
Lecture #21 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 21

Programming Languages • MISHRA 2008

Lecture #21 • 1

—Slide 1—

Classes of objects in C++

• Linked List Example

• Dynamic Allocation and Deallocation

(Involving Objects and Pointers)

• Features of this example:

1. A constructor is called automatically when an object

is created.

2. Overloading of function names

3. new: Creating objects

4. delete: Deallocating objects

5. Friend: A friendly class that is given the access to

one’s private members.

Programming Languages • MISHRA 2008

Lecture #21 • 2

—Slide 2—

Pointers in C

• Pointer to class cell

cell *p;// p = pointer to an object of type cell

class cell{ +------+--+

int info; | info |--+-----> next

cell *next +------+--+

}

• Note

p -> info === (*p).info

// The info field of the cell pointed to by p

cell c, d; +----+--+ +----+--+

c.next = &d; | c | -+----->| d | |

+----+--+ +----+--+

• Further Note 0 = Null pointer in C++.

In the body of the object this (a special name) denotes a
pointer to the object itself.

Programming Languages • MISHRA 2008

Lecture #21 • 3

—Slide 3—

CONSTRUCTOR

class cell{

cell(int i){info = i; next = this;}

cell(int i, cell *n){info = i; next = n;}

int info;

cell *next;

}

• Constructors can be overloaded:

cell d(1, 0); cell a(3);

• Allocation: Operator new dynamically constructs an

object. “new cell(1,0)” creates an anonymous object of

class cell and initializes by passing (1,0) to its construc-
tor.

cell *front;

front = new cell(1,0); front = new cell(2, front);

Creates a singly-linked list of length two pointed to by
front.

Programming Languages • MISHRA 2008

Lecture #21 • 4

—Slide 4—

Deallocation

• Operator Delete explicitly deallocates a previously allo-

cated object.

cell *temp = front;

front = front -> next;

delete temp;

Programming Languages • MISHRA 2008

Lecture #21 • 5

—Slide 5—

FRIENDS

• Recall: The members of a class are private

unless they are explicitly declared to be pub-
lic.

• However, a friend declaration within a class
gives nonmember functions access to the pri-
vate members of the class.

• Example:

class cell{

friend class circlist;

cell(int i){info = i; next = this;}

....

int info;

cell *next;

}

1. All the members of the class cell are private (by de-

fault).

2. They are accessible only to its friend class circlist.

Programming Languages • MISHRA 2008

Lecture #21 • 6

—Slide 6—

circlist

• Built on top of cell, a friend.

class circlist{

cell *rear;

public:

circlist() {rear = new cell(0);}

// Access the constructor

// (private member) in class cell

boolean empty(){

return (boolean)(rear == rear -> next);}

void push(int);

int pop();

void enter(int);

}

1. push(int) Adds a cell to the front of the list.

2. enter(int) Adds a cell to the rear of the list.

3. pop() Deletes a cell from the front of the list and

returns its value.

Programming Languages • MISHRA 2008

Lecture #21 • 7

—Slide 7—

Body of the class circlist

void circlist::push(int x){

rear->next = new cell(x, rear->next);

}

void circlist::enter(int x){

rear->info = x;

rear = rear->next = new cell(0,rear->next);

}

int circlist::pop(){

if(empty()) return 0;

cell *front = rear->next;

rear->next = front->next;

int x = front->info;

delete front;

return x;

}

Programming Languages • MISHRA 2008

Lecture #21 • 8

—Slide 8—

Nested Classes

Classes can be nested. However, because of C++ scope

rules it leads to confusion . Poor style.

• Example

char c; //c in external scope

class X{

char c; //c in internal scope

class Y{

char d;

void foo(char e){c = e;}

};

char baz(Y* q){return (q->d);}

//Syntax error, d = private

}

• Note:
Inner and outer classes have the same scope: class X and Y

are at the same lexical level.

⇒ c in function foo refers to c in external scope.

⇒ q->d in function baz is attempting to access a private

member of class Y.

Programming Languages • MISHRA 2008

Lecture #21 • 9

—Slide 9—

Derived Classes

• Inheritance Mechanism

Base Class, B ⇒ Derived Class, D

• D derives its variables and operations, by suitably modifying

the properties of B. Declaration for D needs to mention only

the changes that must be made to B.

• Example:
Consider the base class circlist with members:

push

pop

enter

empty

One can easily obtain the derived classes queue and stack

by suitably restricting the operations:

queue{ stack{

enter push

pop pop

empty empty

} }

Programming Languages • MISHRA 2008

Lecture #21 • 10

—Slide 10—

Access Control Mechanisms

• Public:
Member is visible throughout its scope.

• Private:
Member is visible to other members within
its own class, only.

• Protected :
Member is visible to other members within
its own class and any class immediately de-
rived from it.

Programming Languages • MISHRA 2008

Lecture #21 • 11

—Slide 11—

Public & Private Bases Classes

• Public Base Class if its derived class
maintains the visibility of all inherited mem-
bers:

class <derived>: public <base>{

<member-declarations> //visibility is kept

}

• Private Base Class if its derived class
hides the visibility of all inherited members:

class <derived>: private <base>{

<member-declarations> //visibility is lost

}

• Note

class b{ class d: private b{

public: protected:

int f; ==> int b::g;

int g; public:

} int b::f;

}

Programming Languages • MISHRA 2008

Lecture #21 • 12

—Last Slide—

Example

• circlist Revisited

class circlist{

public: //visible outside

boolean empty();

protected: //visible to only derived classes

circlist();

void push(int);

int pop();

void enter(int)

private:

cell *rear;

};

[End of Lecture #21]

Programming Languages • MISHRA 2008

