gives:

d
M = p1 + 2pas + 3p3s? + ...
ds
And evaluating it at 1 produces:
do(s
922) =p1+2p2+3p3 + - = E[¢]
s=1

Consecutively, it is possible to find the variaricer[¢]of the random variabl€: The second derivative of
the generating function(s) is

d2
dq:(;) = 2py + 3(2)p3s + 4(3)pas® + ...



and evaluating it at 1 gives

2
ddi(;) » =2p2 +3(2)ps +43)pa + ... (10)
=Y k(k—1)py = BE(€ - 1)] (11)
k=2
= E[¢* - €] = BI¢®] - B¢] 12
(13)
Rearranging the above equality gives:
2
ple) - S|+l (1)
_ d*¢(s) dg(s)
B d52 s=1 " dS s=1 (15)
(16)

and the varianc& ar[¢] is
Varl¢] = E[¢°] - {E[¢]}? a7

[feta| st
ds? ds

2
] . (18)
s=1
(19)

s=1

Generating Functions and Extinction Probabilities: Let us definew,, = Pr{X,, = 0} as a probability of
extinction by state:. Using the recurrence established before, we can define it in terms of generating functions:

un = Y (1) = $lun—1)
k=0

Thus, knowing the generating functigifs), we can compute the extinction probabilities (startingat 0;
thenu1 = ¢(UQ), Uy = gb(ul) etC.).

It is interesting that the extinction probabilities converge upwards to the smallest solution to the equation
#(s) = s. We denoter, as the smallest solution tis) = s. In fact, it gives the probability that the population
becomes distinct in some finite time.

Speaking differently, the probability of extinction depends on weather or not the generating function crosses
the45 degree angle linei(s) = s), which can be determined from the slope of the generating functios-=at:

§ 1) = 220

If the slope is less then or equal to one, then no crossing takes place and the probability of eventual extinction
is us, = 1. However, if the slope exceeds one then the equatien = s has a smaller solution (less than
one) and thus extinction is not a certain event. In this case, this smaller solution corresponds to a probability of
extinction.

Observe that the slope of the generating functh¢s) is E'[£]. Therefore, the above rules (of the probability
of extinction) can be applied with respecti)] in a similar way.

s=1

1.1.3 Generating Functions and Sums of Independent Random Variables

Let&y, &, ... be independent and identically-distributed nonnegative integer-values random variables with gen-
erating functions(s) = E[s¢]. Then the sum of these variablgs+ &, . . ., &, has a generating function:

E[s8 et tin] = Blsfs% L stn] = BIsYE[s%]... E[s*] = [6(s)]™



Now, let N be non-negative integer-valued random variable , independefi, 6f, . .., with generating
functiongy (s) = E[s"]. We consider a random sum

X=&+&+ - +én

and leth x (s) = E[s*] be a generating function of X. Then,

hx(s) = gn[¢(s)]

And applying it to a general branching process gives

Pnt1(s) = dn(d(5)) = d(n(s))

That is we obtain a generating function for a population %izeat generation n by repeated substitution in
the generating function of the offspring distribution.
For general initial population siz&, = k, the generating function is

ZP[Xn = j‘ZO = k]sj = [d)n(s)]k
j=0

It basically corresponds to the sum of k independent lines of descents. In other words, the branching process
evolves as the sum éfindependent branching processes (one for each initial parent).
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