V22.0490.001
Special Topics: Programming Languages

B. Mishra
New York University.

Lecture # 13

Programming Languages e MISHRA 2008



LECTURE #13 @ 1

—Slide 1—
Global and Local Variables

e Global Variables

— Global Variables may be referenced in any function

— They must be declared using the special function DEFVAR

(DEFVAR *CQUNT* 0)
(DEFUN COUNT-CONS (X Y)
(PROGN (SETQ *COUNT* (+ 1 *COUNTx*))
(CONS X Y)))
(DEFUN COUNT APPEND (X Y)
(IF (NULL X)
Y
(COUNT-CONS (CAR X)

(COUNT-APPEND (CDR X) Y))))

e NOTE: PROGN: Explicitly sequences LISP state-

ments. Value of the last subform is returned as the
value of the PROGN-form

(SETQ *COUNT* 0)
(COUNT-APPEND (A B C) ’(D)) =>

(A B CD)
*COUNT*

Programming Languages e MISHRA 2008



LECTURE #13 @ 2

—Slide 2—
LOCAL VARIABLES

e Local variables may only be referenced in the func-
tion in which they are defined.

e They can be declared by appearing as function’s for-
mal arguments, Or they can be declared explicitly by
the control structure LET & LET*

(LET ((<var-1> <value-1>)

(<var-n> <value-n>)
<body> ))

1. Each of the S-expression <value-1>, ... <value-n>
is evaluated in turn.

2. The variables <var-1>, ..., <var-n> are given
their respective values.

3. Evaluate <body>

4. In this evaluation <value-j> cannot refer to <var-i>
even if 1 <14,7 <n.

Programming Languages e MISHRA 2008



LECTURE #13 @ 3

—Slide 3—
LET and LETx*

e Example

(DEFUN DISTANCE (P1 P2)
(LET ((XDIFF (- (CAR P1) (CAR P2)))
(YDIFF (- (CAR (CDR P1)) (CAR (CDR P2))))
(SQRT (+ (* XDIFF XDIFF) (* YDIFF YDIFF))))
)

o LETx*
o Sequentially binds each new variable as its value
is computed

o Avoids the “right crawl” problem

(DEFUN PAINT-COST (COLOR)
(LET ((PAIR (ASSOC COLOR
»((BLUE . 8.00) (RED . 5.50) (YELLOW . 13.25)))))
(LET ((PRICE (IF (NULL PAIR)
*DEAFULT-PAINT-PRICE*
(CDR PAIR))))
(+ PRICE (* *xTAX-RATE* PRICE)))))

Programming Languages e MISHRA 2008



LECTURE #13 @ 4

—>Slide 4—
LET*: (contd)

e Old Example

COLOR = BLUE
=> PAIR = (BLUE . 8.00)
=> PRICE = 8.00
=> PRICE = PRICE + *TAX-RATEx* PRICE

e Old example with LET*

(DEFUN PAINT-COST (COLOR)
(LET* ((PAIR (ASSOC COLOR
»((BLUE . 8.00) (RED . 5.50) (YELLOW . 13.25))))
(PRICE (IF (NULL PAIR)
*DEAFULT-PAINT-PRICE*
(CDR PAIR))))
(+ PRICE (* *xTAX-RATE* PRICE))))

Programming Languages e MISHRA 2008



LECTURE #13 @ 5

—olide 5—
Lisp as Data Bases

e Lists can associate keys to values: ASSOC

e Association List

((<key-1>.<val-1>) (<key-2>.<val-2>)...(<key-n>.<val-n>))

® ASSOC searches the list linearly until

1. It drops off the list and returns NIL, or

2. It finds the key (EQL) and returns the cons-cell
containing the key

(ASSOC 3 ’ ((1 PARTRIDGE)
(2 TURTLE DOVES)
(3 FRENCH HENS)
(4 TURTLE DOVES)
(5 GOLD RINGS)))
=>
(3 FRENCH HENS)

Programming Languages e MISHRA 2008



LECTURE #13 @ 6

—Slide 6—

Functional Programmaing Style

e FUNCALL

o It is possible to pass functions as values (i.e.,
data) and apply them to arbitrary sets of arguments.

(SYMBOL-FUNCTION <symbol>) or #<symbol>

= Returns functional object associated with <symbol>

(FUNCALL <functional-object> <arg-1> ... <arg-n>)

= Calls the <functional-object> with the ar-

guments it received.

Programming Languages e MISHRA 2008



LECTURE #13 @ 7

—Slide 7—

Examples

(SETQ *RELATIONSHIP-FUNCTIONS*
> ((FATHER . FATHER-0F?)
(MOTHER . MOTHER-0F?)))

(DEFUN FIND-RELATIVE (RELATION PERSON)
(LET ((FUN-NAME (CDR (ASSOC RELATION
*RELATIONSHIP-FUNCTION*))))

(IF (NULL FUN-NAME)
(ERROR "Unknown relationship")
(FUNCALL (SYMBOL-FUNCTION FUN-NAME)

PERSON))))

(FIND-RELATIVE (FATHER TOM))
=>
(FUNCALL (SYMBOL-FUNCTION °’FATHER-QOF7) ’TOM)
= (FUNCALL #’FATHER-OF? ’TOM)
= (FATHER-QF? ’TOM)

® Note: In interpreted LISP, you may omit SYMBOL-FUNCTION
(i.e., #)

(FUNCALL ’ (LAMBDA (N) (+ 1 N)) 3) =>4

Programming Languages e MISHRA 2008



LECTURE #13 @ 8

—Slide 8&—
APPLY &/ LAMBDA

e APPLY

(APPLY <fun-obj> <arg-1> ...<arg-n> <arg-more>)

= (alls the functional object with variable num-
ber of arguments and they may be in a list.

(APPLY #°+ >(1 2 3 4 5 6)) => 21
(APPLY #°% 2 3 > (4 5 6)) => 120
e LAMBDA

(LAMBDA <arg-list> ...<body>)

= Lambda Expression (A. <arg-list>) <body>.
It is like DEFUN...except that it makes an anonymous

functional object

(APPLY
#’ (LAMBDA (A B C) (x A (+ B (C)))

>(4 3 5))
=>4 x (3 +5) =32

Programming Languages e MISHRA 2008



LECTURE #13 @ 9

—olide 9—
Mapping Functions: MAPCAR

® Under mapping, a function is successively applied to
applied to one more lists

(MAPCAR <function> <arglist-1>...<arglist-n>)

1. <function> must take n arguments.

2. First, it is applied to the CAR’s of each
<arglist-i>

3. Next, it is applied to the CADR’s, etc.,
until the end of the shortest list is reached

4. Results of each application are collected
into a list and returned as the value of
the MAPCAR

Programming Languages e MISHRA 2008



LECTURE #13 @ 10

—Last Slide—

Examples

(MAPCAR #’NUMBERP (A 3 B 2 4 C 7))
=> (NIL T NIL T T NIL T)

(MAPCAR #’ (LAMBDA (N) (+ 1 N))
'(5367 2))
=> (647 8 3)

(MAPCAR #’ (LAMBDA (X Y) (CONS X Y))
> (MIAMI DENVER OAKLAND LOS-ANGELES)
’ (DOLPHINS BRONCOS RAIDERS RAMS))
=> ((MIAMI.DOLPHINS) (DENVER.BRONCOS)
(OAKLAND.RAIDERS) (LOS-ANGELES.RAMS))

[End of Lecture #13]

Programming Languages e MISHRA 2008



