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A Stochastic processis a counterpart of the deterministic process. Even if the initial condition is known,

there are many possibilities how the process might go, described by probability distributions. More formally, a
Stochastic process is a collection of random variables{X(t), t ∈ T} defined on a common probability space
indexed by the index setT which describes the evolution of some system.

One of the basic types of Stochastic process is aMarkov process. The Markov process has the property that
conditional on the history up to the present, the probabilistic structure of the future does not depend on the whole
history but only on the present. The future is, thus, conditionally independent of the past.

Markov chainsare Markov processes withdiscreteindex set and countable or finite state space.
Let {Xn, n ≥ 0} be a Markov chain , with a discrete index set described byn. Let this Markov process have

a finite state spaceS = {0, 1, . . . ,m}. At the beginning of the process, the initial state should be chosen. For
this we need an initial distribution{pk}, where

P [X0 = k] = pk

pk ≥ 0

and
∑m

k=0 pk = 1. After the initial state is chosen, the choice of the next state is defined by transition probabilities
pij , which is the probability of moving to a statej given that we are currently in statei. Observe that the choice
of the next state only depends on a current state and not on any states prior to that (in other words, it depends
purely on the recent history).

The transition from state to state is usually governed by the transition matrixP .

P =

p00 p01 . . .
p10 p11 . . .
...

...


wherepij ≥ 0 is a transition probability from statei to statej. Precisely, it is a probability going to state

j given that you are currently in statei. Observe that each row corresponds to transition probabilities from the
statei to all other states and should satisfy the following

m∑
j=0

pij = 1 (1.1)

Therefore, if the state space isS = {0, 1, . . . ,m}, then the transition matrixP is (m + 1) × (m + 1)
dimensional.

Let us describe some of the formal properties of the above construction. In particular, for anyn ≥ 0

P [Xn+1 = j|Xn = i] = pij (1.2)

As a generalization of the above fact, we show that we may condition on the history with no change in the
conditional probability, provided the history ends in statei. More specifically,

P [Xn+1 = j|X0 = i0, . . . , Xn−1 = in−1, Xn = i] = pij (1.3)

Now we can define a Markov chain formally:

1



Definition 1 Any process{Xn, n ≥ 0} satisfying the (Markov) properties of equations 1.2 and 1.3 is called a
Markov chain with initial distribution{pk} and transition probability matrixP .

The Markov property can be recognized by the following finite dimensional distributions:

P [X0 = i0, X1 = i1, . . . , Xk = ik] = pi0pi0i1pi1i2...pik−1ik

1 Some examples of Markov chains

1.1 The Branching process

A Branching process is a Markov process that models a population in which each individual in generationn
produces a random number of offsprings for generationn + 1.

The basic ingredient is a density{pk} on the non-negative integers. Suppose an organism at the end of his
lifetime produces a random numberξ of offsprings so that the probability to producek offsprings is

P (ξ = k) = pk

for k = 0, 1, 2, . . . . We assume thatpk ≥ 0 and
∑∞

k=0 pk = 1. All offsprings are to act independently of each
other.

In a Simple branching process, a population starts with a progenitor (who forms population number 0). Then
he is split into k offsprings with probabilitypk ;thesek offsprings constitute the first generation. Each of these
offsprings then independently split into a random number of offsprings, determined by the density{pk} and so
on. The question of ultimate extinction (where no individual exists after some finite number of generations) is
central in the theory of branching processes.

The formal definition of the model follows: let us define a branching process as a Markov chain{Zn} =
Z0, Z1, Z2, . . . , whereZn is a random variable describing the population size at the n’th generation. The Markov
property can be reasoned as: in the n’th generation theZn individuals independently give rise to some number of
offspringsξn+1,1, ξn+1,2, . . . , ξn+1,Zn

for then + 1st generation.ξn,j can be though as the number of members
of n’th generation which are offsprings of the j’th member of the(n − 1) generation. Observe that{ξn,j , n ≥
1, j ≥ 1} are identically distributed (having a common distribution{pk}) non-negative integer-valued random
variables.

Thus, the cumulative number produced for then + 1st generation is

Zn+1 = ξn+1,1 + ξn+1,2 + · · ·+ ξn+1,Zn

Thus the probability of any future behavior of the process, when its current state is known exactly, is not
altered by any additional knowledge concerning its past behavior.

Generally speaking, we define a branching process{Zn, n ≥ 0} by

Z0 = 1

Z1 = ξ1,1

Z2 = ξ2,1 + · · ·+ ξ2,Z1

...

Zn = ξn,1 + · · ·+ ξn,Zn−1

Observe that once the process hits zero, it stays at zero. In other words, ifZk = 0, thenZk+1 = 0.
It is of interest to show what is the expected size of generationn, given that we started with one individual in

generation zero. Letµ be the expected number of children for each individual,E[ξ] = µ andσ2 be the variance
of the offspring distribution,V ar[ξ] = σ2. let us denote the expected size of the generationZn by E[Zn] and its
variance byV ar[Zn].
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1.1.1 On the random sums

Let us recall some facts about a random sum of the formX = ξ1 + ξ2 + · · ·+ ξN , where N is a random variable
with probability mass functionpN (n) = P{N = n} and all ξk are independent and identically distributed
random variables. LetN be independent ofξ1, ξ2, . . . We assume thatξk andN have finite moments, which
determine mean and variance for the random sum:

E[ξk] = µ

V ar[ξk] = σ2

E[N ] = ν

V ar[N ] = τ2

Then,E[X] = µν andV ar[X] = νσ2 + µ2τ2.
We will show the derivation for the expectation of X,E[X], which uses the manipulations with conditional

expectations:

E[X] =
∞∑

n=0

E[X|N = n]pN (n) (1)

=
∞∑

n=1

E[ξ1 + ξ2 + · · ·+ ξN |N = n]pN (n) (2)

=
∞∑

n=1

E[ξ1 + ξ2 + · · ·+ ξn|N = n]pN (n) (3)

=
∞∑

n=1

E[ξ1 + ξ2 + · · ·+ ξn]pN (n) (4)

=
∞∑

n=1

(E[ξ1] + E[ξ2] + · · ·+ E[ξn])pN (n) (5)

=
∞∑

n=1

(µ + µ + · · ·+ µ)pN (n) (6)

=
∞∑

n=1

µnpN (n) (7)

= µ
∞∑

n=1

npN (n) = µν (8)

(9)

The direct application of the above fact to the branching process gives:

E[Zn+1] = µν = µE[Zn]

and
V ar[Zn+1] = νσ2 + µ2τ2 = E[Zn]σ2 + µ2V ar[Zn]

Now, if we apply recursion to the expectation (with the initial conditionZ0 = 1 atE[Z0] = 1), we obtain:

E[Zn] = µn

Therefore, the expected number of members in generationn is equal toµn, whereµ is the expected number
of offspring for each individual.
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Observe that the extinction time directly depends on the value ofµ. Whenµ > 1, then the mean population
size increases geometrically; however, ifµ < 1, then it is decreases geometrically, and it remains constant if
µ = 1.

The population extinction occurs if the population size is reduced to zero. The random time of extinction N is
the first time n for whichZn = 0 andZk = 0 for all k ≥ N . In Markov chain, this state is called theabsorbtion
state.

We define
un = P{N ≤ n} = P{Zn = 0}

as the probability of extinction at or prior to the n’th generation.
Let us observe the process from the beginning: we begin with the single individual in generation 0 ,Z0 = 1.

This individual then gives rise tok offsprings. Each of these offsprings will then produce its own descendants.
Observe that if the original population is to die out in generationn, then each of thesek lines of descent must die
out in at mostn− 1 generations.

Since allk subpopulations are independent and have the same statistical properties as the original population,
then the probability that any of them dies out inn − 1 generation isun−1. And the probability that all of them
will die out in then− 1’th population (with the independence assumption) is

(un−1)k

Then, after weighting this by the probability of having of k offsprings and summing according to the law of
total probability, we obtain:

un =
∞∑

k=0

pk(un−1)k

for n = 1, 2, . . . . It is not possible to die out in generation 0 since we must have the first individual (parent). For
generation one, however, the probability of being extinct isu1 = p0, which is the probability of having no (zero)
offsprings.

Usually, the Branching process is used to model reproduction (say, of the bacteria) and other system with
similar to reproduction dynamics (the likelihood of survival of family names (since it is inherited by the son’s
only; in this casepk is the probability of havingk male offsprings), electron multipliers, neutron chain reaction).
Basically, it can be thought as a model of population growth in the absence of environmental pressures.

1.1.2 Branching Processes and Generating Functions

Generating functions are extremely helpful in solving sums of independent random variables and thus provide a
major tool in the analysis of branching processes.

Let us again consider an integer-valued random variableξ whose probability distribution is given by

P{ξ = k} = pk

for k = 0, 1, . . . .
The generating function is basically a power series whose coefficients give (define) the sequence{p0, p1, p2, . . . },

such as

φ(s) = p0 + sp1 + s2p2 + · · · =
∞∑

k=0

pksk

To specify that a specific generation function corresponds to a sequence (in our case, probability distribution),
we write

〈p0, p1, p2, . . . 〉 ←→ p0 + sp1 + s2p2 + . . .

We callφ(s) a generating function of the distribution{pk}; sometimes it is also called a generating function
of ξ. We denote

φ(s) =
∞∑

k=0

pksk = E[sξ]
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for 0 ≤ s ≤ 1.
Example: Say for a sequence〈1, 1, 1, 1 . . . 〉, the generating function is1 + s + s2 + s3 + · · · = 1

1−s .
Differentiation of the above function gives

d
dx

(1 + s + s2 + s3 + . . . ) =
d
dx

(
1

1− s

)
1 + 2s + 3s2 + · · · = (

1
1− x

)2

〈1, 2, 3, 4 . . . 〉 ←→ (
1

1− x
)2

In fact, now it is a generating function of the sequence〈1, 2, 3, 4 . . . 〉
Let us observe the following relationship between the probability mass function{pk} and generating function

φ(s):

pk =
1
k!

dkφ(s)
dsk

∣∣∣∣
s=0

For example, let us derivep0:

φ(s) = p0 + sp1 + s2p2 + . . .

If we let s = 0, then it is clear thatp0 = φ(0). Now, let us derivep1. For this purpose we take a derivative of
φ(s):

dφ(s)
ds

= p1 + 2p2s + 3p3s
2 + . . .

And again lettings be 0, we get

p1 =
dφ(s)

ds

∣∣∣∣
s=0

Let us say that ifξ1, ξ1, . . . , ξn are independent random variables, which have generating functionsφ1(s), φ2(s), . . . , φn(s),
then the generating function of their sumZ = ξ1 + ξ1 + · · ·+ ξn is the product

φZ(s) = φ1(s)φ2(s) . . . φn(s)

Additionally, the moment of nonnegative random variable may be found by differentiating the generating
function and evaluating it ats = 1, which actually equivalent to the expectation of the random variable. Taking
the derivative ofp0 + p1s + p2s

2 + . . . gives:

dφ(s)
ds

= p1 + 2p2s + 3p3s
2 + . . .

And evaluating it at 1 produces:

dφ(s)
ds

∣∣∣∣
s=1

= p1 + 2p2 + 3p3 + · · · = E[ξ]

Consecutively, it is possible to find the varianceV ar[ξ]of the random variableξ: The second derivative of
the generating functionφ(s) is

d2φ(s)
ds2

= 2p2 + 3(2)p3s + 4(3)p4s
2 + . . .
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and evaluating it at 1 gives

d2φ(s)
ds2

∣∣∣∣
s=1

= 2p2 + 3(2)p3 + 4(3)p4 + . . . (10)

=
∞∑

k=2

k(k − 1)pk = E[ξ(ξ − 1)] (11)

= E[ξ2 − ξ] = E[ξ2]− E[ξ] (12)

(13)

Rearranging the above equality gives:

E[ξ2] =
d2φ(s)

ds2

∣∣∣∣
s=1

+ E[ξ] (14)

=
d2φ(s)

ds2

∣∣∣∣
s=1

+
dφ(s)

ds

∣∣∣∣
s=1

(15)

(16)

and the varianceV ar[ξ] is

V ar[ξ] = E[ξ2]− {E[ξ]}2 (17)

=
[

d2φ(s)
ds2

∣∣∣∣
s=1

+
dφ(s)

ds

∣∣∣∣
s=1

]
−

[
dφ(s)

ds

∣∣∣∣
s=1

]2

. (18)

(19)

Generating Functions and Extinction Probabilities: Let us defineun = Pr{Xn = 0} as a probability of
extinction by staten. Using the recurrence established before, we can define it in terms of generating functions:

un =
∞∑

k=0

pk(un−1)k = φ(un−1)

Thus, knowing the generating functionφ(s), we can compute the extinction probabilities (starting atu0 = 0;
thenu1 = φ(u0), u2 = φ(u1) etc.).

It is interesting that the extinction probabilities converge upwards to the smallest solution to the equation
φ(s) = s. We denoten∞ as the smallest solution toφ(s) = s. In fact, it gives the probability that the population
becomes distinct in some finite time.

Speaking differently, the probability of extinction depends on weather or not the generating function crosses
the45 degree angle line (φ(s) = s), which can be determined from the slope of the generating function ats = 1:

φ
′
(1) =

dφ(s)
ds

∣∣∣∣
s=1

If the slope is less then or equal to one, then no crossing takes place and the probability of eventual extinction
is u∞ = 1. However, if the slope exceeds one then the equationφ(s) = s has a smaller solution (less than
one) and thus extinction is not a certain event. In this case, this smaller solution corresponds to a probability of
extinction.

Observe that the slope of the generating functionφ(s) is E[ξ]. Therefore, the above rules (of the probability
of extinction) can be applied with respect toE[ξ] in a similar way.

1.1.3 Generating Functions and Sums of Independent Random Variables

Let ξ1, ξ2, . . . be independent and identically-distributed nonnegative integer-values random variables with gen-
erating functionφ(s) = E[sξ]. Then the sum of these variablesξ1 + ξ2, . . . , ξm has a generating function:

E[sξ1+ξ2+···+ξm ] = E[sξ1sξ2 . . . sξm ] = E[sξ1 ]E[sξ2 ] . . . E[sξm ] = [φ(s)]m
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Now, let N be non-negative integer-valued random variable , independent ofξ1, ξ2, . . . , with generating
functiongN (s) = E[sN ]. We consider a random sum

X = ξ1 + ξ2 + · · ·+ ξN

and lethX(s) = E[sX ] be a generating function of X. Then,

hX(s) = gN [φ(s)]

And applying it to a general branching process gives

φn+1(s) = φn(φ(s)) = φ(φn(s))

That is we obtain a generating function for a population sizeZn at generation n by repeated substitution in
the generating function of the offspring distribution.

For general initial population sizeZ0 = k, the generating function is

∞∑
j=0

P [Xn = j|Z0 = k]sj = [φn(s)]k

It basically corresponds to the sum of k independent lines of descents. In other words, the branching process
evolves as the sum ofk independent branching processes (one for each initial parent).
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