
High Performance Data Mining in Time Series:

Techniques and Case Studies

by

Yunyue Zhu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2004

Dennis Shasha

c© Yunyue Zhu

All Rights Reserved, 2004

To my parents and Amy, for many wonderful things in life.

iii

Acknowledgments

This dissertation would never have materialized without the contribution of

many individuals to whom I have the pleasure of expressing my appreciation

and gratitude.

First of all, I gratefully acknowledge the persistent support and encourage-

ment from my advisor, Professor Dennis Shasha. He provided constant aca-

demic guidance and inspired many of the ideas presented here. Dennis is a

superb teacher and a great friend.

I wish to express my deep gratitude to Professor Ernest Davis and Profes-

sor Chee Yap for serving on my proposal and dissertation committees. Their

comments on this thesis are precious. I also thank the other members of my

dissertation committee, Professor Richard Cole, Dr. Flip Korn and Professor

Arthur Goldberg, for their interest in this dissertation and for their feedback.

Rich interactions with colleagues improve research and make it enjoyable.

Professor Allen Mincer has both introduced me to high-energy physics and

arranged the access to Milagro data and software. Stuart Lewis has helped with

many exciting ideas and promising introductions to the Magnetic Resonance

Imagery community. Within the database group, Tony Corso, Hsiao-Lan Hsu,

Alberto Lerner, Nicolas Levi, David Rothman, David Tanzer, Aris Tsirigos,

Zhihua Wang, Xiaojian Zhao have lent both voices and helpful suggestions in

iv

the course of this work. This is certainly not a complete list. I am thankful for

many friends with whom I share more than just an academic relationship.

Rosemary Amico, Anina Karmen and Maria L. Petagna performed the ad-

ministrative work required for this research. They were vital in making my stay

at NYU enjoyable.

Finally and most importantly, I would like to thank my parents for their

efforts to provide me with the best possible education.

v

Abstract

As extremely large time series data sets grow more prevalent in a wide vari-

ety of settings, we face the significant challenge of developing efficient analysis

methods. This dissertation addresses the problem in designing fast, scalable

algorithms for the analysis of time series.

The first part of this dissertation describes the framework for high perfor-

mance time series data mining based on important primitives. Data reduction

transform such as the Discrete Fourier Transform, the Discrete Wavelet Trans-

form, Singular Value Decomposition and Random Projection, can reduce the

size of the data without substantial loss of information, therefore provides a

synopsis of the data. Indexing methods organize data so that the time series

data can be retrieved efficiently. Transformation on time series, such as shift-

ing, scaling, time shifting, time scaling and dynamic time warping, facilitates

the discovery of flexible patterns from time series.

The second part of this dissertation integrates the above primitives into

useful applications ranging from music to physics to finance to medicine.

StatStream StatStream is a system based on fast algorithms for finding

the most highly correlated pairs of time series from among thousands of time

series streams and doing so in a moving window fashion. It can be used to find

correlations in time series in finance and in scientific applications.

vi

HumFinder Most people hum rather poorly. Nevertheless, somehow people

have some idea what we are humming when we hum. The goal of the query by

humming program, HumFinder, is to make a computer do what a person can

do. Using pitch translation, time dilation, and dynamic time warping, one can

match an inaccurate hum to a melody remarkably accurately.

OmniBurst Burst detection is the activity of finding abnormal aggregates in

data streams. Our software, OmniBurst, can detect bursts of varying durations.

Our example applications are monitoring gamma rays and stock market price

volatility. The software makes use of a shifted wavelet structure to create a

linear time filter that can guarantee that no bursts will be missed at the same

time that it guarantees (under a reasonable statistical model) that the filter

eliminates nearly all false positives.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xi

List of Tables xviii

I Review of Techniques 1

1 Time Series Preliminaries 2

1.1 High Performance Time Series Analysis 8

2 Data Reduction Techniques 11

2.1 Fourier Transform . 13

2.2 Wavelet Transform . 40

2.3 Singular Value Decomposition 71

2.4 Sketches . 84

2.5 Comparison of Data Reduction Techniques 92

viii

3 Indexing Methods 97

3.1 B-tree . 98

3.2 KD-B-tree . 101

3.3 R-tree . 105

3.4 Grid Structure . 108

4 Transformations on Time Series 114

4.1 GEMINI Framework . 117

4.2 Shifting and Scaling . 121

4.3 Time Scaling . 126

4.4 Local Dynamic Time Warping 129

II Case Studies 135

5 StatStream 136

5.1 Introduction . 137

5.2 Data And Queries . 140

5.3 Statistics Over Sliding Windows 142

5.4 StatStream System . 159

5.5 Empirical Study . 160

5.6 Related Work . 169

5.7 Conclusion . 171

6 Query by Humming 173

6.1 Introduction . 174

6.2 Related Work . 175

6.3 Architecture of the HumFinder System 179

ix

6.4 Indexing Scheme for Dynamic Time Warping 185

6.5 Experiments . 192

6.6 Conclusions . 205

7 Elastic Burst Detection 206

7.1 Introduction . 207

7.2 Data Structure and Algorithm 211

7.3 Empirical Results of the OmniBurst System 225

7.4 Related work . 235

7.5 Conclusions and Future Work 238

8 A Call to Exploration 239

Bibliography 241

x

List of Figures

1.1 The time series of the daily open/high/low/close prices and vol-

umes of IBM’s stock in Jan. 2001 3

1.2 The time series of the median yearly household income in different

regions of the United States from 1975 to 2001; From top to

bottom: Northeast, Midwest, South and West. Data Source: US

Census Bureau . 4

1.3 The time series of the monthly average temperature for New

York. Data Source: Weather.com 5

1.4 The time series of the number of bits received by a backbone

internet router in a week . 6

1.5 The series of the number of Hyde Park purse snatchings in

Chicago within every 28 day periods; Jan’69 - Sep ’73. Data

Source: McCleary & Hay (1980) 7

2.1 IBM stock price time series and its DFT coefficients 34

2.2 Ocean level time series and its DFT coefficients. Data Source:

UCR Time Series Data Achieve [56]. 35

xi

2.3 Approximation of IBM stock price time series with a DFT. From

top to bottom, the time series is approximated by 10,20,40 and

80 DFT coefficients respectively. 37

2.4 Approximation of ocean time series with a DFT. From top to

bottom, the time series is approximated by 10,20,40 and 80 DFT

coefficients respectively. 38

2.5 An ECG time series and its DFT coefficinets 42

2.6 Approximations of ECG time series with DFT. From top to bot-

tom, the time series is approximated by 10,20,40 and 80 DFT

coefficients respectively. 43

2.7 Time series analysis in four different domains 45

2.8 Sample Haar scaling functions of def. 2.2.2 on the interval [0, 1]:

from top to bottom (a)j = 0, k = 0; (b)j = 1, k = 0, 1; (c)j =

2, k = 0, 1; (d)j = 2, k = 2, 3 . 47

2.9 Sample Haar wavelet functions of def. 2.2.3 on the interval [0, 1]:

from top to bottom (a)j = 0, k = 0; (b)j = 1, k = 0, 1; (c)j =

2, k = 0, 1; (d)j = 2, k = 2, 3 . 49

2.10 Discrete Wavelet Transform with filters and downsampling . . . 62

2.11 Inverse Discrete Wavelet Transform with filters and upsampling 63

2.12 Approximations of a random walk time series with the Haar

wavelet. From top to bottom are the time series approximations

in resolution level 3,4,5 and 6 respectively. 66

2.13 Approximations of a random walk time series with the db2

wavelet. From top to bottom are the time series approximations

in resolution level 3,4,5 and 6 respectively. 67

xii

2.14 Approximations of a random walk time series with the coif

wavelet family. From the top to the bottom, the time series

is approximated by coif1, coif2, coif3 and coif4 respectively. . . . 68

2.15 The basis vectors of a time series of size 200 69

2.16 Approximation of a ECG time series with the DWT. From the

top to the bottom, the time series is approximated by (a) the

first 20 Haar coefficients; (b) the 5 most significant coefficients;

(c) the 10 most significant coefficients; (d) the 20 most significant

coefficients. 72

2.17 SVD for a collection of random walk time series 82

2.18 SVD for a collection of random walk time series with bursts . . 83

2.19 The approximation of distances between time series using sketches;

1 hour of stock data . 89

2.20 The approximation of distances between time series using sketches;

2 hours of stock data . 91

2.21 A decision tree for choosing the best data reduction technique . 96

3.1 An example of a binary search tree 98

3.2 An example of a B-tree . 100

3.3 The subdivision of the plane with a KD-tree 102

3.4 An example of a KD-tree . 103

3.5 Subdividing the plane with a quadtree 104

3.6 An example of a quadtree . 105

3.7 An example of the bounding boxes of an R-tree 107

3.8 The R-tree structure . 107

3.9 An example of a main memory grid structure 109

xiii

3.10 An example of a grid file structure 111

3.11 A decision tree for choosing an index method. 113

4.1 The stock price time series of IBM, LXK and MMM in year 2000 121

4.2 The normalized stock price time series of IBM, LXK and MMM

in year 2000 . 124

4.3 The Dollar/Euro exchange rate time series for different time scales127

4.4 Illustration of the computation of Dynamic Time Warping . . . 130

4.5 An example of a warping path with local constraint 132

4.6 A decision tree for choosing transformations on time series . . . 134

5.1 Sliding windows and basic windows 143

5.2 Illustration of the computation of inner-product with aligned win-

dows . 145

5.3 Illustration of the computation of inner-product with unaligned

windows . 148

5.4 Algorithm to detect lagged correlation 157

5.5 Comparison of the number of streams that the DFT and Exact

method can handle . 162

5.6 Comparisons of the wall clock time 164

5.7 Comparison of the wall clock time for different basic window sizes 165

5.8 Average approximation errors for correlation coefficients with dif-

ferent basic/sliding window sizes for synthetic and real datasets 167

5.9 The precision and pruning power using different numbers of co-

efficients, thresholds and datasets 168

xiv

6.1 An example of a pitch time series. It is the tune of the first two

phrases in the Beatles’s song “Hey Jude” hummed by an amateur.180

6.2 The sheet music of “Hey Jude” and its time series representation 182

6.3 The time series representations of the hum query and the candi-

date music tune after they are transformed to their normal forms 184

6.4 The PAA for the envelope of a time series using (a)Keogh’s

method(top) and (b)our method(bottom). 188

6.5 The mean value of the tightness of the lower bound, using LB,

New PAA and Keogh PAA for different time series data sets.

The data sets are 1.Sunspot; 2.Power; 3.Spot Exrates; 4.Shuttle;

5.Water; 6. Chaotic; 7.Streamgen; 8.Ocean; 9.Tide; 10.CSTR;

11.Winding; 12.Dryer2; 13.Ph Data; 14.Power Plant; 15.Bal-

leam; 16.Standard &Poor; 17.Soil Temp; 18.Wool; 19.Infrasound;

20.EEG; 21.Koski EEG; 22.Buoy Sensor; 23.Burst; 24.Random

walk . 195

6.6 The mean value of the tightness of lower bound changes with

the warping widths, using LB, New PAA, Keogh PAA, SVD and

DFT for the random walk time series data set. 197

6.7 The number of candidates to be retrieved with different query

thresholds for the Beatles’s melody database 200

6.8 The number of candidates to be retrieved with different query

thresholds for a large music database 201

6.9 The number of page accesses with different query thresholds for

a large music database . 202

6.10 The number of candidates to be retrieved with different query

thresholds for a large random walk database 203

xv

6.11 The number of page accesses with different query thresholds for

a large random walk database 204

7.1 (a)Wavelet Tree (left) and (b)Shifted Binary Tree(right) 212

7.2 Algorithm to construct shifted binary tree 214

7.3 Examples of the windows that include subsequences in the shifted

binary tree . 215

7.4 Algorithm to search for bursts 217

7.5 Normal cumulative distribution function 218

7.6 (a)Wavelet Tree (left) and (b)Shifted Binary Tree(right) 224

7.7 Bursts of the number of times that countries were mentioned in

the presidential speech of the state of the union 226

7.8 Bursts in Gamma Ray data for different sliding window sizes . . 227

7.9 Bursts in population distribution data for different spatial sliding

window sizes . 228

7.10 The processing time of elastic burst detection on Gamma Ray

data for different numbers of windows 232

7.11 The processing time of elastic burst detection on Gamma Ray

data for different output sizes 233

7.12 The processing time of elastic burst detection on Gamma Ray

data for different thresholds . 233

7.13 The processing time of elastic burst detection on Stock data for

different numbers of windows 234

7.14 The processing time of elastic burst detection on Stock data for

different output sizes . 234

xvi

7.15 The processing time of elastic spread detection on Stock data for

different numbers of windows 235

7.16 The processing time of elastic spread detection on Stock data for

different output sizes . 236

xvii

List of Tables

2.1 Comparison of product, convolution and inner product 32

2.2 Haar Wavelet decomposition tree 59

2.3 An example of a Haar Wavelet decomposition 60

2.4 Comparison of data reduction techniques 95

5.1 Symbols . 143

5.2 Precision after post processing 169

6.1 The number of melodies correctly retrieved using different ap-

proaches . 194

6.2 The number of melodies correctly retrieved by poor singers using

different warping widths . 194

xviii

Part I

Review of Techniques

1

Chapter 1

Time Series Preliminaries

A time series is a sequence of recorded values. These values are usually real

numbers recorded at regular intervals, such as yearly, monthly, weekly, daily,

and hourly. Data recorded irregularly are often interpolated to form values at

regular intervals before the time series is analyzed. We often represent a time

series as just a vector of real numbers.

Time series data appear naturally in almost all fields of natural and social

science as well as in numerous other disciplines. People are probably most

familiar with financial time series data. Figure 1.1 plots the daily stock prices

and transaction volumes of IBM in the first month of 2001.

Figure 1.2 shows the median yearly annual household income in different

regions of the United States from 1975 to 2001. Economists may want to identify

the trend of changes in annual household income over time. The relationship

between different time series such as the annual household incomes time series

from different regions are also of great interest.

In meteorological research, time series data can be mined for predictive

or climatological purposes. For example, fig. 1.3 shows the monthly average

2

0

50000

100000

150000

200000

250000

300000

1/2/01 1/6/01 1/10/01 1/14/01 1/18/01 1/22/01 1/26/01 1/30/01

date

nu
m

be
r

of
 s

ha
re

s

0

20

40

60

80

100

120

140

pr
ic

e
($

)

Figure 1.1: The time series of the daily open/high/low/close prices and volumes

of IBM’s stock in Jan. 2001

temperature in New York.

Time series data may also contain valuable business intelligence information.

Figure 1.4 shows the number of bytes that flow through an internet router. The

periodic nature of this time series is very clear. There are seven equally spaced

spikes that correspond to seven peaks in Internet traffic over the course of a day.

By analyzing such traffic time series data[64, 63], an Internet service provider

(ISP) may be able to optimize the operation of a large Internet backbone.

In fact, any values recorded in time sequence can be represented by time

series. Figure 1.5 gives the time series of the number of Hyde Park purse

snatchings in Chicago.

3

1975 1980 1985 1990 1995 2000
3.6

3.8
4

4.2
4.4

x 10
4

D
ol

la
rs

1975 1980 1985 1990 1995 2000
3.6
3.8

4

4.2
4.4

x 10
4

D
ol

la
rs

1975 1980 1985 1990 1995 2000

3.2

3.4

3.6

3.8

x 10
4

D
ol

la
rs

1975 1980 1985 1990 1995 2000
3.6
3.8

4
4.2
4.4
4.6

x 10
4

Year

D
ol

la
rs

Figure 1.2: The time series of the median yearly household income in different

regions of the United States from 1975 to 2001; From top to bottom: Northeast,

Midwest, South and West. Data Source: US Census Bureau

4

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12

Month

°F

Avg. High

Avg. Low

Mean

Figure 1.3: The time series of the monthly average temperature for New York.

Data Source: Weather.com

5

50 100 150 200 250

1

1.5

2

2.5

3

3.5

4

4.5

x 10
9

Figure 1.4: The time series of the number of bits received by a backbone internet

router in a week

6

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71

Figure 1.5: The series of the number of Hyde Park purse snatchings in Chicago

within every 28 day periods; Jan’69 - Sep ’73. Data Source: McCleary & Hay

(1980)

7

1.1 High Performance Time Series Analysis

People are interested in time series analysis for two reasons:

1. modeling time series: to obtain insights into the mechanism that gen-

erates the time series.

2. forecasting time series: to predict future values of the time series vari-

able.

Traditionally, people have tried to build models for time series data and then fit

the actual observations of sequences into these models. If a model is successful

in interpreting the observed time series, the future values of time series can be

predicted provided that the model’s assumptions continue to hold in the future.

As a result of developments in automatic massive data collection and storage

technologies, we are living in an age of data explosion. Many applications

generate massive amounts of time series data. For example,

• In mission operations for NASA’s Space Shuttle, approximately 20,000

sensors are telemetered once per second to Mission Control at Johnson

Space Center, Houston [59].

• In telecommunication, the AT&T long distance data stream consists of

approximately 300 million records per day from 100 million customers

[26].

• In astronomy, the MACHO Project to investigate the dark matter in the

halo of the Milky Way monitors photometrically several million stars [2].

The data rate is as high as several Gbytes per night.

8

• There are about 50,000 securities trading in the United States, and every

second up to 100,000 quotes and trades are generated [5].

As extremely large data sets grow more prevalent in a wide variety of set-

tings, we face the significant challenge of developing more efficient time series

analysis methods. To be scalable, these methods should be linear in time and

sublinear in space. Happily, this is often possible.

1. Data Reduction Because time series are observations made in sequence,

the relationship between consecutive data items in a time series gives data

analysts the opportunity to reduce the size of the data without substan-

tial loss of information. Data reduction is often the first step to tackling

massive time series data because it will provide a synopsis of the data. A

“quick and dirty” analysis of the synoptic data can help data analysts spot

a small portion of the data with interesting behavior. Further thorough

investigation of such interesting data can reveal the patterns of ultimate

interest. Many data reduction techniques can be used for time series

data. The Discrete Fourier Transform is a classic data reduction tech-

nique. Based on the Discrete Fourier Transform, researchers have more

recently developed the Discrete Wavelet Transform. Also, Singular Value

Decomposition based on traditional Principal Components Analysis is an

attractive data reduction technique because it can provide optimal data

reduction in some circumstances. Random projection of time series has

great promise and yields many nice results because it can provide approx-

imate answers with guaranteed bounds of errors. We will discuss these

techniques one by one in chap. 2.

9

2. Indexing Method To build scalable algorithms we must avoid a brute

force scan of the data. Indexing methods provide a way to organize data

so that the data with the interested properties can be retrieved efficiently.

The indexing method also organizes the data in a way so that the I/O cost

can be greatly reduced. This is essential to high performance discovery

from time series data. Indexing methods are the topic of chap. 3.

3. Transforms on Time Series To discover patterns from time series, data

analysts must be able to compare time series in a scale and magnitude

independent way. Hence, shifting and scaling of the time series amplitude,

time shifting and scaling of the time series and dynamic time warping of

time series are some useful techniques. They will be discussed in chap. 4.

10

Chapter 2

Data Reduction Techniques

From a data mining point of view, time series data has two important charac-

teristics:

1. High Dimensional If we think of each time point of a time series as

a dimension, a time series is a point in a very high dimensions. A time

series of length 1000 corresponds to a point in a 1000-dimensional space.

Though a time series of length 1000 is very common in practice, the data

processing in a 1000-dimensional space is extremely difficult even with

modern computer systems.

2. Temporal Order Fortunately, the consecutive values in a time series

are related because of the temporal order of a time series. For exam-

ple, for financial time series, the differences between consecutive values

will be within some predictable threshold most of the time. This tem-

poral relationship between nearby data points in a time series produces

some redundancy, and such redundancy provides an opportunity for data

reduction.

11

Data reduction [14] is an important data mining concept. Data reduction

techniques will reduce the massive data into a manageable synoptic data struc-

ture while preserving the characteristic of the data as much as possible. It is the

basis for fast analysis and discovery in a huge amount of data. Data reduction

is especially useful for massive time series data because the above two charac-

teristics of the time series. Almost all high-performance analytical techniques

for time series rely on some data reduction techniques. Because data reduction

for time series results in the reduction of the dimensionality of the time series,

it is also called dimensionality reduction for time series.

In this chapter, we will discuss the data reduction techniques for time se-

ries in details. We start in sec. 2.1 with Fourier Transform, which is the first

proposed time series data reduction technique in the data mining community

and is still widely used in practice. Wavelet Transform is a new signal pro-

cessing technique based on Fourier Transform. Not surprising, it also gains

popularity in time series analysis as it does in many other fields. We will dis-

cuss Wavelet Transform as a data reduction technique in sec. 2.2. Fourier

and Wavelet transforms are both based on orthogonal function family. Singular

value decomposition is provable the optimal data reduction technique based on

orthogonal function analysis. It is the topic in sec. 2.3. In sec. 2.4, we will

discuss a very new data reduction technique: random projection. Random pro-

jection is becoming a favorite for massive time series analysis because it is well

suited for massive data processing. We conclude this chapter with a detailed

comparison of these data reduction techniques.

12

2.1 Fourier Transform

Fourier analysis has been used in time series analysis ever since it was invented

by Baron Jean Baptiste Joseph Fourier in Napoleonic France. Traditionally,

there are two ways to analyze time series data: time domain analysis and fre-

quency domain analysis. Time domain analysis examines how a time series

process evolves through time, with tools such as autocorrelation functions. Fre-

quency domain analysis, also known as spectral analysis, studies how periodic

components at different frequencies describe the evolution of a time series. The

Fourier transform is the main tool for spectral analysis in time series. Moreover,

in time series data mining, the Fourier Transform can be used as a tool for data

reduction.

In this section, we give a quick tour of the Fourier transform with an em-

phasis on its applications to data reduction. The main virtues of the Fourier

Transform are:

• The Fourier Transform translates a time series into frequency components.

• Often, only some of those component have non-negligible values.

• From those significant components, we can reconstruct most features of

the original time series and compare different time series.

• Convolution, inner product and other operations are much faster in the

Fourier domain.

2.1.1 Orthogonal Function Family

In many applications, it is convenient to approximate a function by a linear

combination of basis functions. For example, any continuous function on a

13

compact set can be approximated by a set of polynomial functions. If the basis

functions are trigonometric functions, that is, sine and cosine functions, such

transform is called Fourier transform. Fourier transform is of particular interest

in time series analysis because of the simplicity and periodicity of trigonometric

functions.

First, we give the formal definition of orthogonal function family. This is not

only the basis of Fourier transform, but also the basis of other data reduction

techniques such as wavelet transform and singular value decomposition that we

will discuss in the later sections. In our discussion, we assume a function to be

a real function unless otherwise noted.

A function f is said to be square integrable on an interval [a, b] if the following

holds: ∫ b

a

f 2(x)dx < ∞. (2.1)

This is denoted by f ∈ L2([a, b]).

Definition 2.1.1 (Orthogonal Function Family) An infinite square inte-

grable function family {φi}∞i=0 is orthogonal on interval [a, b] if

∫ b

a

φi(x)φj(x)dx = 0, i 6= j, i, j = 0, 1, ... (2.2)

and ∫ b

a

|φi(x)|2dx 6= 0, i = 0, 1, ... (2.3)

The integral above is called the inner product of two functions.

Definition 2.1.2 (Inner Product of Functions) The inner product of two

14

real functions f(x) and g(x) 1 on interval [a, b] is

〈f(x), g(x)〉 =

∫ b

a

f(x)g(x)dx (2.4)

The norm of a function is defined as follows.

Definition 2.1.3 (Norm of Function) The norm of a function f(x) on in-

terval [a, b] is

||f(x)|| = 〈f(x), f(x)〉 1
2 =

(∫ b

a

f(x)f(x)dx
) 1

2
(2.5)

Therefore, {φi}∞i=0 is an orthogonal function family if

〈φi(x), φj(x)〉 = 0, for i 6= j (2.6)

〈φi(x), φi(x)〉 = ||φi(x)||2 6= 0 (2.7)

Also, if ||φi(x)||2 = 1 for all i, the function family is called orthonormal.

The following theorem shows how to represent a function as a linear combi-

nation of an orthogonal function family.

Theorem 2.1.4 Given a function f(x) and an orthogonal function family

{φi}∞i=0 on interval [a, b], if f(x) can be represented as follows:

f(x) =
∞∑
i=0

ciφi(x), (2.8)

where ci, i = 0, 1, ..., are constants, then ci, i = 0, 1, ..., are determined by:

ci =
〈f(x), φi(x)〉
〈φi(x), φi(x)〉 i = 0, 1, ... (2.9)

1For complex functions f(x) and g(x), their inner product is

〈f(x), g(x)〉 =
∫ b

a

f(x)g∗(x)dx

15

Proof In (2.8), if we take the inner product with φi(x) for both sides, we have

〈f(x), φi(x)〉 =
∞∑

j=0

cj〈φj(x), φi(x)〉. (2.10)

From (2.6) and (2.7), we have

〈f(x), φi(x)〉 = ci〈φi(x), φi(x)〉 (2.11)

Therefore, we have (2.9).

If {φi}∞i=0 is orthonormal, then (2.8) can be simplified as

ci = 〈f(x), φi(x)〉 i = 0, 1, ... (2.12)

Note that the above theorem only states that if a function can be repre-

sented as a linear combination of an orthogonal function family, how can we

decide the coefficients of the linear combination. The necessary and sufficient

condition for such a representation is derived from the theory of completeness

and convergence[97]. We will not get into the technical details here.

2.1.2 Fourier Series

To show that the trigonometric function family is orthogonal, we need the fol-

lowing lemma that the readers can verify themselves.

Lemma 2.1.5 For an integer n,

∫ π

−π

cos nxdx =





2π if n = 0

0 otherwise
, (2.13)

∫ π

−π

sin nxdx = 0. (2.14)

16

The next theorem states that the trigonometric function family is orthogonal

in [−π, π].

Theorem 2.1.6 Integers n,m ≥ 0 ,

∫ π

−π

cos nx cos mxdx =





2π m = n = 0

π m = n 6= 0

0 m 6= n

(2.15)

∫ π

−π

sin nx sin mxdx =





π m = n 6= 0

0 otherwise
(2.16)

∫ π

−π

cos mx sin nxdx = 0 (2.17)

Proof Trigonometry tells us

cos x cos y =
1

2

(
cos(x + y) + cos(x− y)

)
,

sin x sin y =
1

2

(
cos(x− y)− cos(x + y)

)
,

sin x cos y =
1

2

(
cos(x + y) + sin(x− y)

)
,

For m 6= n, from lemma 2.1.5 we have

∫ π

−π

cos nx cos mxdx

=

∫ π

−π

1

2

(
cos(n + m)x + cos(n−m)x

)
dx

=





∫ π

−π
1
2

(
cos 0 + cos 0

)
dx = 2π m = n = 0

∫ π

−π
1
2

(
cos 2nx + cos 0

)
dx = π m = n 6= 0

∫ π

−π
1
2

(
cos(n + m)x + cos(n−m)x

)
dx = 0 m 6= n

Similarly for other cases.

17

If we define a function family {φk}∞k=0 on interval [−π, π] as follows,





φ0(x) = 1

φ2i(x) = cos(ix)

φ2i−1(x) = sin(ix)

(2.18)

then {φk}∞k=0 is orthogonal.

Directly applying (2.9), we know that if a function on interval [−π, π] can

be represented by the orthogonal function family above, the coefficients can be

computed.

Similarly, for function defined on [−T/2, T/2], by replacing x with x
T/2

, we

can construct the following orthogonal function family.





φ0(x) = 1

φ2i(x) = cos
(

2πix
T

)

φ2i−1(x) = sin
(

2πix
T

)
(2.19)

Let f̃(x) be a function defined on [−T/2, T/2], we can extend f̃(x) to a

periodic function f(x) that is defined on (−∞,∞) with a period T . Notice

that the functions in (2.19) are all periodic with a period T . If f̃(x) defined on

[−T/2, T/2] can be represented as a linear combination of functions in (2.19),

then f(x) on (−∞,∞) can also be represented as a linear combination of func-

tions in (2.19). Therefore, we have the following theorem.

Theorem 2.1.7 If a periodic function f(x) with a period T defined on (−∞,∞)

can be represented as follows,

f(x) = a0 +
∞∑
i=1

[
ai cos

(2πix

T

)
+ bi sin

(2πix

T

)]
(2.20)

18

then

a0 =
1

T

∫ T/2

−T/2

f(x)dx

ai =
2

T

∫ T/2

−T/2

f(x) cos
(2πix

T

)
dx (2.21)

bi =
2

T

∫ T/2

−T/2

f(x) sin
(2πix

T

)
dx

Proof From theorem 2.1.4.

The above representation is called the infinite Fourier series representation

of f(x). For almost every periodic function in practice, their infinite Fourier

series representation exists.

Sometime it is more convenient to present the trigonometric functions as

complex exponential functions using the Euler relation. Let j =
√−1 denote

the basic imagine unit. The Euler relation is as follows.

cos x + j sin x = ejx

cos x = ejx+e−jx

2
(2.22)

sin x = ejx−e−jx

2

Let

φi(x) = e
j2πix

T , i ∈ Integer, (2.23)

the Fourier series complex representation of f(x) is

f(x) =
∞∑

i=−∞
cie

j2πix
T , (2.24)

where

ci =
1

T

∫

T

f(x)e−
j2πix

T dx. (2.25)

19

2.1.3 Fourier Transform

The Fourier series is defined only for periodic functions. For general functions,

we can still find their representations in the frequency domain. This requires

the Fourier Transform.

The formal definition of Fourier transform is stated in the following theorem.

Theorem 2.1.8 (Fourier Transform) Given a function f(x) of a real vari-

able x, if ∫ ∞

−∞
|f(x)|dx < ∞, (2.26)

then the Fourier transform of f(x) exists, and it is

F (ω) =
1√
2π

∫ ∞

−∞
f(x)e−jωxdx (2.27)

The inverse Fourier transform of F (ω) gives f(x):

f(x) =
1√
2π

∫ ∞

−∞
F (ω)ejωxdω (2.28)

f(t) and F (ω) are a Fourier transform pair, we denote this as

F (ω) = F [f(x)]

f(t) = F−1[F (ω)]

We will not discuss Fourier Transform here. Instead, we will discuss Discrete

Fourier Transform for time series in the next section. It should be noted that

many properties Fourier Transform are similar to the corresponding properties

of Discrete Fourier Transform.

20

2.1.4 Discrete Fourier Transform

Both the Fourier series and Fourier transform deal with functions. In time series

analysis, we are given a finite sequence of values observed in discrete time. We

cannot apply Fourier series or Fourier transform directly to time series. In this

section, we discuss the discrete Fourier transform for time series.

The discrete Fourier transform will map a sequence in the time domain into

another sequence in the frequency domain. Here is the definition of the Discrete

Fourier Transform.

Definition 2.1.9 (Discrete Fourier Transform) Given a time sequence ~x =

(x(0), x(1), ..., x(N − 1)), its Discrete Fourier Transform (DFT) is

~X = DFT (~x) = (X(0), X(1), ..., X(N − 1)),

where

X(F) =
1√
N

N−1∑
i=0

x(i)e−j2πFi/N F = 0, 1, ..., N − 1 (2.29)

The Inverse Discrete Fourier Transform (IDFT) of ~X, ~x = IDFT (~X), is given

by

x(i) =
1√
N

N−1∑
F=0

X(F)ej2πFi/N i = 0, 1, ..., N − 1 (2.30)

Note that ~X and ~x are of the same size. The DFT of a time series is another

time series. We will see that many operations on the time series and the time

series we get from the DFT are closely related.

We sometime denote the above relation as

X(F) = DFT (x(i)). (2.31)

If we set

WN = ej2π/N ,

21

the transforms can be written as

X(F) =
1√
N

N−1∑
i=0

x(i)W−Fi
N F = 0, 1, ..., N − 1, (2.32)

and

x(i) =
1√
N

N−1∑
F=0

X(F)W Fi
N i = 0, 1, ..., N − 1. (2.33)

We can also write the DFT and the IDFT in matrix form. Let

W =




W−0·0
N W−0·1

N . . . W
−0·(N−1)
N

W−1·0
N W−1·1

N . . . W
−1·(N−1)
N

...
...

. . .
...

W
−(N−1)·0
N W

−(N−1)·1
N . . . W

−(N−1)·(N−1)
N




(2.34)

and

W̄ =




W 0·0
N W 0·1

N . . . W
0·(N−1)
N

W 1·0
N W 1·1

N . . . W
1·(N−1)
N

...
...

. . .
...

W
(N−1)·0
N W

(N−1)·1
N . . . W

(N−1)·(N−1)
N




(2.35)

we have

~X = DFT (~x) = ~xW (2.36)

~x = IDFT (~X) = ~xW̄ (2.37)

If the time series X(F) and x(i) are complex, their real and imaginary parts

are real time series:

x(i) = xR(i) + jxI(i),

X(F) = XR(F) + jXI(F).

To compute the DFT, we use the following relation:

X(F)=
1√
N

N−1∑
i=0

(
xR(i)+jxI(i)

)[
cos

(2πFi

N

)
−i sin

(2πFi

N

)]
F = 0, 1, ..., N−1

(2.38)

22

Therefore,

XR(F) =
1√
N

N−1∑
i=0

[
xR(i) cos

(2πFi

N

)
+ xI(i) sin

(2πFi

N

)]
F = 0, 1, ..., N − 1

(2.39)

XI(F) =
1√
N

N−1∑
i=0

[
xI(i) cos

(2πFi

N

)
− xR(i) sin

(2πFi

N

)]
F = 0, 1, ..., N − 1

(2.40)

Similarly for the IDFT, we have

xR(i) =
1√
N

N−1∑
i=0

[
XR(F) cos

(2πFi

N

)
−XI(F) sin

(2πFi

N

)]
i = 0, 1, ..., N − 1

(2.41)

xI(i) =
1√
N

N−1∑
i=0

[
XI(F) cos

(2πFi

N

)
+ XR(F) cos

(2πFi

N

)]
i = 0, 1, ..., N − 1

(2.42)

The time series ~x =
(
x(0), x(1), ..., x(N − 1)

)
can be thought as samples

from a function f(x) on the interval [0, T] such that xi = f(i
N

T). Although the

Discrete Fourier Transform and Inverse Discrete Fourier Transform are defined

only over the finite interval [0, N − 1], in many cases it is convenient to imagine

that the time series can be extended outside the interval [0, N − 1] by repeating

the values in [0, N−1] periodically. When we compute the DFT based on (2.29),

if we extend the variable F outside the interval [0, N − 1], we will actually get

a periodical time series. A similar result holds for the IDFT. This periodic

property of the DFT and the IDFT is stated in the following theorem.

Theorem 2.1.10 (Periodicity) The Discrete Fourier Transform and Inverse

Discrete Fourier Transform are periodic with period N:

(a) X(F + N) = X(F) (2.43)

(b) x(i + N) = x(i) (2.44)

23

(c) X(N − F) = X(−F) (2.45)

(d) x(N − i) = x(−i) (2.46)

Proof (a)

X(F + N) =
1√
N

N−1∑
i=0

x(i)e−j2π(F+N)i/N

=
1√
N

N−1∑
i=0

x(i)e−j2πFi/Ne−j2πi

=
1√
N

N−1∑
i=0

x(i)e−j2πFi/N

= X(F)

(b)Similar to (a).

(c)

X(N − F) =
1√
N

N−1∑
i=0

x(i)e−j2π(N−F)i/N

=
1√
N

N−1∑
i=0

x(i)ej2π(−F)i/Ne−j2πi

=
1√
N

N−1∑
i=0

x(i)e−j2π(−F)i/N

= X(−F)

(d)Similar to (c).

Theorem 2.1.11 (Linearity) The Discrete Fourier Transform and Inverse

Discrete Fourier Transform are linear transforms. That is, if

x(i) = ay(i) + bz(i) (2.47)

24

then

X(F) = aY (F) + bZ(F) (2.48)

Proof This is obvious from (2.36) and the linearity of matrix multiplication.

Remember that the transform matrices W and W̄ are symmetric. This leads

to the symmetric properties of the DFT and the IDFT. The following theorems

state the symmetry relation of the DFT and the IDFT.

Theorem 2.1.12 (Symmetry 1)

(a) X(−F) = DFT (x(−i)) (2.49)

(b) X∗(F) = DFT (x∗(−i)) (2.50)

X∗ denotes the complex conjugate of X.

Proof (a)

DFT (x(−i)) = DFT (x(N − i))

=
1√
N

N−1∑
i=0

x(N − i)e−j2πFi/N

=
1√
N

N∑

k=1

x(k)e−j2πF (N−k)/N (k = N − i)

=
1√
N

N−1∑

k=0

x(k)e−j2πF (N−k)/N (periodicity)

=
1√
N

N−1∑

k=0

x(k)e−j2πF (−k)/N

= X(−F)

(b) Similar to (a).

25

Theorem 2.1.13 (Symmetry 2)

(a) If x(i) is even 2, then X(F) is even.

(b) If x(i) is odd 3, then X(F) is odd.

Proof (a) If x(i) is even, then x(i) = x(−i).

From 2.1.12,

DFT (x(−i)) = X(−F). (2.51)

Therefore

X(F) = DFT (x(i)) = DFT (x(−i)) = X(−F). (2.52)

So by definition, X(F) is even.

(b) Similar to (a).

Theorem 2.1.14 (Symmetry 3)

(a)If x(i) is real, then X(F) = X∗(−F).

(b) If X(F) is real, then x(i) = x∗(−i)

Proof (a)

X(−F) =
1√
N

N−1∑
i=0

x(i)W Fi
N (2.53)

Because x(i) is real, x∗(i) = x(i).

X∗(−F) =
1√
N

N−1∑
i=0

x∗(i)W−Fi
N

=
1√
N

N−1∑
i=0

x(i)W−Fi
N

= X(F)

2A sequence x(i) is even if and only if x(i) = x(−i).
3A sequence x(i) is odd if and only if x(i) = −x(−i).

26

(b) Similar to (a).

The following shifting theorem is very important for the fast computation

of the DFT and the IDFT.

Theorem 2.1.15 (Shifting) For n ∈ [0, N − 1], we have

(a) DFT
(
x(i− n)

)
= X(F)W−nF

N (2.54)

(b) IDFT
(
X(F − n)

)
= x(i)W ni

N (2.55)

Proof 1. In (2.29), substituting i− n for i, we have

DFT
(
x(i− n)

)
=

1√
N

N−1∑
i=0

x(i− n)W−Fi
N

=
1√
N

N−1−n∑

k=−n

x(k)W
−F (k+n)
N (k = i− n)

=
1√
N

N−1∑

k=0

x(k)W−Fk
N W−Fn

N

= X(F)W−Fn
N

2. Similar to 1.

Convolution and product are two important operations between pair of time

series. Their definitions are as follows.

Definition 2.1.16 (Convolution) The convolution of two time series

~x =
(
x(0), x(1), ..., x(N − 1)

)

and

~y =
(
y(0), y(1), ..., y(N − 1)

)

27

is another time series ~z =
(
z(0), z(1), ..., z(N − 1)

)
, where

z(i) =
N−1∑
n=0

x(n)y(i− n), i = 0, 1, ..., N − 1 (2.56)

Denoted as

~z = ~x⊗ ~y (2.57)

Note that in (2.56), y(i− n) = y(N + i− n) for i− n < 0. Therefore, such

a convolution is also known as a circular convolution. Actually, for convolution

the two time series need not to be of the same length. For time series of different

lengths, we can just pad the shorter time series with zeroes to make them the

same length.

Definition 2.1.17 (Product) The product of two time series ~x =
(
x(0), x(1), ..., x(N−1)

)
and ~y =

(
y(0), y(1), ..., y(N−1)

)
is another time series

~z =
(
z(0), z(1), ..., z(N − 1)

)
, where

z(i) = x(i)y(i), i = 0, 1, ..., N − 1 (2.58)

Denoted as

~z = ~x ∗ ~y (2.59)

It turns out that convolution and product are symmetric through the Fourier

Transform.

Theorem 2.1.18 (Convolution)

DFT
(
~x⊗ ~y

)
=
√

N ~X ∗ ~Y (2.60)

Proof DFT (~x⊗~y) is an N dimensional vector corresponding to F = 0, 1, ...N−
1. The F th element of of DFT (~x⊗ ~y) is

DFT (~x⊗ ~y)[F] =
1√
N

N−1∑
i=0

[N−1∑
n=0

x(n)y(i− n)
]
W−Fi

N .

28

Similarly, ~X ∗ ~Y is an N dimensional vector corresponding to F = 0, 1, ...N − 1.

The Fth element of ~X ∗ ~Y) is

~X ∗ ~Y [F] =
[1√

N

N−1∑
n=0

x(n)W−Fn
N

][1√
N

N−1∑

k=0

y(k)W−Fk
N

]

=
1

N

N−1∑
n=0

[N−1∑

k=0

x(n)y(k)W
−F (n+k)
N

]

=
1

N

N−1∑
n=0

[N+n−1∑
i=n

x(n)y(i− n)W−Fi
N

]
(i = k + n)

=
1

N

N−1∑
n=0

[N−1∑
i=0

x(n)y(i− n)W−Fi
N

]
(Periodicity : offset of n)

=
1

N

N−1∑
i=0

[N−1∑
n=0

x(n)y(i− n)
]
W−Fi

N

Therefore for each value of F, the two calculations are a factor of
√

N apart.

Hence

DFT
(
~x⊗ ~y

)
=
√

N ~X ∗ ~Y

Theorem 2.1.19 (Product)

DFT
(
~x ∗ ~y

)
=
√

N ~X ⊗ ~Y (2.61)

Proof Similar to the proof of theorem 2.1.18.

The time complexity to compute the convolution of time series of length n

is O(n2), while the complexity of the product is O(n). The above two theorems

connect convolution with product. Therefore, instead of computing convolution

directly, we can perform the DFT on the time series, compute their product

and perform the IDFT on the product. This will take time O(n) + T (n), where

29

T (N) is the time complexity of the DFT. In the next section we will show a Fast

Fourier Transform that takes time O(n log n), therefore the time complexity of

convolution can be reduced to O(n log n) by Fourier Transform.

Inner product is another important operations between pair of time series.

Definition 2.1.20 (Inner Product) The inner product of two time series

~x =
(
x(0), x(1), ..., x(N − 1)

)
and ~y =

(
y(0), y(1), ..., y(N − 1)

)
is

〈~x, ~y〉 =
N−1∑
i=0

x(i)y∗(i) (2.62)

The inner product between pair of real time series is just

〈~x, ~y〉 =
N−1∑
i=0

x(i)y(i) (2.63)

The following inner product theorem (also known as power theorem) says

that the Discrete Fourier Transform preserves the inner product between two

time series.

Theorem 2.1.21 (Inner Product)

〈~x, ~y〉 = 〈 ~X, ~Y 〉 (2.64)

Proof Let

~z = ~x⊗ ~y′,

where ~y′ =
(
y∗(−i)

)
. From theorem 2.1.12,

DFT (~y′) = ~Y ∗.

From definition 2.1.16,

z(0) =
N−1∑
n=0

x(−n)y′(n) =
N−1∑
n=0

x(−n)y∗(−n).

30

Therefore,

〈~x, ~y〉 =
N−1∑

k=0

x(k)y∗(k) =
N−1∑
m=0

x(−m)y∗(−m) = z(0). (2.65)

Also from therorem 2.1.18,

~Z = DFT
(
~z
)

=
√

NDFT
(
~x
) ∗DFT

(
~y′

)

=
√

N ~X ∗ ~Y ∗.

From (2.30),

z(0) =
1√
N

N−1∑
F=0

Z(F) =
N−1∑
F=0

X(F)Y ∗(F) = 〈 ~X, ~Y 〉. (2.66)

Comparing (2.65) and (2.66),we have

〈~x, ~y〉 = 〈 ~X, ~Y 〉

The reader should note that there are three notions of product being used

here: product(def.2.1.17), convolution(def.2.1.16) and inner product (def.2.1.20).

The results of product and convolution between time series are still time se-

ries. The product and convolution are related according to theorem 2.1.19 and

2.1.18.That is, the product of two time series is proportional to the inverse

Fourier Transform of the convolution of their Fourier Transforms. Similarly,

the convolution of two time series is proportional to the inverse Fourier Trans-

form of the product of their Fourier Transforms. By contrast, the inner product

of two time series is a number, which is the sum of the product between two

31

Table 2.1: Comparison of product, convolution and inner product

Name Operation Alternate computation method

convolution ~x⊗ ~y
√

NIDFT
(
DFT (~x) ∗DFT (~y)

)

product ~x ∗ ~y
√

NIDFT
(
DFT (~x)⊗DFT (~y)

)

inner product 〈~x, ~y〉 〈DFT (~x), DFT (~y)〉

time series. Because the Fourier Transform is orthonormal, the inner prod-

uct between two time series is the same as the inner product of their Fourier

Transforms. Table 2.1 compares the three products.

The energy of a real time series is defined as the sum of the square of each

item in the time series.

Definition 2.1.22 The energy of a time series ~x =
(
x(0), x(1), ..., x(N −1)

)
is

En(~x) = ||~x||2 =
N−1∑
i=0

x2(i). (2.67)

Obviously, we have

En(~x) = 〈~x, ~x〉. (2.68)

Finally but not last, the following Rayleigh Energy Theorem (Parseval’s

Theorem) states that the DFT preserves the energy of a time series.

Theorem 2.1.23 (Rayleigh Energy)

||~x||2 = || ~X||2 (2.69)

Proof In (2.64), let ~y = ~x, we have 〈~x, ~x〉 = 〈 ~X, ~X〉.

A direct consequence of the Rayleigh Energy Theorem is that the DFT

preserves the Euclidean distance between time series.

32

Theorem 2.1.24 (Euclidean distance) Let ~X = DFT (~x),~Y = DFT (~y),

||~x− ~y||2 = || ~X − ~Y ||2 (2.70)

2.1.5 Data Reduction Based on the DFT

Given a time series ~x and its approximation ~̃x, we can measure the quality of

the approximation by the Euclidean distance between them: d(~x, ~̃x) = ||~x−~̃x||2.
If d(~x, ~̃x) is close to zero, we know that ~̃x is a good approximation of ~x, that

is, the two time series has the same raw shape. Let ~xe = ~x − ~̃x be the time

series representing the approximation errors. The better an approximation of

time series ~x is, the closer the energy of ~xe is to zero, the closer between the

energy of ~x and ~̃x.

Because the DFT preserve the Euclidean distance between time series, and

because that for most real time series the first few coefficients contain most of

the energy, it is reasonable to expect those coefficients to capture the raw shape

of the time series [8, 34].

For example, the energy spectrum for the random walk series (also known as

brown noise or brownian walk), which models stock movements, declines with

a power of 2 with increasing coefficients. Figure 2.1 shows a time series of IBM

stock prices from 2001 to 2002 and its DFT coefficients. From theorem 2.1.14,

we know that for a real time series, its k-th DFT coefficient from the beginning

are the conjugates of its k-th coefficient from the end. This is verified in the

figure. We can also observe that the energy of the time series is concentrated in

the first few DFT coefficients (and also the last few coefficients by symmetry).

Birkhoff’s theory[85] claims that many interesting signals, such as musical

scores and other works of art, consist of pink noise, whose energy is concentrated

33

50 100 150 200 250

107.85

107.9

107.95

108

108.05

Time Series of IBM Stock Prices

50 100 150 200 250

-2

0

2

4

Real Part of the DFT Coefficients

50 100 150 200 250
-5

0

5

Imaginary Part of the DFT Coefficients

Figure 2.1: IBM stock price time series and its DFT coefficients

34

50 100 150 200 250

-2.1

-2.05

-2

Ocean Level Time Series

50 100 150 200 250

-3

-2

-1

0

Real Part of the DFT Coefficients

50 100 150 200 250

-5

0

5

Imaginary Part of the DFT Coefficients

Figure 2.2: Ocean level time series and its DFT coefficients. Data Source: UCR

Time Series Data Achieve [56].

35

in the first few frequencies (but not as few as in the random walk). For example,

for black noise, which successfully models series like the water level of a river as

it varies over time, the energy spectrum declines even faster than brown noise

with increasing number of coefficients. Figure 2.2 shows another time series of

the ocean level, which is an example of black noise. Its DFT coefficients are

also shown in the figure. We can see that the energy for this type of time series

is more concentrated than the brown noise.

Another type of time series is white noise, where each value is completely

independent of its neighbors. White noise series has the same energy in every

frequency, which implies that all the frequencies are equally important. For

pure white noise, there is no way to find a small subset of DFT coefficients that

capture most energy of the time series. We will discuss a random projection

method as a data reduction technique for time series having large coefficients

at all frequencies in sec. 2.5.

Data Reduction based on the DFT works by retaining only the first few DFT

coefficients of a time series as a concise representation of the time series. For time

series modeled by pink noise, brown noise and black noise, such a representation

will capture most energy of the time series. Note that the symmetry of DFT

coefficients for real time series means that the energy contained in the last few

DFT coefficients are also used implicitly.

The time series reconstructed from these few DFT coefficients is the DFT

approximation of the original time series. Figure 2.3 shows the DFT approxi-

mation of the IBM stock price time series. We can see that as we use more and

more DFT coefficients, the DFT approximation gets better. But even with only

a few DFT coefficients, the raw trend of the time series is still captured.

In fig. 2.4 we show the approximation of the ocean level time series with the

36

50 100 150 200 250

107.85
107.9

107.95
108

108.05

50 100 150 200 250

107.85
107.9

107.95
108

108.05

50 100 150 200 250

107.85
107.9

107.95
108

108.05

50 100 150 200 250

107.85
107.9

107.95
108

108.05

Figure 2.3: Approximation of IBM stock price time series with a DFT. From top

to bottom, the time series is approximated by 10,20,40 and 80 DFT coefficients

respectively.

37

50 100 150 200 250

-2.1

-2.05

-2

-1.95

50 100 150 200 250

-2.1

-2.05

-2

50 100 150 200 250

-2.1

-2.05

-2

50 100 150 200 250

-2.1

-2.05

-2

Figure 2.4: Approximation of ocean time series with a DFT. From top to bot-

tom, the time series is approximated by 10,20,40 and 80 DFT coefficients re-

spectively.

DFT. We can see that for black noise, fewer DFT coefficients than for brown

noise can approximate the time series with high precision.

2.1.6 Fast Fourier Transform

The symmetry of the DFT and the IDFT make it possible to compute the DFT

efficiently. Cooley and Tukey [23] published a fast algorithm for Discrete Fourier

Transform in 1965. It is known as Fast Fourier Transform (FFT). FFT is one

38

of most important invention in computational techniques in the last century. It

reduced the computation of the DFT significantly.

From (2.29), we can see that the time complexity of the DFT for a time

series of length n is O(n2). This can be reduced to O(n log n) using the FFT.

Let N = 2M , we have

W 2
N = e−j2π2/N = e−j2π/M = WM , (2.71)

WM
N = e−j2πM/N = e−jπ = −1, (2.72)

Define a(i) = x(2i) and b(i) = x(2i + 1), let their DFTs be A(F) = DFT
(
a(i)

)

and B(F) = DFT
(
b(i)

)
, we have

X(F) =
1√
N

N−1∑
i=0

x(i)W−Fi
N

=
1√
N

[M−1∑
i=0

x(2i)W−2Fi
N +

M−1∑
i=0

x(2i + 1)W
−(2i+1)F
N

]

=
1√
N

[M−1∑
i=0

x(2i)W−2Fi
M + W−F

N

M−1∑
i=0

x(2i + 1)W−2Fi
M

]

= A(F) + W−F
N B(F) (2.73)

If 0 ≤ F < M , then

X(F) = A(F) + W−F
N B(F) (2.74)

Because A(F) and B(F) have period M , for 0 ≤ F < M , we also have

X(F + M) = A(F + M) + W
−(F+M)
N B(F + M)

= A(F) + W−M
N W−F

N B(F)

= A(F)−W−F
N B(F) (2.75)

39

From the above equations, the Discrete Fourier Transform of a time series

x(i) with length N can be computed from the Discrete Fourier transform of two

time series with length N/2: a(i) and b(i).

Suppose that computing the FFT of a time series of length N takes time

T (N). Computing the transform of x(i) requires the transforms of a(i) and b(i),

and the product of W−F
N with B(F). Computing A(F) and B(F) takes time

2T (N/2), and the product of two time series with size N/2 takes time N/2.

Thus we have the following recursive equation:

T (N) = 2T (N/2) + N/2. (2.76)

Suppose that N = 2a for some integer a, solving the above recursive equation

gives

T (N) = O(N log N).

Therefore the Fast Fourier Transform for a time series with size N , where

N is a power of 2, can be computed in time O(N log N). For time series whose

size is not a power of 2, we can pad zeroes in the end of the time series and

perform the FFT computation.

2.2 Wavelet Transform

The theory of Wavelet Analysis was developed based on the Fourier Analysis.

Wavelet Analysis has gained popularity in time series analysis where the time

series varies significantly over time. In this section, we will discuss the basic

properties of Wavelet Analysis, with the emphasis on its application for data

reduction of time series.

40

2.2.1 From Fourier Analysis to Wavelet Analysis

The Fourier transform is ideal for analyzing periodic time series, since the basis

functions for Fourier approximation are themselves periodic. The support of the

basis Fourier vectors has the same length as the time series. As a consequence,

the sinusoids in Fourier transform are very well localized in the frequency, but

they are not localized in time. When we examine a time series that is trans-

formed to the frequency domain by Fourier Transform, the time information of

the time series become less clear, although the all the information of the time

series is still preserved in the frequency domain. For example, if there is a spike

somewhere in a time series, it is impossible to tell where the spike is by just

looking at the Fourier spectrum of the time series. We can see this with the

following example of ECG time series.

An electrocardiogram (ECG) time series is an electrical recording of the

heart and is used in the investigation of heart disease. An ECG time series

is characterized by the spikes corresponding to heartbeats. Figure 2.5 shows

an example of ECG time series and its DFT coefficients. It is impossible to

tell when the spikes occur from the DFT coefficients. We can also see that

the energy in frequency domain spread over a relatively large number of DFT

coefficients. As a result, the time series approximation using the first few Dis-

crete Fourier Transform coefficients can not give a satisfactory approximation

of the time series, especially around the spikes in the original time series. This

is demonstrated by fig. 2.6, which shows the approximation of the ECG time

series with various DFT coefficients.

To overcome the above drawback of Fourier Analysis, the Short Time Fourier

Transform (STFT)[73], also known as Windowed Fourier Transform, was pro-

41

50 100 150 200 250

-1

-0.8

-0.6

ECG Time Series

50 100 150 200 250

-2

-1

0

1

2

Real Part of the DFT Coefficients

50 100 150 200 250

-2

-1

0

1

2

Imaginary Part of the DFT Coefficients

Figure 2.5: An ECG time series and its DFT coefficinets

42

50 100 150 200 250

-1

-0.8

-0.6

50 100 150 200 250

-1

-0.8

-0.6

50 100 150 200 250

-1

-0.8

-0.6

50 100 150 200 250

-1

-0.8

-0.6

Figure 2.6: Approximations of ECG time series with DFT. From top to bottom,

the time series is approximated by 10,20,40 and 80 DFT coefficients respectively.

43

posed. To represent the frequency behavior of a time series locally in time,

the time series is analyzed by functions that are localized both in time and

frequency. The Short Time Fourier Transform replaces the Fourier transform’s

sinusoidal wave by the product of a sinusoid and a window that is localized

in time. Sliding windows of fixed size are imposed on the time series, and the

STFT computes the Fourier Transform in each window. This is a compromise

between the time domain and frequency domain analysis of time series. The

drawback of the Short Time Fourier Transform is that the sliding window size

has to be fixed and thus the STFT might not provide enough information of

the time series.

The Short Time Fourier Transform is further generalized to the Wavelet

Transform. In the Wavelet Transform, variable-sized windows replace the fixed

window size in STFT. Also the sinusoidal waves in Fourier Transform are re-

placed by a family of functions called wavelets . This results in a Time/Scale

Domain analysis of the time series. Scale defines a subsequence of time series

under consideration. The scale information is closely related to the frequency in-

formation. We will discuss more details of the wavelet analysis in the remaining

section.

In fig. 2.7, we compare the four views of a time series: Time Domain

analysis, Frequency Domain analysis by the Fourier Transform, Time/Frequency

Domain analysis by the Short Time Fourier Transform and Time/Scale Domain

analysis by the Wavelet Transform. In the Wavelet Transform, higher scales

correspond to lower frequencies. We can see that for the Wavelet Transform, the

time resolution is better for higher frequencies (smaller scales). By comparison,

for the Short Time Fourier Transform the frequency and time resolution are

independent.

44

Amplitude

Time

(a) Time Domain

Frequency

Amplitude

(b) Frequency Domain

Frequency

Time

(c) Time/Frequency Domain

Time

Scale

(d) Time/Scale Domain

Figure 2.7: Time series analysis in four different domains

45

2.2.2 Haar Wavelet

Let us start with the simplest wavelet, the Haar Wavelet. The Haar Wavelet is

based on the step function.

Definition 2.2.1 (step function) A step function is

χ[a,b)(x) =





1 if a ≤ x < b,

0 otherwise.

(2.77)

Definition 2.2.2 (Haar scaling function family) Let

φ(x) = χ[0,1)(x)

and

φj,k(x) = 2j/2φ(2jx− k) j, k ∈ Z, (2.78)

the collection {φj,k(x)}j,k∈Z is called the system of Haar scaling function family

on R.

Figure 2.8 shows some of the Haar scaling functions on the interval [0, 1].

Mathematically, the system of Haar scaling function family, φj,k, is generated by

the Haar scaling function φ(x) with integer translation of k (shift) and dyadic

dilation (product by the powers of two).

We can see that {φj,k(x)}k∈Z for a specific j are a collection of piecewise

constant functions. Each piecewise constant function has non-zero support of

length 2−j. As j increases, the piecewise constant functions become more and

more narrow. Intuitively, any function can be approximated a piecewise con-

stant function. It is not surprising that the system of Haar scaling function

family can approximate any function to any precision.

46

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

Figure 2.8: Sample Haar scaling functions of def. 2.2.2 on the interval [0, 1]:

from top to bottom (a)j = 0, k = 0; (b)j = 1, k = 0, 1; (c)j = 2, k = 0, 1;

(d)j = 2, k = 2, 3

47

Similarly, given a Haar wavelet function ψ(x), we can generate the system

of Haar wavelet function family.

Definition 2.2.3 (Haar wavelet function family) Let

ψ(x) = χ[0,1/2)(x)− χ[1/2,1)(x)

and

ψj,k(x) = 2j/2ψ(2jx− k) j, k ∈ Z, (2.79)

the collection {ψj,k(x)}j,k∈Z is called the system of Haar wavelet function family

on R.

Figure 2.9 shows some of the Haar wavelet functions on the interval [0, 1].

Please verify that they are orthonormal.

Theorem 2.2.4 The Haar wavelet function family on R is orthonormal.

2.2.3 Multiresolution Analysis

The Haar function family can approximate functions progressively. This demon-

strates the power of multiresolution analysis. To construct more complicated

wavelet systems, we need to introduce the concept of Multiresolution Analy-

sis, which we will describe briefly. For more information on Multiresolution

Analysis, please refer to [68, 95].

Definition 2.2.5 (Multiresolution Analysis) A multiresolution analysis (MRA)

on R is a nested sequence of subspaces {Vj}j∈Z of function L2 on R such that

1. For all j ∈ Z, Vj ⊂ Vj+1.

2. ∩j∈ZVj = {0}

48

0 0.2 0.4 0.6 0.8 1

-1

0

1

0 0.2 0.4 0.6 0.8 1

-1

0

1

0 0.2 0.4 0.6 0.8 1

-1

0

1

0 0.2 0.4 0.6 0.8 1

-2

0

2

0 0.2 0.4 0.6 0.8 1

-2

0

2

0 0.2 0.4 0.6 0.8 1

-2

0

2

0 0.2 0.4 0.6 0.8 1

-2

0

2

Figure 2.9: Sample Haar wavelet functions of def. 2.2.3 on the interval [0, 1]:

from top to bottom (a)j = 0, k = 0; (b)j = 1, k = 0, 1; (c)j = 2, k = 0, 1;

(d)j = 2, k = 2, 3

49

3. For a continuous function f(x) on R, f(x) ∈ ∪j∈ZVj.

4. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1.

5. f(x) ∈ V0 ⇒ f(x− k) ∈ V0.

6. There exists a function φ(x) on R, such that the {φ(x − k)}k∈Z is an

orthonormal basis of V0.

The first property of multiresolution analysis says that the space Vj is in-

cluded in space Vj+1. Therefore for any function that can be represented by the

linear combination of the basis functions of Vj, it can also be represented by the

linear combination of the basis functions of Vj+1. We can think of the sequence

of spaces Vj, Vj+1, Vj+2, ... as the spaces for a finer and finer approximations of

a function. In the Haar scaling function example, the basis functions of Vj are

{φj,k(x)}k∈z. Let the projection of f(x) on Vj be fj(x). fj(x) approximates

f(x) with a piecewise constant function where each piece has the length 2−j.

We call fj(x) the approximation function of f(x) at resolution level j. If we

add the detailed information at level j, dj(x), we can have the approximation

of f(x) at level j + 1. In general, we have

fj+1(x) = fj(x) + dj(x). (2.80)

In other words, the space Vj+1 can be decomposed into two subspaces Vj and

Wj with fj(x) ∈ Vj and dj(x) ∈ Wj. Wj is the detailed space at resolution j

and it is orthogonal to Vj. This is denoted by

Vj+1 = Vj ⊕Wj. (2.81)

50

We can expand the above equation as follows.

Vj+1 = Vj ⊕Wj

= Vj−1 ⊕Wj−1 ⊕Wj

= ...

= VJ ⊕WJ ⊕ ...⊕Wj−1 ⊕Wj J < j (2.82)

The above equation says that the approximation space at resolution j can be

decomposed into a set of subspaces. The subspaces include the approximation

space at resolution J, J < j, and all the detailed spaces at resolution between J

and j. In general, we can also show that Wj is orthogonal to Wk for all j 6= k.

The second property says that the intersection of all the resolution space is

the 0 space, which includes only the zero function. This can be interpreted as

follows. The approximation space will get coarser and coarser as j decreases.

When j → −∞, we cannot have any information of the function in the space.

For example, in the Haar wavelet space, if j → −∞, a function will be ap-

proximated by a constant function. That is the coarsest approximation space

possible. The requirement that the function must be square integrable gives the

zero function.

On the other hand, the third property states that any function can be ap-

proximated at a certain resolution. The reason is that as j →∞, we will have

the finest approximation. Any function can thus be approximated if we go up

to a certain resolution level.

The fourth property states that all the space must be scaled versions of

V0 and the fifth property states that all the space are invariant of translation.

51

These two properties imply that

f(x) ∈ V0 ⇒ f(2jx− k) ∈ Vj. (2.83)

The function φ(x) in the last property is called the scaling function of the

multiresolution analysis. From this function, we will construct the orthonormal

basis functions for the nested sequence of subspaces in multiresolution analysis.

2.2.4 Wavelet Transform

Based on multiresolution analysis, we can introduce the general theory of

wavelets. For simplicity, here we restrict ourselves to orthogonal wavelet. The

last property of multiresolution analysis says that the scaling function generate

the orthonormal basis functions for V0. In fact, it also generates the orthonormal

basis functions for Vj.

Theorem 2.2.6

{φj,k(x)}k∈Z (2.84)

is an orthonormal basis on Vj, where

φj,k(x) = 2j/2φ(2jx− k), (2.85)

Next we examine the relation between adjacent levels of resolution space.

Theorem 2.2.7 There exists a coefficient sequence {hk} such that

φ(x) = 21/2
∑

k

hkφ(2x− k). (2.86)

Proof We know that φ1,k(x) are orthonormal basis functions for V1. Because

V0 ⊂ V1 and φ(x) ∈ V0, we have the following dilation equation:

φ(x) =
∑

k

hkφ1,k(x) = 21/2
∑

k

hkφ(2x− k). (2.87)

52

Because φ1,k(x) are orthonormal basis functions,

hk = 〈φ1,k(x), φ(x)〉 = 21/2

∫ ∞

−∞
φ(x)φ(2x− k)dx. (2.88)

The coefficient sequence {hk} is called the scaling filter.

Symmetric to the scaling function φ(x), a wavelet function ψ(x) is designed

to generate the orthonormal basis function for the detailed space Wj. That is,

{ψj,k(x)}k∈Z

is the orthonormal basis functions for the detailed space Wj, where

ψj,k(x) = 2j/2ψ(2jx− k). (2.89)

We will not get into the detail of how to design the wavelet function ψ(x)

given the scaling function φ(x). Instead, we will infer some properties of the

wavelet function based on the above assertion.

From W0 ⊂ V1, ψ(x) ∈ W0, and the fact that φ1,k(x) are orthonormal basis

functions for V1, we have the following wavelet equation:

ψ(x) =
∑

k

gkφ1,k(x) = 21/2
∑

k

gkφ(2x− k). (2.90)

Because φ1,k(x) are orthonormal basis functions,

gk = 〈φ1,k(x), ψ(x)〉 = 21/2

∫ ∞

−∞
ψ(x)φ(2x− k)dx. (2.91)

The coefficient sequence {gk} is called the wavelet filter.

The following theorem gives the connection between the scaling filter {hk}
and the wavelet filter {gk}.

53

Theorem 2.2.8 Given a scaling filter hk, the wavelet filter gk is

gk = (−1)kh∗1−k (2.92)

The scaling functions at adjacent levels of resolution space are connected by

the scaling filter. Similarly, the wavelet filter bridges the wavelet functions in

adjacent resolution levels. This is stated by the following theorem.

Theorem 2.2.9

(a) φj−1,k(x) =
∑

l

hl−2kφjl(x) (2.93)

(b) ψj−1,k(x) =
∑

l

gl−2kφjl(x) (2.94)

Proof (a) Because Vj−1 ⊂ Vj, basis function φj−1,k of Vj−1 can be represented

by φj,k .

φj−1,k(x) =
∑

l

〈φjl, φj−1,k〉φjl(x), (2.95)

and

〈φjl, φj−1,k〉 =

∫ ∞

−∞
2j/22(j−1)/2φ(2jx− l)φ(2j−1x− k)dx

= 21/2

∫ ∞

−∞
φ(2jx− l)φ(2j−1x− k)2j−1dx

= 21/2

∫ ∞

−∞
φ(2u + 2k − l)φ(u)du (u = 2j−1x− k)

= hl−2k (from(2.88))

(b) Because Wj−1 ⊂ Vj, basis function ψj−1,k of Wj−1 can be represented by

φj,k .

ψj−1,k(x) =
∑

l

〈ψjl, φj−1,k〉φjl(x), (2.96)

54

and

〈φjl, ψj−1,k〉 =

∫ ∞

−∞
2j/22(j−1)/2φ(2jx− l)ψ(2j−1x− k)dx

= 21/2

∫ ∞

−∞
φ(2jx− l)ψ(2j−1x− k)2j−1dx

= 21/2

∫ ∞

−∞
φ(2u + 2k − l)ψ(u)du (u = 2j−1x− k)

= gl−2k (from(2.91))

Because {ψj,k(x)}k∈Z is the orthonormal basis functions for the detailed

space Wj, from (2.82), we have the following theorem.

Theorem 2.2.10

{ψj,k(x)}j,k∈Z (2.97)

is a wavelet orthonormal basis on R.

Given any J ∈ Z,

{φJ,k(x)}k∈Z ∪ {ψj,k(x)}j>J,k∈Z (2.98)

is also an orthonormal basis on R.

From theorem 2.2.10, any function f(x) ∈ L2(R) can be uniquely repre-

sented as follows.

f(x) =
∑

j,k∈Z

〈f, ψj,k〉ψj,k(x) (2.99)

This is called the Wavelet Transform of function f(x).

From multiresolution analysis analysis, we know that a function f(x) can be

approximated by multilevel resolution. Supposed that fj(x) is the approxima-

tion at level j, we have

fj(x) =
∑

k

fjkφjk(x) (2.100)

55

where

fjk = 〈φjk, f〉 = 〈φjk, fj〉. (2.101)

Let us represent fj(x) by its approximation and details at level j − 1:

fj(x) = fj−1(x) + dj−1(x) =
∑

k

fjkφjk(t) +
∑

k

djkψjk(t). (2.102)

The wavelet transform of a function f(x) is to compute fjk and djk from f(x).

We have the following theorem for wavelet transform.

Theorem 2.2.11

(a) fj−1,k =
∑

l

hl−2kfjl (2.103)

(b) dj−1,k =
∑

l

gl−2kfjl (2.104)

Proof (a) From fj−1 ∈ Vj−1 we get

fj−1(x) =
∑

k

fj−1,kφj−1,k(x) (2.105)

where

fj−1,k = 〈φj−1,k, f〉

= 〈
∑

l

hl−2kφjl, f〉

=
∑

l

hl−2k〈φjl, f〉

=
∑

l

hl−2kfjl

(b)Similarly,from dj−1 ∈ Wj−1 we get

dj−1(x) =
∑

k

dj−1,kψj−1,k(x) (2.106)

56

where

dj−1,k = 〈ψj−1,k, f〉

= 〈
∑

l

gl−2kφjl, f〉

=
∑

l

gl−2k〈φjl, f〉

=
∑

l

gl−2kfjl

There are two interesting observations we can make from theorem 2.2.11.

First, the wavelet coefficients in the coarser level, fj−1,k and dj−1,k, can be

computed from the wavelet coefficients in its next finer level, fjk. This also

reflects the multiresolution analysis nature of wavelet transform. Second, in

the above computation, we do not use the scaling function or wavelet function

directly. All we need is the scaling and wavelet filters. This is the basis for the

fast wavelet computation method we will discuss in section 2.2.5.

The Inverse Wavelet Transform will reconstruct a function at approximation

level j from its approximation and detailed information at resolution level j−1.

The following theorem gives the reconstruction formula.

Theorem 2.2.12

fjk =
∑

l

hk−2lfj−1,k +
∑

l

gk−2ldj−1,k (2.107)

Proof From Vj = Vj−1 ⊕Wj−1,

φjk(x) =
∑

l

〈φj−1,l, φjk〉φj−1,l(x) +
∑

l

〈ψj−1,l, φjk〉ψj−1,l(x)

=
∑

l

hk−2lφj−1,l(x) +
∑

l

gk−2lψj−1,l(x) (2.108)

57

Therefore

fjk = 〈φjk, f〉

=
∑

l

hk−2l〈φj−1,l, f〉+
∑

l

hk−2l〈ψj−1,l, f〉

=
∑

l

hk−2lfj−1,k +
∑

l

gk−2ldj−1,k

Similar to the wavelet transform, the inverse wavelet transform computa-

tion requires only scaling and wavelet filters, instead of the scaling and wavelet

function.

2.2.5 Discrete Wavelet Transform

Time series can be seen as the discretization of a function. After a quick review

of the wavelet transform for functions, in this section we will discuss Discrete

Wavelet Transform for time series.

First we give a concrete example of how to compute the Discrete Wavelet

Transform for Haar wavelets.

The Haar Wavelet Transform is the fastest to compute and easiest to imple-

ment in the wavelet family. Suppose we have a time series of length 8;

S = (1, 3, 5, 11, 12, 13, 0, 1).

To perform a wavelet transform on the above series, we first average the signal

pairwise to get the new lower-resolution signal with value

(2, 8, 12.5, 0.5).

58

Table 2.2: Haar Wavelet decomposition tree

Resolution a1 a2 a3 a4 a5 a6 a7 a8

3 a1+a2√
2

a3+a4√
2

a5+a6√
2

a7+a8√
2

a1−a2√
2

a3−a4√
2

a5−a6√
2

a7−a8√
2

2 a1+a2+a3+a4

2
a5+a6+a7+a8

2
(a1+a2)−(a3+a4)

2
(a5+a6)−(a7+a8)

2

1 a1+a2+a3+a4+a5+a6+a7+a8

2
√

2

(a1+a2+a3+a4)−(a5+a6+a7+a8)

2
√

2

To recover the original time series from the four averaged values, we need to

store some detail coefficients, i.e., the pairwise differences

(−1,−3,−0.5,−0.5).

Obviously, from the pairwise average vector and the pairwise difference vec-

tor we can reconstruct the original time series without loss of any information.

These two vectors are normalized with a factor
√

2. After decomposing the orig-

inal time series into a lower resolution version with half of the number of entries

and a corresponding set of detail coefficients, we repeat this process recursively

on the average to get the full decomposition.

In general, the Haar wavelet decomposition tree is shown in table 2.2. From

the analysis above, we know that the Haar wavelet decompositon tree capture

all the information of the original time series. Table 2.3 shows the Haar wavelet

decomposition tree. The averages of the highest resolution level and the details

of all the resolution levels are the DWT of the time series. In our example, the

DWT of (1, 3, 5, 11, 12, 13, 0, 1) is therefore

(16.2635,−2.1213,−6.0000, 12.0000,−1.4142,−4.2426,−0.7071,−0.7071).

We can see that the for a time series of length n, the time complexity of the

Haar wavelet transform is O(n).

59

Table 2.3: An example of a Haar Wavelet decomposition

Averages Details

4 1 3 5 11 12 13 0 1

3 2.8284 11.3137 17.6777 0.7071 -1.4142 -4.2426 -0.7071 -0.7071

2 10.0000 13.0000 -6.0000 12.0000

1 16.2635 -2.1213

For the discrete wavelet transform based on other wavelet family, the basic

operations are similar to the process of continuous wavelet transform in theorem

2.2.11 and theorem 2.2.12. The theory of discrete wavelet transform is closely

related to the Quadrature Mirror Filter (QMF) theory. We will not get into

the technical details here. The reader should look at the excellent book by

Mallat[68]. Here we just give the practical algorithm for computing the discrete

wavelet transform.

In the continuous wavelet transform, we have function fj(x) ∈ Vj and ap-

proximate fj(x) in the Vj−1, Vj−2, ... progressively:

fj(x) = fj−1(x) + dj−1(x)

= fj−2(x) + dj−2(x) + dj−1(x)

= fJ(x) + dJ(x) + dJ+1(x) + ... + dj−1(x) J < j (2.109)

Similarly, suppose that a time series representation of a function fj(x) is ~fj,

i.e, ~fj is derived from fj(x) by sampling in a finite interval. Discrete Wavelet

Transform will produce the approximate time series ~fj−1, ~fj−2, ..., ~fJ and the

detail time series ~dj−1, ~dj−2, ..., ~dJ from ~fj.

Any wavelet family is defined by four filters: decomposition low-pass filter

{dL
n}, decomposition high-pass filter {dH

n }, reconstruction low-pass filter {rL
n}

60

and reconstruction high-pass filter {rH
n }. These filters are closely related to the

scaling and wavelet filters in section 2.2.4. These filters can be seen as time series

too. The Discrete Wavelet Transform and Inverse Discrete Wavelet Transform

are performed by convolution with filters, downsampling and upsampling.

Definition 2.2.13 (Downsampling) Downsampling is to keep the time series

data with even indices. Given time series (x(1), x(2), ..., x(n)), its downsampling

is the time series (x(2), x(4), ..., x(bn/2c)).

Definition 2.2.14 (Upsampling) Upsampling is just to insert 0 between af-

ter every data point in the time series except the last. Given time series

(x(1), x(2), ..., x(n)), its upsampling is the time series (x(1), 0, x(2), 0, x(3), ...,

x(n− 1), 0, x(n)).

The convolution of a time series ~fj with a decomposition low-pass filter {dL
n}

yields the approximation of the time series ~̂fj−1 at a coarser level. Also the

convolution of ~fj with a decomposition high-pass filter {dH
n } yields the details

of the time series ~̂dj−1. The downsampling on ~̂fj−1 gives a new time series ~fj−1.

The downsampling on ~̂dj−1 gives ~dj−1. This process is repeated for ~fj−1 until we

reach some resolution level J . ~dj−1, ~dj−2, ..., ~dJ and ~fJ are the Discrete Wavelet

Transform of ~fj. Figure 2.10 shows the procedure for the Discrete Wavelet

Transform.

From ~dj−1, ~dj−2, ..., ~dJ and ~fJ we can also reconstruct the original time series

~fj using the reconstruction filters. This process is called the Inverse Discrete

Wavelet Transform. First we upsample the time series ~fJ to get a new time

series ~̂fJ . We also upsample the time series ~dJ to get a new time series ~̂dJ . The

sum of the convolution of ~̂fJ with {rL
n} and the convolution of ~̂dJ with {rH

n }

61

fj

⊗dH
n

fj-1 ⊗dL
n

dj-1

⊗dH
n

fj-2 ⊗dL
n

dj-2

means downsample.

Figure 2.10: Discrete Wavelet Transform with filters and downsampling

yields ~fJ+1, the approximation at level J + 1. This process is repeated until

we reconstruct ~fj. Figure 2.11 shows the procedure of Inverse Discrete Wavelet

Transform.

The above algorithm is also called the Fast Wavelet Transform algorithm

or pyramid algorithm. The efficiency of the wavelet transform is superior to

the Fast Fourier Transform. For a time series of length n, the Fourier trans-

form takes times O(n2) and FFT takes time O(n log n). In general, the time

complexity of the Fast Wavelet Transform is O(n).

One of the most popular wavelet families is the Daubechies wavelet family

created by Daubechies[30]. The names of the Daubechies family wavelets are

written as dbN , where N is the order. The Haar wavelet is actually a Daubechies

wavelet with order 1, i.e., db1. The filters for the Haar wavelet are as follows.

dL
n =

{ 1√
2
,

1√
2

}
, dH

n =
{
− 1√

2
,

1√
2

}

rL
n =

{ 1√
2
,

1√
2

}
, rH

n =
{ 1√

2
,− 1√

2

}
(2.110)

The reader can verify that the Haar DWT can be done by the convolution of

62

fj-1

dj-1

fj-2 ⊗rL
n

dj-2 ⊗rH
n fj

⊗rL
n

⊗rH
n

means upsample.

Figure 2.11: Inverse Discrete Wavelet Transform with filters and upsampling

the filters above.

As the order increases, the length of the filters increases. The filters for the

popular Daubechies-2(db2) are as follows.

dL
n =

{1−√3

4
√

2
,
3−√3

4
√

2
,
3−√3

4
√

2
,
1 +

√
3

4
√

2

}

dH
n =

{
− 1 +

√
3

4
√

2
,
3−√3

4
√

2
,−3−√3

4
√

2
,
1−√3

4
√

2

}

rL
n =

{1 +
√

3

4
√

2
,
3−√3

4
√

2
,
3−√3

4
√

2
,
1−√3

4
√

2

}

rH
n =

{1−√3

4
√

2
,−3−√3

4
√

2
,
3−√3

4
√

2
,−1 +

√
3

4
√

2

}
(2.111)

Because the wavelet basis functions are orthonormal, we can also think of

DWT as an orthogonal transformation. Given a time series ~x = ~fj of length

n = 2N , its DWT coefficients are ~dj−1, ~dj−2, ..., ~dJ and ~fJ . If we write these

coefficients in vector form:

~X = (~dj−1, ~dj−2, ..., ~dJ , ~fJ), (2.112)

63

the DWT can be written as follows.

~X = ~xW. (2.113)

The size of ~X is also n. The transform matrix W is an n× n matrix. W is an

orthonormal matrix. Each column of W is an orthonormal basis vector for Rn.

Given the filters of a wavelet, we can compute its transform matrix W.

Considering a canonical basic vector of size n ~ei = (0 ... 0 1 0 ... 0), where the

i-th element is 1. Also we have

~x =
(
x(0), x(1), ..., x(n)

)
=

n∑
i=1

x(i)~ei. (2.114)

From the decomposition low-pass filter {dL
n} and decomposition high-pass fil-

ter {dH
n } of a wavelet transform, we can compute the DWT of ~ei, ci =

(ci(1), ci(n), ..., ci(n)) = DWT (~ei). Obviously, the DWT is a linear transform,

therefore,

~X = DWT (~x) =
n∑

i=1

x(i)DWT (~ei) =
n∑

i=1

x(i)~ci. (2.115)

In matrix form, this is

~X = (x(0), x(1), ..., x(n))




~c1

~c2

...

~cn




= ~xW, (2.116)

where

W =




c1(1) c1(2) . . . c1(n)

c2(1) c2(2) . . . c2(n)

...
...

. . .
...

cn(1) cn(2) . . . cn(n)




. (2.117)

64

2.2.6 Data Reduction Based on DWT

As we approximate a time series at higher and higher resolution, the wavelet

coefficients of a time series in the higher resolution get closer and closer to zero.

To use a Discrete Wavelet Transform as a data reduction tool for time series, we

will keep only the DWT coefficients in the coarser approximation level. Thus

we will have a time series representation that can capture the trend of the time

series.

In fig. 2.12 we show the approximation of a random walk time series with

the Haar wavelet. The time series approximation at the top is reconstructed

from the coarsest level of approximation and three levels of details. In the figure

from top to bottom, the approximations have one more level of details.

In fig. 2.13 we show the approximation of a random walk time series with

the db2 wavelet. In contrast to the Haar wavelet, the approximation here is

not piecewise constant. The approximation is smoother. In general, the db2

wavelet can approximate continuous functions, and thus time series that is more

continuous, better than the Haar wavelet.

For the same wavelet family, as the order increase, the scaling and wavelet

functions become more continuous. The approximation with higher order

wavelet is therefore more continuous. This is demonstrated in the following

example. In fig. 2.14, we show the approximation of the same time series with

another wavelet family: Coiflets wavelet.

As we can see from fig. 2.12, the approximation of a time series with Haar

wavelet results in a approximation that is a few segments of sequences of equal

length, and each segment is approximated by the average value of the original

time series that fall in the segments. This could be generalized to Piecewise

65

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db1

Figure 2.12: Approximations of a random walk time series with the Haar

wavelet. From top to bottom are the time series approximations in resolution

level 3,4,5 and 6 respectively.

66

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with db2

Figure 2.13: Approximations of a random walk time series with the db2 wavelet.

From top to bottom are the time series approximations in resolution level 3,4,5

and 6 respectively.

67

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with coif1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with coif2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with coif3

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

V
al

u
e

Original Time Series
Approximation with coif4

Figure 2.14: Approximations of a random walk time series with the coif wavelet

family. From the top to the bottom, the time series is approximated by

coif1, coif2, coif3 and coif4 respectively.

68

0 50 100 150 200
0

0.5

1

0 50 100 150 200

0

0.5

1

0 50 100 150 200

0

0.5

1

0 50 100 150 200

0

0.5

1

0 50 100 150 200

0

0.5

1

0 50 100 150 200

0

0.5

1

0 50 100 150 200

0

0.5

1

0 50 100 150 200
0

0.5

1

Figure 2.15: The basis vectors of a time series of size 200

Aggregate Approximation (PAA), which is proposed by Yi and Faloutsos[100],

and Keogh et al. [55] independently.

The Piecewise Aggregate Approximation as a data reduction method will

divide a time series of length n into k segments of equal length4, and keep

the average values of each segment as the PAA coefficients. It is trivial to

reconstruct the time series approximation giving the PAA coefficients. In fig.

2.15, we shows the basis vectors of a PAA that keep 8 segments for a time series

of length 200.

The transformation based on PAA is very fast. PAA is easy to understand

and implement. Simple as it is, PAA is very flexible in approximating the

distance between time series.

4Padding zeroes at the end of the time series if necessary.

69

Yi and Faloutsos [100] show that such a data reduction can be used for

arbitrary Lp distance 5approximation. Keogh et al. [55] show that PAA can be

used for weighted Euclidian distance. Combining their results, we conclude that

PAA can also used for weighted Lp distance.

We have shown how to use different families of Discrete Wavelet Transform

to approximate a time series. In the above examples, the DWT coefficients we

keep are the approximate wavelet coefficients in the highest level and the detail

wavelet coefficients in the higher levels. Such approximation catches the trends

of the time series, but lose some detail information of the time series. Of course,

this is not the only way of DWT approximation.

Another way of Discrete Wavelet Transform approximation is to keep the

most significant DWT coefficients. In fact this is provably the optimal way to

retain the energy of time series given a specific wavelet transform.

Remember that the wavelet transform is orthonormal, and it preserves the

energy of the time series. Given a time series ~x = (x(1), x(2), ..., x(n)) and its

DWT coefficients ~X = (X(1), X(2), ..., X(n)), we have

En(~x) = En(~X) =
n∑

i=1

X2(n).

Therefore the best way to retain the energy of a time series with only k, k < n,

DWT coefficients is to keep the k most significant DWT coefficients, i.e., the

coefficients with the top k absolute values.

Figure 2.16 compares the Haar Wavelet approximations of an ECG time

series with the first few coefficients and the most significant coefficients. We

5Lp distance between time series ~x and ~y is defined as

||~x− ~y||p =
(∑

i

|xi − yi|p
) 1

p

70

can see that by choosing the coefficients adaptively based on their significance,

we can approximate the important details, the spikes in this example, much

better.

Of course the adaptive DWT approximation comes with a price. Because

different time series have significant coefficients in different places, indexing time

series with such dynamic DWT coefficients becomes much harder, thought still

possible[54].

2.3 Singular Value Decomposition

The Discrete Fourier Transform and the Discrete Wavelet Transform of different

wavelet families are all based on the orthogonal transform of time series. We

choose the orthogonal basis vectors based on the nature of the time series and

keep a few coefficients of the transform to approximate the original time series.

One might wonder whether there is an optimal orthogonal transform that is

the best in approximating the original time series with as few coefficients as

possible. The answer is positive. It is the Singular Value Decomposition.

2.3.1 Existence and Uniqueness of Singular Value De-

composition

First we introduce the concept of Singular Value Decomposition. For more

details about SVD, the readers can refer to [80].

Consider a collection of m time series ~xi, i = 1, 2, ..., m, each time series has

the same length n: ~xi = (xi(1), xi(2), ..., xi(n)). We can write such a collection

71

50 100 150 200 250

-1

-0.8

-0.6

50 100 150 200 250

-1

-0.8

-0.6

50 100 150 200 250

-1

-0.8

-0.6

50 100 150 200 250

-1

-0.8

-0.6

Figure 2.16: Approximation of a ECG time series with the DWT. From the

top to the bottom, the time series is approximated by (a) the first 20 Haar

coefficients; (b) the 5 most significant coefficients; (c) the 10 most significant

coefficients; (d) the 20 most significant coefficients.

72

of time series in the following matrix form:

Am×n =




~x1

~x2

...

~xm




=




x1(1) x1(2) . . . x1(n)

x2(1) x2(2) . . . x2(n)

...
...

. . .
...

xm(1) xm(2) . . . xm(n)




. (2.118)

If we define S , AAT , then Sm×m is a symmetric positive semidefinite ma-

trix. From the basic theorems in linear algebra, we know that for any symmetric

matrix S, there exist m linearly independent eigenvectors ~U1, ~U2, ..., ~Um and m

eigenvalues λ1, λ2, ..., λm, such that

S~Ui = λi
~Ui, i = 1, 2, ..., m. (2.119)

The eigenvectors ~Ui, i = 1, 2, ...,m can be chosen to be orthonormal. Because S

is positive semidefinite, the eigenvalues are non-negative: λi ≥ 0, i = 1, 2, ..., m.

We can also choose to make the eigenvalues non-decreasing.

λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0.

Let the rank of S be d. Remember that the rank d of a matrix S is the

number of linearly independent row vectors in S. (Actually d is also the number

of linearly independent column vectors in S.) Obviously, we have d ≤ m. If S

is singular, i.e., d < m, then

λd+1 = λd+2 = ... = λm = 0.

We also define a collection of vectors {~Vi} as follows.

~Vi =
1√
λi

AT ~Ui, i = 1, 2, ..., d. (2.120)

The following properties of {~Vi} and {~Ui} are not hard to prove using ele-

mentary linear algebra.

73

Lemma 2.3.1 {~Vi}i=1,2,...,d are orthonormal.

Proof

〈AT ~Ui,A
T ~Uj〉 = ~UT

i AAT ~Uj = ~UT
i S~Uj

= λj
~UT

i
~Uj = λj〈~Ui, ~Uj〉

Because {~Ui}i=1,2,...,d are orthonormal, {~Vi}i=1,2,...,d are also orthonormal.

Lemma 2.3.2 AT ~Ui = ~0n for i > d, where ~0n is zero vector of size n.

Proof Because i > d, we have λi = 0.

||AT ~Ui||2 = 〈AT ~Ui,A
T ~Ui〉 = λi〈~Ui, ~Ui〉 = 0

Therefore,

AT ~Ui = ~0n.

Lemma 2.3.3 ~Vi is the eigenvector of the matrix ATA with the eigenvalue λi,

i.e.,

ATA~Vi = λi
~Vi, i = 1, 2, ..., d. (2.121)

Proof

ATA~Vi =
1√
λi

ATAAT ~Ui =
1√
λi

ATS~Ui

=
√

λiA
T ~Ui = λi

~Vi

Lemma 2.3.4

~Ui =
1√
λi

A~Vi, i = 1, 2, ..., d. (2.122)

74

Proof

A~Vi =
1√
λi

AAT ~Ui =
1√
λi

S~Ui =
√

λi
~Ui

With the above lemmas, we are now ready to prove the following theorem

that states the existence of Singular Value Decomposition for any matrix.

Theorem 2.3.5 (Existence of Singular Value Decomposition)

A =
d∑

i=1

√
λi

~Ui
~V T

i (2.123)

Proof Because the eigenvectors {~Ui}i=1,2,...,m are orthonormal, we have

Im×m =
m∑

i=1

~Ui
~UT

i . (2.124)

Therefore,

A = Im×mA

=
m∑

i=1

~Ui
~UT

i A

=
m∑

i=1

~Ui(A
T ~Ui)

T

=
d∑

i=1

√
λi

~Ui
~V T

i +
m∑

i=d+1

~Ui(A
T ~Ui)

T (lemma 2.3.2)

=
d∑

i=1

√
λi

~Ui
~V T

i

Equation (2.123) is called the singular value decomposition(SVD) of the ma-

trix A.
√

λi, i = 1, 2, ..., d are the singular values of A. The vectors {~Ui}i=1,2,...,d

75

and {~Vi}i=1,2,...,d are the left singular vectors and right singular vectors of the

decomposition respectively.

The singular value decomposition of a matrix A always exists, no matter

how singular A is.

The singular value decomposition of a matrix A is “almost” unique. Of

course, if λi = λi+1, (~Vi, ~Ui) and (~Vi+1, ~Ui+1) can be interchanged in (2.123).

Also, if (~Vi, ~Ui) is a singular vector pair, then it can be replaced by (−~Vi,−~Ui)

in (2.123) too. The SVD of a matrix A is unique in the following senses:

• The singular values are uniquely decided by A.

• If all the singular values are different, the corresponding singular vector

pairs are uniquely decided if we choose the sign of one vector of the singular

vector pair.

The proof of the uniqueness of SVD can be found in [40], and we omit it here.

The Singular Value Decomposition (2.123) can also be written in the follow-

ing matrix form.

A = UΛVT , (2.125)

where

U = (~U1, ~U2, ..., ~Ud), Λ =




√
λ1

√
λ1

. . .
√

λd




, VT =




~V T
1

~V T
2

...

~V T
d




.

(2.126)

Remember that A is a m × n matrix, ~Ui is column vector of size m and ~Vi

is column vector of size n. Therefore U is a m× d matrix, Λ is a d× d matrix,

and VT is a d× n matrix.

76

As a toy example of SVD,let us consider four time series (1, 1, 1, 0, 0),

(2, 2, 2, 0, 0), (0, 0, 0, 1, 1) and (0, 0, 0, 2, 2). The matrix form of the collection

of time series is

A =




1 1 1 0 0

2 2 2 0 0

0 0 0 1 1

0 0 0 2 2




To compute the Singular Value Decomposition of A, we have

S = AAT =




3 6 0 0

6 12 0 0

0 0 2 4

0 0 4 8




The eigenvalues of S are 15, 10, 0 and 0. The normalized eigenvector for λ1 =

15 is ~U1 = 1√
5
(1, 2, 0, 0)T . The normalized eigenvector for λ2 = 10 is ~U2 =

1√
5
(0, 0, 1, 2)T . From (2.120) we have

~V T
1 =

1√
3
(1, 1, 1, 0, 0),

and

~V T
2 =

1√
2
(0, 0, 0, 1, 1).

So the SVD of A is

A =




1√
5

0

2√
5

0

0 1√
5

0 2√
5






√

15 0

0
√

10







1√
3

1√
3

1√
3

0 0

0 0 0 1√
2

1√
2


 .

77

2.3.2 Optimality of Singular Value Decomposition

The Singular Value Decomposition is optimal in minimizing the matrix norm.

Here we give the definition of matrix norm, which is also known as Frobenius

matrix norm.

Definition 2.3.6 (matrix norm) The matrix norm of a matrix A = {aij}m,n
i,j=1

is defined as

||A|| =
√√√√

m∑
i=1

n∑
j=1

a2
ij (2.127)

Obviously, the total energy of the a collection of time series ~xi, i = 1, 2, ..., m,

is the square of the norm of its corresponding matrix in (2.118):
m∑

i=1

En(~xi) = ||A||2 (2.128)

The following theorem states the optimal feature of SVD. Its proof[40] is

beyond the scope of this book.

Theorem 2.3.7 (Optimality of Singular Value Decomposition) Let ~Pi be

an arbitrary column vector of size m and ~Qi be an arbitrary column vector of

size n, given a matrix Am×n with rank d and a integer k < d, then for all the

matrices of the form

B =
k∑

i=1

~Pi
~QT

i , (2.129)

we have

min
B
||A−B||2 =

d∑

i=k+1

λi, (2.130)

where the minimum is achieved with B0:

||A−B0||2 = min
B
||A−B||2,

B0 =
k∑

i=1

√
λi

~Ui
~V T

i . (2.131)

78

2.3.3 Data Reduction Based on SVD

Suppose that we have a collection of time series ~xi, i = 1, 2, ..., m and k or-

thonormal basis vectors ~Qj, j = 1, 2, ..., k, where the time series and the basis

vectors have the length n. We can represent the time series as follows,

~xi =
k∑

j=1

cij
~QT

j + R(~xi), i = 1, 2, ..., m, (2.132)

where R(~xi) is the residual vector of ~xi when it is decomposed in the space

spaned by { ~Qj}j=1,2,...,k. Obviously, R(~xi) is orthogonal to { ~Qj}j=1,2,...,k.

In the both sides of (2.132), if we compute the inner product with ~Qj, j =

1, 2, ..., k, we have

cij = 〈~xi, ~QT
j 〉, i = 1, 2, ..., m, j = 1, 2, ..., k. (2.133)

Let ~̃xi = ~xi −R(~xi) be the approximation of ~xi, we have

~xi ≈ ~̃xi = ~xi −R(~xi) =
k∑

j=1

cij
~QT

j , i = 1, 2, ...,m. (2.134)

What is the best selection of the orthonormal basis vectors, { ~Qj}j=1,2,...,k,

such that the energy of the collection of time series is preserved as much as pos-

sible, in another word, the total approximation errors are as small as possible?

Let ~Pj = (c1j, ..., cmj)
T , j = 1, 2, ..., k, the total approximation errors are

m∑
i=1

||~xi − ~̃xi||2 =
m∑

i=1

||~xi −
k∑

j=1

cij
~QT

j ||2

=||A−
k∑

j=1

~Pj
~QT

j ||2.

From theorem 2.3.7, if we choose

~Qi = ~Vi, i = 1, 2, ..., k,

79

we can have the best approximation to preserve the energy of a collection of

time series.

The above observation yields the SVD data reduction for time series. For a

collection of time series, ~xi, i = 1, 2, ...,m, and its matrix form A, the rank of

A d is usually close to min(m,n). However, λi decreases as i increases. It is

very likely that the energy of a collection of time series is concentrated in the

first few eigenvalues
∑k

i=1 λi, k << n. We can thus use only the first k SVD

coefficients to approximate a time series. That is,

A ≈ ÛΛ̂V̂T , (2.135)

where

Û = (~U1, ~U2, ..., ~Uk), Λ̂ =




√
λ1

√
λ1

. . .
√

λk




, V̂T =




~V T
1

~V T
2

...

~V T
k




.

(2.136)

Here we summarize data reduction for a collection of time series based on the

SVD. First we write the collection of time series in the matrix form A (2.118) and

perform the Singular Value Decomposition for A. Most mathematical software,

e.g., LAPACK[4], Matlab[3], have implemented SVD.

Using {~Vi}i=1,2,...,k as the basis vectors, the SVD coefficients for all the time

series in A is

C = AV̂, (2.137)

where the SVD coefficients of time series ~xj is the j-th row of C.

Given any time series ~y of length n, if we want to compute its SVD coefficient

~Y based on A, i.e., to express ~y as the linear combination of {~Vi}i=1,2,...,k, from

80

(2.133) we can compute it as follows.

~Y = ~yV̂ (2.138)

Similarly, the reconstruction of ~̃y, the approximation of a time series ~y, from

its SVD coefficients ~Y is given as follows, similar as (2.134),

~̃y = ~Y V̂T . (2.139)

The orthonormal basis vectors {~Vi} of SVD allow us to minimize the ap-

proximation errors for a collection of time series globally. In DFT and DWT,

the orthonormal basis vectors are data independent, that is, the basis vectors

chosen are not derived from the data. By contrast, SVD finds the optimal basis

vectors given the time series.

Here is an experiment on a collection of 300 random walk time series that

demonstrates the above properties of SVD. Figure 2.17(a) shows two of the

random walk time series and their SVD approximations. Each of the time

series has the length n = 250. They are approximated by 8 SVD coefficients.

We can see that with only 8 SVD coefficients, we capture the raw shape of

the time series very well. The basis vectors for the SVD are also shown in fig.

2.17(b). We can see that the basis vectors are similar to the basis vectors of

DFT, though they are not exactly trigonometric functions.

To demonstrate the adaptivity of SVD, we add some components to each

of time series in the collection. A short burst is superimposed to each time

series either around the time point of 100 or 200. Two of the resulting time

series samples are shown in fig. 2.18(a). We compute the SVD of the new

collection of time series again and show their SVD approximations. The SVD

approximations follow the new burst very closely. The reason is that the basis

81

0 50 100 150 200 250
-6

-4

-2

0

2

4

6

8
Time series 1

Original Time Series
SVD approximation

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

4
Time series 2

Original Time Series
SVD approximation

(a) The SVD approximations

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

(b) The SVD basis vectors

Figure 2.17: SVD for a collection of random walk time series

82

0 50 100 150 200 250
-6

-4

-2

0

2

4

6

8
Time series 1

Original Time Series
SVD approximation

0 50 100 150 200 250
-4

-2

0

2

4

6
Time series 2

Original Time Series
SVD approximation

(a) The SVD approximations

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.5

0

0.5

0 50 100 150 200 250
-0.5

0

0.5

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

0 50 100 150 200 250
-0.2

0

0.2

(b) The SVD basis vectors

Figure 2.18: SVD for a collection of random walk time series with bursts

83

vectors computed from the new data can incorporate the burst adaptively. In

fig. 2.18(b), the basis SVD vectors for the new collection of time series show

the new burst components clearly.

For a collection of time series, the SVD approximations are the clos-

est approximations overall in terms of Euclidean distance comparing to any

orthogonal-based transform such as DFT and DWT.

2.4 Sketches

The data reduction techniques we have discussed so far are all based on or-

thogonal transformations. If we think of a time series as a point in some high

dimensional coordinate space, orthogonal transformation is just the rotation of

the axes of the coordinate space. If a collection of time series have some principal

components and the transformed axes are along these principal components, we

can keep only those axes corresponding to the principal components to reduce

the dimensionality of the time series data.

But what if the data do not have any clear principal components? Consider

a collection of time series of white noise for example. Clearly, we cannot use

orthogonal transformations such as DFT, DWT or SVD. We need a new kind

of Data Reduction technique: random projection.

Random projection will project a high dimensional point corresponding to a

time series to a lower dimensional space randomly based on some distribution.

If we choose the distribution carefully, we can have some probabilistic guarantee

on the approximation of the distance between any two higher dimensional points

to their corresponding distance in the lower dimensional space.

In random project, we try to approximate the distance between each pair of

84

time series given a collection of time series, instead of getting some approxima-

tion of time series as for DFT, DWT and SVD.

Unlike data reduction based on orthogonal transformations, random pro-

jection can approximate different types of distances. We will start with the

Euclidean Distance.

2.4.1 Euclidean Distance

Random projection is based on the construction of the sketches for a time series.

Definition 2.4.1 (sketches) Given a time series ~xn = (x(1), x(2), ..., x(n))

and a collection of k vectors ~rn
i = (ri(1), ri(2), ..., ri(n)), i = 1, 2, ..., k, where

all elements ri(j), i = 1, 2, ..., k, j = 1, 2, ..., n, are random variables from a

distribution D, the D-sketches of ~x are defined as ~s(~x) = (s(1), s(2), ..., s(k)),

where

s(i) = 〈~x,~ri〉, i = 1, 2, ..., k (2.140)

i.e., s(i) is the inner product between ~x and ~ri.

The sketches can be written as

~s(~x) = ~xR, (2.141)

where

Rn×k = (~rT
1 , ~rT

2 , . . . , ~rT
k) =




r1(1) r2(1) . . . rk(1)

r1(2) r2(2) . . . rk(2)

...
...

. . .
...

r1(n) r2(n) . . . rk(n)




. (2.142)

85

The collection of random vectors R is called the sketch pool. Obviously, the

time complexity to compute the sketch for each time series is O(nk).

If the distributionD is a Gaussian distribution, we can compute the Gaussian

sketches of a time series. The most important property of sketches is stated by

the Johnson-Lindenstrauss lemma[52] for Gaussian sketches.

Lemma 2.4.2 Given a collection C of m time series with length n, for any two

time series ~x, ~y ∈ C, if ε < 1/2 and k = 9 log m
ε2

, then

(1− ε) ≤ ||~s(~x)− ~s(~y)||2
||~x− ~y||2 ≤ (1 + ε) (2.143)

holds with probability 1/2, where ~s(~x) is the Gaussian sketches of ~x.

In other words, the Johnson-Lindenstrauss lemma says that a collection of m

points in a n-dimensional space can be mapped to an k-dimensional sketch space.

The Euclidean distances between any pair of points in the sketch space approxi-

mate their true distance in the n-dimensional space with probability 1/2. There

are also other flavors of random projection based on the Johnson-Lindenstrauss

lemma that give a similar probabilistic approximation of Euclidean distance,

such as [7].

The lemma may sound like magic. How can we have probabilistic approxi-

mation of the Euclidean distance between time series from the sketches, which

are computed from random vectors? The following analogy might be of help in

understanding the magic of sketches. Suppose that you are lost in the forest and

you have only an old-fashioned cell phone without a Global Positioning System

(GPS). Luckily, you are in the covered area of your mobile service provider and

you can call a friend who may be near by. By knowing how far you are away

from some random landmarks, say 2 miles from a hill, 50 yards from a creek,

86

etc., and getting the same information from your friend, you may be able to

determine that the two of you are close to one another. Your position in the

forest is the time series in the high dimensional space, the random vectors in

the sketch pool serve as the random landmarks and the sketches are just your

distances from these landmarks.

From the lemma, we can see that if we increase the size of the sketches k,

the approximation error ε will be smaller. Also we can boost the probability

of success using standard randomization methods. If a sketch approximation

is within ε, we call it a success. We keep w different sketches and repeat the

approximate distance computation w times, the probability that the median of

the approximate distances is within precision ε is the same as the probability

that the number of success is larger than w/2. From the Chernoff bound, if we

compute O(log 1/δ) repetition of sketches and take the median of the distance

between the sketches, the probability of success can be boosted to 1− δ.

Using sketches to approximate the Euclidean distances between time series,

we do not require the time series to have principal components. We perform

the follow experiments to verify this.

The time series under consideration is a collection of 10, 000 stock price time

series. The time unit of the time series is one second. Each time series in the

collection has a size 3, 600, corresponding to one hour’s data. We compute the

sketches of these time series with sketch size k = 40 and therefore reduce the

dimensionality of the time series from 3, 600 to 40. We randomly pick 1, 000

pairs of time series in the collection and compute their Euclidean distances.

The approximations of the distances using sketches are also computed. Let the

approximation error be the ratio of the absolute difference between the approx-

imate distance and the true distance to the true distance. The distributions

87

of approximation errors using sketches are shown in fig. 2.19(a). For example,

from the figure we can see that 90% of the approximation errors are within

0.32. We also repeat the experiment for larger sketch sizes k = 80 and k = 160.

Larger sketch sizes give better approximations. For example, with k = 160,

90% of the approximation errors are within 0.22, while with k = 80, 90% of the

approximation errors are within 0.19.

We know that the stock price data can be modeled by a random walk

and they have a few large principal components. However, the price return

time series is close to a white noise time series. The price return time se-

ries is defined as the time series derived from the price time series by com-

puting the point-by-point price differences. That is, given a price time se-

ries ~xn = (x(1), x(2), ..., x(n)), its price return time series is ~dx
n

= (x(2) −
x(1), x(3) − x(2), ..., x(n) − x(n − 1)). There is no principal component in the

price return time series. Will the distance approximations using sketches work

for these price return time series? We repeat the previous experiment on the

price return time series. The results are shown in fig 2.19(b). We can see that

the qualities of approximations using sketches are very close for both data sets.

One interesting observation is that the sketch size k depends only on the

number of time series m, the approximation bound ε and the probability guar-

antee bound δ. The sketch size k does not depend on the length of the time

series n. This makes random projections ideal for data reduction for a relatively

small collection of time series with very long length. We repeat the previous

experiment on a collection of stock price time series with longer lengths. The

size of the collection of time series is the same as before, but the length of each

time series in the collection is doubled, corresponding to two hours’ data. From

fig. 2.20, we can see that the same quality of approximation using sketches is

88

0
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

x

P
ro

b
ab

ili
ty

[e
rr

o
r<

x]
 (

%
)

Sketch Size=40

Sketch Size=80

Sketch Size=160

(a) price time series

0
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

x

P
ro

b
ab

ili
ty

[e
rr

o
r<

x]
 (

%
)

Sketch Size=40

Sketch Size=80

Sketch Size=160

(b) price return time series

Figure 2.19: The approximation of distances between time series using sketches;

1 hour of stock data

89

achieved even though the time series are longer.

The size of the sketches can be large if the approximation requirement is

high (small ε and δ). We can use the SVD to further reduce the dimensions of

the sketch space. This works especially well if the time series data have some

principal components after the random projection.

2.4.2 Lp Distance

In addition to Euclidean distance, sketches can also be used for approximation

of Lp-distance. Although Euclidean distance is used most often for time series,

other distance measures between time series can provide interesting results too.

The approximation of Lp-distance is based on the concept of stable distribution[77].

A stable distribution D(p) is a statistical distribution with parameter p ∈ (0, 2].

An important property of stable distribution is as follows.

Definition 2.4.3 (stable distribution) A distribution D(p) is stable if for

any n real number a1, a2, ..., an and n i.i.d. (independent and identically dis-

tributed) random variables X1, X2, ..., Xn from D(p),

n∑
i=1

aiXi ∼ (
n∑

i=1

|ai|p)1/pX, (2.144)

i.e.,
∑n

i=1 aiXi has the same distribution as (
∑n

i=1 |ai|p)1/pX, where X is drawn

from D(p).

D(2) is a Gaussian distribution and D(1) is Cauchy distribution. Indyk[46]

shows that one can construct D(p) sketches to approximate Lp distance.

Lemma 2.4.4 Given a collection C of m time series with length n, for any two

time series ~x, ~y ∈ C, if k = c log(1/δ)
ε2

for some constant c, let ~s(~x) and ~s(~y)be the

90

0
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

x

P
ro

b
ab

ili
ty

[e
rr

o
r<

x]
 (

%
)

Sketch Size=40

Sketch Size=80

Sketch Size=160

(a) price time series

0
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

x

P
ro

b
ab

ili
ty

[e
rr

o
r<

x]
 (

%
)

Sketch Size=40

Sketch Size=80

Sketch Size=160

(b) price return time series

Figure 2.20: The approximation of distances between time series using sketches;

2 hours of stock data

91

D(p) sketches of ~x and ~y with size k, then

(1− ε) ≤ B(p)median(|~s(~x)− ~s(~y)|)
||~x− ~y||p ≤ (1 + ε) (2.145)

holds with probability 1− δ, where B(p) is some scaling factor.

In the above lemma, |~s(~x) − ~s(~y)| is a vector with size k. The median of

|~s(~x) − ~s(~y)| is the median of the k values in the vector. It turns out that the

scaling factor is 1 for both p = 1 (Cauchy distribution) and p = 2 (Gaussian

distribution).

It is also possible to approximate Hamming distance L0 between pairs of

time series using stable distribution. The reader can refer to the recent result

in [24].

In the time series data mining research, sketch-based approaches were used

to identify representative trends [47, 25], to compute approximate wavelet

coefficients[38],etc. Sketches have also many applications in streaming data

management, including multidimensional histograms [90], data cleaning [28],

and complex query processing [31, 27].

2.5 Comparison of Data Reduction Techniques

Having discussed the four different data reduction techniques, we can now com-

pare them. This will help the data analysts choose the right data reduction

technique. The comparison is summarized in table 2.4.

First we discuss the time complexity in computing the data reduction for

each time series with length n.

• Using the Fast Fourier Transform, computing the first k DFT coefficients

will take time min
(
O(n log n), O(kn)

)
.

92

• The time complexity for a DWT computation is lower, O(n).

• The time complexity of SVD depends on the size of the collection of time

series under consideration. For a collection of m,m >> n time series, SVD

takes time O(m + n3). The SVD for each time series requires O(m
n

+ n2)

time. This is the slowest among all the data reduction techniques we

discuss.

• The time complexity for the random projection computation is O(nk),

where k is the size of the sketches.

DFT, DWT and SVD are all based on orthogonal transforms. From the

coefficients of the data reduction, we can reconstruct the approximation of the

time series. By comparison, random projection is not based on any orthogonal

transform. We cannot reconstruct the approximation of the time series. Pattern

matching does not have to be information preserving.

In terms of distance approximation, DFT, DWT and SVD can be used for the

approximation of only Euclidean (L2) distance with one exception. Piecewise

Aggregate Approximation (PAA), a transform closely related to the Discrete

Haar Wavelet Transform, can handle any distance metric Lp, p 6= 2,.

Next we discuss the basis vectors using in these data reduction technique.

For the DFT, the basis vectors are fixed to be vectors based on trigonometric

functions. One particular benefit of using DWT is that one can choose from a

vast number of wavelet families of basis vectors. SVD is desirable in many cases

because the basis vectors are data dependent. These vectors are computed

from the data to achieve optimality in reduce approximation error. But this

also implies that we need to store the basis vectors in addition to the SVD

93

coefficients if we want to reconstruct the time series. The basis vectors of the

random projection are chosen, well, randomly.

To approximate a time series by a few coefficients, the DFT, DWT and SVD

all require the existence of some principal components in the time series data.

Random projection, by contrast, does not make any assumption about the data.

It can work even for white noise. This makes random projection very desirable

for time series data having no obvious trends such as price differencs in stock

market data.

A particular drawback of DFT as a data reduction method is that the basis

vectors of DFT do not have compact support. This makes it very hard for DFT

to approximate time series having short term bursts or jumps. Most of the

DWT basis vectors have compact support. Therefore, DWT can approximate a

time series with jumps, but we need to choose a subset of coefficients that are

not necessarily the first few DWT coefficients. SVD deals with the problem of

discontinuity in the time series data more gracefully. If a short term bursts or

jumps are observed at the same location of most time series, it will be reflected

by the basis vectors of SVD at that location.

To conclude this chapter, in fig. 2.21 we present a decision tree to help you

choose the right data reduction technique given the characteristics of your time

series data.

94

Table 2.4: Comparison of data reduction techniques

Data Reduction Random

Technique DFT DWT SVD Projection

Time

Complexity n log n n m
n

+ n2 nk

Based on

Orthogonal Transform Yes Yes Yes No

Approximation of

Time Series Yes Yes Yes No

Lp

Distance p = 2 p = 2 p = 2 p = [0, 2]

Basis fixed fixed adaptive

Vectors one choice many choices optimal random

Require Existence of

Principal Components Yes Yes Yes No

Compact

Support No Yes Yes Not Relevant

95

Time series are
basically periodic?

Time series have
principle components?

Time series have changing
principle components?

Discrete Fourier
Transform

Singular Value
Decomposition

Discrete Wavelet
Transform

Random Projection
(Sketches)

Yes

No

Yes

Yes

No

No

Figure 2.21: A decision tree for choosing the best data reduction technique

96

Chapter 3

Indexing Methods

An index is a data organization structure that allows fast retrieval of the data.

To analyze massive time series, we need to find a time series having a certain

property, for example, a time series having average close to a particular value,

or a time series having a certain shape. The results of such a query usually

return only a small portion of the data. Without the use of an index, every

time we query the time series database, all the time series data are retrieved to

test whether they have the required property. This is extremely inefficient in

terms of both CPU cost and IO cost. Therefore indexes are essential for large

scale high performance discovery in time series data.

In this chapter, we will start with the most simple and frequently used index

structure a B-tree in sec. 3.1. A B-tree is a one-dimensional index structure.

Due to the high-dimensional characteristic of the time series data, multidimen-

sional index structures are often used for time series. We start with a simpler

multidimensional index structure KD-B-tree in sec. 3.2 and discuss a more ad-

vanced structure R-tree in sec. 3.3. Finally in sec. 3.4 we discuss a simple yet

effective multidimensional index structure, grid file.

97

15 28

24

53 72

69

40

95 108

105

113

125

119 150

77

Figure 3.1: An example of a binary search tree

3.1 B-tree

Suppose we want to look for a name in the phone book. The last names in the

phone book are ordered alphabetically. Nobody will go through the phone book

from page 1 to the end of book. We will do binary search on the phone book,

jumping back and forth until we find the page contain the name.

Similarly, in computer science, a binary search tree is the index structure for

one-dimensional data. For example, we have a collection of time series, and we

have already computed the average of each time series. We might use a binary

search tree to index the averages. Figure 3.1 shows an example of a binary

search tree. Associated with each number in the node of the tree is a pointer

to the time series so that we can retrieve the time series through the binary

search tree. If we want to find a time series with average 72, we first compared

it to the number in the root, 77. Because 72 is smaller that 77 we go to the left

subtree of the root. 72 is compared to 40 and the right subtree is chosen. We

reach 69 and take the right subtree of 69 to get to the leaf node 72.

The query above is a point query because we ask only for data with key

equal to a specific value. A binary search tree can also answer range queries. A

98

range query can be translated into two point queries. For example, to find all

the time series with averages between 53 and 95, we first make a point query

of 53 in the binary search tree and get the path p1 from the root to the node

53. Similarly we find the path p2 from the root to the node containing number

95. The region in the binary search tree between paths p1 and p2 contain all

the data whose key is in the range [53, 95].

The binary search tree in the above example is balanced in the sense that

each leaf node is at the same distance from the root. If we have n indexed items

and the binary search tree is balanced, the depth is the tree is log2 n. A search,

either a point query or a range query, takes time O(log2 n) using the binary

search tree.

The binary search tree is not optimized for secondary memory access. Often,

the amount of data is so huge that the binary search tree cannot fit into the

main memory. An access to disk costs much more than an access to the main

memory. This is the IO cost. The data must be organized in a way that the

random access to the secondary memory is as small as possible. A B-tree will

extend a binary search tree for better IO performance.

A B-tree is a balanced tree. All the leaves are at the same distance to the

root node. The IO cost of the B-tree depends on the depth of the B-tree, because

we have to reach the leaves of the B-tree to get the data and only the first few

levels are in main memory. Therefore the shallower a B-tree is, the fewer IO

access a search costs. To make B-tree shallower, each node of the B-tree has

many children. In contrast to the binary search tree where each node has only

two children, in a typical B-tree each node will have up to few hundred or even

few thousand children. The maximum number of children a node can have is

called the fanout of the B-tree. The depth of a B-tree is roughly logfanout N ,

99

105

11940 72

119 125 150105 108 11372 77 9540 53 6915 24 28

Figure 3.2: An example of a B-tree

where N is the number of data items.

Figure 3.2 shows an example of a B-tree. This B-tree has four levels and

a fanout of 3. The leaves at the lowest level represent the data entries. Each

non-leaf node contains a sequence of key-pointer pairs. The number of pairs is

bounded by the fanout. The numbers shown in the non-leaf nodes are the keys.

There is always a pointer associated with each key in the nodes. For key Ki,

its associated pointer points to the subtree in which all key values are between

Ki and Ki+1. If there are m keys, K1, K2, ..., Km, in a node, there will be m+1

pointers in that node, with P0 pointing to a subtree in which all keys are less

than K1 and Pm pointing to a subtree in which all keys are larger than Km.

Also in most implementations, leaf nodes and non-leaf nodes at the same level

are linked in a linked list to facilitate range queries.

A query on a B-tree works in a similar fashion to a query on the binary search

tree. Supposed we wish to find nodes with a search key value k. Starting with

the root node, we identify the key Ki in the root node such that Ki ≤ k < Ki+1.

We follow Pi to the next node. If k < K1, we follow pointer P0. If k > Km, we

follow pointer Pm. The same process is repeated recursively until we get to the

leaf node.

100

A B-tree is a dynamic index structure. We can insert and delete data in a B-

tree without reconstructing the B-tree. When there are insertions and deletions,

we must make sure the following:

1. There is no overflow. If the size of a node exceeds its allocated space

after an insertion, the node is must be split. A split in the child node

will require an insertion of a key-pointer pair in the parent node. So the

insertion might propagate upwards.

2. There is no underflow. If the size of a node becomes less than half full

after a deletion, the node is in an underflow. We must merge this node

with its sibling node in this case. This results in one less entry in the

parent node. So the deletion might also propagate upwards. In practice,

underflow is allowed. Johnson and Shasha [51] showed that free-at-empty

is better than merge-at-half if the B tree is growing in the average.

3. The B-tree remains balanced. We must adjust the B-tree after insertion

and deletion to make sure that the B-tree is balanced. This is important

because the search time would not be O(log n) if the B-tree is out of

balance. Splits and merges ensure balance because they are propagated

to the root.

3.2 KD-B-tree

Most queries on time series data are composed of multiple keys. For example,

a query to find all the time series that start with 10, 13, 15 can be thought of a

query with composite key (10, 13, 15). To facilitate such time series queries, we

need indexing methods for higher-dimensional space.

101

2

a

b
3

c

4

d

5

6

e
7

8

9

10 11

f

g

h

i
j

1

Figure 3.3: The subdivision of the plane with a KD-tree

A KD-tree extends the binary search tree to higher dimensions. First let us

consider the two-dimensional case. To build a KD-tree, we still split the data

into two parts of roughly the same size based on the key. However, the keys we

consider now are two-dimensional, that is, each is composed of two keys. Let

us call the two keys the x and y coordinates, and the key is therefore a point in

the xy plane.

A KD-tree will split the data based on the x and y coordinates alternately.

For example, in fig 3.3, there are 11 points in the xy plane. First we split

these points by a line j that goes through one of the points (3). This yields

two subdivisions of the plane, one including all points with x-coordinates less

102

db

hc

j

g

4521 98

11107f6e3a

i

Figure 3.4: An example of a KD-tree

than or equal to the x-coordinates of line j, the other including those with x-

coordinates greater than the x-coordinates of line j. This next step is to split

each subdivision horizontally. The left subdivision is separated by line c into

two parts. The line c and above includes points 1, 2, 3, and the subdivision

below the line c includes point 4, 5, 6. This procedure is performed recursively

on the subdivision. The splitting lines cycle between vertical and horizontal,

and all the lines go through a point in the split region.

Based on the subdivision of the plane in fig. 3.3, the KD-tree structure can

be built in fig. 3.4. The leaf nodes contain points while the non-leaf nodes

contain lines. The non-leaf nodes in even number levels correspond to vertical

lines, while the non-leaf nodes in odd number levels correspond to horizontal

lines.

A search for a point (Kx, Ky) on the KD-tree will start from the root. First

we compare Kx to the line at level 0 to decide whether to go down to the left

or right subtree. At the odd levels, Ky is compared with the key of the node.

Similarly, at even levels, Kx is compared with the key of the node. This is

103

3

4

5

8

9

11

6

2

1

10
7

Figure 3.5: Subdividing the plane with a quadtree

repeated until the leaf node is reached.

We can see that for higher dimensional data, a similar approach described

above can use for effective indexing and searching of high dimensional point. In

fact, the term KD-tree originally stands for k-dimensional tree.

Just as the B-tree is the secondary storage version of the binary search tree,

the KD-B-tree is the secondary storage extension of the KD-tree. The KD-B-

tree allows multiple child nodes for each non-leaf node to reduce the depth of

the tree and guarantees balance. We omit the detail here.

104

117

109865

231

4

Figure 3.6: An example of a quadtree

Another index structure for higher-dimensional data is the quadtree. A

quadtree in two dimensions splits the plane in a different fashion than the KD-

tree. In each level, a quadtree will split the plane in x and y coordinates in

the midpoint simultaneously. This results in four rectangle regions of exactly

the same size. An example of the subdivision of the plane is show in fig. 3.5

and 3.6. Similarly, a quadtree in k-dimensional space will split the space into

2k hyper-boxes of equal size.

3.3 R-tree

The R-tree[43] extends the popular B-tree to higher dimensions. If it is well

implemented, it is an efficient indexing structure for higher dimensional data,

including points and regions. 1

Similarly to the B-tree, an R-tree is a height-balanced tree with indexed

data in the leaf nodes. In B-trees, each non-leaf node corresponds to an interval.

Extending to higher dimensions, each non-leaf node in the R-tree corresponds

1The quality of the implementation is critical[89].

105

to a bounding box (higher-dimensional intervals), called Minimum Bounding

Boxes (MBB), in the indexed space. The MBB is the basic object in an R-

tree. In a B-tree, the interval associated with a node includes all the intervals

of its child nodes; in an R-tree, the bounding box associated with a node also

includes all the bounding boxes of its child nodes. In a B-tree, the interval

associated with a node will not overlap the intervals associated with its sibling

nodes. Therefore the number of nodes to be accessed in a search on a B-tree is

the depth of the B-tree. In an R-tree, however, the bounding boxes associated

with a node could overlap the bounding boxes associated with its sibling nodes.

Therefore a search path in an R-tree could have forks.

In fig. 3.7 we show an example of a set of rectangles and their bounding

boxes. Though we show only a two-dimensional case for simplicity, the extension

to higher dimensions is straightforward. The corresponding organization of the

R-tree is shown in fig. 3.8.

To search for all rectangles that contain a query point, we have to follow

all child nodes with the bounding boxes containing the query point. Similarly,

to search for all rectangles that intersect a query rectangle, we have to follow

all child nodes with the bounding boxes that intersect the query rectangle. A

search in the R-tree could be slowed down because we have to follow multiple

search paths.

To insert an object o into a R-tree, we first compute the MBB of the object

MBB(o). Insertions requires the traversal of only a single path. When there

are several candidate child nodes, R-tree use some heuristic algorithm to choose

a best child node. Usually the criterion is that the bounding box of the chosen

child node needs to be increased least. This will make the bounding box of the

nodes more compact and thus minimize the overlapping area of sibling nodes’

106

A B

C

F

E

D

G

I
J

H

1

2

3

0

Figure 3.7: An example of the bounding boxes of an R-tree

0

1 2 3

A B C D E F G H I J

Figure 3.8: The R-tree structure

107

bounding boxes. If a node is full, node splitting and possible upward cascading

node splitting is performed. Also the tree must be adjusted to remain balanced.

In fact, the variants of R-tree differ mostly in the insertion algorithm. Such

variants include the R∗-tree[15] and R+-tree[87].

The deletion of data in R-tree is similar to that in B-tree. We first search

for the deleted item in the leaf node and then delete it. If the deletion of the

item makes the bounding box of the leaf node smaller, we will update the size

of the bounding box. This is also propagated upwards. We may also check if

the size of node is reduced to be less that the minimum node size. If so, we

merge the node with its sibling nodes and update the bounding box. This is

also propagated upwards if necessary.

3.4 Grid Structure

The R-tree discussed above and its variants are the most popular higher-

dimensional indexing methods. However, the implementation of the R-tree is

highly non-trivial and there are substantial costs in maintaining the R-tree dy-

namically. In this section, we give a quick review of an extreme simple indexing

structure for indexing higher-dimensional data: Grid Structure. The power of

the grid structure comes from the fact that it is simple and thus easy to main-

tain. This gives grid structure applications where response time is critical.

We will start with the main memory grid structure. We superimpose a

d-dimensional orthogonal regular grid on the indexed space. In practice, the

indexed space is bounded. Without lost of generality, we assume each dimension

is contained in [0, 1]. Let the spacing of the grid be a. Figure 3.9 shows such

a two dimensional grid structure. We have partitioned the indexing space, a

108

a

a

Figure 3.9: An example of a main memory grid structure

109

d-dimensional cube with diameter 1 into d 1
a
ed small cells. Each cell is a d-

dimensional cube with diameter a. All the cells are stored in a d-dimensional

array in the main memory.

In such a main memory grid structure, we can compute the cell a point

belongs to. Let us use (c1, c2, ..., cd) to denote a cell that is the c1-th in the

first dimension and the c2-th in the second dimension, etc. A point p with

coordinates x1, x2, ..., xd is within the cell (x1

a
, x2

a
, ..., xd

a
). We say that point p is

hashed to that cell.

With the help of the grid structure, we can find the point and its neighbors

fast. Given a query point p, we compute the cell c to which p is hashed. The

data of the query point p can then be retrieved. Also the data of points close

to p are also hashed to cells near c, and can be retrieved efficiently too.

Insertion and deletion in the grid structure entails almost no maintenance

cost. To insert a point p, we just compute the cell c that p is hashed to and

append the data of p into the cell. To delete a point p, we just compute the cell

c and delete the data of p from the cell.

Of course, the grid structure is not necessary regular. The partition of the

indexed space can be non-regular in each dimension to adapt to the data and

to reduce the number of cells in the grid structure.

The grid structure is well suited for point queries. Query and update in a

grid structure is faster than other high-dimensional index structures. However,

the space requirement for grid structures is very high. There will be d 1
a
ed cells

in a d-dimensional space. So the grid structure is effective only when indexing

lower dimensional spaces that are reasonably uniform.

The Grid File is a second memory index structure based on the grid struc-

ture. The goal of grid file to guarantee that any access of data require at most

110

Figure 3.10: An example of a grid file structure

two IO operations.

Figure 3.10 shows an example of a grid file. In a grid file, the partition of the

indexed space is unequal in the different dimensions. The grid is kept in main

memory. Each cell in the grid is associated with a grid block. This is shown as a

pointer in the figure. Each grid cell can be associated with only one grid block,

but there can be many grid cells associate with one grid block. A grid block is

made up of one or several grid cells, as long as the union of these grid cells is a

high-dimensional box. There can be only up to m data points in a grid block.

In this example, m is 3. The constraint on the number of points in a grid block

111

is to guarantee that the grid block can be fit into a page in secondary memory.

To access a data point in high dimension, we first locate which cell the

query point is hashed to based on the grid structure. If the grid cell is not

in main memory, we perform one disk access to retrieve the grid block that

contains the cell. From the loaded cell, we can access the page that contains

the data associated with the query point. Therefore, any point query in a grid

file requires at most two IO accesses.

Insertion and deletion in a grid file is more complicated. When a point

p is inserted, we find the grid cell that p hashes to and the grid block that

contains the cell. If the grid block exceed its capacity, the grid block must be

split. Because the grid file requires that the grid block be a high-dimensional

box, a split of the grid block is not a local operation. All the other grid blocks

intersected by the splitting line (or plane) have to be updated too. We omit the

details here.

Comparing to other multidimensional index method, grid file is very desir-

able when the data are very dense. Also it is suitable when the data dimension-

ality is relatively lower.

In summary, fig. 3.11 shows a decision tree at a high level, based on which

we can choose the secondary storage index method for different data. Note that

we use the data dimensionality of 4 to draw the line between grid file and other

multidimensional index structure. Of course this is not an absolutely precise

line.

112

one-dimensional data?

the dimensionality
of the data > 4?

points only?

B-Tree

K-DB-Tree
Quad-Tree

Grid File

R-Tree

Yes

No

Yes

Yes

No

No

Figure 3.11: A decision tree for choosing an index method.

113

Chapter 4

Transformations on Time Series

There are many ways to analyze time series data. Various sophisticated math-

ematical methods can be used for time series analysis, but the look of a time

series can often provide insight in choosing the right tools for time series anal-

ysis. Plotting samples of time series data under consideration is often the first

step in investigating the time series.

The shape of a time series is the first thing people can observe from a time

series plot. It is very natural for people to relate different time series by their

similarity in shapes.

There are many applications for similarity search of time series data. In

fact, it is one of most thoroughly studied subjects of time series data mining.

Here are some of the applications[8].

1. In finance, a trader would be interested in finding all stocks whose price

movements follow the pattern of a particular stock in the same trading

day.

2. In music, a vender wants to decide whether a new musical score is similar

114

to any copyrighted score to detect the existence of plagiarism.

3. In business management, spotting products with similar selling patterns

can result in more efficient product management.

4. In environment science, by comparing the pollutant level in different sec-

tions of a river, scientists can have a better understanding of the environ-

mental changes.

Humans are good at telling the similarity between time series by just looking

at their plots. Such knowledge must be encoded in the computer if we want to

automate the detection of similarity among time series.

Formally, given a pair of time series, their similarity is usually measured

by their correlation or distance. If we treat a time series as a high dimensional

point, the Euclidean distance appears to be a natural choice for distance between

time series. Actually, the Euclidean distance is widely used as a basic similarity

measure for time series.

The Euclidean distance measure is not adequate as a flexible similarity mea-

sure between time series however. The reasons are as follows.

1. Two time series can be very similar even though they have different base

lines or amplitude scales. For example, the price movements of two stocks

that follow the same pattern might have a large Euclidean distance be-

tween them because they are moving around different baseline prices.

2. The Euclidean distance between two time series of different lengths is

undefined even though the time series are similar to each other. Two

musical pieces sound similar even when they are played at slightly differ-

ent tempos, which means that their time series representations will have

115

different lengths. In scientific observations, time series generated by the

same event would have different lengths if the frequencies of observation

(sampling rates) are different.

3. Two time series could be very similar even though they are not perfectly

synchronized. The Euclidean distance that sums up the difference between

each pair of corresponding data items between two time series is too rigid

and will amplify the difference between time series.

Because the Euclidean distance alone is too rigid, some manipulation of the

time series is necessary to yield a flexible similarity measure.

In this chapter, we will discuss some transforms on the time series. After

the time series are transformed, we will have more intuitive similarity mea-

sures between time series. Note that the transforms we discuss here entail the

manipulation of the time series, instead of the approximation of time series

with Data Reduction methods such as Discrete Fourier Transform or Discrete

Wavelet Transform.

Before we discuss the transform for time series, we will first discuss a general

framework for indexing time series databases based on the Euclidean distance,

because the Euclidean distance is the basis for the other time series similarity

measure. This framework will make use of the Data Reduction techniques we

discussed in chap. 2 and the Indexing Methods in chap. 3. Next we will discuss

how to allow time series to be compared even though they have different ampli-

tude baselines and scales in sec. 4.2. Section 4.3 discusses how to compensate

for different sampling rates. We will also discuss a transform that take into

consideration the local deviance in the synchronization between time series in

sec. 4.4.

116

4.1 GEMINI Framework

Similarity search in time series databases is the problem: given a query time

series, find all the time series in the database that are similar to the query.

There are many different similarity measures, in this section we will focus of the

Euclidean distance measure. This will be extended to other similarity measures

in the following sections.

There are two categories of similarity queries in time series databases.

1. Whole Sequence Matching: In whole sequence matching, all the time

series in the database are of the same length n. The query time series q

is of length n too. The Euclidean distance between the query time series

and any time series in the database can be computed in linear time. Given

a query threshold ε, the answer to a whole sequence similarity query for

q are all the time series in the database whose Euclidean distance with q

are less than the threshold ε.

2. Subsequence Matching: In subsequence matching, the time series in

the database can have different lengths. The lengths of these candidate

time series are usually larger than the length of the query time series. The

answer to a subsequence query is any subsequence of any candidate time

series whose distance with q is less than ε.

A naive way to tackle the problem of similarity query in time series databases

is linear scan. In linear scan, one compute the Euclidean distance between the

query time series and all the candidate time series (all subsequences of the

candidate time series for subsequence matching) in the database. Those time

series with distance less than ε are reported.

117

Linear scan scales poorly because we have to read all the time series in the

database. Therefore the computing time increases linearly with the size of the

database.

Because a time series of length n can be seen as a point in an n-dimensional

space, we can index all the time series using a n-dimensional index structure.

A similarity search for a query time series q is just a range query of the query

point in n-dimensional space.

Unfortunately, the above indexing method is impractical. All multidimen-

sional index methods suffer from the “curse of dimensionality”. That is, as the

dimensionality of the index structure increase, the performance of the index

structures deteriorates. For example, R* tree can be used to index space with

dimensionality up to only 10− 20.

In their seminal work[8], Agrawal, Faloutsos and Swami investigate the prob-

lem of how to index the time series database for whole sequence matching. To

achieve similarity search in time series with high performance, they introduce

the GEMINI framework[8, 34]. It was extended to subsequence matching in

follow-up research[34].

Similarity search in the GEMINI framework is based on dimensionality re-

duction. The difficulty of indexing time series comes from the high dimension-

ality of the data. Indexing time series within the GEMINI framework will use

data reduction techniques to reduce the dimensionality of time series. This re-

sults in a concise representation of time series in a lower dimension, which is

also known as the feature space.

Formally, given a time series ~xn, a dimensionality reduction transform T
will reduce it to a lower dimension ~Xk = T (~xn), k << n. ~Xk is also called the

feature vector or signature of ~xn. After the time series are mapped to a lower

118

dimensional space, they can perhaps be indexed by a multidimensional index

structure such as an R* tree or a grid file.

Because the feature vector is an approximation for the original time series,

a query on the indexed feature space can get only approximate answers. There

are two kinds of approximation errors for a similarity query.

1. False Negative The approximate query answers do not include some time

series in the database that are actually qualified answers.

2. False Positive The approximate query answers include some time series in

the database that are actually not qualified answers.

False Negatives affect correctness whereas False Positives affect only time. Cor-

rectness is more important than time for most applications.

Next we will prove an important lemma in time series data mining. It says

that if the dimensionality reduction transform T has some special property, we

can guarantee there are no false negatives in the approximate query answer.

Lemma 4.1.1 (Lower Bound) [34] To guarantee no false negatives in simi-

larity queries, T must be lower-bounding, that is, the distance between time se-

ries under dimensionality reduction should lower-bound their original distance:

D(T (~x), T (~y)) ≤ D(~x, ~y). (4.1)

Proof Suppose that the query range is ε. Let q be the query time series, x be

a qualifying time series in the database. Also their feature vector be X = T (x)

and Q = T (q) respectively.

To guarantee no false negatives, any qualifying time series must be retrieved

by the index structure in the feature space. In another word,

if D(q, x) ≤ ε then D(Q,X) ≤ ε. (4.2)

119

From (4.1), we know that

D(Q,X) = D(T (q), T (x)) ≤ D(q, x) ≤ ε.

Therefore, there are no false negatives in the result.

Most popular dimensionality reduction transformations, including the Fourier

Transform, the Wavelet Transform, the Singular Value Decomposition and the

Piecewise Aggregate Approximation, are lower bounding for Euclidean distance.

Random projection can approximate the Euclidean distance with a probabilistic

guaranteed bound. Therefore random projection probabilistically lower-bounds

the Euclidean distance with probabilistic guaranteed bound.

In the first stage of similarity query, we retrieve similar time series based on

the indexed feature space. We still have some false positives in our answer set.

These false positives can be further pruned away by examining the result set

returned in the first stage. In this post processing stage, we will retrieve the

original time series, instead of the feature vectors, and compute the true distance

between the query time series and the candidate time series, thus eliminating

false positives. The post processing stage will perform a linear scan on all

the time series returned in the first stage. This is fast in practice because the

computation of the first stage already prunes lots of time series based on the

feature vectors.

For subsequence queries, we can impose sliding windows of fixed length n on

a long time series in the database. Each subsequence is mapped to its feature

vector, a point in the feature space. Therefore, a long time series is mapped

to a trail of points in the feature space. These trails can be further divided

into sub-trails based on their proximity. The minimum bound rectangles of the

sub-trails in the feather space can be indexed by R trees. The answers to a

120

50 100 150 200 250
30

40

50

60

70

80

90

100

110

120

130 IBM
MMM
LXK

Figure 4.1: The stock price time series of IBM, LXK and MMM in year 2000

subsequence query are included in all those sub-trails with MBRs overlapping

with the query rectangle. For more details, the readers can refer to [34].

4.2 Shifting and Scaling

As we mentioned before, the Euclidean distance alone does not yield very intu-

itive similarity measure between time series. This is especially the case for time

series with different baselines and scales.

For example, in fig. 4.1, we show the stock price movements of IBM, LXK

121

(Lexmark) and MMM (3M COMPANY) in the year 2000. From the time series

plots, we can see that the price movements of IBM are much more similar to

that of LXK than to MMM. However, the Euclidean distance between the time

series of IBM and LXK is 9.2 × 104, which is much higher than that between

IBM and MMM (8.2 × 105). Therefore the Euclidean distance alone does not

give an intuitive measure of similarity.

From the above example, we can see that a good similarity measure should

allow the shifting and scaling transforms on the time series before we measure

their Euclidean distance. Here we define the shifting and scaling transforms.

The Shifting transform on a time series is to get a new time series by adding

some real number to each item in the old time series.

Definition 4.2.1 (Shifting) A shifting by δ on a time series

~x =
(
x(1), x(2), ..., x(n)

)

is ~x + δ =
(
x(1) + δ, x(2) + δ, ..., x(n) + δ

)
.

Scaling transform on a time series is to get a new time series by multiplying

some real number to each item in the old time series.

Definition 4.2.2 (Scaling) A scaling of b on a time series

~x =
(
x(1), x(2), ..., x(n)

)

is b~x =
(
bx(1), bx(2), ..., bx(n)

)
.

A simple way to make a similarity measure invariant to shifting and scaling

is to normalize the time series first.

122

Definition 4.2.3 (Normal Form) The normal form ~̂x of a time series ~x is

transformed from ~x by shifting the time series by its mean and then scaling by

its standard deviation.

~̂x =
~x− avg(~x)

std(~x)
(4.3)

It is obvious that the normal form of a time series has the following proper-

ties.

Lemma 4.2.4 Let the normal form of time series ~x be ~̂x, then

n∑
i=1

x̂(i) = 0, (avg(~̂x) = 0) (4.4)

n∑
i=1

x̂2(i) = n (std(~̂x) =
√

n) (4.5)

The Euclidean distance between the normal forms of two time series is a

similarity measure between time series that is invariant to shifting and scaling,

because they have the same baseline and scale. For example, fig. 4.2 shows the

time series of the same stock as in fig. 4.2, except they are normalized. We can

see that the Euclidean distance between the normal forms of the series of IBM

and LXK is smaller than that between IBM and MMM.

The norm of a normal form time series of length n is n. Therefore the

Euclidean distance between the normal forms of time series ranges between 0

and 2n.

It is well known that the Pearson Correlation Coefficient is a similarity mea-

sure that is also invariant to shifting and scaling. Here we review the definition

of Pearson Correlation Coefficient.

Definition 4.2.5 (Pearson Correlation Coefficient) The Pearson Corre-

123

50 100 150 200 250

-2

-1

0

1

2

3

IBM
MMM
LXK

Figure 4.2: The normalized stock price time series of IBM, LXK and MMM in

year 2000

124

lation Coefficient between two time series is defined as follows.

corr(~x, ~y) =
avg(~x ∗ ~y)− avg(~x)avg(~y)

std(~x)std(~y)
(4.6)

The Pearson Correlation Coefficient ranges from −1 to 1. It is not surpris-

ing that the Pearson Correlation Coefficient is closely related to the Euclidean

distance between normal forms.

Lemma 4.2.6

D2(~̂x, ~̂y) = 2n
(
1− corr(~x, ~y)

)
(4.7)

Proof The Pearson Correlation Coefficient can also be written as follows.

corr(~x, ~y) =
1
n

∑n
i=1

(
x(i)y(i)

)− avg(~x)avg(~y)

std(~x)std(~y)

=
1
n

∑n
i=1

(
x(i)− avg(~x)

)(
y(i)− avg(~x)

)

std(~x)std(~y)

=
1

n

n∑
i=1

x̂(i)ŷ(i)

Therefore, we have

D2(~̂x, ~̂y) =
n∑

i=1

(x̂i − ŷi)
2

=
n∑

i=1

x̂2(i) +
n∑

i=1

ŷ2(i)− 2
n∑

i=1

x̂(i)ŷ(i)

= n + n− 2ncorr(~x, ~y)

= 2n
(
1− corr(~x, ~y)

)

The Euclidean distance between the normal forms of time series is linearly

proportional to their correlation. Small normalized Euclidean distances corre-

spond to a higher correlation and vice versa. Zero normalized Euclidean distance

125

corresponds to a correlation of 1. A normalized Euclidean distance of n corre-

sponds to 0 correlation. Also normalized Euclidean distances larger than n give

negative correlation, with normalized Euclidean distances of 2n corresponding

to the perfect anti-correlation, −1.

In summary, to index time series for a similarity measure that is invariant

to scaling and shifting, we need only to index the feature vectors for the normal

forms of the time series. Given a query sequence, we also compute its feature

vector of normal form and then search with the indexes.

4.3 Time Scaling

The shifting and scaling in the last section is performed on the amplitude axis

of the time series. These transforms can also be performed on the time axis.

Intuitively, time scaling is to stretch or squeeze the time axis of a sequence

uniformly. This is also known as Uniform Time Warping. Given two time series

of different lengths, we can still compute their distance by time-scaling these

two time series to a same length.

For example, in fig. 4.3 we show Dollar/Euro exchange rate time series

between 1999 and 2002. The time series in fig. 4.3(a) is the daily exchange rate

series and the series in fig. 4.3(b) is the monthly exchange rate series. Of course

these two time series are very similar, because they record the same sequence of

events with different sampling rates. We can see that if we stretch the monthly

rate time series by a factor of approximately 30, or if we squeeze the daily rate

series by a factor of approximately 30, we can make the two sequences have the

same length. We can then compute their Euclidean distance.

The squeezing and stretching of the time axis can be formally defined as the

126

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1-Jan-99 20-Jul-99 5-Feb-00 23-Aug-00 11-Mar-01 27-Sep-01 15-Apr-02 1-Nov-02

(a) Daily exchange rates of Dollar/Euro

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Jan-99 Jul-99 Feb-00 Aug-00 Mar-01 Sep-01 Apr-02 Nov-02

(b) Monthly exchange rates of Dollar/Euro

Figure 4.3: The Dollar/Euro exchange rate time series for different time scales

127

upsample and the downsample transform, respectively1.

Definition 4.3.1 (w−upsampling) The w−upsampling of a time series ~xn is

Uw(~xn) = ~znw,

where

zi = xbi/wc, i = 0, 1, ..., nw − 1.

Definition 4.3.2 (w−downsampling) The w−downsampling of a time series

~xn is

Dw(~xn) = ~zbn/wc,

where

zi = xiw, i = 0, 1, ..., bn/wc − 1.

Intuitively, w−upsampling repeats each value in a time series w times, while

w−downsampling retain only one value for every m consecutive values in a time

series.

Upsampling or downsampling by an integer factor works when the length of

one time series is a multiple of that of another time series. What if the ratio

of the length of two time series is a fraction, say 1.5? In such case, we can

upsampling both time series to a larger length. This gives the Uniform Time

Warping distance between two time series.

Definition 4.3.3 (Uniform Time Warping distance) The Uniform Time

Warping distance between two time series ~xn, ~ym is

D2
UTW (~xn, ~ym) =

∑mn−1
i=1 (xbi/mc − ybi/nc)2

mn
(4.8)

1Note that here the definition is slightly different from those we use for the Discrete Wavelet

Transform in chap 2.

128

For simplicity of notation, we stretch both time axis of ~xn, ~ym to be mn. It

is clear that if their greatest common divisor, GCD(m,n) > 1, the time axis

can be stretched to only their least common multiple, LCM(n,m). Also, any

integer less than LCM(n,m) but are much larger than max(m, n) can replace

mn in (4.8) to get an approximation of the UTW distance.

The following lemma makes it possible to reduce the UTW distance to the

Euclidean distance. The proof is obvious from the definition of upsampling and

UTW distance.

Lemma 4.3.4

D2
UTW (~xn, ~ym) =

D2
(
Um(~xn), Un(~ym)

)

mn
(4.9)

Using Uniform Time Warping, we can compute the distance between time

series of different lengths. The UTW normal form of a time series ~xn is Uw(~xn),

where nw is a predefined large number.

It is not hard to adjust existing dimensionality reduction techniques to com-

pute the UTW normal form of a time series.

4.4 Local Dynamic Time Warping

We extend the GEMINI framework to Dynamic Time Warping. The standard

definition of Dynamic Time Warping distance is as follows [17, 101, 78]:

Definition 4.4.1 (Dynamic Time Warping distance) The Dynamic Time

129

Time Series 1
Time Series 2

Figure 4.4: Illustration of the computation of Dynamic Time Warping

Warping distance between two time series ~x,~y is

D2
DTW (~x, ~y) = D2(First(~x), F irst(~y)) + min





D2
DTW (~x,Rest(~y))

D2
DTW (Rest(~x), ~y)

D2
DTW (Rest(~x), Rest(~y))

(4.10)

Intuitively, the Euclidean distance is the sum of point-by-point distance

synchronously between two time series, while the computation of Dynamic Time

Warping distance allows the stretching or squeezing the time axis to minimize

the distance. This is illustrated in fig. 4.4.

The process of computing the DTW distance can be visualized as a string

matching style dynamic program (fig. 4.5). We construct a n × m matrix to

align time series ~xn and ~ym. The cell (i, j) corresponds to the alignment of

the element xi with yj. A warping path, P , from cell (0, 0) to (n − 1,m − 1)

130

corresponds to a particular alignment, element by element, between ~xn and ~ym:

P = p1, p2, ..., pL = (px
1 , p

y
1), (p

x
2 , p

y
2), ..., (p

x
L, py

L)

max(n,m) ≤ L ≤ n + m− 1

px
t , p

y
t t = 1, 2, ..., L are the position numbers of ~xn and ~ym respectively in the

alignment. The distance between ~xn and ~ym on the warping path P is the

distance between xpx
t

and ypy
t
, t = 1, 2, ..., L. The constraints on the path P are:

• P must be monotonic: px
t − px

t−1 ≥ 0 and py
t − py

t−1 ≥ 0

• P must be continuous: px
t − px

t−1 ≤ 1 and py
t − py

t−1 ≤ 1

The number of possible warping paths grows exponentially with the length of

the time series. The distance that is minimized over all paths is the Dynamic

Time Warping distance. It can be computed using Dynamic Programming in

O(mn) time [17].

We can see that Uniform Time Warping (UTW) is a special case of DTW.

The constraint imposed by UTW is that the warping path must be diagonal.

The constraint imposed by UTW is too rigid, but it can be relaxed by

Local Dynamic Time Warping (LDTW). Intuitively, humans will match two

time series of different lengths as follows. First, the two time series are globally

stretched to the same length. They are then compared locally point by point,

with some warping within a small neighborhood in the time axis. Such a two-

step transform can emulate traditional Dynamic Time Warping while avoiding

some unintuitive results. Here is the definition of Local Dynamic Time Warping.

Definition 4.4.2 (k−Local Dynamic Time Warping distance) The k−Local

Dynamic Time Warping distance between two time series ~x,~y is

D2
LDTW (k)(~x, ~y) = D2

constraint(k)(First(~x), F irst(~y))

131

0 1 2

0

1

2

3

4

5

6

7

8

9

10

11

3 4 5 6 7 8 9 10 11

j

i

Figure 4.5: An example of a warping path with local constraint

+min





D2
LDTW (k)(~x,Rest(~y))

D2
LDTW (k)(Rest(~x), ~y)

D2
LDTW (k)(Rest(~x), Rest(~y))

(4.11)

D2
constraint(k)(xi, yj) =





D2(xi, yj) if |i− j| ≤ k

∞ if |i− j| > k
(4.12)

Figure 4.5 shows a warping path for DLDTW (2)in a time warping grid. The

possible paths are constrained to be within the shadow, which is a beam of

132

width 5(= 2 ∗ 2 + 1) along the diagonal path. The warping width is defined as

δ = 2k+1
n

. Such a constraint is also known as a Sakoe-Chiba Band. Other similar

constraints are also discussed in [53]. It can be shown that the complexity of

computing k−Local Dynamic Time Warping Distance is O(kn) using dynamic

programming.

Note that in the work [53], the definition of the DTW is actually LDTW. By

combining UTW and LDTW together, we define a more general DTW distance:

Definition 4.4.3 The Dynamic Time Warping distance between two time se-

ries is the LDTW distance between their UTW normal forms.

In other words, it is the LDTW distance between two time series after they are

both upsampled to be of the same length. In a slight abuse of notation, we

will not distinguish between LDTW and DTW in the remaining of the theis,

and we assume the distance of LDTW is computed after the UTW transform

had been performed on the time series. In chapter 6, we will show an indexing

technique for time series databases allowing dynamic time warping.

In general, the choice of transformations for similarity comparison between

time series depends on the mechanism that generates the time series. Different

transformations can be combined together. Figure 4.6 shows the criteria in

choosing them.

133

The baselines of the time series matter? Shifting

Dynamic Time
Warping

Scaling

Time
Scaling

No

No

No

The amplitudes of the time series matter?

The time series have the same sample rate?

The time series are perfectly synchronized?

No

Figure 4.6: A decision tree for choosing transformations on time series

134

Part II

Case Studies

135

Chapter 5

StatStream

Consider the problem of monitoring tens of thousands of time series data streams

in an online fashion and making decisions based on them. In addition to single

stream statistics such as average and standard deviation, we also want to find

the most highly correlated pairs of streams especially in a sliding window sense.

A stock market trader might use such a tool to spot arbitrage opportunities.

In this chapter, we propose efficient methods for solving this problem based on

Discrete Fourier Transforms and a three level time interval hierarchy. Extensive

experiments on synthetic data and real world financial trading data show that

our algorithm beats the direct computation approach by several orders of mag-

nitude. It also improves on previous Fourier Transform approaches by allowing

the efficient computation of time-delayed correlation over any size sliding win-

dow and any time delay. Correlation also lends itself to an efficient grid-based

data structure. The result is the first algorithm that we know of to compute

correlations over thousands of data streams in real time. The algorithm is in-

cremental, has fixed response time, and can monitor the pairwise correlations of

10,000 streams on a single PC. The algorithm is embarrassingly parallelizable.

136

5.1 Introduction

Many applications consist of multiple data streams. For example,

• In mission operations for NASA’s Space Shuttle, approximately 20,000

sensors are telemetered once per second to Mission Control at Johnson

Space Center, Houston[60].

• There are about 50,000 securities trading in the United States, and every

second up to 100,000 quotes and trades (ticks) are generated.

Unfortunately it is difficult to process such data in set-oriented data man-

agement systems, although object-relational time series extensions have begun

to fill the gap [74]. For the performance to be sufficiently good however, “Data

Stream Management Systems” (DSMSs) [13], whatever their logical model,

should exploit the following characteristics of the application:

• Updates are through insertions of new elements (with relatively rare cor-

rections of older data).

• Queries (moving averages, standard deviations, and correlation) treat the

data as sequences not sets.

• Since a full stream is never materialized, queries treat the data as a never-

ending data stream.

• One pass algorithms are desirable because the data is vast.

• Interpretation is mostly qualitative, so sacrificing accuracy for speed is

acceptable.

137

Here we present the algorithms and architecture of StatStream, a data

stream monitoring system. The system computes a variety of single and mul-

tiple stream statistics in one pass with constant time (per input) and bounded

memory. To show its use for one practical application, we include most of

the statistics that a securities trader might be interested in. The algorithms,

however, are applicable to other disciplines, such as sensor data processing and

medicine. The algorithms themselves are a synthesis of existing techniques and

a few ideas of our own. We divide our contributions into functional and algo-

rithmic. Our functional contributions are:

1. We compute multi-stream statistics such as synchronous as well as time-

delayed correlation and vector inner-product in a continuous online fash-

ion. This means that if a statistic holds at time t, that statistic will be

reported at time t + v, where v is a constant independent of the size and

duration of the stream.

2. For any pair of streams, each pair-wise statistic is computed in an incre-

mental fashion and requires constant time per update. This is done using

a Discrete Fourier Transform approximation.

3. The approximation has a small error under natural assumptions.

4. Even when we monitor the data streams over sliding windows, no revisiting

of the expiring data streams is needed.

5. The net result is that on a Pentium 4 PC, we can handle 10,000 streams

each producing data every second with a delay window v of only 2 minutes.

Our algorithmic contributions mainly have to do with correlation statistics.

First, we distinguish three time periods:

138

• timepoint – the smallest unit of time over which the system collects data,

e.g. second.

• basic window – a consecutive subsequence of timepoints over which the

system maintains a digest incrementally, e.g., a few minutes.

• sliding window – a user-defined consecutive subsequence of basic windows

over which the user wants statistics, e.g. an hour. The user might ask,

“which pairs of stocks were correlated with a value of over 0.9 for the last

hour?”

The use of the intermediate time interval that we call basic window yields

three advantages:

1. Results of user queries need not be delayed more than the basic window

time. In our example, the user will be told about correlations between 2

PM and 3 PM by 3:02 PM and correlations between 2:02 PM and 3:02

PM by 3:04 PM.

2. Maintaining stream digests based on the basic window allows the com-

putation of correlations over windows of arbitrary size, not necessarily a

multiple of basic window size, as well as time-delayed correlations with

high accuracy.

3. A short basic window give fast response time but fewer time series can

then be handled.

A second algorithmic contribution is the grid structure, each of whose cells

stores the hash function value of a stream. The structure itself is unoriginal but

139

the high efficiency we obtain from it is due to the fact that we are measuring

correlation and have done the time decomposition mentioned above.

The remainder of this chaper will be organized as follows. The data we con-

sider and statistics we produce are presented in Section 5.2. Section 5.3 presents

our algorithms for monitoring high speed time series data streams. Section 5.4

discusses the system StatStream. Section 5.5 presents our experimental results.

Section 5.6 puts our work in the context of related work.

5.2 Data And Queries

5.2.1 Time Series Data Streams

We consider data entering as a time ordered series of triples (streamID, time-

point, value). Each stream consists of all those triples having the same

streamID. (In finance, a streamID may be a stock, for example.) The streams

are synchronized.

Each stream has a new value available at every periodic time interval, e.g.

every second. We call the interval index the timepoint. For example, if the

periodic time interval is a second and the current timepoint for all the streams

is i, after one second, all the streams will have a new value with timepoint i+1.

(Note that if a stream has no value at a timepoint, a value will be assigned

to that timepoint based on interpolation. If there are several values during a

timepoint, then a summary value will be assigned to that timepoint.)

Let si or s[i] denote the value of stream ~s at timepoint i. s[i..j] denotes the

subsequence of stream ~s from timepoints i through j inclusive. si denotes a

stream with streamID i. Also we use t to denote the latest timepoint, i.e., now.

140

The statistics we will monitor will be denoted stat(si1
j , si2

j , ..., sik
j , j ∈ [p, q]),

where the interval [p, q] is a window of interest. We will discuss the meaning of

windows in the next section.

5.2.2 Temporal Spans

In the spirit of the work in [35, 36], we generalize the three kinds of temporal

spans for which the statistics of time series are calculated.

1. Landmark windows: In this temporal span, statistics are computed

based on the values between a specific timepoint called landmark and the

present. stat(~s, landmark(k)) will be computed on the subsequence of

time series s[i], i ≥ k. An unrestricted window is a special case when

k = 1. For an unrestricted window the statistics are based on all the

available data.

2. Sliding windows: In financial applications, at least, a sliding window

model is more appropriate for data streams. Given the length of the

sliding window w and the current timepoint t, stat(~s, sliding(w)) will be

computed in the subsequence s[t− w + 1..t].

3. Damped window model: In this model, recent sliding windows are

more important than previous ones. For example, in the computation of

a moving average, a sliding window model will compute the average as

avg =
∑t

i=t−w+1 si

w
. By contrast, in a damped window model the weights of

data decrease exponentially into the past. For example, a moving average

in a damped window model can be computed as follows:

avgnew = avgold ∗ p + st ∗ (1− p), 0 < p < 1 (5.1)

141

Other statistics in a damped window model can be defined similarly.

Here we will focus on the sliding window model, because it is the one used

most often and is the most general.

5.2.3 Statistics To Monitor

Consider the stream si, i = 1, ..., w. The statistics we will monitor are

1. Single stream statistics, such as average, standard deviation, best fit slope.

These are straightforward.

2. Correlation coefficients

3. Autocorrelation: the correlation of the series with itself at an earlier time.

4. Beta: the sensitivity of the values of a stream ~s to the values of another

stream ~r (or weighted collection of streams). For example, in financial

applications the beta measures the risk of a stock. A stock with a beta of

1.5 to the market index experiences 50 percent more movement in price

than the market.

beta(s, r) =
1
w

∑w
i=1 siri − s r∑w
i=1(ri − r)2

(5.2)

5.3 Statistics Over Sliding Windows

To compute the statistics over a sliding window, we will maintain a synopsis

data structure for the stream to compute the statistics rapidly. To start, our

framework subdivides the sliding windows equally into shorter windows, which

we call basic windows, in order to facilitate the efficient elimination of old data

142

Basic Window
S[0]

Sliding Window

Basic Window
S[k−1]

...
Digests Digests Digests

New Basic Window
S[k]

Figure 5.1: Sliding windows and basic windows

Table 5.1: Symbols

w the size of a sliding window

b the size of a basic window

k the number of basic windows within a sliding window

n the number of DFT coefficients used as digests

Ns the number of data streams

and the incorporation of new data. We keep digests for both basic windows and

sliding windows. For example, the running sum of the time series values within

a basic window and the running sum within an entire sliding window belong

to the two kinds of digests respectively. Figure 5.1 shows the relation between

sliding windows and basic windows.

Let the data within a sliding window be s[t − w + 1..t]. Suppose w = kb,

where b is the length of a basic window and k is the number of basic windows

within a sliding window. Let S[0], S[1], ..., S[k − 1] denote a sequence of basic

windows, where S[i] = s[(t − w) + ib + 1..(t − w) + (i + 1)b]. S[k] will be the

new basic window and S[0] is the expiring basic window. The j-th value in the

basic window S[i] is S[i; j]. Table 5.1 defines the symbols that are used in the

rest of the chapter.

143

The size of the basic window is important because it must be possible to

report all statistics for basic window i to the user before basic window i + 1

completes (at which point it will be necessary to begin computing the statistics

for window i + 1).

5.3.1 Single Stream Statistics

The single stream statistics such as moving average and moving standard devi-

ation are computationally inexpensive. In this section, we discuss moving aver-

ages just to demonstrate the concept of maintaining digest information based

on basic windows. Obviously, the information to be maintained for the moving

average is
∑

(s[t − w + 1..t]). For each basic window S[i], we maintain the

digest
∑

(S[i]) =
∑b

j=1 S[i; j]. After b new data points from the stream become

available, we compute the sum over the new basic window S[k]. The sum over

the sliding window is updated as follows:

∑
new

(~s) =
∑

old

(~s) +
∑

S[k]−
∑

S[0].

5.3.2 Correlation Statistics

Correlation statistics are important in many applications. For example, Pairs

Trading, also known as the correlation trading strategy, is widely employed by

major Wall Street firms. This strategy focuses on trading pairs of equities that

are correlated. The correlation between two streams (stocks) is affected by some

factors that are not known a priori. Any pair of streams could be correlated

at some time. Much effort has been made to find such correlations in order to

enjoy arbitrage profits. These applications imply that the ability to spot corre-

lations among a large number of streams in real time will provide competitive

144

sliding window

basic window

Figure 5.2: Illustration of the computation of inner-product with aligned win-

dows

advantages. To make our task even more challenging, such correlations change

over time and we have to update the moving correlations frequently.

The efficient identification of highly correlated streams potentially requires

the computation of all pairwise correlations and could be proportional to the

total number of timepoints in each sliding window times all pairs of streams. We

make this computation more efficient by (1) using a discrete fourier transform

of basic windows to compute the correlation of stream pairs approximately;

(2) using a grid data structure to avoid the approximate computation for most

pairs.

We will explain how to compute the vector inner-product when the two

series are aligned in basic windows. This approach is extended to the general

case when the basic windows are not aligned. Then we will show our approach

for reporting the highly correlated stream pairs in an online fashion.

145

5.3.3 Inner-product With Aligned Windows

The correlation and beta can be computed from the vector inner-product.Remember

that the vector inner-product for two series ~x = (x1, ..., xw), ~y = (y1, ..., yw), de-

noted as ψ(~x, ~y), is just the sum of the products of their corresponding elements:

ψ(~x, ~y) =
w∑

i=1

xiyi (5.3)

Given two series ~sx and ~sy, when the two series are aligned,

ψ(~sx, ~sy) =
k∑

i=1

ψ(Sx[i], Sy[i]). (5.4)

This is illustrated in fig. 5.2. So, we must explain how to compute the inner-

product of two basic windows: x1, x2, ...xb and y1, y2, ...yb.

Let f : f1(~x), f2(~x), ... be a family of continuous functions. We approximate

the time series in each basic window, Sx[i] = x1, x2, ...xb and Sy[i] = y1, y2, ...yb,

with a function family f . (We will give specific examples later.)

xi ≈
n−1∑
m=0

cx
mfm(i), yi ≈

n−1∑
m=0

cy
mfm(i) i = 1, ..., b (5.5)

where cx
m, cy

m,m = 0, ..., n − 1 are n coefficients to approximate the time series

with the function family f .

The inner-product of the two basic windows is therefore

b∑
i=1

xiy
∗
i ≈

b∑
i=1

(n−1∑
m=0

cx
mfm(i)

n−1∑
p=0

cy∗
p f ∗p (i)

)

=
n−1∑
m=0

n−1∑
p=0

cx
mcy∗

p

(b∑
i=1

fm(i)f ∗p (i)
)

=
n−1∑
m=0

n−1∑
p=0

cx
mcy∗

p W (m, p). (5.6)

146

In (5.6), W (m, p) =
∑b

i=1 fm(i)f ∗p (i) can be precomputed. If the function family

f is orthogonal, we have

W (m, p) =





0 m 6= p

V (m) 6= 0 m = p
(5.7)

Thus,
b∑

i=1

xiy
∗
i ≈

n−1∑
m=0

cx
mcy∗

m V (m) (5.8)

With this curve fitting technique, we reduce the space and time required to

compute inner-products from b to n. It should also be noted that besides data

compression, the curve fitting approach can be used to fill in missing data. This

works naturally for computing correlations among streams with missing data at

some timepoints.

The sine-cosine function families have the right properties. We perform the

Discrete Fourier Transforms for the time series over the basic windows, enabling

a constant time computation of coefficients for each basic window. Following

the observations in [8], we can obtain a good approximation for the series with

only the first n DFT coefficients,

xi ≈ 1√
b

n−1∑
F=0

XF ej2πFi/b i = 1, 2, ..., b (5.9)

Let

fm(i) =
1√
b

n−1∑
F=0

ej2πFi/b,

the users can verify that

b∑
i=1

fm(i)f ∗p (i) =





0 m 6= p

V (m) 6= 0 m = p

.

147

sliding window

sliding window

basic window

Figure 5.3: Illustration of the computation of inner-product with unaligned

windows

5.3.4 Inner-product With Unaligned Windows

A much harder problem is to compute correlations with time lags. The time

series will not necessarily be aligned at their basic windows. However, the

digests we keep are enough to compute such correlations.

Without loss of generality, we will show the computation of the n-approximate

lagged inner-product of two streams with time lags less than the size of a basic

window.

Given two such series,

~sx = sx
1 , ..., s

x
w = Sx[1], ..., Sx[k]

and

~sy = sy
a+1, ..., s

y
a+w = Sy[0], Sy[1], ..., Sy[k − 1], Sy[k],

where for the basic windows Sy[0] and Sy[k], only the last a values in Sy[0] and

148

the first b− a values in Sy[k] are included (a < b). We have

ψ(~sx, ~sy) =
w∑

i=1

(sx
i s

y
a+i)

=
k∑

j=1

(
ρ(Sx[j], Sy[j − 1], a) + ρ(Sy[j], Sx[j], b− a)

)
, (5.10)

where ρ(S1, S2, d) =
∑d

i=1 S1[i]S2[b − d + i]. Figure 5.3 illustrates the compu-

tation.

For S1 = x1, ..., xb and S2 = y1, ..., yb, ρ(S1, S2, d) is the inner-product of the

first d values of S1 with the last d values of S2.This can be approximated using

only their first n DFT coefficients. Whereas in the aligned case, the product

of terms pertaining to different frequencies is zero. That does not hold for the

unaligned case.

d∑
i=1

xiy
∗
b−d+i ≈

d∑
i=1

(n−1∑
m=0

cx
mfm(i)

n−1∑
p=0

cy∗
p f ∗p (b− d + i)

)

=
n−1∑
m=0

n−1∑
p=0

cx
mcy∗

p

(d∑
i=1

fm(i)f ∗p (b− d + i)
)

=
n−1∑
m=0

n−1∑
p=0

cx
mcy∗

p W (m, p, d) (5.11)

This implies that if we precompute the table of

W (m, p, d) =
d∑

i=1

fm(i)f ∗p (b− d + i)

m, p = 0..., n− 1; d = 1, ..., bb/2c, (5.12)

we can compute the inner-product using only the DFT coefficients without

requiring the alignment of basic windows in time O(n2) for each basic window.

Precomputation time for any specific displacement d is O(n2d).

149

Theorem 5.3.1 The n-approximate lagged inner-product of two time series us-

ing their first n DFT coefficients can be computed in time O(kn) if the two series

have aligned basic windows, otherwise it takes time O(kn2), where k is the num-

ber of basic windows.

It is not hard to show that this approach can be extended to compute the

inner-product of two time series over sliding windows of any size.

Corollary 5.3.2 The inner-product of two time series over sliding windows of

any size with any time delay can be approximated using only the basic window

digests of the data streams.

5.3.5 IO Performance

It might be desirable to store the summary data for future analysis. Since

the summary data we keep are sufficient to compute all the statistics we are

interested in, there is no need to store the raw data streams. The summary

data will be stored on disk sequentially in the order of basic windows.

Let Ns be the number of streams and n be the number of DFT coefficients

we use(2n real number), the I/O cost to access the data for all streams within

a specific period will be

Ns k Sizeof(float)(2 + 2n)

Pagesize

while the I/O cost for the exact computation is

Ns k Sizeof(float)b

Pagesize

The improvement is a ratio of b
2+2n

. The first 2 corresponds to two non-DFT

elements of summary data: the sum and the sum of the squares of the time

150

series in each basic window. Also the I/O costs above assume sequential disk

access. This is a reasonable assumption given the time-ordered nature of data

streams.

5.3.6 Monitoring Correlations Between Data Streams

The above curve fitting technique can be used for computing inner-products

and correlations over sliding windows of any size, as well as with any time delay

across streams. A frequent goal is to discover streams with high correlations. To

do online monitoring of synchronized streams over a fixed size of sliding window

with correlation above a specific threshold, we use an approach based on DFT

and a hash technique that will report such stream pairs quickly.

From lemma 4.2.6, we can reduce the correlation coefficient to Euclidean

Distance, and therefore we can apply the techniques in [8] to report sequences

with correlation coefficients higher than a specific threshold.

Lemma 5.3.3 Let the normalized form of two time series ~x and ~y be ŷ and

x̂ respectively, also the Discrete Fourier Transform of x̂ and ŷ are ~̂X and ~̂Y

respectively,

corr(~x, ~y) ≥ 1− ε2 ⇒ Dn(~̂X, ~̂Y) ≤ √
wε, (5.13)

where Dn(~̂X, ~̂Y) is the Euclidean distance between series X̂1, X̂2, ..., X̂n and

Ŷ1, Ŷ2, ..., Ŷn.

Proof As the Discrete Fourier Transform preserves Euclidean distance (theo-

rem 2.1.24), we have

D(~̂X, ~̂Y) = D(~̂x, ~̂y).

151

Using only the first n and last n, (n << w) DFT coefficients[8, 83], from the

symmetry property of DFT, we have

n∑
i=1

(X̂i − Ŷi)
2 +

n∑
i=1

(X̂w−n − Ŷw−n)2

=2
n∑

i=1

(X̂i − Ŷi)
2

=2D2
n(~̂X, ~̂Y)

≤D2(~̂X, ~̂Y)

From lemma 4.2.6, we know that

D2(x̂, ŷ) = 2w
(
1− corr(~x, ~y)

)

Therefore,

corr(x, y) ≥ 1− ε2

⇒D2(~̂x, ~̂y) ≤ 2wε2

⇒D2(~̂X, ~̂Y) ≤ 2wε2

⇒Dn(~̂X, ~̂Y) ≤ √
wε

From the above lemma, we can examine the correlations of only those stream

pairs for which Dn(X̂, Ŷ) ≤ √
wε holds. We will get a superset of highly cor-

related pairs and there will be no false negatives. The false positives can be

further filtered out as we explain later. HierarchyScan[67] also uses correlation

coefficients as a similarity measure for time series. They use F−1{X̂∗
i Ŷi} as an

approximation for the correlation coefficient. Because such approximations will

not be always above the true values, some stream pairs could be discarded based

152

on their approximations, even if their true correlations are above the threshold.

Though HierarchyScan propose an empirical method to select level-dependent

thresholds for multi-resolution scans of sequences, it cannot guarantee the ab-

sence of false negatives.

We can extend the techniques above to report stream pairs of negative high-

value correlations.

Lemma 5.3.4 Let the DFT of the normalized form of two time series x and y

be X̂ and Ŷ .

corr(~x, ~y) ≤ −1 + ε2 ⇒ Dn(− ~̂X, ~̂Y) ≤ √
wε (5.14)

Proof We have

DFT (−~x) = −DFT (~x)

corr(~x, ~y) ≤ −1 + ε2

⇒
w∑

i=1

x̂iŷi ≤ −1 + ε2

⇒
w∑

i=1

(−x̂i)ŷi ≥ 1− ε2

⇒Dn(− ~̂X, ~̂Y) ≤ √
wε

Now we discuss how to compute the DFT coefficients ~̂X incrementally. The

DFT coefficients ~̂X of the normalized sequence can be computed from the DFT

coefficients ~X of the original sequence.

Lemma 5.3.5 Let ~̂X = DFT (~̂x), ~̂Y = DFT (~̂y), we have




X̂0 = 0

X̂i = Xi

std(~x)
i 6= 0

(5.15)

153

We can maintain DFT coefficients over sliding windows incrementally[39].

Lemma 5.3.6 Let Xold
m be the m-th DFT coefficient of the series in sliding

window x0, x1, ..., xw−1 and Xnew
m be that coefficient of the series x1, x2, ..., xw,

Xnew
m = e

j2πm
w (Xold

m +
xw − x0√

w
) m = 1, ..., n (5.16)

This can be extended to a batch update based on the basic windows.

Lemma 5.3.7 Let Xold
m be the m-th DFT coefficient of the series in sliding

window x0, x2, ..., xw−1 and Xnew
m be that coefficient of the series xb, xb+1, ..., xw,

xw+1, ..., xw+b−1,

Xnew
m = e

j2πmb
w Xold

m +
1√
w

(b−1∑
i=0

e
j2πm(b−i)

w xw+i −
b−1∑
i=0

e
j2πm(b−i)

w xi

)

m = 1, ..., n (5.17)

The corollary suggests that to update the DFT coefficients incrementally, we

should keep the following n digests for the basic windows:

ζm =
b−1∑
i=0

e
j2πm(b−i)

w xi, m = 1, ..., n (5.18)

These digests are the components of the DFT of the time series within a sliding

window in the basic window.

By using the DFT on normalized sequences, we also map the original se-

quences into a bounded feature space.

Lemma 5.3.8 Let X̂0, X̂1, ..., X̂w−1 be the DFT of a normalized sequence x1, x2, ..., xw,

we have

|X̂i| ≤
√

2w

2
, i = 1, ..., n, n < w/2 (5.19)

154

Proof
w−1∑
i=1

(X̂i)
2 =

w∑
i=1

(x̂i)
2 = w

⇒2
n∑

i=1

X̂2
i =

n∑
i=1

(X̂2
i + X̂2

w−i) ≤ w

⇒|X̂i| ≤
√

2w

2
, i = 1, ..., n

From the above lemma, each DFT coefficent ranges from −
√

2w
2

to
√

2w
2

,

therefore the DFT feature space R2n is a cube of diameter
√

2w. We can use a

grid structure [16] to report near neighbors efficiently.

We will use the first n̂, n̂ ≤ 2n, dimensions of the DFT feature space for

indexing. We superimpose an n̂-dimensional orthogonal regular grid on the

DFT feature space and partition the cube of diameter
√

2w into cells with the

same size and shape. There are (2d
√

2
2ε
e)n̂ cells of cubes of diameter

√
wε. Each

stream is mapped into a cell based on its first n̂ normalized DFT coefficients.

Suppose that a stream ~x is hashed to cell (c1, c2, ..., cn̂). To report the streams

whose correlation coefficients with ~x is above the threshold 1− ε2, only streams

hashed to cells adjacent to cell (c1, c2, ..., cn̂) need to be examined. Similarly,

streams whose correlation coefficients with ~x are less than the threshold −1+ε2,

must be hashed to cells adjacent to cell (−c1,−c2, ...,−cn̂). After hashing the

streams to cells, the number of stream pairs to be examined is greatly reduced.

We can then compute their Euclidean distance, as well as correlation, based on

the first n DFT coefficients.

For example, given many high-speed time series streams that are updated

every second, we want to monitor their correlation over a two hour sliding win-

dow. To do that, we will maintain the first n = 16 normalized DFT coefficients

155

of each time series stream over the sliding window. Suppose that we choose

a basic window size of five minutes. There will be 300 timepoints in a basic

window and 24 basic windows in a sliding window. For each basic window of

a time series, we need to maintain the 16 digests in (5.18), ζ1, ζ2, ..., ζ16. From

these digests in the basic windows, we can maintain the first 16 normalized

DFT coefficients of a time series over a sliding window incrementally. Out of

the 16 DFT coefficients, only the first n̂ = 4 coefficients are used for indexing

in the grid structure. If the grid report that a pair of streams is likely to the

correlated, we then check their correlation based on their 16 DFT coefficients.

The grid structure can be maintained as follows. Without loss of generality,

we discuss the detection of only positive high-value correlations. There are two

kinds of correlations the user might be interested in.

• synchronized correlation If we are interested in only synchronized cor-

relation, the grid structure is cleared at the end of every basic window.

At the end of each basic window, all the data within the current basic

window are available and the digests are computed. Suppose that stream

x is hashed to cell c, then x will be compared to any stream that has been

hashed to the neighborhood of c.

• lagged correlation If we also want to report lagged correlation, including

autocorrelation, the maintenance of the grid structure will be a little more

complicated. Let TM be a user-defined parameter specifying the largest

lag that is of interest. Each cell in the grid as well as the streams hashed

to the grid will have a timestamp. The timestamp Tx associated with the

hash value of the stream x is the time when x is hashed to the grid. The

timestamp Tc of a cell c is the latest timestamp when the cell c is updated.

156

FOR ALL cells ci ∈ Sc

IF Tx − Tci
> TM //Tci

is the timestamp of ci.

clear(ci) //all the streams in ci are out of date.

ELSE IF 0 < Tx − Tci
≤ TM

//some streams in ci are out of the date.

FOR ALL stream y ∈ ci

IF Tx − Ty > TM delete(y)

ELSE examine correlation(x, y)

ELSE //Tx = Tci

FOR ALL stream y ∈ ci

examine correlation(x, y)

Tci
= Tx //to indicate that ci is just updated

Figure 5.4: Algorithm to detect lagged correlation

The grid is updated every basic window time but never globally cleared.

Let Sc be the set of cells that are adjacent to c, including c. Figure 5.4

gives the pseudo-code to update the grid when stream x hashes to cell c:

Theorem 5.3.9 Given a collection of time series streams, using only the di-

gests of the streams, our algorithms can find those stream pairs whose cor-

relations (whether synchronized or lagged) are above a threshold without false

negatives.

Using the techniques in this section, we can search for high-value lagged cor-

relations among data streams very fast. The time lag must be a multiple of the

157

size of a basic window in this case. Theorem 5.3.1 states that we can approx-

imate correlation of any time lag efficiently. The approximation methods are

used as a post processing step after the hashing methods spot those promising

stream pairs.

5.3.7 Parallel Implementation

Our framework facilitates a parallel implementation by using a straightforward

decomposition. Consider a network of K servers to monitor Ns streams. We

assume these servers have similar computing resources.

The work to monitor the streams consists of two stages.

1. Compute the digests and single stream statistics for the data streams. The

Ns streams are equally divided into K groups. The server i(i = 1, ..., K)

will read those streams in the i-th group and compute their digests, single

stream statistics and hash values.

2. Report highly correlated stream pairs based on the grid structure. The

grid structure is also geometrically and evenly partitioned into K parts.

A server X will read in its part, a set of cells SX . Server X will also

read a set of cells S ′X including cells adjacent to the boundary cells in

SX . Server X will report those stream pairs that are highly correlated

within cells in SX . Note that only the first n normalized DFT coefficients

need to be communicated between servers, thus reducing the overhead for

communication.

158

5.4 StatStream System

StatStream runs in a high performance interpreted environment called K[1].

Our system makes use of this language’s powerful array-based computation to

achieve high speed in the streaming data environment. The system follows the

algorithmic ideas above and makes use of the following parameters:

• Correlation Threshold Only stream pairs whose absolute value of cor-

relation coefficients larger than a specified threshold will be reported. The

higher this threshold, the finer the grid structure, and the fewer streams

whose exact correlations must be computed.

• Sliding Window Size This is the time interval over which statistics are

reported to the user. If the sliding window size is 1 hour, then the reported

correlations are those over the past hour.

• Duration over Threshold Some users might be interested in only those

pairs with correlation coefficients above the threshold for a pre-defined

period. For example, a trader might ask “Has the one hour correlation

between two stocks been over 0.95 during the last 10 minutes?” This pa-

rameter provides such users with an option to specify a minimum duration.

A longer duration period of highly correlated streams indicates a stronger

relationship between the streams while a shorter one might indicate an

accidental correlation. For example, a longer duration might give a stock

market trader more confidence when taking advantage of such potential

opportunities. A longer duration also gives better performance because

we can update the correlations less frequently.

159

• Range of Lagged Correlations In addition to synchronized correla-

tions, StatStream can also detect high-value lagged correlations. This

parameter, i.e. TM in section 5.3.6, specifies the range of the lagged corre-

lations. For example, if the range is 10 minutes and the basic window is 2

minutes, the system will examine cross-correlations and autocorrelations

for streams with lags of 2,4,8 and 10 minutes.

5.5 Empirical Study

Our empirical studies attempt to answer the following questions.

• How great are the time savings when using the DFT approximate algo-

rithms as compared with exact algorithms? How many streams can they

handle in real time?

• What’s the approximation error when using DFT within each basic win-

dow to estimate correlation? How does it change according to the basic

and sliding window sizes?

• What is the pruning power of the grid structure in detecting high corre-

lated pairs? What is the precision?

We perform the empirical study on the following two datasets on a 1.5GHz

Pentium 4 PC with 128 MB of main memory.

• Synthetic Data The time series streams are generated using the random

walk model. For stream s,

si = 100 +
i∑

j=1

(uj − 0.5), i = 1, 2, ...

where uj is a set of uniform random real numbers in [0, 1].

160

• Stock Exchange Data The New York Stock Exchange (NYSE) Trade

and Quote (TAQ) database provides intraday trade and quote data for

all stocks listed on NYSE, AMEX, NASDAQ, and SmallCap issues. The

database grows at the rate of 10GB per month. The historical data since

1993 have accumulated to 500GB. The data we use in our experiment are

the tick data of the major stocks in a trading day. The 300 stocks in this

dataset are heavily traded in NYSE. During the peak hours, there several

trades for each stock in a second. We use the price weighted by volume as

the price of that stock at that second. In a second when there is no trading

activities for a particular stock, we use the last trading price as its price.

In this way, all the stock streams are updated every second, corresponding

to a timepoint. The sliding window will vary from half an hour to two

hours (1,800 to 7,200 timepoints). In practice the actual choice of the

sliding windows will be up to the user. The lengths of the basic windows

are half a minute to several minutes, depending on the number of streams

to be monitored and the computing capacity.

5.5.1 Speed Measurement

Suppose that the streams have new data every second. The user of a time series

stream system asks himself the following questions:

1. How many streams can I track at once in an online fashion? (Online

means that even if the data come in forever, I can compute the statistics

of the data with a fixed delay from their occurrence.)

2. How long is the delay between a change in correlation and the time when

I see the change?

161

0

2000

4000

6000

8000

10000

12000

30 60 90 120 150 180 210 240 270 300 330 360

Delay in Update (in Seconds)

N
u

m
b

er
 o

f
S

tr
ea

m
s

Exact

DFT

Figure 5.5: Comparison of the number of streams that the DFT and Exact

method can handle

Our system will compute correlations at the end of each basic window. As

noted above, the computation for basic window i must finish by the end of basic

window i+1 in order for our system to be considered on-line. Otherwise, it would

lag farther and farther behind over time. Therefore, some of the correlations

may be computed towards the end of the basic window i+1. The user perceives

the size of the basic window as the maximum delay between the time that a

change in correlation takes place and the time it is computed.

The net result is that the answers to questions (1) and (2) are related.

We can increase the number of streams at the cost of increasing the delay in

reporting correlation.

Figure 5.5 shows the number of streams vs. the minimum size of the basic

window for a uniprocessor and with different algorithms. In the DFT method,

we choose the number of coefficients to be 16.

162

Using the exact method, given the basic window size b, the time to compute

the correlations among Ns streams with b new timepoints is T = k0bN
2
s . Because

the algorithm must finish this in b seconds, we have k0bN
2
s = b ⇒ Ns =

√
1
k0

.

With the DFT-grid method, the work to monitor correlations has two parts:

(1)Updating digests takes time T1 = k1bNs; (2)Detecting correlation based on

the grid takes time T2 = k2N
2
s . To finish these two computations before the

basic window ends, we have T1 + T2 = b. Since T2 is the dominating term, we

have Ns ≈
√

b
k2

. Note that because of the grid structure, k2 << k0. Also, the

computation with data digests is much more IO efficient than the exact method

on the raw streams. From the equation above, we can increase the number of

streams monitored by increasing the basic window size, i.e., delay time. This

tradeoff between response time and throughput is confirmed in the figure. The

number of streams handled by our system increases with the size of the basic

window, while there is no perceivable change for the exact algorithm.

The wall clock time to find correlations using the DFT-grid method is much

faster than the exact method (Fig. 5.6a). The time is divided into two parts:

detecting correlation and updating the digest (Fig. 5.6b).

The experiments on the processing time for the DFT-grid method also pro-

vide a guideline on how to choose the size of the basic window. Given a specific

computing capacity, figure 4 show the processing time for different basic win-

dow sizes, when the numbers of streams are 5,000 (Fig. 5.7a) and 10,000 (Fig.

5.7b). Note that the wall clock time to detect correlation does not change with

the size of the basic window, while the wall clock time to update the digest is

proportional to the size of the basic window. Therefore the processing time is

linear to the size of the basic window. Because the processing time must be

shorter than the basic window time for our system to be online, we can decide

163

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200 1400 1600

Number of Streams

W
al

l C
lo

ck
 T

im
e

(s
ec

o
n

d
s)

Exact

DFT

0

50

100

150

200

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

Number of Streams

W
al

l C
lo

ck
 T

im
e

(s
ec

o
n

d
s)

Detecting Correlation

Updating Digests

Figure 5.6: Comparisons of the wall clock time

164

a. Ns = 5,000

0

5

10

15

20

25

30

35

40

15 20 25 30 35 40 55 60

Basic window size (seconds)

W
al

l C
lo

ck
 T

im
e

(s
ec

o
n

d
s)

Updating Digests

Detecting Correlation

b. Ns = 10,000

0
15
30
45
60
75
90

105
120
135
150
165

15 30 45 60 75 90 105 120 135 150

Basic window size (seconds)

W
al

l C
lo

ck
 T

im
e

(s
ec

o
n

d
s)

Updating Digests

Detecting Correlation

Figure 5.7: Comparison of the wall clock time for different basic window sizes

165

the minimum basic window size. From figure 4 to monitor 5,000 streams the

minimum basic window size is 25 seconds. Similarly, the basic window time

should be no less than 150 seconds for 10,000 streams.

5.5.2 Precision Measurement

Because the approximate correlations are based on DFT curve fitting in each

basic window, the precision of the computation depends on the size of the basic

window. Our experiments on the two data sets (fig. 5.8) show that the error

(measured by the absolute value of the difference to the real correlation coeffi-

cients) increases with larger basic window size and decreases with larger sliding

window size, but remain small throughout. This is particularly noteworthy,

because we used only the first 2 DFT coefficients in each basic window.

We also performed experiments to test the effectiveness of the grid structure.

The grid structure on DFT feature space prunes out most of the low-correlated

pairs of streams. The pruning power [54] is the number of pairs reported by the

grid, divided by the number of all potential pairs. Since our system guarantees

no false negatives, the reported pairs include all the high-correlated pairs and

some false positives. We also measure the quality of the system by precision,

which is the ratio of the number of pairs whose correlations are above the

threshold and reported by StatStream, to the number of pairs that are reported

by StatStream. Figure 5.9 shows the precision and pruning power fraction

using different numbers of coefficients and values of thresholds for different

datasets. R0.85 indicates the real dataset with threshold of 0.85, S0.9 indicates

the synthetic dataset with threshold of 0.9,etc. The length of the sliding window

is one hour.

166

0.5
1

2

0.5

1

2
3

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045
0.005

A
ve

ra
g

e
A

p
p

ro
xi

m
at

io
n

E

rr
o

r

Sliding w indows
(Hours)

B
as

ic

w
in

d
o

w
s

(M
in

u
te

s)

0.5
1

2

0.5

1
2

3

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045
0.005

A
ve

ra
g

e
A

p
p

ro
xi

m
at

io
n

E

rr
o

r

Sliding window s
(Hours)

B
as

ic

w
in

d
o

w
s

(M
in

u
te

s)

Figure 5.8: Average approximation errors for correlation coefficients with dif-

ferent basic/sliding window sizes for synthetic and real datasets

167

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 24 32 40

Number of DFT coefficients

P
re

ci
si

o
n

R0.85

R0.9

S0.85

S0.9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

16 24 32 40

Number of DFT coefficients

F
ra

ct
io

n
 R0.85

R0.9

S0.85

S0.9

Figure 5.9: The precision and pruning power using different numbers of coeffi-

cients, thresholds and datasets

168

Table 5.2: Precision after post processing

Dataset R0.85 R0.85 R0.9 R0.9 S0.85

Tolerance 0.001 0.0005 0.001 0.0005 0.0005

Precision 0.9933 0.9947 0.9765 0.9865 0.9931

Recall 1.0 0.9995 1.0 0.9987 1.0

Table 5.2 shows that recall can be traded off against precision. The user

may specify a tolerance t such that the system will report those pairs with

approximate correlation coefficients larger than threshold− t.

5.6 Related Work

There is increasing interest in data streams. In the theoretical literature, Datar

et. al [29] study the problem of maintaining data stream statistics over sliding

windows. Their focus is single stream statistics. They propose an online data

structure, exponential histogram, that can be adapted to report statistics over

sliding windows at every timepoint. They achieve this with a limited memory

and a tradeoff of accuracy. Our online basic window synopsis structure can

report the precise single stream statistics for those timeponts that fall at basic

window boundaries with a delay of the size of a basic window, but our multi-

stream statistics also trade accuracy against memory and time.

Gehrke et al. [36] also study the problem of monitoring statistics over mul-

tiple data streams. The statistics they are interested in are different from ours.

They compute correlated aggregates when the number of streams to be moni-

tored is small. A typical query in phone call record streams is the percentage

of international phone calls that are longer than the average duration of a do-

169

mestic phone call. They use histograms as summary data structures for the

approximate computing of correlated aggregates.

Recently, the data mining community has turned its attention to data

streams. A domain-specific language, Hancock[26], has been designed at AT&T

to extract signatures from massive transaction streams. Algorithms for con-

structing decision trees[32] and clustering [42] for data streams have been pro-

posed. Recent work of Manku et al.[69], Greenwald and Khanna[41] have fo-

cused on the problem of approximate quantile computation for individual data

streams. Our work is complementary to the data mining research because our

techniques for finding correlations can be used as inputs to the similarity-based

clustering algorithms.

The work by Yi et al.[102] for the online data mining of co-evolving time

sequences is also complementary to our work. Our approximation algorithm can

spot correlations among a large number of co-evolving time sequences quickly.

Their method, MUSCLES can then be applied to those highly correlated streams

for linear regression-based forecasting of new values.

Time series problems in the database community have focused on discovering

the similarity between an online sequence and an indexed database of previously

obtained sequence information. Traditionally, the Euclidean similarity measure

is used. The original work by Agrawal et al. [8] utilizes the DFT to transform

data from the time domain into frequency domain and uses multidimensional

index structure to index the first few DFT coefficients. In their work, the focus

is on whole sequence matching. This was generalized to allow subsequence

matching [34]. Rafiei and Mendelzon[82] improve this technique by allowing

transformations, including shifting, scaling and moving average, on the time

series before similarity queries. The distances between sequences are measured

170

by the Euclidean distance plus the costs associated with these transformations.

Our work differs from them in that (1)In [8, 34, 82, 67], the time series are all

finite data sets and the focus is on similarity queries against a sequence database

having a preconstructed index. Our work focuses on similarity detection in

multiple online streams in real time. (2)We use the correlation coefficients

as a distance measure like [67]. The correlation measure is invariant under

shifting and scaling transformations. Correlation makes it possible to construct

an efficient grid structure in bounded DFT feature space. This is what enable

us to give real time results. [67] allows false negatives, whereas our method does

not.

Other techniques such as Discrete Wavelet Transform (DWT) [21, 98, 79, 38],

Singular Value Decomposition (SVD)[62] and Piecewise Constant Approxima-

tion (PCA)[100, 55] are also proposed for similarity search. Keogh et al. [54]

compares these techniques for time series similarity queries. The performance of

these techniques varied depending on the characteristics of the datasets, because

no single transform can be optimal on all datasets. These techniques based on

curve fitting are alternative ways of computing digests and could be used in our

sliding window/basic window framework.

5.7 Conclusion

Maintaining multi-stream and time-delayed statistics in a continuous online

fashion is a significant challenge in data management. We solve this problem in

a scalable way that gives a guaranteed response time with high accuracy.

The Discrete Fourier Transform technique reduces the enormous raw data

streams into a manageable synoptic data structure and gives good I/O per-

171

formance. For any pair of streams, the pair-wise statistic is computed in an

incremental fashion and requires constant time per update using a DFT ap-

proximation. A sliding/basic window framework is introduced to facilitate the

efficient management of streaming data digests. We reduce the correlation co-

efficient similarity measure to a Euclidean measure and make use of a grid

structure to detect correlations among thousands of high speed data streams

in real time. Experiments conducted using synthetic and real data show that

StatStream detects correlations efficiently and precisely.

172

Chapter 6

Query by Humming

A Query by Humming system allows the user to find a song by humming part of

the tune. No musical training is needed. Previous query by humming systems

have not provided satisfactory results for various reasons. Some systems have

low retrieval precision because they rely on melodic contour information from

the hum tune, which in turn relies on the error-prone note segmentation process.

Some systems yield better precision when matching the melody directly from

audio, but they are slow because of their extensive use of Dynamic Time Warp-

ing (DTW). Our query by humming software, HumFinder[107, 108], improves

both the retrieval precision and speed compared to previous approaches. We

treat music as a time series and exploit and improve well-developed techniques

from time series databases to index the music for fast similarity queries. We im-

prove on existing DTW indexes technique by introducing the concept of envelope

transforms, which gives a general guideline for extending existing dimensional-

ity reduction methods to DTW indexes. The net result is high scalability. We

confirm our claims through extensive experiments.

173

6.1 Introduction

You have a tune lingering in your head for many days, but you don’t know

where you heard this tune or which song it is from. You can’t search it using

an online search engine such as Google because you know nothing about the

metadata of the tune. Often, a music store clerk acts as a musical search engine,

interpreting tunes hummed by shoppers and directing them to an album. This

works even for shoppers who can’t hum very well, as the author knows from

personal experience. Such a resource is very useful but hard to find.

A Query by Humming system is just such a resource. The user will hum a

piece of tune into a microphone connected to a computer. The computer will

search a database of tunes to find a list of melodies that are most similar to the

user’s “query”. The user will then listen to this result to see if it is actually the

tune that he had in mind. Sometimes the user won’t get the tune he wanted

because he hummed way off tune, the database does not contain that tune, or

the computer is not intelligent enough to tell whether two tunes sound similar.

Query by humming is a particular case of “Query by Content” in multime-

dia databases. One queries a symbolic database of melodies (such as MIDIs or

digital music scores), rather than a general acoustic database (such as MP3s).

Although these two formats can be linked by metadata such as artist and song

names, there is no known method to extract melodies from MP3. Querying

acoustic databases [99] is an interesting problem, but it is not the focus of a

query by humming system. Most research into “query by humming” in the mul-

timedia research community uses the notion of “Contour” information. Melodic

contour is the sequence of relative differences in pitch between successive notes

[37]. It has been shown to be a method that the listeners use to determine sim-

174

ilarities between melodies. However, the inherent difficulty the contour method

encounters is that there is no known algorithm that can reliably transcribe the

user’s humming to discrete notes. We discuss this point further below.

Recently, there has been work that matches a melody directly from audio

[71, 50, 103]. This generally gives better query results because it is free from the

error-prone note segmentation. However, because such work relies on Dynamic

Time Warping (DTW), the performance is poor.

The database community has been investigating similarity query in time

series databases for a long time[8, 34]. Here we will show that query by humming

is a natural application for time series database research. Time series database

techniques, especially dynamic time warping indexes, can be applied to build a

fast and robust query by humming database system.

6.2 Related Work

Most of the research in pre-existing query by humming systems uses pitch con-

tour to match similar melodies [37, 18, 72, 93]. The user’s humming is tran-

scribed to a sequence of discrete notes and the contour information is extracted

from the notes. This contour information is represented by a few letters. For

example, (“U”, “D”, “S”) represents that a note is above, below or the same

as the previous one. Naturally, more letters can be introduced to get a finer

measure of the contour. For example, “u” indicates that a note is slightly higher

than the previous one while “U” indicates that it is much higher. The tunes

in the databases are also represented by contour information. In this way, a

piece of melody is represented by a string with a small alphabet. The edit dis-

tance can be used to measure the similarity between two melodies. Techniques

175

for string matching such as “q-grams” can be used to speed up the similarity

query. The advantage of using contours is that while most users can hum the

contour correctly, they cannot hum the contour intervals correctly. But such

work suffers from two serious problems.

• It has been shown that contour information alone is not enough to dis-

tinguish a large database of melodies. A typical query of six notes on a

database of 2,697 tracks would result in about 330 tracks being returned

[92].

• It is very hard to segment a user’s humming into discrete notes. There

are reliable algorithms to transcribe the user humming in each short time

period to a specific pitch [91]. But no good algorithm is known to segment

such a time series of pitches into discrete notes. The precision of the query

system thus rests on an imprecise preprocessing stage.

To avoid the first problem, one can use longer query lengths and finer measures

of contour intervals. But that requires too much of users, especially poor singers.

The second problem is more fundamental. There are two solutions proposed in

the literature.

1. The user is required to clearly hum the notes of the melody using only

the syllable “ta”, “la” or “da” [66, 72]. But such an input method is very

unnatural for users. Moreover, when there are tie notes in a tune, it is

very hard for the user to articulate them correctly. Such a cumbersome

job should be left to intelligent computer programs.

2. Some recent work [71, 50, 103] proposes to match the query directly from

audio based on melody slope [103] or dynamic time warping [71, 50] to

176

match the hum-query with the melodies in the music databases. The re-

sults reported using such methods are quite encouraging. Compared to

note based methods, such direct methods generally have higher retrieval

precision [71]. But this quality improvement comes at a price. Perfor-

mance deteriorates to such an extent that [71] states “Perhaps the biggest

criticism of our work is that it is clearly a brute-force approach and it is

very slow.” No indices are used, which makes searching in a large music

database unpractical.

The database community has been researching problems in similarity query

for time series databases for many years. The techniques developed in the area

might shed light on the query by humming problem. Agrawal et al. [8] uti-

lized the Discrete Fourier Transform (DFT) to transform data from the time

domain into the frequency domain and used a multidimensional index structure

to index the first few DFT coefficients. The focus in their work was on whole se-

quence matching. This was generalized to allow subsequence matching [34, 75].

Rafiei and Mendelzon [82] improved this technique by allowing transformations,

including shifting, scaling and moving average, on the time series before similar-

ity queries. In addition to DFT [8, 82, 104], Discrete Wavelet Transform (DWT)

[21, 98, 79], Singular Value Decomposition (SVD)[62], Piecewise Aggregate Ap-

proximation (PAA)[100, 53] and Adaptive Piecewise Constant Approximation

[54] approaches have also been proposed for similarity searching.

Allowing Dynamic Time Warping (DTW) in time series similarity search-

ing is very critical for a query by humming system. A point-by-point distance

measure between time series is very likely to fail due to variations in the dura-

tion of notes. Berndt and Clifford [17] introduced the concept of DTW to the

177

data mining community. They showed how to use Dynamic Programming to

compute the DTW distance and demonstrated its application as a time series

similarity measure. Yi et al. [101] were the first to investigate the DTW in very

large databases. They proposed two techniques to speed up DTW in a pipeline

fashion. The first technique is to use FastMap to index time series with the

DTW distance measure. But this technique might result in false negatives. The

second is a global lower-bounding technique for filtering out unlikely matches.

In recent work, Keogh [53] proposed a technique for the exact indexing of DTW

that guarantees no false negatives.

6.2.1 Our contributions

In this research, we investigate the problem of indexing large music databases,

which allows efficient and effective query by humming. Our strategy and con-

tributions are as follows.

• We treat both the melodies in the music databases and the user hum-

ming input as time series. Such an approach allows us to integrate many

database indexing techniques into a query by humming system, improving

the quality of such system over the traditional (contour) string databases

approach.

• We design an indexing scheme that is invariant to shifting, time scaling

and local time warping. This makes the system robust and allows flexible

user humming input, while attaining high speeds.

• We improve on the state-of-the-art indexing technique for time series

databases allowing dynamic time warping due to [53] by giving a bet-

178

ter lower-bound distance for dynamic time warping. This yields less false

negatives and shows improvements of speed by 3 to 10 times in practice.

• We formulate a general method for dimensionality reduction transforms

on time series envelopes. Existing dimensionality reduction transforms,

such as Discrete Fourier Transform (DFT) and Discrete Wavelet Trans-

form (DWT), can be extended to index time series allowing dynamic time

warping while avoiding false negatives. This might have applications to

video processing in the spirit of [53].

• The net effect is that our approach is scalable to large music databases,

as we demonstrate with our system, HumFinder.

6.3 Architecture of the HumFinder System

A typical query by humming system includes three components:

• User humming: the input hum-query

• A database of music

• An index into the database for efficient retrieval of the hum-query

In this section, we will discuss these components in detail, with a focus on

the indexing techniques.

6.3.1 User humming: the input hum-query

The user hums the query melody using a PC microphone with a single channel

(mono). This acoustic input is segmented into frames of 10ms and each frame

179

Figure 6.1: An example of a pitch time series. It is the tune of the first two

phrases in the Beatles’s song “Hey Jude” hummed by an amateur.

is resolved into a pitch using a pitch tracking algorithm [91]. This results in a

time series of the pitches. Figure 6.1 shows an example of a pitch time series.

It is the tune of the first two phrases in the Beatles’s song “Hey Jude”. The

user may hum in any way he/she prefers. From the example of fig. 6.1, we can

see that it is very hard for the human being to mark the borders between notes.

This is also the case for the computer. As mentioned above, we are not aware

of any algorithm or product that can automatically segment notes with high

accuracy. That is why our system avoids note segmentation.

6.3.2 A database of music

Our music database is made up of a collection of melodies. A melody is made

up of a sequence of the tuples (Note, Duration). Because we use a monotone

melody, there is only one note playing at each moment. A sequence of tuples

180

(N1, d1), (N2, d2), ..., (Nk, dk) represents a melody starting with note N1 that

lasts for d1 time, followed by note N2 that lasts for d2 time... etc. Notice

that we do not include the information of rests in the melody because amateur

singers are notoriously bad in the timing of rests. In fact, we simply ignore the

silent information in the user input humming and the candidate melodies in the

database. Such a sequence of tuples can then be thought of as a time series in

the following format:

N1, N1, · · · , N1︸ ︷︷ ︸
d1

, N2, N2, · · · , N2︸ ︷︷ ︸
d2

, ...

Figure 6.2 shows the melody of the beginning two phrases in the Beatles’s “Hey

Jude” and its time series representation.

Users are not expected to hum the whole melody. For the system to recognize

sub-melodies, two methods are possible.

1. subsequence matching There are many techniques for subsequence

queries proposed in time series database research[34, 75], but subsequence

queries are generally slower than whole sequence queries because the size

of the potential candidate sequences is much larger.

2. whole sequence matching We can segment each melody into several

pieces based on the musical information, because most people will hum

melodic sections. The query will be matched with each small piece of

melody in the database.

In this research, we use whole sequence matching.

181

6.3.3 Indexing databases for efficient humming query

If the user of the query by humming system were a good singer, we would just

use the Euclidean distance between the time series to match the input pitch

time series with the candidate time series in the database. The difficulty of

query by humming comes from the fact that most users will not hum at the

right pitch or tempo. The system should be flexible enough to allow typical

inaccuracies in:

Figure 6.2: The sheet music of “Hey Jude” and its time series representation

182

1. Absolute pitch Only about 1 in 10,000 people can get the absolute pitch

right [81]. People of different genders, ages or even in different moods will

hum the same melody with very different pitches. The humming of most

people will have more accuracy in the relative pitch, or the intervals. Our

system allows the user to hum at different absolute pitches. To do this, we

subtract from the time series their average pitches before the matching.

This is a Shift-invariant technique for time series matching.

2. Tempo A song can be sung at different tempos and still sound quite the

same. In practice, a melody will be hummed at a tempo that ranges from

half to double the original tempo. However the tempo is usually more or

less consistent, that is, when the tempo changes, the duration of each note

changes proportionally. We can imagine this as a uniform stretching or

squeezing of the time axis. In time series database research, this is called

Time Scaling, or Uniform Time Warping.

3. Relative pitch The problem of variation in relative pitch for the average

singer is less severe than that of the absolute pitch. But it is still not

rare for notes to be sung a bit high or low. Suppose that the timing

of each note is perfect, the distance between the query humming time

series and a candidate time series can then be measured by the sum of

the differences at each sample time moment. The smaller this distance is,

the more similar a candidate melody is to the humming. So the problem

of finding a similar melody is a Nearest Neighbors query.

4. Local timing variation Unfortunately, it is not realistic to require that

the timing of each humming note is perfect. Using Dynamic Time Warp-

183

Figure 6.3: The time series representations of the hum query and the candidate

music tune after they are transformed to their normal forms

ing, we can make the matching process allow variations in tempo for each

note. The idea is to stretch and squeeze the time axis locally to minimize

the point-to-point distance of two time series. An important contribu-

tion of our research is an efficient indexing scheme for local dynamic time

warping.

In short, our time series approach first transforms time series to a “normal

form” [39] to make the similarity measure invariant under shifting and time

scaling. Figure 6.3 shows an example of the time series representations of the

humming and the candidate music tune after they are transformed to their

normal forms, that is, they have the same absolute pitch and tempo. The

dynamic time warping distance between the normal forms of the time series will

be used as the similarity measure.

184

To scale up to large databases, we must avoid a linear scan which examines

the distance between the query time series and all the time series in the database.

However, it is hard to index time series data because of their high dimension.

To address the problem, the GEMINI framework [34] is used. The idea is to

approximate the original time series and to reduce their dimensionality. Given

a time series ~xn, a dimensionality reduction transform T will reduce it to a

lower dimension ~XN = T (~xn), N << n. ~XN is also called the feature vector of

~xn. After the time series are mapped to a lower dimensionality space, they can

be indexed by a multidimensional index structure such as an R* tree [15] or a

grid file [104]. To guarantee no false negatives in similarity queries, T must be

lower-bounding, that is, the distance between time series under dimensionality

reduction should lower-bound their original distance:

D(T (~x), T (~y)) ≤ D(~x, ~y).

Popular dimensionality reduction transformations include the Fourier Trans-

form, the Wavelet Transform, SVD and Piecewise Aggregate Approximation.

In the next section, we will extend the GEMINI framework to the Dynamic

Time Warping distance measure.

6.4 Indexing Scheme for Dynamic Time Warp-

ing

To simplify our notation, we will first review the concept of envelope [53] for

time series.

Definition 6.4.1 (Envelope) The k−Envelope of a time series ~x = xi, i =

185

1, ..., n is

Envk(~x) = (EnvL
k (~x); EnvU

k (~x)). (6.1)

EnvL
k (~x) and EnvU

k (~x) are the upper and lower envelope of ~x respectively:

EnvL
k (~x) = xL

i , i = 1, ..., n; xL
i = min−k≤j≤k(xi+j) (6.2)

EnvU
k (~x) = xU

i , i = 1, ..., n; xU
i = max−k≤j≤k(xi+j) (6.3)

~e = (~eL;~eU) denotes the envelope of a time series. The distance between a

time series and an envelope is defined naturally as follows.

Definition 6.4.2 The distance between a time series ~x and an envelope ~e is

D(~x,~e) = min
~z∈~e

D(~x, ~z) (6.4)

We use ~zn ∈ ~e to denote that eL
i ≤ zi ≤ eU

i , i = 1, 2, ..., n. So the value at each

point can be any one in the range.

Keogh [53] proved that the distance between a time series and the envelope

of another time series lower-bounds the true DTW distance.

Lemma 6.4.3 [53]

D(~xn, Envk(~y
n)) ≤ DDTW (k)(~x

n, ~yn) (6.5)

To index the time series in the GEMINI framework, one needs to perform

dimensionality reduction transform on the time series and its envelope. Piece-

wise Aggregate Approximation (PAA) is used in [53]. The PAA reduction of

the envelopes using Keogh’s method is as follows. Let (~LN ; ~UN) be the PAA

reduction of an envelope (~ln; ~un),

Li = min(l n
N

(i−1)+1, ..., l n
N

i),

186

Ui = max(u n
N

(i−1)+1, ..., u n
N

i),

i = 1, 2, ..., N. (6.6)

The PAA of an envelope is just the piecewise constant function, which bounds

but does not intersect the envelope.

We introduce a new PAA reduction as follows.

Li =
N

n

n
N

i∑

j= n
N

(i−1)+1

lj,

Ui =
N

n

n
N

i∑

j= n
N

(i−1)+1

uj,

i = 1, 2, ..., N (6.7)

In our method, ~U and ~L are also piecewise constant functions, but each piece

is the average of the upper or lower envelope during that time period. Figure

6.4-a shows a time series, its bounding envelope and the PAA reduction of the

envelope using Keogh’s method. Figure 6.4-b shows the same time series, its

bounding envelops and the PAA reduction of the envelope using our method.

We can see clearly that the bounds in fig. 6.4-b are tighter than that in fig.

6.4-a and it is straightforward to prove that this is always the case for any time

series. We will show that our bounds can still guarantee to lower-bound the

real DTW distance.

Before we prove that our PAA transform can provide a lower-bound for

DTW, we will first discuss general dimensionality reduction transforms on en-

velopes for indexing time series under the DTW distance. We define the con-

tainer property of a dimensionality reduction transform for an envelope as fol-

lows.

187

Original time series
Upper envelope
Lower envelope
U_Keogh
L_Keogh

Original time series
Upper envelope
Lower envelope
U_new
L_new

Figure 6.4: The PAA for the envelope of a time series using (a)Keogh’s

method(top) and (b)our method(bottom).

188

Definition 6.4.4 (Container Invariant) We say a transformation T for an

envelope ~e is “container-invariant” if

∀~xn if ~xn ∈ ~e then T (~xn) ∈ T (~e) (6.8)

Just as a transform of time series that is lower-bounding can guarantee no

false negatives for Euclidean distance, a transform of envelopes that is container-

invariant can guarantee no false negatives for DTW distance.

Theorem 6.4.5 If a transformation T is container-invariant and lower-bounding

then

D(T (~x), T (Envk(~y))) ≤ DDTW (k)(~x, ~y) (6.9)

Proof T is container-invariant,

∴ ∀~zn if ~zn ∈ ~e then T (~zn) ∈ T (~e)

∴ {~z|~z ∈ Envk(~y)} ⊆ {~z|T (~z) ∈ T (Envk(~y))}

∴ min
{~z|T (~z)∈T (Envk(~y))}

D(~x, ~z) ≤ min
{~z|~z∈Envk(~y)}

D(~x, ~z)

T is lower-bounding,

∴ D(T (~x), T (~z)) ≤ D(~x, ~z)

∴ min
{~z|T (~z)∈T (Envk(~y))}

D(T (~x), T (~z)) ≤ min
{~z|T (~z)∈T (Envk(~y))}

D(~x, ~z)

∴ min
{~z|T (~z)∈T (Envk(~y))}

D(T (~z), T (~z)) ≤ min
{~z|~z∈Envk(~y)}

D(~x, ~z)

By the definition of distance between time series and envelope,

D(T (~x), T (Envk(~y))) ≤ D(~x,Envk(~y)) (6.10)

From lemma 6.4.3,

D(T (~x), T (Envk(~y))) ≤ DDTW (k)D(~x, ~y)

189

Using the concept of container-invariant, we can design the transform for

the envelope based on PAA, DWT, SVD and DFT. All these dimensionality

reduction transforms are linear transforms1, that is,

~XN = T (~xn),

Xj =
n∑

i=1

aijxi, j = 1, 2, ..., N. (6.11)

We can extend such linear transforms for time series to transforms for time

series envelopes, and at the same time guarantee they are container-invariant.

Lemma 6.4.6 Let transform T be a linear transform, ~XN = T (~xn), Xj =
∑n

i=1 aijxi, j = 1, 2, ..., N , and the transform T on envelope ~e is as follows,

E = (~EL, ~EU) = T (~eL, ~eU) (6.12)

EU
j =

n∑
i=1

(aije
U
i τ(aij) + aije

L
i (1− τ(aij)))

EL
j =

n∑
i=1

(aije
L
i τ(aij) + aije

U
i (1− τ(aij)))

j = 1, 2, ..., N (6.13)

where τ is the sign function:

τ(x) =





1 x ≥ 0

0 x < 0

(6.14)

Then transform T is container-invariant.

1DFT is a linear transform because the real and image part of a DFT coefficient are still

a linear combination of the original time series.

190

Proof

∀~xn if ~xn ∈ ~e then eL
i ≤ xi ≤ eU

i , i = 1, 2, ..., n

Therefore EL
i ≤ Xj ≤ EU

i , j = 1, 2, ..., N

∴ T (~xn) ∈ T (~e)

A transform of an envelope is still an envelope, which we call the envelope in

the feature space. In the special case when the envelope equals the time series,

the transform of the envelope becomes the transform of the time series. Because

PAA is a linear transform, and our proposed PAA transform for envelopes is

deduced from the lemma above, it is container-invariant. PAA also has the

nice property that all the coefficients of linear transformation for PAA, unlike

DFT and SVD, are positive. In this case, the upper envelope in feature space

is just the PAA transform of the upper envelope, so is the lower envelope. For

other transform like DFT and SVD, the upper envelope in feature space is the

transform of the combination of the upper and the lower envelope. So the

envelopes in the PAA feature space are tighter then those for DFT and SVD in

general.

Now we are ready to describe the strategy for time series database query

with DTW. An ε-range similarity query in a time series database is to find all

the time series whose distances with the query are less than ε. It includes the

following step.

1. For each time series ~xn in the database, compute its feature vector ~XN .

2. Build an N -dimensional index structure on ~XN .

191

3. For a time series query ~qn, compute its envelope ~en and ~EN = T (~en).

4. Make an ε-range query of ~EN on the index structure, and return a set of

time series S.

5. Filter out the false positives in S using their true DTW distances with ~qn.

We can guarantee no false negatives from theorem 6.4.5.

Similarly, a k-nearest neighbors query can be built on top of such a range

query [65, 86]. For existing time series databases indexed by DFT, DWT, PAA,

SVD, etc., we can add Dynamic Time Warping support without rebuilding

indices. This works because our framework allows all the linear transforms and

adding the DTW support requires changes only to the time series query.

6.5 Experiments

Our experiments are divided into three parts. First we will run experiments

to evaluate the quality of our query by humming system, HumFinder, using

the time series database approach. Comparisons with traditional contour based

method will be made. We will also test the efficiency of our DTW indexing

scheme comparing to the state-of-the-art technique. Finally we will test the

scalability of our system.

6.5.1 Quality of the query by humming system

We collected 50 of the most popular Beatles’s songs by manual entry. These

songs are further segmented to 1000 short melodies. Each melody contains 15

to 30 notes. We asked people with different musical skills to hum for the system.

192

To evaluate the quality of the query by humming system, first we compared

it with the note contour-based method. We will use the hum queries of better

singers in this experiment, because for hum queries of poor quality it is hard for

even a human being to recognize the target song. For the note contour-based

method, we need to transcribe the user humming into discrete notes first. For

lack of a reliable note-segmentation algorithm, we used the best commercial

software we could find, AKoff Music Composer[9], to transcribe notes. We also

applied a standard algorithm [91] to transcribe the user hum query to a sequence

of pitches, and used the silence information between pitches to segment notes.

For the contour-based method, we report the better result based on these two

note-segmentation processes. For the 20 pieces of hum queries by better singers,

we searched the database to find their ranks using the contour-based approach

and the time series approach. The result is shown in table 6.1. We can see

that our time series approach beats the contour approach clearly. We are not

claiming that using contour information for music matching is bad. However

until a reliable note-segmentation algorithm is developed, such an approach is

based on dubious input. If for example, the query input were by piano instead of

human voice so that each individual note is clearly separated, we would expect

the contour-base approach to have good quality too.

We tested our system with some hum queries of poor quality, for example,

by one of the authors. We define a melody to be perfectly matched if it is the

intended target melody of the hummer and its rank is 1. The number of melodies

perfectly matched is low. Still the result is quite encouraging. We noticed that

the warping width can be adjusted to tune the query results. It is hard for a

poor hummer to keep the right duration for each note of the melody. Allowing

larger warping widths will give the hummers more flexibility in the duration of

193

Table 6.1: The number of melodies correctly retrieved using different approaches

Rank Time series Approach Contour Approach

1 16 2

2-3 2 0

4-5 2 0

6-10 0 4

10- 0 14

Table 6.2: The number of melodies correctly retrieved by poor singers using

different warping widths

Rank δ = 0.05 δ = 0.1 δ = 0.2

1 2 4 2

2-3 2 3 5

4-5 4 5 7

6-10 3 5 4

10- 9 3 2

the notes. For the 20 hum queries by poor singers, we searched the database to

find their ranks using DTW with different warping width. The result is reported

in table 6.2. We can see that more queries return in the top 10 matches when

the warping width is increased from 0.05 to 0.1. But this tendency disappears

when the warping width is increased to 0.2, because it is unlikely for a hummer

to sing way off tempo. When the warping width is too large, some melodies

that are very different will have a small DTW distance too. A warping width of

1 for local DTW degenerates to global DTW. Larger warping widths also slow

down the processing.

194

Figure 6.5: The mean value of the tightness of the lower bound, using LB,

New PAA and Keogh PAA for different time series data sets. The data sets are

1.Sunspot; 2.Power; 3.Spot Exrates; 4.Shuttle; 5.Water; 6. Chaotic; 7.Stream-

gen; 8.Ocean; 9.Tide; 10.CSTR; 11.Winding; 12.Dryer2; 13.Ph Data; 14.Power

Plant; 15.Balleam; 16.Standard &Poor; 17.Soil Temp; 18.Wool; 19.Infrasound;

20.EEG; 21.Koski EEG; 22.Buoy Sensor; 23.Burst; 24.Random walk

6.5.2 Experiments for indexing DTW

Having shown that our time series approach for query by humming system has

superior quality over the traditional contour approach, we will also demonstrate

that it is very efficient. Unlike [71], the performance of the time series approach

does not suffer from the extensive use of DTW. The scalability of our system

comes from our proposed technique for indexing DTW. We will compare our

DTW indexing technique with the best existing DTW indexing method [53].

There is an increasing awareness to use a benchmark approach in time series

database experiments to guard against implementation bias and data bias. In

the spirit of the work [57, 53], we took such an approach to conduct our ex-

periments. To avoid data bias, we conducted our experiments on a wide range

of time series datasets [56] that cover disciplines including finance, medicine,

195

industry, astronomy and music. We also measured the results in an implemen-

tation free fashion to avoid bias in implementation.

We define the tightness of the lower bound for DTW distance as follows.

T = Lower Bound of DTW distance based on reduced dimension
True DTW distance

T is in the range of [0,1]. Larger T gives a tighter bound. Note that the

definition here is different from that in the work [53]. In [53], Keogh has shown

convincingly that lower-bounding using the envelope is much tighter than global

bounding as reported in [101]. But such an envelope uses much more informa-

tion than global lower-bounding. For a time series of size n, its envelope is

represented by 2n values. By contrast, the global lower-bounding technique can

be seen as using the minimum and maximum value of a time series as the en-

velope of a time series. So the global bounding is represented by only 2 values.

To test the efficiency of dimensionality reduction under DTW, we modify the

definition of T slightly, i.e., the lower-bound is based on reduced dimension.

We compared three methods: LB is the lower-bound using the envelope (with-

out dimensionality reduction and therefore without the possibility of indexing);

Keogh PAA is the lower-bound using PAA transformation proposed by Keogh

[53] and New PAA is our proposed PAA lower-bound. We chose each sequence

to be of length n = 256 and a warping width to be 0.1. The dimension was

reduced from 256 to 4 using PAA. We selected 50 time series randomly from

each dataset and subtracted the mean from each time series. We computed the

tightness of the lower bound of the distances between each pair of the 50 time

series. The average tightness of lower bound for each dataset using the three

methods are reported in fig. 6.5.

From the figure, we can see that the method LB has the best T for each

dataset. This is not a surprise, because the method LB uses much more infor-

196

Figure 6.6: The mean value of the tightness of lower bound changes with the

warping widths, using LB, New PAA, Keogh PAA, SVD and DFT for the ran-

dom walk time series data set.

mation than Keogh PAA and New PAA. We include it here as a sanity check.

LB will be used as a second filter after the indexing scheme, Keogh PAA or

New PAA, returns a superset of answer. Using the same number of values,

New PAA is always better than Keogh PAA. That comes from the fact that

the estimations of DTW using New PAA are always closer to the true DTW

distance than the estimations using Keogh PAA. The tightness of lower bound

of New PAA is approximately 2 times that of Keogh PAA on average for all

datasets.

One of the contributions of this research is a framework allowing DTW

indexing using different dimensionality reduction methods in addition to PAA.

The performance of competing dimensionality reduction methods under the

Euclidean distance measure is very data-dependent, none of them is known to

197

be the best in all cases. Allowing different dimensionality reduction methods

to be extended to the case of the DTW distance measure will provide the users

with more flexibility in choosing the right method for a particular application.

We tested the tightness of lower bounds for DTW indexing using dimensionality

reduction methods including PAA, DFT and SVD. For brevity, we will report

only the results for the random walk data in fig. 6.6, because the random

walk data are the most studied dataset of time series indexing and are very

homogeneous. We varied the warping widths from 0 to 0.1. Each T value is

the average of 500 experiments. Again LB is always the tightest lower-bound

because no dimensionality reduction is performed. In the case of 0 warping

width, the DTW distance is the same as the Euclidean distance. Since SVD is

the optimal dimensionality reduction method for Euclidean distance, the lower-

bound using SVD is tighter than any other dimensionality reduction methods.

The performance of DFT and PAA for the Euclidean distance measure is similar,

which confirms other research [98, 54]. For all the warping widths, New PAA

is always better that Keogh PAA as we would expect. New PAA also beats

DFT and SVD as the warping widths increase. The reason is that all the linear

transformation coefficients for PAA are positive, as we mentioned before.

6.5.3 Scalability testing

The tightness of the lower bound is a good indicator of the performance of a

DTW indexing scheme. A tighter lower-bound means that fewer candidates

need to be retrieved for further examination in a particular query. That will

increase the precision of retrieval at no cost to recall. Higher precision of re-

trieval implies lower CPU cost and IO cost at the same time, because we need

198

to access fewer pages to retrieve candidate time series and to perform fewer

exact Dynamic Time Warping computations. We will use the number of can-

didates retrieved and the number of page accesses as the implementation-bias

free measures for the CPU and IO cost.

First we conducted experiments on our small music database of the Bea-

tles’s songs. Figure 6.7 shows the average number candidates to be retrieved

for queries with different selectivity. The range queries have range nε, n is the

length of the time series and the thresholds ε take the values of 0.2 and 0.8.

From the figure, we can see that as the warping widths get larger, the num-

ber of candidates retrieved increases, because the lower-bounds get looser for

larger warping widths. Our approach (New PAA) is up to 10 times better than

Keogh PAA.

To test the scalability of our system, we need to use larger datasets. The first

database we tested is a music database. We extracted notes from the melody

channel of MIDI files we collected from the Internet and transformed them to

our time series representation. There are 35, 000 time series in the database.

The second database contains 50, 000 random walk data time series. Each time

series has a length of 128 and is indexed by its 8 reduced dimensions using an

R* tree [15] implemented in LibGist [44]. Each result we report is averaged over

500 experiments. Figure 6.8 and 6.9 show the performance comparisons for the

music database. We can see that the number of page accesses is proportional

to the number of candidates retrieved for all the methods and thresholds. In a

Pentium 4 PC, NEW PAA took from 1 second for the smallest warping width

to 10 seconds for the largest warping width. As the warping width increases,

the number of candidates retrieved increases significantly using the Keogh PAA

method while it increases less for New PAA.

199

Figure 6.7: The number of candidates to be retrieved with different query

thresholds for the Beatles’s melody database

200

Figure 6.8: The number of candidates to be retrieved with different query

thresholds for a large music database

201

Figure 6.9: The number of page accesses with different query thresholds for a

large music database

202

Figure 6.10: The number of candidates to be retrieved with different query

thresholds for a large random walk database

203

Figure 6.11: The number of page accesses with different query thresholds for a

large random walk database

204

Figure 6.10 and 6.11 show the performance comparisons for the random walk

database. Similar performance advantages of our method hold for the random

walk data too.

6.6 Conclusions

We present an improved scheme for indexing time series databases using Dy-

namic Time Warping. Our improvement builds on the dimensionality reduction

transform of time series envelopes. We give a general approach to adapting

existing time series indexing schemes for the Euclidean distance measure to the

DTW distance measure. We prove that such an indexing scheme guarantees no

false negatives given that the dimensionality reduction on envelope is container-

invariant. Using this approach, our PAA transform for DTW is consistently bet-

ter than the previous reported PAA transform. Extensive experiments showed

that the improvement is by a factor between 3 and 10.

Based on the time warping indexes, we show that the time series database

approach for query by humming gives high precision and is fast and scalable. We

have also implemented a query by humming system, HumFinder. Preliminary

testing of HumFinder on real people (OK, our friends) gave good performance

and high satisfaction. Some even improved their singing as a result. The system

is not yet mature. We are still working on expanding our melody database and

adapting the system to different hummers. However, the system’s potential

applications to entertainment and education are fortissimo.

205

Chapter 7

Elastic Burst Detection

Burst detection is the activity of finding abnormal aggregates in data streams.

Such aggregates are based on sliding windows over data streams. In some appli-

cations, we want to monitor many sliding window sizes simultaneously and to

report those windows with aggregates significantly different from other periods.

We will present a general data structure and system called OmniBurst[105] for

detecting interesting aggregates over such elastic windows in near linear time.

We present applications of the algorithm for detecting Gamma Ray Bursts in

large-scale astrophysical data. Detection of periods with high volumes of trad-

ing activities and high stock price volatility is also demonstrated using real time

Trade and Quote (TAQ) data from the New York Stock Exchange (NYSE). Our

algorithm filters out periods of non-bursts in linear time, so beats the quadratic

direct computation approach (of testing all window sizes individually) by several

orders of magnitude.

206

7.1 Introduction

Consider the following application that motivates this research. An astronom-

ical telescope, Milagro[6] was built in New Mexico by a group of prestigious

astrophysicists from the Los Alamos National Laboratory and many universi-

ties. This telescope is actually an array of light-sensitive detectors covering a

large pool of water about the size of a football field. It is used to constantly

observe high-energy photons from the universe. When many photons observed,

the scientists assert the existence of a Gamma Ray Burst. The scientists hope

to discover primordial black holes or completely new phenomena by the detec-

tion of Gamma Ray Bursts. The occurrences of Gamma Ray Bursts are highly

variable, flaring on timescale of minutes to days. Once such a burst happens,

it should be reported immediately. Other telescopes could then point to that

portion of sky to confirm the new astrophysical event. The data rate of the

observation is extremely high. Hundreds of photons can be recorded within a

second from a tiny spot in the sky[33, 48].

There are also many applications in data stream mining and monitoring

when people are interested in discovering time intervals with unusually high

numbers of events. For example:

• In telecommunication, a network anomaly might be indicated if the num-

ber of packages lost within a certain time period exceeds some threshold.

• In finance, stocks with unusually high trading volumes would attract the

notice of the traders (or regulators)[106]. Also stocks with unusually high

price fluctuations within a short time period provide more opportunity of

speculation. Therefore they would be watched more closely.

207

Intuitively, given an aggregate function F (such as sum or count), the prob-

lem of interest is to discover subsequences s of a time series stream such that

F (s) >> F (s′) for most subsequences s′ of size |s|. In the case of burst detec-

tion, the aggregate is sum. If we know the duration of the time interval, we

can maintain the sum over sliding windows of a known window size and sound

an alarm when the moving sum is above a threshold. Unfortunately, in many

cases, we cannot predict the length of the burst period. In fact, discovering that

length is part of the problem to be solved. In the above example of Gamma

Ray Burst detection, a burst of photons associated with a special event might

last for a few milliseconds, a few hours, or even a few days. There are different

thresholds associated with different durations. A burst of 10 events within 1

second could be very interesting. At the same time, a burst that lasts longer

but with lesser density of events, say 50 events within 10 seconds, could be of

interest too.

Suppose that we want to detect bursts for a time series of size n and we

are interested in all the n sliding window sizes. A brute-force search has to

examine all the sliding window sizes and starting positions. Because there are

O(n2) windows, the lower bound of the time complexity is O(n2). This is very

slow for many applications. Fortunately, because we are interested in only those

few windows that experience bursts, it is possible to design a nearly linear time

algorithm. In this chapter we present a burst detection algorithm with time

complexity approximately proportional to the size of the input plus the size of

the output, i.e. the number of windows with bursts.

208

7.1.1 Problem Statement

There are two categories of time series data stream monitoring: point monitoring

and aggregate monitoring. In point monitoring, the latest data item in the

stream is of interest. When the latest item falls in some predefined domain,

an alarm would be sounded. For example, a stock trader who places a limited

sell order on Enron informs the stock price stream monitor to raise an alarm

(or automatically sell the stock) once the price of stock fall under $10 to avoid

further losses. Since only the latest data in the stream need to be considered,

point monitoring can be implemented without much effort.

Aggregate monitoring is much more challenging. Aggregates of time series

are computed based on certain time intervals (windows). There are three well-

known window models that are the subjects of many research projects [35, 36,

38, 104, 22].

1. Landmark windows: Aggregates are computed based on the values

between a specific time point called the landmark and the present. For

example, the average stock price of IBM from Jan 1st, 2003 to today is

based on a landmark window.

2. Sliding windows: In a sliding window model, aggregates are computed

based on the last w values in the data stream. The size of a sliding window

w is predefined. For example, the running maximum stock price of IBM

during the previous 5 days is based on sliding windows.

3. Damped window: In a damped window model the weights of data de-

crease exponentially into the past. is inserted can be updated as follows:

avgnew = avgold ∗ p + x ∗ (1− p), 0 < p < 1

209

The sliding window model is the most widely used in data stream monitoring.

Motivated by the Gamma Ray example, we have generalized this to the elastic

window model. In an elastic window model, the user needs to specify only the

range of the sliding window sizes, the aggregate function and alarms domains,

and will be notified of all those window sizes in the range with aggregates falling

in the corresponding alarm domains.

Here we give the formal definition of the problem of monitoring data stream

over elastic windows.

Problem 7.1.1 For a time series x1, x2, ..., xn, given a set of window sizes

w1, w2, ..., wm, an aggregate function F and threshold associated with each win-

dow size, f(wj), j = 1, 2, ..., m, monitoring elastics window aggregates of the

time series is to find all the subsequences of all the window sizes such that the

aggregate applied to the subsequences cross their window sizes’ thresholds, i.e.

∀i ∈ 1..n, ∀j ∈ 1..m, s.t. F (x[i .. i+wj−1]) ≥ f(wj) (7.1)

The threshold above can be estimated from the historical data or the model

of the time series. Elastic burst detection is a special case of monitoring data

streams on elastic windows. In elastic burst detection, the alarm domain is

[f(wj),∞). Note that it is also possible for the alarm domain to be (−∞, f(wj)].

7.1.2 Our Contributions

The contributions of our research are as follows.

• We introduce the concept of monitoring data streams on elastic windows

and show several important applications of this model.

210

• We design an innovated data structure, called the Shifted Binary Tree, for

efficient elastic burst monitoring. This data structure is applied to general

aggregate monitoring and burst detection in higher dimensions.

• We apply our algorithm to real world data including the Milagro Gamma

Ray data stream, NYSE real time tick data and text data. Our method is

up to several magnitudes faster than a direct computation, which means

that a multi-day computation can be done in a matter of minutes.

7.2 Data Structure and Algorithm

In this section, we first give some background on the wavelet data structure,

because our algorithm for burst detection is based on a similar data structure. In

section 7.2.2 we discuss the Shifted Binary Tree and the algorithm for efficient

elastic burst detection in an offline setting. This is extended to a streaming

algorithm in section 7.2.3. Our algorithm will also be generalized to other

problems in data stream monitoring over elastic windows in section 7.2.4 and

to higher dimensions in section 7.2.5.

7.2.1 Wavelet Data Structure

In wavelet analysis, the wavelet coefficients of a time series are maintained in a

hierarchical structure. Let us consider the simplest wavelet, the Haar wavelet.

For simplicity of notation, suppose that the size of time series n is a power of

two. This would not affect the generality of the results. The original time series

makes up of level 0 in a wavelet tree. The pair wise (normalized) averages and

differences of the adjacent data items at level 0 produce the wavelet coefficients

211

Level 3

Level 2

Level 1

Level 4

Level 5

Level 0

Level 4

Level 1

Level 2

Level 5

Level 3

Level 0

Figure 7.1: (a)Wavelet Tree (left) and (b)Shifted Binary Tree(right)

at level 1. The process is repeated for the averages at level i to get the averages

and differences at level i+1 until there is only one average and difference at the

top level. The reader can refer to the process in computing the Haar wavelet

decomposition in table 2.2.

The wavelet coefficients above can also be viewed as the aggregates of the

time series at different time intervals. Figure 7.1-a shows the time interval hier-

archy in the Haar wavelet decomposition. At level i, there are n2−i consecutive

windows with size 2i. All the windows at the same level are disjoint. The

aggregates that the Haar wavelet maintains are the (normalized) averages and

differences, while in our discussion of burst detection, the aggregate of interest

is the sum. Obviously, such a wavelet tree can be constructed in O(n) time.

The first few top levels of a wavelet tree yield concise multi-resolution infor-

mation of the time series. This gives the wavelet lots of applications. However,

for our purpose of burst detection, such a data structure has a serious prob-

lem. Because the windows at the same level are non-overlapping, a window of

arbitrary start position and arbitrary size might not be included in any win-

dow in the wavelet tree, except the window at the highest level that includes

everything. For example, the window consisting of three time points in the

212

middle, (n/2 − 1, n/2, n/2 + 1), is not contained in any window in the wavelet

tree except the largest one. This makes wavelets inconvenient for the discovery

of properties of arbitrary subsequences.

7.2.2 Shifted Binary Tree

In a shifted binary tree (SBT) (fig. 7.1-b), the adjacent windows of the same

level are half overlapping. In fig. 7.1, we can see that the size of a SBT is

approximately double that of a wavelet tree, because at each level, there is

an additional “line” of windows. These additional windows provide valuable

overlapping information for the time series. They can be maintained either

explicitly or implicitly. If we keep only the aggregates for a traditional wavelet

data structure, the aggregates of the overlapping windows at level i can be

computed from the aggregates at level i− 1 of the wavelet data structure.

To build a SBT, we start from the original time series and compute the pair

wise aggregate (sum) for each two consecutive data items. This will produce the

aggregates at level 1. A downsampling on this level will produce the input for

the higher level in the SBT. Downsampling is simply sampling every second item

in the series of aggregates. In fig. 7.1-b, downsampling will retain the upper

consecutive non-overlapping windows at each level. This process is repeated

until we reach the level where a single window includes every data point. Figure

7.2 gives a pseudo-code to build a SBT. Like regular wavelet trees, the SBT can

also be constructed in O(n) time.

For a subsequence starting and ending at arbitrary positions, there is always

a window in the SBT that tightly includes the subsequence as fig. 7.3 shows

and the following lemma proves.

213

Given : x[1..n],n=2a

Return: shifted binary tree SBT[1..a][1..]

b=x;

FOR i = 1 TO a //remember a = log2 n

//merge consecutive windows and form

//level i of the shifted binary tree

FOR j = 1 TO size(b)-1 STEP 2

SBT[i][j]=b[j]+b[j+1];

ENDFOR

//downsample, retain a non-overlapping cover

FOR j = 1 TO size(SBT[i])/2

b[j]=SBT[i][2*j-1];

ENDFOR

ENDFOR

Figure 7.2: Algorithm to construct shifted binary tree

214

Figure 7.3: Examples of the windows that include subsequences in the shifted

binary tree

Lemma 7.2.1 Given a time series of length n and its shifted binary tree, any

subsequence of length w,w ≤ 2i is included in one of the windows at level i + 1

of the shifted binary tree.

Proof The windows at level i + 1 of the shifted binary tree are:

[(j−1)2i+1 .. (j+1)2i], j = 1, 2, ...,
n

2i
− 1. (7.2)

A subsequence with length 2i starting from an arbitrary position c will be in-

cluded in at least one of the above windows, because

[c .. c+2i−1] ⊆ [(j−1)2i+1 .. (j+1)2i], j = b c− 1

2i
c+ 1. (7.3)

Any subsequence with length w, w ≤ 2i is included in some subsequence(s) with

length 2i, and therefore is included in one of the windows at level i + 1. We say

that windows with size w, 2i−1 < w ≤ 2i, are monitored by level i + 1 of the

SBT.

Because for time series of non-negative numbers the aggregate sum is mono-

tonically increasing, the sum of the time series within a sliding window of any

215

size is bounded by the sum of its including window in the shifted binary tree.

This fact can be used as a filter to eliminate those subsequences whose sums

are far below their thresholds.

Figure 7.4 gives the pseudo-code for spotting potential subsequences of size

w with sums above its threshold f(w), where 1 + 2i−1 < w ≤ 1 + 2i. We know

that the bursts for sliding window sizes in (1 + 2i−1,≤ 1 + 2i] are monitored

by the level i + 1 in the SBT. The minimum of the thresholds of these window

sizes is f(w1) because the thresholds increase with the window sizes. If SBT [i+

1][j] is less than f(w1), we know that there won’t be any bursts for windows

monitored by level i+1 at position j. That is, no burst exists in the subsequence

x[(j−1)2i +1 .. (j+1)2i]. If SBT [i+1][j] is larger than f(w1), then there might

be bursts in the subsequence. Suppose that f(wt) is the largest window size

whose threshold is exceeded by SBT [i + 1][j], that is, f(wt) ≤ SBT [i + 1][j] <

f(wt+1). We know that in subsequence x[(j−1)2i + 1 .. (j+1)2i], there might

be bursts of window size w1, w2, ..., wt. The detailed search of burst of window

sizes w1, w2, ..., wt on the subsequences is then performed. A detailed search of

window size w on a subsequence is to compute the moving sums with window

size w in the subsequence directly and to verify if these moving sums cross the

burst threshold.

In the spirit of the original work of [8] that uses lower bound technique for

fast time series similarity search, we have the following lemma that guarantees

the correctness of our algorithm.

Lemma 7.2.2 The above algorithm can guarantee no false negatives in elastic

burst detection from a time series of non-negative numbers.

Proof From lemma 7.2.1, any subsequence of length w, w ≤ 2i is contained

216

Given :

time series x[1..n],

shifted binary tree at level i + 1, SBT[i+1][1..],

a set of window sizes 1 + 2i−1 < w1 < w2 < ... < wm ≤ 1 + 2i,

thresholds f(wk), k = 1, 2, ..., m

Return:

Subsequences of size wk, k = 1, 2, ..., m with burst

FOR j = 1 TO size(SBT[i+1])

IF (SBT[i+1][j] ≥ f [w1])

//possible burst in subsequence x[(j−1)2i + 1 .. (j+1)2i],

Let wt be the window size such that f(wt) ≤ SBT[i+1][j] < f(wt+1)

//wt is the largest window size with possible burst.

detailed search with window size wk, k = 1, 2, ..., t in

subsequence x[(j−1)2i + 1 .. (j+1)2i]

ENDIF

ENDFOR

Figure 7.4: Algorithm to search for bursts

217

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Φ(x)

Φ-1(p)

p

Figure 7.5: Normal cumulative distribution function

within a window in the SBT:

[c .. c + w − 1] ⊆ [c .. c + 2i − 1] ⊆ [(j−1)2i+1 .. (j+1)2i] (7.4)

Because the sum of the time series of non-negative numbers is monotonic in-

creasing, we have

∑
(x[c..c+w−1])≤

∑
(x[c..c+2i−1])≤

∑
(x[(j−1)2i+1..(j+1)2i]). (7.5)

By eliminating sequences with lengths larger than w but with sums less than

f(w), we do not introduce false negatives because

∑
(x[(j−1)2i+1 .. (j+1)2i]) < f(w) ⇒

∑
(x[c .. c+w−1]) < f(w). (7.6)

In most applications, the algorithm will perform detailed search seldom and

then usually only when there is a burst of interest. For example, suppose that

218

the moving sum of a time series is a random variable from a normal distribution.

Let the sum within sliding window w be So(w) and its expectation be Se(w),

We assume that

So(w)− Se(w)

Se(w)
∼ Norm(0, 1). (7.7)

We set the threshold of burst f(w) for window size w such that the probability

that the observed sums exceed the threshold is less that p, i.e., Pr[So(w) ≥
f(w)] ≤ p. Let Φ(x) be the normal cumulative distribution function, remember

that for a normal random variable X,

Pr[X ≤ Φ−1(p)] ≤ p

Pr[X ≥ −Φ−1(p)] ≤ p (7.8)

This is illustrated in fig. 7.5. We have

Pr
[So(w)− Se(w)

Se(w)
≥ −Φ−1(p)

]
≤ p (7.9)

Therefore,

f(w) = Se(w)(1− Φ−1(p)). (7.10)

Because our algorithm monitors the burst based on windows with size W =

Tw, 1 ≤ T < 2, the detailed search will always report real bursts. Actually our

algorithm performs a detailed search whenever there are more than f(w) events

in a window of W . Therefore the rate of detailed search pf is higher than the

rate of true alarms. Suppose that Se(W) = TSe(w), we have

So(W)− Se(W)

Se(W)
∼ Norm(0, 1). (7.11)

219

pf = Pr[So(W) ≥ f(w)]

= Pr
[So(W)− Se(W)

Se(W)
≥ f(w)− Se(W)

Se(W)

]

= Φ
(
− f(w)− Se(W)

Se(W)

)

= Φ
(
1− f(w)

TSe(w)

)

= Φ
(
1− 1− Φ−1(p)

T

)
(7.12)

The rate of detailed search is very small for small p, the primary case of

interest. For example, let p = 10−6, T = 1.5, pf is 0.006. In this model, the

upper bound of false alarm rate is guaranteed.

The time for a detailed search in a subsequence of size W is O(W). The

total time for all detailed searches is linear in the number of false alarms and

true alarms(the output size k). The number of false alarm depends on the data

and the setting of thresholds, and it is approximately proportional to the output

size k. So the total time for detailed searches is bounded by O(k). To build

the SBT takes time O(n), thus the total time complexity of our algorithm is

approximately O(n + k), which is linear in the total of the input and output

sizes.

7.2.3 Streaming Algorithm

The SBT data structure in the previous section can also be used to support a

streaming algorithm for elastic burst detection. Suppose that the set of window

sizes in the elastic window model are 2L < w1 < w2 < ... < wm ≤ 2U . For

simplicity of explanation, assume that new data becomes available at every

time unit.

220

Without the use of SBT, a naive implementation of elastic burst detection

has to maintain the m sums over the sliding windows. When a new data item

becomes available, for each sliding window, the new data item is added to

the sum and the corresponding expiring data item of the sliding window is

subtracted from the sum. The running sums are then checked against the

monitoring thresholds. This takes time O(m) for each insertion of new data.

The response time is one time unit if enough computing resources are available.

By comparison, the streaming algorithms based on the SBT data structure

will be much more efficient. For the set of window sizes 2L < w1 < w2 < ... <

wm ≤ 2U , we need to maintained the levels from L+2 to U +1 of the SBT that

monitor those windows. There are two methods that provide tradeoffs between

throughput and response time.

• Online Algorithm:The online algorithm will have a response time of

one time unit. In the SBT data structure, each data item is covered by

two windows in each level. Whenever a new data item becomes available,

we will update those 2(U − L) aggregates of the windows in the SBT

immediately. Associated with each level, there is a minimum threshold.

For level i, the minimum threshold δi is the min of the thresholds of all the

windows monitored by level i, that is, δi = min f(wj), 2
i−2 < wj ≤ 2i−1.

If the sum in the most recently completed window at level i exceeds δi, it

is possible one of the windows monitored by level i exceeds its threshold.

We will perform a detailed search on those time intervals. Otherwise, the

data stream monitor awaits insertions into the data stream. This online

algorithm provides a response time of one time unit, and each insertion of

the data stream requires 2(U−L) updates plus possible detailed searching.

221

• Batch Algorithm: The batch algorithm will be lazy in updating the

SBT. Remember that the aggregates at level i can be computed from the

aggregates at level i−1. If we maintain aggregates at an extra level of con-

secutive windows with size 2L+1, the aggregates at levels from L+2 to U+1

can be computed in batch. The aggregate in the most recently completed

window of the extra level is updated every time unit. An aggregate of a

window at the upper levels in the SBT will not be computed until all the

data in that window are available. Once an aggregate at a certain upper

level is updated, we also check alarms for time intervals monitored by that

level. A batch algorithm gives higher throughput though longer response

time (with guaranteed bound close to the window size whose threshold

was exceeded) than an online algorithm as the following lemmas state.

Lemma 7.2.3 The amortized processing time per insertion into the data stream

for a batch algorithm is 2.

Proof At level i, L + 2 ≤ i ≤ U + 1, of the SBT, every 2i−1 time units there

is a window in which all the data are available. The aggregates at that window

can be computed in time O(1) based on the aggregates at level i− 1. Therefore

the amortized update time for level i is 1
2i−1 . The total amortized update time

for all levels (including the extra level) is

1 +
U+1∑

i=L+2

1

2i−1
≤ 2. (7.13)

Lemma 7.2.4 The burst activity of a window with size w will be reported with

a delay less than 2dlog2 we.

222

Proof A window with size w, 2i−1 < w ≤ 2i, is monitored by level i + 1 of

the SBT. The aggregates of windows at level i + 1 are updated every 2i time

units. When the aggregates of windows at level i + 1 are updated, the burst

activity of window with size w can be checked. So the response time is less than

2i = 2dlog2 we.

7.2.4 Other Aggregates

It should be clear that in addition to sum, the monitoring of many other aggre-

gates based on elastic windows could benefit from our data structure, as long

as the following conditions holds.

1. The aggregate F is monotonically increasing or decreasing with respect

to the window, i.e., if window [a1..b1] is contained in window [a2..b2], then

F (x[a1..b1]) ≤ F (x[a2..b2]) (or F (x[a1..b1]) ≥ F (x[a2..b2])) always holds.

2. The alarm domain is one sided, that is, [threshold,∞) for monotonic

increasing aggregates and (−∞, threshold] for monotonic decreasing ag-

gregates.

The most important and widely used aggregates are all monotonic: Max,

Count are monotonically increasing and Min is monotonically decreasing. An-

other monotonic aggregate is Spread. Spread measures the volatility or surpris-

ing level of time series. Spread of a time series ~x is

Spread(~x) = Max(~x)−Min(~x). (7.14)

Spread is monotonically increasing. The spread within a small time interval is

less than or equal to that within a larger time interval. A large spread within

223

Figure 7.6: (a)Wavelet Tree (left) and (b)Shifted Binary Tree(right)

a small time interval is of interest in many applications in data stream because

it indicates that the time series has experienced large movement.

7.2.5 Extension to Two Dimensions

The one-dimensional shifted binary tree for time series can naturally be ex-

tended to higher dimensions, such as spatial dimensions. In this section we con-

sider the problem of discovering elastic spatial bursts using a two-dimensional

shifted binary tree. Given a fixed image of scattering dots, we want to find the

regions of the image with unexpectedly high density of dots. In an image of the

sky with many dots representing the stars, such regions might indicate galaxies

or supernovas. The problem is to report the positions of spatial sliding windows

(rectangle regions) having different sizes, within which the density exceeds some

predefined threshold.

224

The two-dimensional shifted binary tree is based on the two-dimensional

wavelet structure. The basic wavelet structure separates a two-dimensional

space into a hierarchy of windows as shown in fig. 7.6-a (similar to quadtree[84]).

Aggregate information will be computed recursively based on those windows to

get a compact representation of the data. Our two-dimensional shifted binary

tree will extend the wavelet tree in a similar fashion as in the one-dimensional

case. This is demonstrated in fig. 7.6-b. At the same level of the wavelet tree,

in addition to the group of disjoint windows that are the same as in the wavelet

tree, there are another three groups of disjoint windows. One group of windows

offsets the original group in the horizontal direction, one in the vertical direction

and the third one in both directions.

Any square spatial sliding window with size w×w is included in one window

of the two-dimensional SBT. The size of such a window is at most 2w × 2w.

Using the techniques of section 7.2.2, burst detection based on the SBT-2D can

report all the high density regions efficiently.

7.3 Empirical Results of the OmniBurst Sys-

tem

Our empirical study will first demonstrate the desirability of elastic burst de-

tection for some applications. We also study the performance of our algorithm

by comparing our algorithm with the brute force searching algorithm in section

7.3.2.

225

0
5

10
15
20
25
30
35
40
45

19
13

19
15

19
17

19
19

19
22

19
24

19
34

19
37

19
45

19
47

19
49

19
51

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
90

19
92

19
95

19
97

19
99

20
02

Japan

0

10

20

30

40

50

60

19
13

19
15

19
17

19
19

19
22

19
24

19
34

19
37

19
45

19
47

19
49

19
51

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
90

19
92

19
95

19
97

19
99

20
02

Russia

0

5

10

15

20

25

30

19
13

19
15

19
17

19
19

19
22

19
24

19
34

19
37

19
45

19
47

19
49

19
51

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
90

19
92

19
95

19
97

19
99

20
02

Iraq

Figure 7.7: Bursts of the number of times that countries were mentioned in the

presidential speech of the state of the union

226

Sliding window size = 0.1 second

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000
Time (second)

N
um

be
r

of
 E

ve
nt

s

Sliding window size = 1 second

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000
Time (second)

N
um

be
r

of
 E

ve
nt

s

Sliding window size = 10 seconds

0
2
4
6
8

10
12
14
16
18
20
22

0 500 1000 1500 2000 2500 3000
Time (second)

N
um

be
r

of
 E

ve
nt

s

Figure 7.8: Bursts in Gamma Ray data for different sliding window sizes

227

Figure 7.9: Bursts in population distribution data for different spatial sliding

window sizes

228

7.3.1 Effectiveness Study

As an emotive example, we monitor bursts of interest in countries from the

presidential State of the Union addresses from 1913 to 2003. The same example

was used by Kleinberg[61] to show the bursty structure of text streams. In fig.

7.7 we show the number of times that some countries were mentioned in the

speeches. There are clearly bursts of interest in certain countries. An interesting

observation here is that these bursts have different durations, varying from years

to decades.

The rationale behind elastic burst detection is that a predefined sliding win-

dow size for data stream aggregate monitoring is insufficient in many applica-

tions. The same data aggregated in different time scales will give very different

pictures as we can see in fig. 7.8. In fig. 7.8 we show the moving sums of the

number of events for about an hour’s worth of Gamma Ray data. The sizes of

sliding windows are 0.1, 1 and 10 seconds respectively. For better visualization,

we show only those positions with bursts. Naturally, bursts at small time scales

that are extremely high will produce bursts in larger time scales too. More

interestingly, bursts at large time scales are not necessarily reflected at smaller

time scales, because those bursts at large time scales might be composed of

many consecutive “bumps”. Bumps are those positions where the numbers of

events are high but not high enough to be “bursts”. Therefore, by looking at

different time scales at the same time, elastic burst detection will give more

insight into the data stream.

We also show in fig. 7.9 an example of spatial elastic bursts. We use the 1990

census data of the population in the continental United State. The population

in the map are aggregated in a grid of 0.2◦ × 0.2◦ in Latitude/Longitude. We

229

compute the total population within sliding spatial windows with sizes 1◦ × 1◦,

2◦ × 2◦ and 5◦ × 5◦. Those regions with population above the 98 percentile in

different scales are highlighted. We can see that the different sizes of sliding

windows give the distribution of high population regions at different scales.

7.3.2 Performance Study

Our experiments of system, OmniBurst, were performed on a 1.5GHz Pentium

4 PC with 512 MB of main memory running Windows 2000. We tested the

algorithm with two different types of data sets:

• The Gamma Ray data set : This data set includes 12 hours of data from a

small region of the sky, where Gamma Ray bursts were actually reported

during that time. The data are time series of the number of photons

observed (events) every 0.1 second. There are totally 19,015 events in this

time series of length 432,000.

• The NYSE TAQ Stock data set : This data set includes four years of

tick-by-tick trading activities of the IBM stock between July 1st, 1998

and July 1st, 2002. There are 5,331,145 trading records (ticks) in total.

Each record contains trading time (precise to the second), trading price

and trading volume.

In the following experiments, we set the thresholds of different window sizes

as follows. We use the first few hours of Gamma Ray data and the first year of

Stock data as training data respectively. For a window of size w, we compute

the aggregates on the training data with sliding window of size w. This gives

another time series ~y. The thresholds are set to be f(w) = avg(~y) + ξstd(~y),

230

where avg(~y) and std(~y) are the average and standard deviation respectively.

The factor of threshold ξ is set to 8. The list of window sizes is 5, 10, ..., 5 ∗Nw

time units, where Nw is the number of windows. Nw varies from 5 to 50. The

time unit is 0.1 seconds for the Gamma Ray data and 1 minute for the stock

data.

First we compare the wall clock processing time of elastic burst detection

from the Gamma Ray data in fig. 7.10. Our algorithm based on the SBT

data structure is more than ten times faster than the direct algorithm. The

advantage of using our data structure becomes more obvious as we examine

more window sizes. The processing time of our algorithm is output-dependent.

This is confirmed in fig. 7.11, where we examine the relationship between the

processing time using our algorithm and the number of alarms. Naturally the

number of alarms increases as we examine more window sizes. We also observed

that the processing time follows the number of alarms well. Recall that the

processing time of the SBT algorithm includes two parts: building the SBT and

the detailed searching of those potential portions of burst. Building the SBT

takes only 200 milliseconds for the data set, which is negligible when compared

to the time to do the detailed search. Also for demonstration purposes, we

intentionally, to our disadvantage, set the thresholds lower and therefore got

many more alarms than what physicists are interested in. If the alarms are

scarce, as is the case for Gamma Ray burst detection, our algorithm will be

even faster. In fig. 7.12 we fix the number of windows to be 25 and change

the factor of threshold ξ. The larger ξ is, the higher the thresholds are, and

therefore the fewer alarms will be sounded. Because our algorithm is dependent

on the output sizes, the higher the thresholds are, the faster the algorithm

runs. In contrast, the processing time of the direct algorithm does not change

231

Processing time vs. Number of Windows

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50

Number of Windows

P
ro

ce
ss

in
g

tim
e

(m
s)

SWT Algorithm

Direct Algorithm

Figure 7.10: The processing time of elastic burst detection on Gamma Ray data

for different numbers of windows

accordingly.

For the next experiments, we test the elastic burst detection algorithm on

the IBM Stock trading volume data. Figure 7.13 shows that our algorithm is

up to 100 times faster than a brute force method. We also zoom in to show the

processing time for different output sizes in fig. 7.14.

In addition to elastic burst detection, our SBT data structure works for other

elastic aggregate monitoring too. In the following experiments, we search for big

spreads on the IBM Stock data. Figure 7.15 and 7.16 confirms the performance

advantages of our algorithm. Note that for the aggregates of Min and Max, and

thus Spread, there is no known deterministic algorithm to update the aggregates

over sliding windows incrementally in constant time. The filtering property of

SBT data structure gains more by avoiding unnecessary detailed searching. So

in this case our algorithm is up to 1,000 times faster than the direct method,

232

Processing time vs. Number of Alarms

0

1000

2000

3000

4000

5000

6000

5 10 15 20 25 30 35 40 45 50

Number of Windows

T
im

e
(m

s)

0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 A

la
rm

s

Processing time

Alarms

Figure 7.11: The processing time of elastic burst detection on Gamma Ray data

for different output sizes

Processing time vs. Thresholds

0

5000

10000

15000

20000

25000

30000

35000

40000

4 5 6 7 8 9 10 11 12

Factor of Threshold

P
ro

ce
ss

in
g

tim
e

(m
s)

SWT Algorithm

Direct Algorithm

Figure 7.12: The processing time of elastic burst detection on Gamma Ray data

for different thresholds

233

Processing time vs. Number of Windows

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Number of Windows

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

SWT Algorithm

Direct Algorithm

Figure 7.13: The processing time of elastic burst detection on Stock data for

different numbers of windows

Processing time vs. Number of Alarms

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35 40 45 50

Number of Windows

T
im

e
(m

s)

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 A

la
rm

s

Processing time

Alarms

Figure 7.14: The processing time of elastic burst detection on Stock data for

different output sizes

234

Processing time vs. Number of Windows

1

10

100

1000

10000

100000

1000000

0 10 20 30 40 50

Number of Windows

P
ro

ce
ss

in
g

tim
e

(m
s)

SWT Algorithm

Direct Algorithm

Figure 7.15: The processing time of elastic spread detection on Stock data for

different numbers of windows

reflecting the advantage of a near linear algorithm as compared with a quadratic

one.

7.4 Related work

There is much recent interest in data stream mining and monitoring. Excellent

surveys of models and algorithms in data stream can be found in [11, 76]. The

sliding window is recognized as an important model for data stream. Based on

the sliding window model, previous research studies the computation of differ-

ent aggregates of data stream, for example, correlated aggregates [36], count

and other aggregates[29], frequent itemsets and clusters[35], variance and k-

meandians[12], and correlation[104]. The work[45] studies the problem of learn-

ing models from time-changing streams without explicitly applying the sliding

235

Processing time vs. Number of Alarms

0
50

100
150
200
250
300
350
400
450

5 10 15 20 25 30 35 40 45 50

Number of Windows

T
im

e
(m

s)

0

50

100

150

200

250

300

350

400

N
um

be
r

of
 A

la
rm

s

Processing time

Alarms

Figure 7.16: The processing time of elastic spread detection on Stock data for

different output sizes

window model. The Aurora project[19] and STREAM project[10] consider the

systems aspect of monitoring data streams. Also the algorithm issues in time

series stream statistics monitoring are addressed in StatStream[104]. In this re-

search we extend the sliding window model to the elastic sliding window model,

making the choice of sliding window size more automatically.

Wavelets are heavily used in the context of data management and data

mining, including selectivity estimation[70], approximate query processing[94,

20], dimensionality reduction[21] and streaming data analysis[38]. However, its

use in elastic burst detection is innovative. We achieve efficient detection of

subsequences with burst in a time series by filtering lots of subsequences that

are unlikely to have burst. This is an extension to the well-known lower bound

technique in similarity search from time series[8].

Data mining on bursty behavior has attracted more attention recently. Wang

236

et al. [96] study fast algorithms using self-similarity to model bursty time series.

Such models can generate more realistic time series streams for testing data

mining algorithm. Kleinberg[61] also discusses the problem of burst detection in

data streams. The focus of his work is in modeling and extracting structure from

text streams, decomposing time into a layered set of intervals corresponding to

smaller and larger extents of bursty behavior. Our work is different in that

we focus on the algorithmic issue of counting over different sliding windows,

reporting all windows where the number of events exceeds a threshold based on

the window length.

We have extended the data structure for burst detection to high-spread

detection in time series. Spread measures the surprising level of time series.

There is also work in finding surprising patterns in time series data. However

the definition of surprise is application dependent and it is up to the domain

experts to choose the appropriate one for their application. Jagadish et al.[49]

use optimal histograms to mine deviants in time series. In their work deviants

are defined as points with values that differ greatly from that of surrounding

points. Shahabi et al.[88] also use wavelet-based structure(TSA-Tree) to find

both trends and surprises in large time series dataset, where surprises are defined

as large difference between two consecutive averages of a time series. In very

recent work, Keogh et al.[58] propose an algorithm based on suffix tree structures

to find surprising patterns in time series database. They try to learn a model

from the previously observed time series and declare surprising for those patterns

with small chance of occurrence. By comparison, an advantage of our definition

of surprise based on spread is that it is simple, intuitive and scalable to massive

and streaming data.

237

7.5 Conclusions and Future Work

This chapter introduces the concept of monitoring data streams based on an

elastic window model and demonstrates the desirability of the new model. The

beauty of the model is that the sliding window size is left for the system to

discover in data stream monitoring. We also propose a novel data structure for

efficient detection of elastic bursts and other aggregates. Experiments of our

system OmniBurst on real data sets show that our algorithm is faster than a

brute force algorithm by several orders of magnitude. We are currently collab-

orating with physicists to deploy our algorithm for online Gamma Ray burst

detection. Future work includes:

• a robust way of setting the thresholds of burst for different window sizes;

• algorithms in monitoring non-monotonic aggregates such as medians;

• an efficient way to monitor the bursts of many different event types in the

same time.

238

Chapter 8

A Call to Exploration

Algorithmic improvements will be essential to time series analysis in the com-

ing years. This might surpise those who view the technology trends in which

processor speed improvements of several orders of magnitude will occur in the

coming decades. But there is no contradiction. Improvements in processors

speed up existing algorithms, to be sure. But they also make detectors far more

capable.

Stock prices and bids can be recorded and distributed from scores of markets

in real time. Satellites and other spacecraft sport multi-frequency and multi-

angle detectors of high precision. Single satellites may soon deliver trillions

of time values per day. Less massive individually, but equally massive in the

aggregate. Magnetic resonance imagery machines report brain signals from tiny

volume elements of the brain. These will soon be guiding brain surgery on

a routine basis. Real-time feedback of a sophisticated kind may make new

treatments possible.

What does this imply about algorithms?

239

• First, deriving useful knowledge will require fusing different time series

data of the same type (e.g. time series from multiple voxels) or of different

types (e.g. commodity prices and meterological data).

• Second, filtering algorithms must be linear at worst and must do their

job with high recall (few false negatives) and high precision (few false

positives).

• Third, parameters (window sizes, thresholds, similarity measurements)

will have to be inferred from the data and may change over time. To give

one familiar example, stock volatilities have increased dramatically since

the placid 1970s.

The primitives presented in this theis both help to find interesting patterns

in single time series (burst detection) and in multiple time series (correlation

and distorted time search). So far they depend greatly on fixed parameters

(thresholds, window sizes, lag values and so on). They are nevertheless man-

ifestly useful. But freeing these and similar primitives from the moorings of

a priori parameter specification – while satisfying the speed constraints – will

open time series analysis to gallactic possibilities.

Bon voyage.

240

Bibliography

[1] http://www.kx.com.

[2] http://www.macho.mcmaster.ca/project/overview/status.html.

[3] http://www.mathworks.com/.

[4] http://www.netlib.org/lapack/.

[5] http://www.nyse.com/taq/.

[6] http://www.lanl.gov/milagro/, 2002.

[7] D. Achlioptas. Database-friendly random projections. In Proceedings of

the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 274–281. ACM Press, 2001.

[8] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient Similarity Search

In Sequence Databases. In D. Lomet, editor, Proceedings of the 4th Inter-

national Conference of Foundations of Data Organization and Algorithms

(FODO), pages 69–84, Chicago, Illinois, 1993. Springer Verlag.

[9] AKoff Sound Labs. Akoff music composer version

2.0,http://www.akoff.com/music-composer.html, 2000.

241

[10] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosen-

stein, and J. Widom. Stream: The stanford stream data manager. In

A. Y. Halevy, Z. G. Ives, and A. Doan, editors, Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, San

Diego, California, USA, June 9-12, 2003, page 665. ACM, 2003.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models

and issues in data stream systems. In Proceedings of the Twenty-first

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, June 3-5, Madison, Wisconsin, USA, pages 55–68. ACM, 2002.

[12] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining

variance and k-medians over data stream windows. In PODS 2003, Pro-

ceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, June 9-12, 2003, San Diego,

CA, USA, pages 234–243. ACM, 2003.

[13] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD

Record, 30(3):109–120, 2001.

[14] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,

Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A.

Ross, and K. C. Sevcik. The new jersey data reduction report. Data

Engineering Bulletin, 20(4):3–45, 1997.

[15] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An

efficient and robust access method for points and rectangles. In Proceed-

ings of the 1990 ACM SIGMOD International Conference on Management

of Data, Atlantic City, NJ, May 23-25, 1990, pages 322–331, 1990.

242

[16] J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time al-

gorithms for closest point problems. ACM Transactions on Mathematical

Software (TOMS), 6(4):563–580, 1980.

[17] D. Berndt and J. Clifford. Using dynamic time warping to find patterns

in time series. In Advances in Knowledge Discovery and Data Mining,

pages 229–248. AAAI/MIT, 1994.

[18] S. G. Blackburn and D. C. DeRoure. A tool for content based navigation

of music. In ACM Multimedia 98, pages 361–368, 1998.

[19] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,

M. Stonebraker, N. Tatbul, and S. B. Zdonik. Monitoring streams - a new

class of data management applications. In VLDB 2002,Proceedings of 28th

International Conference on Very Large Data Bases, August 20-23, 2002,

Hong Kong, China, 2002.

[20] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approx-

imate query processing using wavelets. In VLDB 2000, Proceedings of

26th International Conference on Very Large Data Bases, September 10-

14, 2000, Cairo, Egypt, pages 111–122, 2000.

[21] K.-P. Chan and A. W.-C. Fu. Efficient time series matching by wavelets.

In Proceedings of the 15th International Conference on Data Engineering,

Sydney, Australia, pages 126–133, 1999.

[22] E. Cohen and M. Strauss. Maintaining time-decaying stream aggre-

gates. In PODS 2003, Proceedings of the Twenty-Second ACM SIGACT-

243

SIGMOD-SIGART Symposium on Principles of Database Systems, June

9-12, 2003, San Diego, CA, USA, pages 223–233. ACM, 2003.

[23] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematicl Computations, 19, April 1965.

[24] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data

streams using hamming norms (how to zero in). In VLDB 2002,Proceed-

ings of 28th International Conference on Very Large Data Bases, August

20-23, 2002, Hong Kong, China, 2002.

[25] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining

of massive tabular data via approximate distance computations. In ICDE

2002, 18th International Conference on Data Engineering, February 26-

March 1, 2002, San Jose, California, 2002.

[26] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: a language

for extracting signatures from data streams. In ACM SIGKDD Intl. Conf.

on Knowledge Discoveryand Data Mining, pages 9–17, 2000.

[27] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over

data streams. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors, Pro-

ceedings of the 2003 ACM SIGMOD International Conference on Man-

agement of Data, San Diego, California, USA, June 9-12, 2003, pages

40–51. ACM, 2003.

[28] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining

database structure; or, how to build a data quality browser. In Proceedings

244

of the 2002 ACM SIGMOD international conference on Management of

data, pages 240–251. ACM Press, 2002.

[29] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream

statistics over sliding windows. In Proceedings of the Thirteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San

Francisco, CA, USA. ACM/SIAM, 2002, pages 635–644, 2002.

[30] I. Daubechies. Ten lectures on wavelets. SIAM, 1992.

[31] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex

aggregate queries over data streams. In Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pages 61–72.

ACM Press, 2002.

[32] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 71–80. ACM Press, 2000.

[33] R. A. et. al. (The Milagro Collaboration). Evidence for TeV emission from

GRB 970417a. In Ap.J. Lett. 533, L119, 2000.

[34] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence

matching in time-series databases. In Proc. ACM SIGMOD International

Conf. on Management of Data, pages 419–429, 1994.

[35] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Data evolution and

monitoring. In Proceedings of the 16th International Conference on Data

Engineering, San Diego, California, 2000.

245

[36] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggre-

gates over continual data streams. In Proc. ACM SIGMOD International

Conf. on Management of Data, 2001.

[37] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. Query by humming:

Musical information retrieval in an audio database. In ACM Multimedia

1995, pages 231–236, 1995.

[38] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surf-

ing wavelets on streams: One-pass summaries for approximate aggregate

queries. In VLDB 2001, pages 79–88. Morgan Kaufmann, 2001.

[39] D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series

data: Constraint specification and implementation. In Proceedings of

the 1st International Conference on Principles and Practice of Constraint

Programming (CP’95), 1995.

[40] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky. Analysis of Time Series

Structure SSA and Related Techniques. CHAPMAN and HALL/CRC,

2001.

[41] M. Greenwald and S. Khanna. Space-efficient online computation of quan-

tile summaries. In Proc. ACM SIGMOD International Conf. on Manage-

ment of Data, pages 58–66, 2001.

[42] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data

streams. In the Annual Symposium on Foundations of Computer Sci-

ence,IEEE, 2000.

246

[43] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

B. Yormark, editor, SIGMOD’84, Proceedings of Annual Meeting, Boston,

Massachusetts, June 18-21, 1984, pages 47–57. ACM Press, 1984.

[44] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search

trees for database systems. In U. Dayal, P. M. D. Gray, and S. Nishio,

editors, Proc. 21st Int. Conf. Very Large Data Bases, VLDB, pages 562–

573. Morgan Kaufmann, 11–15 1995.

[45] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data

streams. In Proceedings of the seventh ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 97–106. ACM

Press, 2001.

[46] P. Indyk. Stable distributions, pseudorandom generators, embeddings

and data stream computation. In 40th Symposium on Foundations of

Computer Science, 2000.

[47] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative

trends in massive time series data sets using sketches. In VLDB 2000,

Proceedings of 26th International Conference on Very Large Data Bases,

September 10-14, 2000, Cairo, Egypt, pages 363–372. Morgan Kaufmann,

2000.

[48] A. j Smith for the Milagro Collaboration. A search for bursts of tev gamma

rays with milagro. In Proceedings of the 27th International Cosmic Ray

Conference(ICRC 2001), 07-15 August 2001, Hamburg, Germany, 2001.

247

[49] H. V. Jagadish, N. Koudas, and S. Muthukrishnan. Mining deviants in a

time series database. In M. P. Atkinson, M. E. Orlowska, P. Valduriez,

S. B. Zdonik, and M. L. Brodie, editors, VLDB’99, Proceedings of 25th In-

ternational Conference on Very Large Data Bases, September 7-10, 1999,

Edinburgh, Scotland,UK, pages 102–113. Morgan Kaufmann, 1999.

[50] J.-S. R. Jang and H.-R. Lee. Hierarchical filtering method for content-

based music retrieval via acoustic input. In Proceedings of the ninth ACM

international conference on Multimedia, pages 401–410. ACM Press, 2001.

[51] T. Johnson and D. Shasha. Utilization of b-trees with inserts, deletes

and modifies. In Proceedings of the Eighth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, March 29-31,

1989, Philadelphia, Pennsylvania, pages 235–246. ACM Press, 1989.

[52] W. B. Johnson and J. Lindenstrauss. Extensions of lipshitz mapping into

hilbert space. Contemp. Math., 26:189–206, 1984.

[53] E. Keogh. Exact indexing of dynamic time warping. In VLDB 2002,Pro-

ceedings of 28th International Conference on Very Large Data Bases, Au-

gust 20-23, 2002, Hong Kong, China, pages 406–417, 2002.

[54] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Locally adap-

tive dimensionality reduction for indexing large time series databases. In

Proc. ACM SIGMOD International Conf. on Management of Data, 2001.

[55] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality

reduction for fast similarity search in large time series. In Databases.

Knowledge and Information Systems 3(3), pages 263–286, 2000.

248

[56] E. Keogh and T. Folias. The ucr time series data mining

archive[http://www.cs.ucr.edu/ eamonn/tsdma/index.html],riverside ca.

university of california - computer science and engineering department,

2002.

[57] E. Keogh and S. Kasetty. On the need for time series data mining bench-

marks: A survey and empirical demonstration. In the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,July

23 - 26, 2002. Edmonton, Alberta, Canada, pages 102–111, 2002.

[58] E. Keogh, S. Lonardi, and B. Y. Chiu. Finding surprising patterns in a

time series database in linear time and space. In the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,July

23 - 26, 2002. Edmonton, Alberta, Canada, pages 550–556, 2002.

[59] E. Keogh and P. Smyth. A probabilistic approach to fast pattern matching

in time series databases. In the third conference on Knowledge Discovery

in Databases and Data Mining, 1997.

[60] E. Keogh and P. Smyth. A probabilistic approach to fast pattern matching

in time series databases. In the third conference on Knowledge Discovery

in Databases and Data Mining, 1997.

[61] J. Kleinberg. Bursty and hierarchical structure in streams. In the 8th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining,July 23 - 26, 2002. Edmonton, Alberta, Canada, pages 91–

101, 2002.

249

[62] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc

queries in large datasets of time sequences. In SIGMOD 1997, Proceedings

ACM SIGMOD International Conference on Management of Data, May

13-15, 1997, Tucson, Arizona, USA, pages 289–300, 1997.

[63] F. Korn, S. Muthukrishnan, and Y. Zhu. Checks and balances: Monitoring

data quality problems in network traffic databases. In J. C. Freytag, P. C.

Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer, ed-

itors, VLDB 2003, Proceedings of 29th International Conference on Very

Large Data Bases, September 9-12, 2003, Berlin, Germany, pages 536–

547. Morgan Kaufmann, 2001.

[64] F. Korn, S. Muthukrishnan, and Y. Zhu. Ipsofacto: A visual correlation

tool for aggregate network traffic data. In A. Y. Halevy, Z. G. Ives, and

A. Doan, editors, Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, San Diego, California, USA, June

9-12, 2003, page 677. ACM, 2003.

[65] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas.

Fast nearest neighbor search in medical image databases. In VLDB’96,

Proceedings of 22th International Conference on Very Large Data Bases,

September 3-6, 1996, Mumbai (Bombay), India, pages 215–226, 1996.

[66] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro, and K. Kushima. A

practical query-by-humming system for a large music database. In ACM

Multimedia 2000, pages 333–342, 2000.

250

[67] C.-S. Li, P. S. Yu, and V. Castelli. Hierarchyscan: A hierarchical similarity

search algorithm for databases of long sequences. In ICDE, pages 546–553,

1996.

[68] S. Mallat. A wavelet tour of signal processing. Academic Press, 1998.

[69] G. S. Manku, S. Rajagopalan, , and B. G. Lindsay. Random sampling

techniques for space efficientonline computation of order statistics of large

datasets. In Proc. ACM SIGMOD International Conf. on Management of

Data, pages 251–262, 1999.

[70] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selec-

tivity estimation. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998,

Proceedings ACM SIGMOD International Conference on Management of

Data, June 2-4, 1998, Seattle, Washington, USA, pages 448–459, 1998.

[71] D. Mazzoni and R. B. Dannenberg. Melody matching directly from au-

dio. In 2nd Annual International Symposium on Music Information Re-

trieval,Bloomington, Indiana, USA, 2001.

[72] R. J. McNab, L. A. Smith, D. Bainbridge, and I. H. Witten. The new

zealand digital library melody index. In D-Lib Magazine, 1997.

[73] M. Misti, Y. Misti, G. Oppenheim, and J. Poggi. Wavelet Toolbox User’s

Guide. Math Works Inc.Massachusetts, 1996.

[74] L. Molesky and M. Caruso. Managing financial time series data: Object-

relational and object database systems. In VLDB’98, Proceedings of 24rd

International Conference on Very Large Data Bases, 1998.

251

[75] Y.-S. Moon, K.-Y. Whang, and W.-S. Han. General match: a subsequence

matching method in time-series databases based on generalized windows.

In Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, pages 382–393. ACM Press, 2002.

[76] S. Muthukrishnan. Data streams: algorithms and applications. In Pro-

ceedings of the fourteenth annual ACM-SIAM symposium on Discrete al-

gorithms, pages 413–413. Society for Industrial and Applied Mathematics,

2003.

[77] J. Nolan. An introduction to stable distributions.

[78] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Fast retrieval of similar sub-

sequences under time warping. In ICDE, pages 23–32, 2000.

[79] I. Popivanov and R. J. Miller. Similarity search over time series data using

wavelets. In ICDE, 2002.

[80] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical recipes:

The art of scientific computing. Cambridge University Press, 1986.

[81] J. Profita and T.G.Bidder. Perfect pitch. In American Journal of Medical

Genetics, pages 763–771, 1988.

[82] D. Rafiei and A. Mendelzon. Similarity-based queries for time series data.

In Proc. ACM SIGMOD International Conf. on Management of Data,

pages 13–25, 1997.

[83] D. Rafiei and A. Mendelzon. Efficient retrieval of similar time sequences

using dft. In Proc. FODO Conference, Kobe, Japan, 1998.

252

[84] H. Samet. The quadtree and related hierarchical data structures. ACM

Computing Surveys, 16(2):187–260, 1984.

[85] M. Schroeder. Fractals, Chaos, Power Laws: Minutes From an Infinite

Paradise. W. H. Freeman and Company, New York, 1991.

[86] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search.

In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM

SIGMOD International Conference on Management of Data, June 2-4,

1998, Seattle, Washington, USA, pages 154–165, 1998.

[87] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dy-

namic index for multi-dimensional objects. In P. M. Stocker, W. Kent,

and P. Hammersley, editors, VLDB’87, Proceedings of 13th International

Conference on Very Large Data Bases, September 1-4, 1987, Brighton,

England, pages 507–518. Morgan Kaufmann, 1987.

[88] C. Shahabi, X. Tian, and W. Zhao. Tsa-tree: A wavelet-based approach

to improve the efficiency of multi-level surprise and trend queries on time-

series data. In 12th International Conference on Scientific and Statistical

Database Management (SSDBM’00),July 26 - 28, 2000,Berlin, Germany,

pages 55–68, 2000.

[89] D. E. Shasha and P. Bonnet. Database Tuning: Principles, Experiments,

and Troubleshooting Techniques. Morgan Kaufmann, 2002.

[90] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional

histograms. In Proceedings of the 2002 ACM SIGMOD international con-

ference on Management of data, pages 428–439. ACM Press, 2002.

253

[91] T. Tolonen and M. Karjalainen. A computationally efficient multi-pitch

analysis model. IEEE Transactions on Speech and Audio Processing, 2000.

[92] A. Uitdenbgerd and J. Zobel. Manipulation of music for melody matching.

In ACM Multimedia 98, pages 235–240, 1998.

[93] A. Uitdenbgerd and J. Zobel. Melodic matching techniques for large music

databases. In ACM Multimedia 99, pages 57–66, 1999.

[94] J. S. Vitter and M. Wang. Approximate computation of multidimensional

aggregates of sparse data using wavelets. In SIGMOD 1999, Proceedings

ACM SIGMOD International Conference on Management of Data, June

1-3, 1999, Philadephia, Pennsylvania, USA, pages 193–204, 1999.

[95] D. F. Walnut. An Introduction to Wavelet Analysis. Birkhauser, 2002.

[96] M. Wang, T. M. Madhyastha, N. H. Chan, S. Papadimitriou, and

C. Faloutsos. Data mining meets performance evaluation: Fast algorithms

for modeling bursty traffic. In ICDE 2002, 18th International Conference

on Data Engineering, February 26-March 1, 2002, San Jose, California,

2002.

[97] H. J. Weaver. Theory of Discrete and Continous Fourier Analysis. John

Wiley & Sons, 1989.

[98] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of dft and dwt

based similarity search in time-series databases. In Proceedings of the 9

th International Conference on Information and Knowledge Management,

2000.

254

[99] C. Yang. Efficient acoustic index for music retrieval with various degrees of

similarity. In ACM Multimedia 2002, December 1-6, 2002,French Riviera,

2002.

[100] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary

lp norms. In VLDB 2000, Proceedings of 26th International Conference

on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages

385–394. Morgan Kaufmann, 2000.

[101] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar

time sequences under time warping. In ICDE, pages 201–208, 1998.

[102] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and

A. Biliris. Online data mining for co-evolving time sequences. In Pro-

ceedings of the 16th International Conference on Data Engineering, San

Diego, California, pages 13–22, 2000.

[103] Y. Zhu, M. S. Kankanhalli, and C. Xu. Pitch tracking and melody slope

matching for song retrieval. In Advances in Multimedia Information Pro-

cessing - PCM 2001, Second IEEE Pacific Rim Conference on Multimedia,

Beijing, China, October 24-26, 2001.

[104] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of

data streams in real time. In VLDB 2002,Proceedings of 28th International

Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong,

China, pages 358–369, 2002.

[105] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams.

In KDD 2003, Proceedings of the Ninth ACM SIGKDD International

255

Conference on Knowledge Discovery and Data Mining, August 24-27,

2003,Washington, DC, USA. ACM, 2003.

[106] Y. Zhu and D. Shasha. Fast approaches to simple problems in financial

time series streams. In S. Muthukrishnan and D. Srivastava, editors,

MPDS 2003, Proceedings of the ACM SIGMOD/PODS and FCRC 2003

Workshop on Management and Processing of Data Streams, San Diego,

California, USA, June 8, 2003, pages 181–192. ACM, 2003.

[107] Y. Zhu and D. Shasha. Warping indexes with envelope transforms for

query by humming. In A. Y. Halevy, Z. G. Ives, and A. Doan, edi-

tors, Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, San Diego, California, USA, June 9-12, 2003,

pages 181–192. ACM, 2003.

[108] Y. Zhu, D. Shasha, and X. Zhao. Query by humming - in action with

its technology revealed. In A. Y. Halevy, Z. G. Ives, and A. Doan, ed-

itors, Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, San Diego, California, USA, June 9-12, 2003,

page 675. ACM, 2003.

256

