
Distributed stochastic optimization for deep learning

by

Sixin Zhang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2016

——————————–

Yann LeCun

Dedication

To my parents and grandparents

ii

Acknowledgements

Almost all the thesis start with a thank you to the thesis advisor, why this is so. Maybe

it is the time. The time one spends most with during the PhD. The time the impact from

whom will last for long on shaping one’s flavor of the research. My advisor, Yann LeCun,

is of no double having a big influence on me. To some extent, the way we interact is like

the Elastic Averaging SGD (EASGD) method that we have named together. During my

whole PhD, I am very grateful to have the freedom to explore various research subjects.

He always has patience to wait, even though sometimes there is no interesting results. It

is an experiment. Sometimes, the good result is only one step away, and he has a good

feeling to sense that. Sometimes, he is also very strict. Remember when I was preparing

the thesis proposal, but was proposing too many directions. Everyone was worried, as

the deadline was approaching. To focus and be quick. A lot of the time, the way how

we think decides the question we ask and where we go. My advisor’s conceptual way of

thinking is still to me a mystery of arts and science.

I would also like to thank Anna Choromanska for being my collaborator and for helping

me at many critical points. When we started to work on the EASGD method, it was

not very clear why we gave it a new name. The answer only became sharp when Anna

questioned me countlessly why we do what we do. Luckily, we have discovered interesting

answers. Chapter 2, Chapter 3 and Chapter 4 of this thesis are based on our joint work.

Chapter 5 is inspired by the discussion with Professor Weinan E, and his students Qianx-

iao Li and Cheng Tai during my visit to Princeton University. We were trying to use

stochastic differential equation to analyze EASGD method. The idea is to get the max-

imum insight with minimum effort. The results in Chapter 5 share a similar flavor.

Chapter 6 would not come into shape without the helpful discussions with Professor

Jinyang Li, and her students Russell Power, Minjie Wang, Zhaoguo Wang, Christopher

Mitchell and Yang Zhang. The design and the implementation of the EASGD and

EASGD Tree are guided by their valuable experience. Also the numerical results would

iii

not be obtained without their feedback, as well as the consistent support of the NYU

HPC team, in particular Shenglong Wang.

I would also like to give special thanks to Professor Rob Fergus, Margaret Wright, and

David Sontag for serving in my thesis committee, as well as being my teacher during my

PhD studies. Margaret was so eager to read my thesis and asked when do you expect

your thesis to converge whenever I have a new version. Rob was so glad to see me when I

first came to the CBLL lab, while David is always sharing his knowledge with us during

the CBLL talks.

I also learn a lot from my earlier collaborators, in particular Marco Scoffier, Tom Schaul

and Wan Li. Arthur Szlam, Camille Couprie, Clement Farabet, David Eigen, Dilip

Krishnan, Joan Bruna, Koray Kavukcuoglu, Matt Zeiler, Olivier Henaff, Pablo Sprech-

mann, Pierre Sermanet, Ross Goroshin, Xiang Zhang and Y-Lan Boureau are always

very mind-refreshing to be around.

I also appreciate the feedback from many senior researchers on the EASGD method.

In particular, Mark Tygert, Samy Bengio, Patrick Combettes, Peter Richtarik, Yoshua

Bengio and Yuri Bakhtin.

The coach of the NYU running club, Mike Galvan, kicks me up to practice at 6:30am

every Monday morning during my last year of the PhD. It gives me a consistency energy

to keep running and to finish my PhD.

Almost half of my PhD time is spent at the building of Courant Institute. I have learned

a lot of mathematics which is still so tremendous to me. The more you write, the less

you see. There are a lot of inspiring stories that I would like to write, but maybe I should

keep them in mind for the moment.

iv

Abstract

We study the problem of how to distribute the training of large-scale deep learning models

in the parallel computing environment. We propose a new distributed stochastic opti-

mization method called Elastic Averaging SGD (EASGD). We analyze the convergence

rate of the EASGD method in the synchronous scenario and compare its stability condi-

tion with the existing ADMM method in the round-robin scheme. An asynchronous and

momentum variant of the EASGD method is applied to train deep convolutional neural

networks for image classification on the CIFAR and ImageNet datasets. Our approach

accelerates the training and furthermore achieves better test accuracy. It also requires

a much smaller amount of communication than other common baseline approaches such

as the DOWNPOUR method.

We then investigate the limit in speedup of the initial and the asymptotic phase of the

mini-batch SGD, the momentum SGD, and the EASGD methods. We find that the

spread of the input data distribution has a big impact on their initial convergence rate

and stability region. We also find a surprising connection between the momentum SGD

and the EASGD method with a negative moving average rate. A non-convex case is also

studied to understand when EASGD can get trapped by a saddle point.

Finally, we scale up the EASGD method by using a tree structured network topology. We

show empirically its advantage and challenge. We also establish a connection between the

EASGD and the DOWNPOUR method with the classical Jacobi and the Gauss-Seidel

method, thus unifying a class of distributed stochastic optimization methods.

v

Contents

Dedication ii

Acknowledgements iv

Abstract v

List of Figures viii

List of Tables xvi

1 Introduction 1

1.1 What is the problem . 1

1.2 Formalizing the problem . 4

1.3 An overview . 5

2 Elastic Averaging SGD (EASGD) 9

2.1 Synchronous EASGD . 10

2.2 Asynchronous EASGD . 12

2.3 Momentum EASGD . 14

3 Convergence Analysis of EASGD 17

3.1 Quadratic case . 17

3.1.1 One-dimensional case . 18

3.1.2 Generalization to multidimensional case 26

3.2 Strongly convex case . 29

3.3 Stability of EASGD and ADMM . 37

vi

4 Performance in Deep Learning 43

4.1 Experimental setup . 44

4.2 Experimental results . 47

4.3 Further discussion and understanding . 59

4.3.1 Comparison of SGD, ASGD, MVASGD and MSGD 59

4.3.2 Dependence of the learning rate . 62

4.3.3 Dependence of the communication period 62

4.3.4 The tradeoff between data and parameter communication 64

4.3.5 Time speed-up . 66

4.4 Additional pseudo-codes of the algorithms 67

5 The Limit in Speedup 71

5.1 Additive noise . 71

5.1.1 SGD with mini-batch . 72

5.1.2 Momentum SGD . 73

5.1.3 EASGD and EAMSGD . 78

5.2 Multiplicative noise . 89

5.2.1 SGD with mini-batch . 89

5.2.2 Momentum SGD . 92

5.2.3 EASGD and EAMSGD . 95

5.3 A non-convex case . 109

6 Scaling up Elastic Averaging SGD 112

6.1 EASGD Tree . 112

6.1.1 The algorithm . 113

6.1.2 The result . 117

6.2 Unifying EASGD and DOWNPOUR . 130

7 Conclusion 134

Bibliography 138

vii

List of Figures

2.1 The big picture of EASGD. 10

3.1 Theoretical mean squared error (MSE) of the center x̃ in the quadratic

case, with various choices of the learning rate η (horizontal within each

block), and the moving rate β = pα (vertical within each block), the

number of processors p = {1, 10, 100, 1000, 10000} (vertical across blocks),

and the time steps t = {1, 2, 10, 100,∞} (horizontal across blocks). The

MSE is plotted in log scale, ranging from 10−3 to 103 (from deep blue to

red). The dark red (i.e. on the upper-right corners) indicates divergence. . 22

3.2 The largest absolute eigenvalue of the linear map F = F p3 ◦F p2 ◦F p1 ◦ . . . ◦

F 1
3 ◦F 1

2 ◦F 1
1 as a function of η ∈ (0, 10−2) and ρ ∈ (0, 10) when p = 3 and

p = 8. To simulate the chaotic behavior of the ADMM algorithm, one

may pick η = 0.001 and ρ = 2.5 and initialize the state s0 either randomly

or with λi0 = 0, xi0 = x̃0 = 1000, ∀i = 1, . . . , p. Figure should be read in

color. 41

3.3 Instability of ADMM in the round-robin scheme. Pick p = 3, η = 0.001,

ρ = 2.5 and initialize the state s0 with λi0 = 0, xi0 = x̃0 = 1000,∀i =

1, . . . , p. The x-axis is the time step t, the y-axis is the (one-dimensional)

value of the center variable x̃t. 42

4.1 Training and test loss and the test error for the center variable versus a

wallclock time for communication period τ = 1 on CIFAR dataset with

the 7-layer convolutional neural network. p = 4. 49

viii

4.2 Training and test loss and the test error for the center variable versus a

wallclock time for communication period τ = 4 on CIFAR dataset with

the 7-layer convolutional neural network. p = 4. 50

4.3 Training and test loss and the test error for the center variable versus a

wallclock time for communication period τ = 16 on CIFAR dataset with

the 7-layer convolutional neural network. p = 4. 51

4.4 Training and test loss and the test error for the center variable versus a

wallclock time for communication period τ = 64 on CIFAR dataset with

the 7-layer convolutional neural network. p = 4. 52

4.5 Training and test loss and the test error for the center variable versus a

wallclock time with the number of local workers p = 4 for parallel methods

on CIFAR with the 7-layer convolutional neural network. 53

4.6 Training and test loss and the test error for the center variable versus a

wallclock time with the number of local workers p = 8 for parallel methods

on CIFAR with the 7-layer convolutional neural network. 54

4.7 Training and test loss and the test error for the center variable versus

a wallclock time with the number of local workers p = 16 for parallel

methods on CIFAR with the 7-layer convolutional neural network. 55

4.8 Training and test loss and the test error for the center variable versus a

wallclock time with the number of local workers p = 4 on ImageNet with

the 11-layer convolutional neural network. 56

4.9 Training and test loss and the test error for the center variable versus a

wallclock time with the number of local workers p = 8 on ImageNet with

the 11-layer convolutional neural network. 57

4.10 Convergence of the training and test loss (negative log-likelihood) and

the test error (original and zoomed) computed for the center variable as a

function of wallclock time for SGD, ASGD, MVASGD and MSGD (p = 1)

on the CIFAR experiment. 60

ix

4.11 Convergence of the training and test loss (negative log-likelihood) and

the test error (original and zoomed) computed for the center variable as a

function of wallclock time for SGD, ASGD, MVASGD and MSGD (p = 1)

on the ImageNet experiment. 61

4.12 Convergence of the training loss (negative log-likelihood, original) and

the test error (zoomed) computed for the center variable as a function of

wallclock time for EAMSGD and EASGD run with different values of η

on the CIFAR experiment. p = 16, τ = 10. 63

4.13 Convergence of the training loss (negative log-likelihood, original) and

the test error (zoomed) computed for the center variable as a function of

wallclock time for EASGD and EAMSGD (p = 16, η = 0.01, β = 0.9, δ =

0.99) on the CIFAR experiment with various communication period τ and

learning rate decay γ. The learning rate is decreased gradually over time

based each local worker’s own clock t with ηt = η/(1 + γt)0.5. 65

4.14 The wall clock time needed to achieve the same level of the test error

thr as a function of the number of local workers p on the CIFAR dataset.

From left to right: thr = {21%, 20%, 19%, 18%}. Missing bars denote that

the method never achieved specified level of test error. 68

4.15 The wall clock time needed to achieve the same level of the test error thr

as a function of the number of local workers p on the ImageNet dataset.

From left to right: thr = {49%, 47%, 45%, 43%}. Missing bars denote that

the method never achieved specified level of test error. 69

5.1 The largest absolute eigenvalue of the matrix M (sp(M)) in Equation 5.6

as a function of the learning rate η ∈ (0, 2) and the momentum rate

δ ∈ (−1, 1). h = 1. 77

5.2 The largest absolute eigenvalue of the matrix M in Equation 5.12 as a

function of the learning rate η ∈ (0, 2) and the moving rate α ∈ (−1, 1).

h = 1 and β = 0.9. 82

x

5.3 Three independent simulations of EASGD using the elastic averaging α =

β/p and the optimal α given in Equation 5.17. The x-axis is the time step

t in the EASGD updates of Equation 5.9. The y-axis is the squared

distance of the center variable to the optimum zero, i.e. x̃2
t . We have

chosen h = 1, σ = 10−2, p = 4, η = 0.1 and β = 0.9. 83

5.4 The absolute value of the eigenvalues of z1, z2 and z3 in Equation 5.19.

ηh = 0.1 and β = 0.9. 85

5.5 The absolute value of the eigenvalues of z1, z2 and z3 in Equation 5.19.

ηh = 1.5 and β = 0.9. 85

5.6 The largest absolute eigenvalue of the matrix Mp in Equation 5.18 as a

function of the learning rate η ∈ (0, 2) and the moving rate α ∈ (−1, 1).

h = 1 and β = 0.9. Note that we computed this spectrum using p = 2, as

we have discussed in the text, it is independent of the choice of p for p > 1. 86

5.7 Three independent simulations of EASGD using the elastic averaging α =

β/p and the optimal α given in Equation 5.17. The x-axis is the time step

t in the EASGD updates of Equation 5.9. The y-axis is the squared

distance of the center variable to the optimum zero, i.e. x̃2
t . We have

chosen h = 1, σ = 10−2, p = 4, η = 1.5 and β = 0.9. 87

5.8 The largest absolute eigenvalue of the matrix Mp in Equation 5.20 as a

function of the learning rate η ∈ (0, 2) and the moving rate α ∈ (−1, 1).

h = 1, β = 0.9 and δ = 0.99. Note that we computed this spectrum again

using p = 2, as we have discussed in the text, it is independent of the

choice of p for p > 1. 90

5.9 The probability density function of the Gamma distribution Γ(λ, ω). The

x-axis and y-axis are both in log-scale to enlarge the singularity at zero

and the decay of the tail toward infinity. 93

5.10 The largest absolute eigenvalue of the matrix M in Equation 5.30 as a

function of the learning rate η ∈ (0, 1) and the momentum rate δ ∈ (−1, 1).

λ = 0.5, ω = 0.5. 96

xi

5.11 The largest absolute eigenvalue of the matrix M in Equation 5.30 as a

function of the learning rate η ∈ (0, 1) and the momentum rate δ ∈ (−1, 1).

λ = 1, ω = 1. 97

5.12 The largest absolute eigenvalue of the matrix M in Equation 5.30 as a

function of the learning rate η ∈ (0, 1) and the momentum rate δ ∈ (−1, 1).

λ = 2, ω = 2. 98

5.13 The largest absolute eigenvalue of the matrix M in Equation 5.30 as

a function of the momentum rate δ ∈ (−1, 1) at η = λ
ω+1 . (λ, ω) ∈

{(0.5, 0.5), (1, 1), (2, 2)}. 99

5.14 The largest absolute eigenvalue of the matrix M in Equation 5.30 as a

function of the input Gamma distribution Γ(λ, ω) in the range ω ∈ (0, 100)

and the λ ∈ (0, 100). (η, δ) ∈ {(1, 0), (0.1, 0), (0.1, 0.9)}. 100

5.15 The largest absolute eigenvalue of the matrix M in Equation 5.34 as a

function of the learning rate η ∈ (0, 1) and the number of workers p ∈

[1, 64]. λ = 0.5, ω = 0.5, β = 0.9, α = β/p. 103

5.16 The largest absolute eigenvalue of the matrix M in Equation 5.34 as a

function of the learning rate η ∈ (0, 1) and the number of workers p ∈

[1, 64]. λ = 1, ω = 1, β = 0.9, α = β/p. 104

5.17 The largest absolute eigenvalue of the matrix M in Equation 5.34 as a

function of the learning rate η ∈ (0, 1) and the number of workers p ∈

[1, 64]. λ = 2, ω = 2, β = 0.9, α = β/p. 105

5.18 The largest absolute eigenvalue of the matrix M in Equation 5.34 as a

function of the learning rate η ∈ (0, 2) and the number of workers p ∈

[1, 64]. λ = 10, ω = 10, β = 0.9, α = β/p. The minimal sp(M) = 0.0868

is achieved at p = 29 and η = 0.8929. 106

5.19 The largest absolute eigenvalue of the matrix M in Equation 5.34 as a

function of the learning rate η ∈ (0, 1) and the moving rate α ∈ (−1, 1).

λ = 0.5, ω = 0.5, β = 0.9, p = 100. The minimal sp(M) = 0.5024 is

achieved at η = 0.4343 and α = 0.2525. 108

xii

5.20 The smallest eigenvalue of the Hessian matrix H in Equation 5.38 as a

function of the penalty term ρ, evaluated at the critical point x =
√

1− ρ,

y = −√1− ρ, z = 0. 111

6.1 The behavior of EASGD Tree in Algorithm 6. 115

6.2 The two communication schemes of the EASGD Tree. 116

6.3 EASGD Tree on CIFAR-lowrank using the first communication scheme

with τ1 = 10 and τ2 = 100. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 3, α = 0.9/(d+ 1). 120

6.4 EASGD Tree on CIFAR-lowrank using the second communication scheme

with τu = 8 and τd = 80. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 3, α = 0.9/(d+ 1). 121

6.5 EASGD Tree on CIFAR-lowrank using the first communication scheme

with τ1 = 1 and τ2 = 10. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 2, α = 0.9/(d+ 1). The momentum rate δ = 0. . 122

6.6 EASGD Tree on CIFAR-lowrank using the first communication scheme

with τ1 = 1 and τ2 = 10. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 3, α = 0.9/(d+ 1). The momentum rate δ = 0.9. 123

xiii

6.7 EASGD Tree on CIFAR-lowrank using the first communication scheme

with τ1 = 1 and τ2 = 10. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 4, α = 0.9/(d+ 1). The momentum rate δ = 0.99. 124

6.8 EASGD Tree on CIFAR-lowrank using the second communication scheme

with τu = 1 and τd = 10. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 2, α = 0.9/(d+ 1). The momentum rate δ = 0. . 125

6.9 EASGD Tree on CIFAR-lowrank using the second communication scheme

with τu = 1 and τd = 10. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 3, α = 0.9/(d+ 1). The momentum rate δ = 0.9. 126

6.10 EASGD Tree on CIFAR-lowrank using the second communication scheme

with τu = 1 and τd = 10. Training loss and error, test loss and error of

the root node versus a wallclock time. We run this experiment six times

independently (labeled with a,b,c,d,e,f) with a same random initialization.

p = 256, d = 16, η = 5e− 4, α = 0.9/(d+ 1). The momentum rate δ = 0.99. 127

6.11 EASGD Tree on CIFAR-lowrank using the first and second communica-

tion scheme with momentum. Training loss and error, test loss and error

of the root node versus a wallclock time. The curve e in Figure 6.5, the

curve e in Figure 6.6, the curve a in Figure 6.7, the curve b in Figure 6.8,

the curve b in Figure 6.9 and the curve d in Figure 6.10 are selected and

plotted. 128

xiv

6.12 Best test performance of DOWNPOUR (p=16), EASGD (p=16), and

EASGD Tree (p=256) on CIFAR-lowrank. Training loss and error, test

loss and error (of the center variable or the root node) versus a wallclock

time. The momentum is not applied (δ = 0). 129

xv

List of Tables

4.1 Learning rates explored for each method shown in Figure 4.1, 4.2, 4.3

and 4.4 (CIFAR experiment). 48

4.2 Learning rates explored for each method shown in Figure 4.5, 4.6 and 4.7

(CIFAR experiment). 48

4.3 Learning rates explored for each method shown in Figure 4.8 and 4.9

(ImageNet experiment). 48

4.4 Approximate computation time, data loading time and parameter com-

munication time [sec] for DOWNPOUR (top line for τ = 1) and EASGD

(the time breakdown for EAMSGD is almost identical) (bottom line for

τ = 10). Left time corresponds to CIFAR experiment and right table

corresponds to ImageNet experiment. The computation and the commu-

nication time may have some overlap, due to the MPI implementation. . . 66

xvi

Chapter 1

Introduction

1.1 What is the problem

The subject of this thesis is on how to parallelize the training of large deep learning

models that use a form of stochastic gradient descent (SGD) [9].

The classical SGD method processes each data point sequentially on a single processor.

As an optimization method, it often exhibits fast initial convergence toward the local

optimum as compared to the batch gradient method [30]. As a learning algorithm, it

often leads to better solutions in terms of the test accuracy [30, 23].

However, as the size of the dataset explodes [22], the amount of time taken to go through

each data point sequentially becomes prohibitive. To meet this challenge, many dis-

tributed stochastic optimization methods have been proposed in literature, e.g. the

mini-batch SGD, the asynchronous SGD, and the ADMM -based methods.

Meanwhile, the scale and the complexity of the deep learning models is also growing to

adapt to the growth of the data. There have been attempts to parallelize the training for

large-scale deep learning models on thousands of CPUs, including the Google’s Distbelief

system [16]. But practical image recognition systems consist of large-scale convolutional

1

neural networks trained on a few GPU cards sitting in a single computer [27, 49]. The

main challenge is to devise parallel SGD algorithms to train large-scale deep learning

models that yield a significant speedup when run on multiple GPU cards across multiple

machines. To date, the AlphaGo system is trained using 50 GPUs for a few weeks [52].

To solve such large-scale optimization problem, one line of research is to fill-in the gap be-

tween the stochastic gradient descent method (SGD) and the batch gradient method [40].

The batch gradient method evaluates the gradient (in a batch) using all the data points

while the stochastic gradient descent method uses only a single data point to estimate

the gradient of the objective function. The mini-batch SGD, i.e. sampling a subset of the

data points to estimate the full gradient, is one possibility to fill-in this gap [14, 17, 25, 31].

Larger mini-batch size reduces the variance of the stochastic gradient. Consequently, one

can use a larger learning rate to gain a faster convergence in training. However, to im-

plement it efficiently requires very skillful engineering efforts in order to minimize the

communication overhead, which is difficult in particular for training large deep learning

models on GPUs [25, 15]. It is even observed that in deep learning problems, using too

large mini-batch size may lead to solutions of very poor test accuracy [62].

Another possibility is to use the asynchronous stochastic gradient descent methods [8,

29, 63, 2, 46, 16]. The idea is similar to the mini-batch SGD, i.e. to distribute the compu-

tation of the gradients to the local workers (processors) and collect them by the master

(a parameter server), but asynchronously. The advantage of using asynchronous com-

munication is that it allows local workers to communicate with the master at different

time intervals, and thus it can significantly reduce the waiting time spent on the syn-

chronization. The tradeoff is that asynchronous behavior results in large communication

delay, which can in turn slow down the convergence rate [62].

The DOWNPOUR method belongs to the above class of asynchronous SGD methods,

and is proposed for training deep learning models [16] . The main ingredient of the

DOWNPOUR method is to reduce the (gradient) communication overhead by running

2

the SGD method on each local worker for multiple steps instead of just one single

step. This idea resembles the incremental gradient method [6]. The merit is that each

local worker can spend more time on the computation than on the communication.

The disadvantage, however, is that the method is not very stable when the (gradient)

communication period is large. We shall discuss this phenomenon further in Chapter 4.

The mini-batch SGD and the asynchronous SGD methods that we have discussed so

far can be implemented in a distributed computing environment [34, 26]. However,

conceptually it is still centralized as there is a master server which is needed to collect

all the gradients and store the latest model parameter. There’s a class of the distributed

optimization methods which is conceptually decentralized. It is based on the idea of

consensus averaging [57]. A classical problem is to compute the average value of the

local clocks in a sensor network (aka. clock synchronization) [41]. In such setting, one

needs to consider how to optimize the design of the averaging network [59] and to analyze

the convergence rate on various networks subject to link failure [37, 19].

The ADMM (Alternating Direction Method of Multipliers) [11] method can also be used

to solve the consensus averaging problem above. The basic idea is to decompose the ob-

jective function into several smaller ones so that each one can be solved separately in

parallel and then be combined into one solution. In some sense, it is more effective be-

cause the dual Lagrangian update is used to close the primal-dual gap associated with

the consensus constraints (i.e. to reach the consensus). ADMM is also generalized to the

stochastic and the asynchronous setting for solving large-scale machine learning prob-

lems [42, 61]. Nevertheless, the consensus can be harder to reach, as the oscillations from

the stochastic sampling and the asynchronous behavior need to be absorbed (averaged

out) by the whole system (for the constraints to be satisfied).

In this thesis, we explore another dimension of such possibility. Unlike the mini-batch

SGD and the asynchronous SGD method, we would like to maintain the stochastic

nature (oscillation) of the SGD method as the number of workers grows. To accelerate

3

the training of the large-scale deep learning models, in particular under communication

constraints, we study instead a weak consensus reaching problem. We use a central

variable to average out the noise, but we only maintain a weak coupling (consensus)

between the local variables and the central variable. The goal is thus very different to

the consensus averaging method and the ADMM method.

1.2 Formalizing the problem

Consider minimizing a function F (x) in a parallel computing environment [7] with p ∈ N

workers and a master. In this thesis we focus on the stochastic optimization problem of

the following form

min
x
F (x) := E[f(x, ξ)], (1.1)

where x is the model parameter to be estimated and ξ is a random variable that follows

the probability distribution P over Ω such that F (x) =
∫

Ω f(x, ξ)P(dξ). The optimization

problem in Equation 1.1 can be reformulated as follows

min
x1,...,xp,x̃

p∑
i=1

E[f(xi, ξi)] +
ρ

2
‖xi − x̃‖2, (1.2)

where each ξi follows the same distribution P (thus we assume each worker can sample

the entire dataset). In this thesis we refer to xi’s as local variables and we refer to x̃ as

a center variable.

The problem of the equivalence of these two objectives is studied in the literature and

is known as the augmentability or the global variable consensus problem [24, 11]. The

quadratic penalty term ρ in Equation 1.2 is expected to ensure that local workers will

not fall into different attractors that are far away from the center variable.

We will focus on the problem of reducing the parameter communication overhead between

the master and the local workers [50, 16, 60, 43, 48]. The problem of data communication

4

when the data is distributed among the workers [7, 5] is a more general problem and

is not addressed in this work. We however emphasize that our problem setting is still

highly non-trivial under the communication constraints due to the existence of many

local optima [13].

We remark further a connection between the quadratic penalty term in Equation 1.2

and the Moreau-Yosida regularization [33] in convex optimization used to smooth the

non-smooth part of the objective function. When using the rectified linear units [35] in

deep learning models, the objective function also becomes non-smooth. This suggests

that it may indeed be a good idea to use such a quadratic penalty term.

1.3 An overview

We now give an overview of the main focus and results of the following chapters.

Chapter 2 introduces the Elastic Averaging SGD (EASGD) method. We first discuss the

basic idea and motivate EASGD. We then propose synchronous EASGD and discuss its

connection with the classical Jacobi method in the numerical analysis. We further pro-

pose an asynchronous extension of EASGD and discuss how the asynchronous EASGD

can be thought of as an perturbation of the synchronous EASGD. We end up with comb-

ing EASGD with the classical momentum method, notably the Nesterov ’s momentum,

giving the EAMSGD algorithm.

Chapter 3 provides the convergence analysis of the synchronous EASGD algorithm.

The analysis is focused on the convergence of the center variable. We discuss a one-

dimensional quadratic objective function first. We show that the variance of the center

variable tends to zero as the number of workers grows. Meanwhile, the variance of

the local variables keeps increasing. We also introduce a double averaging sequence

computing the time average of the center variable and show that it is asymptotically

optimal. We further extend our analysis to the strongly convex case, and discusses the

5

tightness of the bound we have obtained compared to the quadratic case. Finally, we

study the stability condition of EASGD and ADMM method in the round-robin scheme.

We compute numerically the stability region for the ADMM method and show that it

can be unstable when the quadratic penalty term is relatively small. This is in contrast

to the stability region of the EASGD method.

Chapter 4 is an empirical study on the performance of various serial and parallel stochas-

tic optimization methods for training deep convolutional neural networks on the CIFAR

and ImageNet dataset. We first describe the experimental setup, in particular how we

preprocess and sample the dataset by the local workers in parallel. We then compare

the performance of EASGD and its momentum variant EAMSGD with the SGD and

DOWNPOUR methods (including their averaging and momentum variants). We find

that EASGD is very robust when the communication period is large, which is not the

case for DOWNPOUR. Furthermore, EAMSGD (the combination of EASGD and Nes-

terov’s momentum method) achieves the best performance measured both in the wall-

clock time and in the smallest achievable test error. The smallest achievable test error is

further improved as we gradually increase the communication period and the number of

processors. We provide further empirical results on the dependency of the learning rate

and the communication period. To choose a proper communication period, we also give

an explicit analysis in terms of the bandwidth requirement for the data communication

and the parameter communication in the ImageNet case.

Chapter 5 studies the limit in speedup of various stochastic optimization methods. We

would like to know what would be the limit in theory if we were given an infinite amount

of processors. We study first the asymptotic phase of these methods using an additive

noise model (a one-dimensional quadratic objective with Gaussian noise). The asymp-

totic variance can be obtained explicitly, and it can be reduced by either the mini-batch

SGD or the EASGD method. However, the SGD method using momentum can strictly

increase this asymptotic variance. On the other hand, we seek the optimal momentum

rate such that the momentum SGD method converges the fastest. We find that this op-

6

timal momentum rate can either be positive or negative. We ask a similar question for

the EASGD method by fixing the moving rate of the center variable and then optimize

the moving rate of the local variable. We find that the optimal moving (average) rate

of the EASGD method is either zero or negative. The surprising connection between

these two results is that they are obtained based on a nearly same proof. We perform a

similar moment analysis on the EAMSGD method, and find (but only numerically) that

the optimal moving rate can be either positive or negative, depending on the choice of

the learning rate.

We then move on to study the initial phase of these methods based on a multiplicative

noise model. We introduce the Gamma distribution to parametrize the spread the input

data distribution. We obtain the optimal learning rate for the mini-batch SGD method,

and discuss how fast the optimal rate of convergence varies with the mini-batch size.

We find that if the input data distribution has a large spread (to be made precise in

Chapter 5), then one can gain more effective speedup by using mini-batch SGD. For the

momentum SGD method, we observe that using momentum can slow down the optimal

convergence rate, but it can accelerate the convergence when the learning rate is chosen

to be sub-optimal. For the EASGD method, we observe a quite different picture to

the mini-batch SGD. There is an optimal number of workers that EASGD method will

achieve the best convergence rate. We also perform an asymptotic analysis when the

number of workers is infinite, and show that the stability region can still be enlarged if

the spread of the input data distribution is large.

We finally discuss a non-convex case to understand when EASGD can get trapped by

a saddle point. This is the phenomenon that we have observed in Chapter 4 when the

communication period is too large. We find that if the quadratic penalty term is smaller

than a critical value, then the local variables can stay on both sides of a saddle point,

and it is a stable configuration. This suggests that EASGD can spend a lot of time in

such configuration if the coupling between the master and the workers is too weak.

7

Chapter 6 attempts to scale up the EASGD method to a larger number of proces-

sors. Due to the communication constraints, we propose a tree extension of the EASGD

method. The leaf node of the tree performs the gradient descent locally and from time to

time performs the elastic averaging with their parent. The root node of the tree tracks

the spatial average of the variable of its children, and in turn the average of all the leaf

nodes. We perform an empirical study with two different communication schemes. The

first scheme exploits the fact that faster communication can be achieved at the bottom

layer (between the leaf nodes and their parent) than the upper layers. The second scheme

uses a faster upward communication rate and a slower downward communication rate so

that the root node can be informed of the latest information from the bottom as quick

as possible. We observe that the first scheme gives better training speedup, while the

second scheme gives better test accuracy. One difference compared to the asynchronous

EASGD experiment in Chapter 4 is that the communication protocol between the tree

nodes is fully asynchronous so as to maximize the I/O throughput.

We end up the Chapter 6 by establishing a connection between the DONWPOUR and

EASGD methods. For clarity, we focus on the synchronous scenario. These two methods

can be unified by a same equation once we transform EASGD from the Jacobi form into

the Gauss-Seidel form. The difference between the two is the choice of the moving rates.

A further stability analysis shows that DONWPOUR has a very singular region for these

rates which is separated from EASGD when the number of processors is large.

The last chapter concludes the thesis with a reprise of this overview, together with some

open questions and directions to follow in the future. We have also made an open source

project named mpiT on github to facilitate the communication using MPI under Torch,

including our implementation of DOWNPOUR and EASGD.

8

Chapter 2

Elastic Averaging SGD (EASGD)

In this chapter we introduce the Elastic Averaging SGD method (EASGD) and its vari-

ants. EASGD is motivated by the quadratic penalty method [40], but is re-interpreted

as a parallelized extension of the averaging SGD method [45]. The basic idea is to let

each worker maintain its own local parameter, and the communication and coordination

of work among the local workers is based on an elastic force which links the parame-

ters they compute with a center variable stored by the master. The center variable is

updated as a moving average where the average is taken in time and also in space over

the parameters computed by local workers. The local variables are updated with the

SGD-based methods, so as to keep the oscillations during the training process.

We discuss first the synchronous EASGD in Section 2.1. Then in Section 2.2 we discuss

how to extend the synchronous EASGD to the asynchronous scenario. Finally in Sec-

tion 2.3 we combine EASGD with two classical momentum methods in the first-order

convex optimization literature, i.e. the heavy-ball method and the Nesterov ’s momentum

method, to accelerate EASGD. The big picture is illustrated in Figure 2.1.

9

x1

Worker 1

Shuffle 1

x2

Worker 2

Shuffle 2

xp

Worker p

Shuffle p

...

Parameter Server (PS)

Global average parameter
(center variable)

x

PS updates x “slowly”
x = x + α(xi-x)

Worker i & PS
communicates with
xi and x every τ minibatch

Workers run momentum
SGD asynchronously with
L2 penalty ρ||xi-x||2

All workers sample the
full dataset in different
order in parallel

Features:

* EASGD has
similar
implementation to
the Asynchronous
SGD method

* EASGD is very
stable using large
communication
period τ

* Workers spend
most of their time
on computation

* Data
communication is
much less
expensive than
parameter
communication

Figure 2.1: The big picture of EASGD.

2.1 Synchronous EASGD

The EASGD updates captured in resp. Equation 2.1 and 2.2 are obtained by taking the

gradient descent step on the objective in Equation 1.2 with respect to resp. variable xi

and x̃,

xit+1 = xit − η(git(x
i
t) + ρ(xit − x̃t)) (2.1)

x̃t+1 = x̃t + η

p∑
i=1

ρ(xit − x̃t), (2.2)

where git(x
i
t) denotes the stochastic gradient of F with respect to xi evaluated at iteration

t, xit and x̃t denote respectively the value of variables xi and x̃ at iteration t, and η is

the learning rate.

10

The update rule for the center variable x̃ takes the form of moving average where the

average is taken over both space and time. Denote α = ηρ and β = pα, then Equation 2.1

and 2.2 become

xit+1 = xit − ηgit(xit)− α(xit − x̃t) (2.3)

x̃t+1 = (1− β)x̃t + β

(
1

p

p∑
i=1

xit

)
. (2.4)

Note that choosing β = pα leads to an elastic symmetry in the update rule, i.e. there

exists a symmetric force equal to α(xir − x̃t) between the update of each xi and x̃. It

gives us a simple and intuitive reason for the the algorithm’s stability over the ADMM

method as will be explained in Section 3.3. However, this relation (β = pα) is by no

means optimal as we shall see through our analysis in Chapter 5.

We interpret our synchronous EASGD as an approximate model for the asynchronous

EASGD. Thus in order to minimize the staleness [25] of the difference xit−x̃t between the

center and the local variable for the asynchronous EASGD (described in Algorithm 1),

the update for the master in Equation 2.4 involves xit instead of xit+1. On the other hand,

we can also think of our synchronous EASGD update rules (defined by Equation 2.3

and 2.4) as a Jacobi method [47]. We could have proposed a Gauss-Seidel version of the

synchronous EASGD by successively updating the local and center variables with local

averaging, local gradient descent, and then the global averaging. This possibility will be

made precise in Chapter 6.

Note also that α = ηρ, where the magnitude of ρ (the quadratic penalty term in Equation

1.2) represents the amount of exploration we allow in the model. In particular, small ρ

allows for more exploration as it allows xi’s to fluctuate further from the center x̃.

The distinctive idea of EASGD is to allow the local workers to perform more exploration

(small ρ) and the master to perform exploitation. This approach differs from other

settings explored in the literature [16, 4, 8, 36, 29, 2, 46, 63], and focus on how fast the

11

center variable converges.

2.2 Asynchronous EASGD

We discussed the synchronous update of EASGD algorithm in the previous section,

where the workers update the local variables in parallel such that the ith worker reads

the current value of the center variable and use it to update local variable xi using

Equation 2.1. All workers share the same global clock. The master has to wait for the

xi updates from all p workers before being allowed to update the value of the center

variable x̃ according to Equation 2.2.

In this section we propose its asynchronous variant. The local workers are still responsible

for updating the local variables xi’s, whereas the master is updating the center variable

x̃. Each worker maintains its own clock ti, which starts from 0 and is incremented by 1

after each stochastic gradient update of xi as shown in Algorithm 1. The master performs

an update whenever the local workers finished τ steps of their gradient updates, where

we refer to τ as the communication period. As can be seen in Algorithm 1, whenever τ

divides the local clock of the ith worker, the ith worker communicates with the master

and requests the current value of the center variable x̃. The worker then waits until the

master sends back the requested parameter value, and computes the elastic difference

α(x − x̃) (this entire procedure is captured in step a) in Algorithm 1). The elastic

difference is then sent back to the master (step b) in Algorithm 1) who then updates x̃.

Note that the asynchronous behavior described above is partially asynchronous [7]. As in

the beginning of each communication period, each worker needs to read the latest param-

eter from the master (blocking) and then sends the elastic difference back (blocking).

Although this only involves local synchronization, one can avoid this synchronization

cost by using a fully asynchronous protocol such that no waiting is necessary. The fully

asynchronous protocol may however increase the network traffic and the delay in the

parameter communication.We shall be more precise on this fully asynchronous protocol

12

when we discuss the EASGD Tree algorithm in Chapter 6 (Section 6.1).

Recall that we have chosen the Jacobi form in our synchronous EASGD update rules

(Equation 2.3 and 2.4) as an approximate model for the asynchronous behavior. It

suggests another more efficient way to realize the partially asynchronous protocol as

follows. At the beginning of each communication period, each local worker sends (non-

blocking) its parameter to the master, and the master will send (non-blocking) back

the elastic difference once having received that local worker’s parameter. During that

period of time, the local worker’s computation can still make progress. At the end of

that communication period (i.e. all the τ gradient updates have completed), each local

worker will read (blocking) the elastic difference sent from the master, and then apply

it. On the master side, it can either sum the p elastic differences altogether in one step

as in the synchronous case or make an update whenever sending an elastic difference.

The communication period τ controls the frequency of the communication between every

local worker and the master, and thus the trade-off between exploration and exploitation.

We show demonstrate empirically in Chapter 4 (Section 4.3.3) that in deep learning

problems, too large or too small communication period can both hurt the performance.

13

Algorithm 1: Asynchronous EASGD:

Processing by worker i and the master

Input: learning rate η, moving rate α,

communication period τ ∈ N

Initialize: x̃ is initialized randomly, xi = x̃,

ti = 0

Repeat

x← xi

if (τ divides ti) then

a) xi ← xi − α(x− x̃)

b) x̃ ← x̃ + α(x− x̃)

end

xi ← xi − ηgi
ti

(x)

ti ← ti + 1

Until forever

2.3 Momentum EASGD

The momentum EASGD (EAMSGD) is a variant of our Algorithm 1 and is captured

in Algorithm 2. It is based on the Nesterov ’s momentum scheme [39, 28, 55], where

the update of the local worker of the form captured in Equation 2.1 is replaced by the

following update

vit+1 = δvit − ηgit(xit + δvit) (2.5)

xit+1 = xit + vit+1 − ηρ(xit − x̃t),

where δ is the momentum rate. Note that when δ = 0 we recover the original EASGD

algorithm.

14

The idea of momentum is to accelerate the slow components in the gradient descent

method. The tradeoff is that we may slow down the components which were originally

fast. We shall give an explicit example to illustrate this tradeoff in Chapter 5 (Sec-

tion 5.2.2).

In literature, there’s another well-known momentum variant called heavy-ball method

(aka Polyak ’s method) [44]. The analysis of its global convergence property is still a

very challenging problem in convex optimization literature [21]. If we were to combine

it with EASGD, we would have the following update

vit+1 = δvit − ηgit(xit) (2.6)

xit+1 = xit + vit+1 − ηρ(xit − x̃t).

Note that in both cases, we do not add the momentum to the center variable. One

reason is that the momentum method has an error accumulation effect [18]. Due to the

stochastic noise in the gradient, using momentum can actually result in higher asymptotic

variance (see [32] and our discussion in Section 5.1.2). The role of the center variable is

indeed to reduce the asymptotic variance.

15

Algorithm 2: Asynchronous EAMSGD:

Processing by worker i and the master

Input: learning rate η, moving rate α,

communication period τ ∈ N,

momentum term δ

Initialize: x̃ is initialized randomly, xi = x̃,

vi = 0, ti = 0

Repeat

x← xi

if (τ divides ti) then

a) xi ← xi − α(x− x̃)

b) x̃ ← x̃ + α(x− x̃)

end

vi ← δvi − ηgi
ti

(x+ δvi)

xi ← xi + vi

ti ← ti + 1

Until forever

16

Chapter 3

Convergence Analysis of EASGD

In this chapter, we provide the convergence analysis of the synchronous EASGD al-

gorithm with constant learning rate. The analysis is focused on the convergence of

the center variable to the optimum. We discuss one-dimensional quadratic case first

(Lemma 3.1.1), then we introduce a double averaging sequence and prove that it is

asymptotically optimal. For this, we provide two distinct proofs (one in Lemma 3.1.2 for

the one-dimensional case, and the other in Lemma 3.1.3 for the multidimensional case).

We extend the analysis to the strongly convex case as stated in Theorem 3.2.1. Finally,

we provide stability analysis of the asynchronous EASGD and ADMM methods in the

round-robin scheme in Section 3.3.

3.1 Quadratic case

Our analysis in the quadratic case extends the analysis of ASGD in [45]. Assume each

of the p local workers xit ∈ Rn observes a noisy gradient at time t ≥ 0 of the linear form

given in Equation 3.1.

git(x
i
t) = Axit − b− ξit, i ∈ {1, . . . , p}, (3.1)

17

where the matrix A is positive-definite (each eigenvalue is strictly positive) and {ξit}’s

are i.i.d. random variables, with zero mean and positive-definite covariance matrix Σ.

Let x∗ denote the optimum solution, where x∗ = A−1b ∈ Rn.

3.1.1 One-dimensional case

In this section we analyze the behavior of the mean squared error (MSE) of the center

variable x̃t, where this error is denoted as E[‖x̃t − x∗‖2], as a function of t, p, η, α and

β, where β = pα. Note that the MSE error can be decomposed as (squared) bias and

variance1: E[‖x̃t − x∗‖2] = ‖E[x̃t − x∗]‖2 +V[x̃t−x∗]. For one-dimensional case (n = 1),

we assume A = h > 0 and Σ = σ2 > 0.

Lemma 3.1.1. Let x̃0 and {xi0}i=1,...,p be arbitrary constants, then

E[x̃t − x∗] = γt(x̃0 − x∗) +
γt − φt
γ − φ αu0, (3.2)

V[x̃t − x∗] =
p2α2η2

(γ − φ)2

(
γ2 − γ2t

1− γ2
+
φ2 − φ2t

1− φ2
− 2

γφ− (γφ)t

1− γφ

)
σ2

p
, (3.3)

where u0 =
∑p

i=1(xi0 − x∗ − α
1−pα−φ(x̃0 − x∗)), a = ηh + (p + 1)α, c2 = ηhpα, γ =

1− a−
√
a2−4c2

2 , and φ = 1− a+
√
a2−4c2

2 .

It follows from Lemma 3.1.1 that for the center variable to be stable the following has

to hold

− 1 < φ < γ < 1. (3.4)

It can be verified that φ and γ are the two zero-roots of the polynomial in λ: λ2 − (2−

a)λ+ (1− a+ c2). Recall that φ and λ are the functions of η and α. Thus (see proof in

Section 3.1.1)

• γ < 1 iff c2 > 0 (i.e. η > 0 and α > 0).

• φ > −1 iff (2− ηh)(2− pα) > 2α and (2− ηh) + (2− pα) > α.

1In our notation, V denotes the variance.

18

• φ = γ iff a2 = 4c2 (i.e. ηh = α = 0).

The proof the above Lemma is based on the diagonalization of the linear gradient map

(this map is symmetric due to the relation β = pα). The stability analysis of the

asynchronous EASGD algorithm in the round-robin scheme is similar due to this elastic

symmetry.

Proof. Substituting the gradient from Equation 3.1 into the update rule used by each

local worker in the synchronous EASGD algorithm (Equation 2.3 and 2.4) we obtain

xit+1 = xit − η(Axit − b− ξit)− α(xit − x̃t), (3.5)

x̃t+1 = x̃t +

p∑
i=1

α(xit − x̃t), (3.6)

where η is the learning rate, and α is the moving rate. Recall that α = ηρ and A = h.

For the ease of notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.

We prove the lemma by explicitly solving the linear equations 3.5 and 3.6. Let xt =

(x1
t , . . . , x

p
t , x̃t)

T . We rewrite the recursive relation captured in Equation 3.5 and 3.6 as

simply

xt+1 = Mxt + bt,

where the drift matrix M is defined as

M =



1− α− ηh 0 ... 0 α

0 1− α− ηh 0 ... α

... 0 ... 0 ...

0 ... 0 1− α− ηh α

α α ... α 1− pα


,

19

and the (diffusion) vector bt = (ηξ1
t , . . . , ηξ

p
t , 0)T .

Note that one of the eigenvalues of matrix M , that we call φ, satisfies (1 − α − ηh −

φ)(1 − pα − φ) = pα2. The corresponding eigenvector is (1, 1, . . . , 1,− pα
1−pα−φ)T . Let

ut be the projection of xt onto this eigenvector. Thus ut =
∑p

i=1(xit − α
1−pα−φ x̃t). Let

furthermore ξt =
∑p

i=1 ξ
i
t. Therefore we have

ut+1 = φut + ηξt. (3.7)

By combining Equation 3.6 and 3.7 as follows

x̃t+1 = x̃t +

p∑
i=1

α(xit − x̃t) = (1− pα)x̃t + α(ut +
pα

1− pα− φx̃t)

= (1− pα+
pα2

1− pα− φ)x̃t + αut = γx̃t + αut,

where the last step results from the following relations: pα2

1−pα−φ = 1 − α − ηh − φ and

φ+ γ = 1− α− ηh+ 1− pα. Thus we obtained

x̃t+1 = γx̃t + αut. (3.8)

Based on Equation 3.7 and 3.8, we can then expand ut and x̃t recursively,

ut+1 = φt+1u0 + φt(ηξ0) + . . .+ φ0(ηξt), (3.9)

x̃t+1 = γt+1x̃0 + γt(αu0) + . . .+ γ0(αut). (3.10)

Substituting u0, u1, . . . , ut, each given through Equation 3.9, into Equation 3.10 we ob-

tain

x̃t = γtx̃0 +
γt − φt
γ − φ αu0 + αη

t−1∑
l=1

γt−l − φt−l
γ − φ ξl−1. (3.11)

To be more specific, the Equation 3.11 is obtained by interchanging the order of sum-

20

mation,

x̃t+1 = γt+1x̃0 +
t∑
i=0

γt−i(αui)

= γt+1x̃0 +

t∑
i=0

γt−i(α(φiu0 +

i−1∑
l=0

φi−1−lηξl))

= γt+1x̃0 +
t∑
i=0

γt−iφi(αu0) +
t−1∑
l=0

t∑
i=l+1

γt−iφi−1−l(αηξl)

= γt+1x̃0 +
γt+1 − φt+1

γ − φ (αu0) +
t−1∑
l=0

γt−l − φt−l
γ − φ (αηξl).

Since the random variables ξl are i.i.d, we may sum the variance term by term as follows

t−1∑
l=0

(
γt−l − φt−l
γ − φ

)2

=
t−1∑
l=0

γ2(t−l) − 2γt−lφt−l + φ2(t−l)

(γ − φ)2

=
1

(γ − φ)2

(
γ2 − γ2(t+1)

1− γ2
− 2

γφ− (γφ)t+1

1− γφ +
φ2 − φ2(t+1)

1− φ2

)
.

(3.12)

Note that E[ξt] =
∑p

i=1 E[ξit] = 0 and V[ξt] =
∑p

i=1 V[ξit] = pσ2. These two facts, the

equality in Equation 3.11 and Equation 3.12 can then be used to compute E[x̃t] and

V[x̃t] as given in Equation 3.2 and 3.3 in Lemma 3.1.1.

Visualizing Lemma 3.1.1

In Figure 3.1, we illustrate the dependence of MSE on β, η and the number of processors

p over time t. We consider the large-noise setting where x̃0 = xi0 = 1, h = 1 and

σ = 10. The MSE error is color-coded such that the deep blue color corresponds to the

MSE equal to 10−3, the green color corresponds to the MSE equal to 1, the red color

corresponds to MSE equal to 103 and the dark red color corresponds to the divergence

of algorithm EASGD (condition in Equation 3.4 is then violated). The plot shows that

we can achieve significant variance reduction by increasing the number of local workers

21

eta

b
e

ta

t=1,p=1

0 1 2
0

1

2

eta

b
e

ta

t=1,p=10

0 1 2
0

1

2

eta

b
e

ta

t=1,p=100

0 1 2
0

1

2

eta

b
e

ta

t=1,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=1,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=2,p=1

0 1 2
0

1

2

eta

b
e

ta

t=2,p=10

0 1 2
0

1

2

eta

b
e

ta

t=2,p=100

0 1 2
0

1

2

eta

b
e

ta

t=2,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=2,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=10,p=1

0 1 2
0

1

2

eta
b

e
ta

t=10,p=10

0 1 2
0

1

2

eta

b
e

ta
t=10,p=100

0 1 2
0

1

2

eta

b
e

ta

t=10,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=10,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=100,p=1

0 1 2
0

1

2

eta

b
e

ta

t=100,p=10

0 1 2
0

1

2

eta

b
e

ta

t=100,p=100

0 1 2
0

1

2

eta

b
e

ta

t=100,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=100,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=1

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=10

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=100

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=10000

0 1 2
0

1

2

Figure 3.1: Theoretical mean squared error (MSE) of the center x̃ in the quadratic
case, with various choices of the learning rate η (horizontal within each block), and
the moving rate β = pα (vertical within each block), the number of processors p =
{1, 10, 100, 1000, 10000} (vertical across blocks), and the time steps t = {1, 2, 10, 100,∞}
(horizontal across blocks). The MSE is plotted in log scale, ranging from 10−3 to 103

(from deep blue to red). The dark red (i.e. on the upper-right corners) indicates diver-
gence.

22

p. This effect is less sensitive to the choice of β and η for large p.

Condition in Equation 3.4

We are going to show that

• γ < 1 iff c2 > 0 (i.e. η > 0 and β > 0).

• φ > −1 iff (2− ηh)(2− β) > 2β/p and (2− ηh) + (2− β) > β/p.

• φ = γ iff a2 = 4c2 (i.e. ηh = β = 0).

Recall that a = ηh + (p + 1)α, c2 = ηhpα, γ = 1 − a−
√
a2−4c2

2 , φ = 1 − a+
√
a2−4c2

2 , and

β = pα. We have

• γ < 1⇔ a−
√
a2−4c2

2 > 0⇔ a >
√
a2 − 4c2 ⇔ a2 > a2 − 4c2 ⇔ c2 > 0.

• φ > −1⇔ 2 > a+
√
a2−4c2

2 ⇔ 4− a >
√
a2 − 4c2 ⇔ 4− a > 0, (4− a)2 > a2− 4c2 ⇔

4− a > 0, 4− 2a+ c2 > 0⇔ 4 > ηh+ β + α, 4− 2(ηh+ β + α) + ηhβ > 0.

• φ = γ ⇔
√
a2 − 4c2 = 0⇔ a2 = 4c2.

The next corollary is a consequence of Lemma 3.1.1. As the number of workers p grows,

the averaging property of the EASGD can be characterized as follows

Corollary 3.1.1. Let the Elastic Averaging relation β = pα and the condition 3.4 hold,

then

lim
p→∞

lim
t→∞

pE[(x̃t − x∗)2] =
βηh

(2− β)(2− ηh)
· 2− β − ηh+ βηh

β + ηh− βηh · σ
2

h2
.

Proof. Note that when β is fixed, limp→∞ a = ηh+ β and c2 = ηhβ. Then limp→∞ φ =

min(1−β, 1−ηh) and limp→∞ γ = max(1−β, 1−ηh). Also note that using Lemma 3.1.1

23

we obtain

lim
t→∞

E[(x̃t − x∗)2] =
β2η2

(γ − φ)2

(
γ2

1− γ2
+

φ2

1− φ2
− 2γφ

1− γφ

)
σ2

p

=
β2η2

(γ − φ)2

(
γ2(1− φ2)(1− φγ) + φ2(1− γ2)(1− φγ)− 2γφ(1− γ2)(1− φ2)

(1− γ2)(1− φ2)(1− γφ)

)
σ2

p

=
β2η2

(γ − φ)2

(
(γ − φ)2(1 + γφ)

(1− γ2)(1− φ2)(1− γφ)

)
σ2

p

=
β2η2

(1− γ2)(1− φ2)
· 1 + γφ

1− γφ ·
σ2

p
.

Corollary 3.1.1 is obtained by plugging in the limiting values of φ and γ.

The crucial point of Corollary 3.1.1 is that the MSE in the limit t→∞ is in the order of

1/p which implies that as the number of processors p grows, the MSE will decrease for

the EASGD algorithm. Also note that the smaller the β is (recall that β = pα = pηρ),

the more exploration is allowed (small ρ) and simultaneously the smaller the MSE is.

The next lemma (Lemma 3.1.2) shows that EASGD algorithm achieves the highest

possible rate of convergence when we consider the double averaging sequence (similarly

to [45]) {z1, z2, . . . } defined as below

zt+1 =
1

t+ 1

t∑
k=0

x̃k. (3.13)

Lemma 3.1.2 (Weak convergence). If the condition in Equation 3.4 holds, then the

normalized double averaging sequence defined in Equation 3.13 converges weakly to the

normal distribution with zero mean and variance σ2/ph2,

√
t(zt − x∗) ⇀ N (0,

σ2

ph2
), t→∞. (3.14)

Proof. As in the proof of Lemma 3.1.1, for the ease of notation we redefine x̃t and xit as

follows:

x̃t , x̃t − x∗ and xit , xit − x∗.

24

Also recall that {ξit}’s are i.i.d. random variables (noise) with zero mean and the same

positive definite covariance matrix Σ � 0. We are interested in the asymptotic behavior

of the double averaging sequence {z1, z2, . . . } defined as

zt+1 =
1

t+ 1

t∑
k=0

x̃k. (3.15)

Recall the Equation 3.11 from the proof of Lemma 3.1.1 (for the convenience it is provided

below):

x̃k = γkx̃0 + αu0
γk − φk
γ − φ + αη

k−1∑
l=1

γk−l − φk−l
γ − φ ξl−1,

where ξt =
∑p

i=1 ξ
i
t. Therefore

t∑
k=0

x̃k =
1− γt+1

1− γ x̃0 + αu0
1

γ − µ

(
1− γt+1

1− γ − 1− φt+1

1− φ

)
+ αη

t−1∑
l=1

t∑
k=l+1

γk−l − φk−l
γ − φ ξl−1

= O(1) + αη
t−1∑
l=1

1

γ − φ

(
γ

1− γt−l
1− γ − φ1− φt−l

1− φ

)
ξl−1

Note that the only non-vanishing term (in weak convergence) of 1/
√
t
∑t

k=0 x̃k as t→∞

is

1√
t
αη

t−1∑
l=1

1

γ − φ

(
γ

1− γ −
φ

1− φ

)
ξl−1. (3.16)

Also recall that V[ξl−1] = pσ2 and

1

γ − φ

(
γ

1− γ −
φ

1− φ

)
=

1

(1− γ)(1− φ)
=

1

ηhpα
.

Therefore the expression in Equation 3.16 is asymptotically normal with zero mean and

variance σ2/ph2.

25

3.1.2 Generalization to multidimensional case

The asymptotic variance in the Lemma 3.1.2 is optimal with any fixed η and β for which

Equation 3.4 holds. The next lemma (Lemma 3.1.3) extends the result in Lemma 3.1.2

to the multi-dimensional setting.

Lemma 3.1.3 (Weak convergence). Let h denotes the largest eigenvalue of A. If (2 −

ηh)(2 − β) > 2β/p, (2 − ηh) + (2 − β) > β/p, η > 0 and β > 0, then the normalized

double averaging sequence converges weakly to the normal distribution with zero mean

and the covariance matrix V = A−1Σ(A−1)T ,

√
tp(zt − x∗) ⇀ N (0, V), t→∞. (3.17)

Proof. Since A is symmetric, one can use the proof technique of Lemma 3.1.2 to prove

Lemma 3.1.3 by diagonalizing the matrix A. This diagonalization essentially generalizes

Lemma 3.1.1 to the multidimensional case. We will not go into the details of this proof

as we will provide a simpler way to look at the system. As in the proof of Lemma 3.1.1

and Lemma 3.1.2, for the ease of notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.

Let the spatial average of the local parameters at time t be denoted as yt where yt =

1
p

∑p
i=1 x

i
t, and let the average noise be denoted as ξt, where ξt = 1

p

∑p
i=1 ξ

i
t. Equations 3.5

and 3.6 can then be reduced to the following

yt+1 = yt − η(Ayt − ξt) + α(x̃t − yt), (3.18)

x̃t+1 = x̃t + β(yt − x̃t). (3.19)

We focus on the case where the learning rate η and the moving rate α are kept constant

over time2. Recall β = pα and α = ηρ.

2As a side note, notice that the center parameter x̃t is tracking the spatial average yt of the local

26

Let’s introduce the block notation Ut = (yt, x̃t), Ξt = (ηξt, 0), M = I − ηL and

L =

 A+ α
η I −α

η I

−β
η I

β
η I

 .

From Equations 3.18 and 3.19 it follows that Ut+1 = MUt + Ξt. Note that this linear

system has a degenerate noise Ξt which prevents us from directly applying results of [45].

Expanding this recursive relation and summing by parts, we have

t∑
k=0

Uk = M0U0 +

M1U0 +M0Ξ0 +

M2U0 +M1Ξ0 +M0Ξ1 +

...

M tU0 +M t−1Ξ0 + · · ·+M0Ξt−1.

By Lemma 3.1.4, ‖M‖2 < 1 and thus

M0 +M1 + · · ·+M t + · · · = (I −M)−1 = η−1L−1.

Since A is invertible, we get

L−1 =

 A−1 α
βA
−1

A−1 η
β + α

βA
−1

 ,

thus

1√
t

t∑
k=0

Uk =
1√
t
U0 +

1√
t
ηL−1

t∑
k=1

Ξk−1 −
1√
t

t∑
k=1

Mk+1Ξk−1.

parameters with a non-symmetric spring in Equation 3.18 and 3.19. To be more precise note that the
update on yt+1 contains (x̃t− yt) scaled by α, whereas the update on x̃t+1 contains −(x̃t− yt) scaled by
β. Since α = β/p the impact of the center x̃t+1 on the spatial local average yt+1 becomes more negligible
as p grows.

27

Note that the only non-vanishing term of 1√
t

∑t
k=0 Uk is 1√

t
(ηL)−1

∑t
k=1 Ξk−1, thus in

weak convergence we have

1√
t
(ηL)−1

t∑
k=1

Ξk−1 ⇀ N
( 0

0

 ,

 V V

V V

), (3.20)

where V = A−1Σ(A−1)T .

Lemma 3.1.4. If the following conditions hold:

(2− ηh)(2− pα) > 2α

(2− ηh) + (2− pα) > α

η > 0

α > 0

then ‖M‖2 < 1.

Proof. The eigenvalue λ of M and the (non-zero) eigenvector (y, z) of M satisfy

M

 y

z

 = λ

 y

z

 . (3.21)

Recall that

M = I − ηL =

 I − ηA− αI αI

βI I − βI

 . (3.22)

From the Equations 3.21 and 3.22 we obtain

 y − ηAy − αy + αz = λy

βy + (1− β)z = λz
. (3.23)

28

Since (y, z) is assumed to be non-zero, we can write z = βy/(λ + β − 1). Then the

Equation 3.23 can be reduced to

ηAy = (1− α− λ)y +
αβ

λ+ β − 1
y. (3.24)

Thus y is the eigenvector of A. Let λA be the eigenvalue of matrix A such that Ay = λAy.

Thus based on Equation 3.24 it follows that

ηλA = (1− α− λ) +
αβ

λ+ β − 1
. (3.25)

Equation 3.25 is equivalent to

λ2 − (2− a)λ+ (1− a+ c2) = 0, (3.26)

where a = ηλA + (p + 1)α, c2 = ηλApα. It follows from the condition in Equation 3.4

that −1 < λ < 1 iff η > 0, β > 0, (2−ηλA)(2−β) > 2β/p and (2−ηλA)+(2−β) > β/p.

Let h denote the maximum eigenvalue of A and note that 2−ηλA ≥ 2−ηh. This implies

that the condition of our lemma is sufficient.

As in Lemma 3.1.2, the asymptotic covariance in the Lemma 3.1.3 is optimal, i.e. meets

the Fisher information lower-bound. The fact that this asymptotic covariance matrix V

does not contain any term involving ρ is quite remarkable, since the penalty term ρ does

have an impact on the condition number of the Hessian in Equation 1.2.

3.2 Strongly convex case

We now extend the above proof ideas to analyze the strongly convex case, in which the

noisy gradient git(x) = ∇F (x)− ξit has the regularity that there exists some 0 < µ ≤ L,

for which µ ‖x− y‖2 ≤ 〈∇F (x)−∇F (y), x− y〉 ≤ L ‖x− y‖2 holds uniformly for any

x ∈ Rd, y ∈ Rd. The noise {ξit}’s is assumed to be i.i.d. with zero mean and bounded

29

variance E[
∥∥ξit∥∥2

] ≤ σ2.

Theorem 3.2.1. Let at = E
∥∥∥1
p

∑p
i=1 x

i
t − x∗

∥∥∥2
, bt = 1

p

∑p
i=1 E

∥∥xit − x∗∥∥2
, ct = E ‖x̃t − x∗‖2,

γ1 = 2η µL
µ+L and γ2 = 2ηL(1− 2

√
µL

µ+L). If 0 ≤ η ≤ 2
µ+L(1− α), 0 ≤ α < 1 and 0 ≤ β ≤ 1

then 
at+1

bt+1

ct+1

 ≤


1− γ1 − γ2 − α γ2 α

0 1− γ1 − α α

β 0 1− β



at

bt

ct

+


η2 σ2

p

η2σ2

0

 .

Proof. The idea of the proof is based on the point of view in Lemma 3.1.3, i.e. how close

the center variable x̃t is to the spatial average of the local variables yt = 1
p

∑p
i=1 x

i
t. To

further simplify the notation, let the noisy gradient be ∇f it,ξ = git(x
i
t) = ∇F (xit) − ξit,

and ∇f it = ∇F (xit) be its deterministic part. Then EASGD updates can be rewritten

as follows,

xit+1 = xit − η∇f it,ξ − α(xit − x̃t), (3.27)

x̃t+1 = x̃t + β(yt − x̃t). (3.28)

We have thus the update for the spatial average,

yt+1 = yt − η
1

p

p∑
i=1

∇f it,ξ − α(yt − x̃t). (3.29)

The idea of the proof is to bound the distance ‖x̃t − x∗‖2 through ‖yt − x∗‖2 and

1
p

∑p
i

∥∥xit − x∗∥∥2
. We start from the following estimate for the strongly convex func-

tion [38],

〈∇F (x)−∇F (y), x− y〉 ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖∇F (x)−∇F (y)‖2 .

30

Since ∇f(x∗) = 0, we have

〈
∇f it , xit − x∗

〉
≥ µL

µ+ L

∥∥xit − x∗∥∥2
+

1

µ+ L

∥∥∇f it∥∥2
. (3.30)

From Equation 3.27 the following relation holds,

∥∥xit+1 − x∗
∥∥2

=
∥∥xit − x∗∥∥2

+ η2
∥∥∇f it,ξ∥∥2

+ α2
∥∥xit − x̃t∥∥2

− 2η
〈
∇f it,ξ, xit − x∗

〉
− 2α

〈
xit − x̃t, xit − x∗

〉
+ 2ηα

〈
∇f it,ξ, xit − x̃t

〉
. (3.31)

By the cosine rule (2 〈a− b, c− d〉 = ‖a− d‖2−‖a− c‖2 + ‖c− b‖2−‖d− b‖2), we have

2
〈
xit − x̃t, xit − x∗

〉
=
∥∥xit − x∗∥∥2

+
∥∥xit − x̃t∥∥2 − ‖x̃t − x∗‖2 . (3.32)

By the Cauchy-Schwarz inequality, we have

〈
∇f it , xit − x̃t

〉
≤
∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ . (3.33)

Combining the above estimates in Equations 3.30, 3.31, 3.32, 3.33, we obtain

∥∥xit+1 − x∗
∥∥2 ≤

∥∥xit − x∗∥∥2
+ η2

∥∥∇f it − ξit∥∥2
+ α2

∥∥xit − x̃t∥∥2

− 2η

(
µL

µ+ L

∥∥xit − x∗∥∥2
+

1

µ+ L

∥∥∇f it∥∥2
)

+ 2η
〈
ξit, x

i
t − x∗

〉
− α

(∥∥xit − x∗∥∥2
+
∥∥xit − x̃t∥∥2 − ‖x̃t − x∗‖2

)
+ 2ηα

∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ − 2ηα
〈
ξit, x

i
t − x̃t

〉
. (3.34)

Choosing 0 ≤ α < 1, we can have this upper-bound for the terms α2
∥∥xit − x̃t∥∥2 −

α
∥∥xit − x̃t∥∥2

+ 2ηα
∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ = −α(1 − α)

∥∥xit − x̃t∥∥2
+ 2ηα

∥∥∇f it∥∥ ∥∥xit − x̃t∥∥ ≤
η2α
1−α

∥∥∇f it∥∥2
by applying −ax2 +bx ≤ b2

4a with x =
∥∥xit − x̃t∥∥. Thus we can further bound

31

Equation 3.34 with

∥∥xit+1 − x∗
∥∥2 ≤ (1− 2η

µL

µ+ L
− α)

∥∥xit − x∗∥∥2
+ (η2 +

η2α

1− α −
2η

µ+ L
)
∥∥∇f it∥∥2

− 2η2
〈
∇f it , ξit

〉
+ 2η

〈
ξit, x

i
t − x∗

〉
− 2ηα

〈
ξit, x

i
t − x̃t

〉
(3.35)

+ η2
∥∥ξit∥∥2

+ α ‖x̃t − x∗‖2 (3.36)

As in Equation 3.35 and 3.36, the noise ξit is zero mean (Eξit = 0) and the variance of the

noise ξit is bounded (E
∥∥ξit∥∥2 ≤ σ2), if η is chosen small enough such that η2+ η2α

1−α−
2η
µ+L ≤

0, then

E
∥∥xit+1 − x∗

∥∥2 ≤ (1− 2η
µL

µ+ L
− α)E

∥∥xit − x∗∥∥2
+ η2σ2 + αE ‖x̃t − x∗‖2 .(3.37)

Now we apply similar idea to estimate ‖yt − x∗‖2. From Equation 3.29 the following

relation holds,

‖yt+1 − x∗‖2 = ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it,ξ

∥∥∥∥∥
2

+ α2 ‖yt − x̃t‖2

− 2η

〈
1

p

p∑
i=1

∇f it,ξ, yt − x∗
〉
− 2α 〈yt − x̃t, yt − x∗〉

+ 2ηα

〈
1

p

p∑
i=1

∇f it,ξ, yt − x̃t
〉
. (3.38)

By
〈

1
p

∑p
i=1 ai,

1
p

∑p
j=1 bj

〉
= 1

p

∑p
i=1 〈ai, bi〉 − 1

p2
∑

i>j 〈ai − aj , bi − bj〉, we have

〈
1

p

p∑
i=1

∇f it , yt − x∗
〉

=
1

p

p∑
i=1

〈
∇f it , xit − x∗

〉
− 1

p2

∑
i>j

〈
∇f it −∇f jt , xit − xjt

〉
. (3.39)

By the cosine rule, we have

2 〈yt − x̃t, yt − x∗〉 = ‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2 . (3.40)

32

Denote ξt = 1
p

∑p
i=1 ξ

i
t, we can rewrite Equation 3.38 as

‖yt+1 − x∗‖2 = ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt
∥∥∥∥∥

2

+ α2 ‖yt − x̃t‖2

− 2η

〈
1

p

p∑
i=1

∇f it − ξt, yt − x∗
〉
− 2α 〈yt − x̃t, yt − x∗〉

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t
〉
. (3.41)

By combining the above Equations 3.39, 3.40 with 3.41, we obtain

‖yt+1 − x∗‖2 = ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt
∥∥∥∥∥

2

+ α2 ‖yt − x̃t‖2

− 2η

(
1

p

p∑
i=1

〈
∇f it , xit − x∗

〉
− 1

p2

∑
i>j

〈
∇f it −∇f jt , xit − xjt

〉)
(3.42)

+ 2η 〈ξt, yt − x∗〉 − α(‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2)

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t
〉
. (3.43)

Thus it follows from Equation 3.30 and 3.43 that

‖yt+1 − x∗‖2 ≤ ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt
∥∥∥∥∥

2

+ α2 ‖yt − x̃t‖2

− 2η
1

p

p∑
i=1

(
µL

µ+ L

∥∥xit − x∗∥∥2
+

1

µ+ L

∥∥∇f it∥∥2
)

+ 2η
1

p2

∑
i>j

〈
∇f it −∇f jt , xit − xjt

〉
+ 2η 〈ξt, yt − x∗〉 − α(‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2)

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t
〉
. (3.44)

33

Recall yt = 1
p

∑p
i=1 x

i
t, we have the following bias-variance relation,

1

p

p∑
i=1

∥∥xit − x∗∥∥2
=

1

p

p∑
i=1

∥∥xit − yt∥∥2
+ ‖yt − x∗‖2 =

1

p2

∑
i>j

∥∥∥xit − xjt∥∥∥2
+ ‖yt − x∗‖2 ,

1

p

p∑
i=1

∥∥∇f it∥∥2
=

1

p2

∑
i>j

∥∥∥∇f it −∇f jt ∥∥∥2
+

∥∥∥∥∥1

p

p∑
i=1

∇f it

∥∥∥∥∥
2

. (3.45)

By the Cauchy-Schwarz inequality, we have

µL

µ+ L

∥∥∥xit − xjt∥∥∥2
+

1

µ+ L

∥∥∥∇f it −∇f jt ∥∥∥2
≥ 2
√
µL

µ+ L

〈
∇f it −∇f jt , xit − xjt

〉
. (3.46)

Combining the above estimates in Equations 3.44, 3.45, 3.46, we obtain

‖yt+1 − x∗‖2 ≤ ‖yt − x∗‖2 + η2

∥∥∥∥∥1

p

p∑
i=1

∇f it − ξt
∥∥∥∥∥

2

+ α2 ‖yt − x̃t‖2

− 2η

(
µL

µ+ L
‖yt − x∗‖2 +

1

µ+ L

∥∥∥∥∥1

p

p∑
i=1

∇f it

∥∥∥∥∥
2)

+ 2η

(
1− 2

√
µL

µ+ L

)
1

p2

∑
i>j

〈
∇f it −∇f jt , xit − xjt

〉
+ 2η 〈ξt, yt − x∗〉 − α(‖yt − x∗‖2 + ‖yt − x̃t‖2 − ‖x̃t − x∗‖2)

+ 2ηα

〈
1

p

p∑
i=1

∇f it − ξt, yt − x̃t
〉
. (3.47)

Similarly if 0 ≤ α < 1, we can have this upper-bound for the terms α2 ‖yt − x̃t‖2 −

α ‖yt − x̃t‖2 + 2ηα
∥∥∥1
p

∑p
i=1∇f it

∥∥∥ ‖yt − x̃t‖ ≤ η2α
1−α

∥∥∥1
p

∑p
i=1∇f it

∥∥∥2
by applying −ax2 +

34

bx ≤ b2

4a with x = ‖yt − x̃t‖. Thus we have the following bound for the Equation 3.47

‖yt+1 − x∗‖2 ≤ (1− 2η
µL

µ+ L
− α) ‖yt − x∗‖2 + (η2 +

η2α

1− α −
2η

µ+ L
)

∥∥∥∥∥1

p

p∑
i=1

∇f it

∥∥∥∥∥
2

− 2η2

〈
1

p

p∑
i=1

∇f it , ξt
〉

+ 2η 〈ξt, yt − x∗〉 − 2ηα 〈ξt, yt − x̃t〉

+ 2η

(
1− 2

√
µL

µ+ L

)
1

p2

∑
i>j

〈
∇f it −∇f jt , xit − xjt

〉
+ η2 ‖ξt‖2 + α ‖x̃t − x∗‖2 . (3.48)

Since 2
√
µL

µ+L ≤ 1, we need also bound the nonlinear term
〈
∇f it −∇f jt , xit − xjt

〉
≤

L
∥∥∥xit − xjt∥∥∥2

. Recall the bias-variance relation 1
p

∑p
i=1

∥∥xit − x∗∥∥2
= 1

p2
∑

i>j

∥∥∥xit − xjt∥∥∥2
+

‖yt − x∗‖2. The key observation is that if 1
p

∑p
i=1

∥∥xit − x∗∥∥2
remains bounded, then

larger variance
∑

i>j

∥∥∥xit − xjt∥∥∥2
implies smaller bias ‖yt − x∗‖2. Thus this nonlinear

term can be compensated.

Again choose η small enough such that η2 + η2α
1−α −

2η
µ+L ≤ 0 and take expectation in

Equation 3.48,

E ‖yt+1 − x∗‖2 ≤ (1− 2η
µL

µ+ L
− α)E ‖yt − x∗‖2

+ 2ηL

(
1− 2

√
µL

µ+ L

)(
1

p

p∑
i=1

E
∥∥xit − x∗∥∥2 − E ‖yt − x∗‖2

)
+ η2σ

2

p
+ αE ‖x̃t − x∗‖2 . (3.49)

As for the center variable in Equation 3.28, we apply simply the convexity of the norm

‖·‖2 to obtain

‖x̃t+1 − x∗‖2 ≤ (1− β) ‖x̃t − x∗‖2 + β ‖yt − x∗‖2 . (3.50)

Combining the estimates from Equations 3.37, 3.49, 3.50, and denote at = E ‖yt − x∗‖2,

35

bt = 1
p

∑p
i=1 E

∥∥xit − x∗∥∥2
, ct = E ‖x̃t − x∗‖2, γ1 = 2η µL

µ+L , γ2 = 2ηL(1− 2
√
µL

µ+L), then


at+1

bt+1

ct+1

 ≤


1− γ1 − γ2 − α γ2 α

0 1− γ1 − α α

β 0 1− β



at

bt

ct

+


η2 σ2

p

η2σ2

0

 ,

as long as 0 ≤ β ≤ 1, 0 ≤ α < 1 and η2 + η2α
1−α −

2η
µ+L ≤ 0, i.e. 0 ≤ η ≤ 2

µ+L(1− α).

The above theorem captures the bias-variance tradeoff of the spatial average 1
p

∑p
i=1 x

i
t

of the local variables (the at), with respect to the averaged mean squared error of each

local variable (the bt). The center variable x̃t is tracking 1
p

∑p
i=1 x

i
t over time (the ct).

To get an upper bound on the rate of convergence for x̃t, we need to assume the matrix

M to be positive, and its spectral norm to be smaller than one. Here

M =


1− γ1 − γ2 − α γ2 α

0 1− γ1 − α α

β 0 1− β

 .

We have three eigenvalues of M as follows:

λ1 = 1− α− γ1 − γ2,

λ2 = 1 +
1

2
(−α− β − γ1 +

√
(α+ β + γ1)2 − 4βγ1),

λ3 = 1 +
1

2
(−α− β − γ1 −

√
(α+ β + γ1)2 − 4βγ1).

Under the conditions of the above theorem (0 ≤ η ≤ 2
µ+L(1 − α), 0 ≤ α < 1 and

0 ≤ β ≤ 1), we still need to assume λ1 ≥ 0 so that M is positive. Since γ1 = 2η µL
µ+L ≥ 0

and γ2 = 2ηL(1− 2
√
µL

µ+L) ≥ 0, we deduce that λ1 ≤ 1. We can also verify that λ3 ≤ λ2 ≤ 1.

Thus for the stability we only need λ3 ≥ −1.

For λ1 > 0, we get the condition 0 < η < 1−α
2µL
µ+L

+2L(1− 2
√
µL

µ+L
)
. For λ3 > −1, we have the

36

condition η < µ+L
µL (1− α

2−β). When µ = L, these two conditions mean 0 < η < 1−α
L and

0 < η < 2
L(1 − α

2−β). On the other hand, when µ = 0, we have 0 < η < 1−α
2L . In either

case, our method operates in the under-damping (no oscillations) region.

With the above conditions, we can now ask what is the asymptotic variance of at, bt and

ct. By solving the fixed point equation (a∞, b∞, c∞)′ = M(a∞, b∞, c∞)′+(η2 σ2

p , η
2σ2, 0)′,

we obtain

a∞ = c∞ =
α/p+ γ1/p+ γ2

γ1(α+ γ1 + γ2)
η2σ2,

b∞ =
α/p+ γ1 + γ2

γ1(α+ γ1 + γ2)
η2σ2.

If µ = L, then γ2 = 0, we indeed get the asymptotic variance c∞ of order σ2/p. This

order matches our quadratic case analysis above. However, if µ << L, then γ1 will be

close to zero, and we don’t see in this upper bound the benefit of variance reduction

by increasing p (number of workers). It would be interesting to find a non-quadratic

example such that this can actually happen.

3.3 Stability of EASGD and ADMM

In this section we study the stability of the asynchronous EASGD and ADMM methods

in the round-robin scheme [29]. We first state the updates of both algorithms in this

setting, and then we study their stability. We will show that in the one-dimensional

quadratic case, ADMM algorithm can exhibit chaotic behavior, leading to exponen-

tial divergence. The analytic condition for the ADMM algorithm to be stable is still

unknown, while for the EASGD algorithm it is very simple.

In our setting, the ADMM method [11, 61, 42] involves solving the following minimax

37

problem3,

max
λ1,...,λp

min
x1,...,xp,x̃

p∑
i=1

F (xi)− λi(xi − x̃) +
ρ

2
‖xi − x̃‖2, (3.51)

where λi’s are the Lagrangian multipliers. The resulting updates of the ADMM algo-

rithm in the round-robin scheme are given next. Let t ≥ 0 be a global clock. At each t,

we linearize the function F (xi) with F (xit)+
〈
∇F (xit), x

i − xit
〉

+ 1
2η

∥∥xi − xit∥∥2
as in [42].

The updates become

λit+1 =

 λit − (xit − x̃t) if mod (t, p) = i− 1;

λit if mod (t, p) 6= i− 1.
(3.52)

xit+1 =


xit−η∇F (xit)+ηρ(λit+1+x̃t)

1+ηρ if mod (t, p) = i− 1;

xit if mod (t, p) 6= i− 1.
(3.53)

x̃t+1 =
1

p

p∑
i=1

(xit+1 − λit+1). (3.54)

Each local variable xi is periodically updated (with period p). First, the Lagrangian

multiplier λi is updated with the dual ascent update as in Equation 3.52. It is followed

by the gradient descent update of the local variable as given in Equation 3.53. Then the

center variable x̃ is updated with the most recent values of all the local variables and

Lagrangian multipliers as in Equation 3.54. Note that since the step size for the dual

ascent update is chosen to be ρ by convention [11, 61, 42], we have re-parametrized the

Lagrangian multiplier to be λit ← λit/ρ in the above updates.

The EASGD algorithm in the round-robin scheme is defined similarly and is given below

xit+1 =

 xit − η∇F (xit)− α(xit − x̃t) if mod (t, p) = i− 1;

xit if mod (t, p) 6= i− 1.
(3.55)

x̃t+1 = x̃t +
∑

i: mod (t,p)=i−1

α(xit − x̃t). (3.56)

3The convergence analysis in [61] is based on the assumption that “At any master iteration, updates
from the workers have the same probability of arriving at the master.”, which is not satisfied in the
round-robin scheme.

38

At time t, only the i-th local worker (whose index i− 1 equals t modulo p) is activated,

and performs the update in Equations 3.55 which is followed by the master update given

in Equation 3.56.

We will now focus on the one-dimensional quadratic case without noise, i.e.

F (x) =
x2

2
, x ∈ R.

For the ADMM algorithm, let the state of the (dynamical) system at time t be st =

(λ1
t , x

1
t , . . . , λ

p
t , x

p
t , x̃t) ∈ R2p+1. The local worker i’s updates in Equations 3.52, 3.53,

and 3.54 are composed of three linear maps which can be written as st+1 = (F i3 ◦ F i2 ◦
F i1)(st). For simplicity, we will only write them out below for the case when i = 1 and

p = 2:

F 1
1=



1 −1 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, F 1

2=



1 0 0 0 0

ηρ
1+ηρ

1−η
1+ηρ 0 0 ηρ

1+ηρ

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, F 1

3=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− 1
p

1
p − 1

p
1
p 0


.

For each of the p linear maps, it’s possible to find a simple condition such that each

map, where the ith map has the form F i3 ◦ F i2 ◦ F i1, is stable (the absolute value of the

eigenvalues of the map are smaller or equal to one). However, when these non-symmetric

maps are composed one after another as follows F = F p3 ◦ F p2 ◦ F p1 ◦ . . . ◦ F 1
3 ◦ F 1

2 ◦ F 1
1 ,

the resulting map F can become unstable! (more precisely, some eigenvalues of the map

can sit outside the unit circle in the complex plane).

We now present the numerical conditions for which the ADMM algorithm becomes

unstable in the round-robin scheme for p = 3 and p = 8, by computing the largest

absolute eigenvalue of the map F . Figure 3.2 summarizes the obtained result. We also

illustrate this unstable behavior in Figure 3.3

39

On the other hand, the EASGD algorithm involves composing only symmetric linear

maps due to the elasticity. Let the state of the (dynamical) system at time t be st =

(x1
t , . . . , x

p
t , x̃t) ∈ Rp+1. The activated local worker i’s update in Equation 3.55 and the

master update in Equation 3.56 can be written as st+1 = F i(st). In case of p = 2, the

map F 1 and F 2 are defined as follows

F 1=


1− η − α 0 α

0 1 0

α 0 1− α

, F 2=


1 0 0

0 1− η − α α

0 α 1− α


For the composite map F p ◦ . . .◦F 1 to be stable, the condition that needs to be satisfied

is actually the same for each i, and is furthermore independent of p (since each linear

map F i is symmetric). It essentially involves the stability of the 2× 2 matrix

 1− η − α α

α 1− α

 ,

whose two (real) eigenvalues λ satisfy (1 − η − α − λ)(1 − α − λ) = α2. The resulting

stability condition (|λ| ≤ 1) is simple and given as

0 ≤ η ≤ 2, 0 ≤ α ≤ 4− 2η

4− η .

40

η
 (

e
ta

)

ρ (rho)

p=3

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

x 10
−3

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

η
 (

e
ta

)

ρ (rho)

p=8

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

x 10
−3

0.992

0.994

0.996

0.998

1

1.002

Figure 3.2: The largest absolute eigenvalue of the linear map F = F p3 ◦F p2 ◦F p1 ◦ . . .◦F 1
3 ◦

F 1
2 ◦F 1

1 as a function of η ∈ (0, 10−2) and ρ ∈ (0, 10) when p = 3 and p = 8. To simulate
the chaotic behavior of the ADMM algorithm, one may pick η = 0.001 and ρ = 2.5 and
initialize the state s0 either randomly or with λi0 = 0, xi0 = x̃0 = 1000,∀i = 1, . . . , p.
Figure should be read in color.

41

0 5000 10000 15000
−6000

−4000

−2000

0

2000

4000

6000

Instability of ADMM (p=3)

t

c
e

n
te

r
v

a
ri

a
b

le

Figure 3.3: Instability of ADMM in the round-robin scheme. Pick p = 3, η = 0.001,
ρ = 2.5 and initialize the state s0 with λi0 = 0, xi0 = x̃0 = 1000, ∀i = 1, . . . , p. The x-axis
is the time step t, the y-axis is the (one-dimensional) value of the center variable x̃t.

42

Chapter 4

Performance in Deep Learning

In this chapter, we compare empirically the performance in deep learning of asynchronous

EASGD and EAMSGD with the parallel method DOWNPOUR and the sequential

method SGD, as well as their averaging and momentum variants.

All the parallel comparator methods are listed below1:

• DOWNPOUR [16], the detail and the pseudo-code of the implementation are de-

scribed in Section 4.4 (Algorithm 3).

• Momentum DOWNPOUR (MDOWNPOUR), where the Nesterov’s momentum

scheme is applied to the master’s update (note it is unclear how to apply it to

the local workers or for the case when τ > 1). The pseudo-code is described in

Section 4.4 (Algorithms 4 and 5).

• A method that we call ADOWNPOUR, where we compute the average over time

of the center variable x̃ as follows: zt+1 = (1 − αt+1)zt + αt+1x̃t, and αt+1 = 1
t+1

is a moving rate, and z0 = x̃0. The t denotes the master clock, which is initialized

to 0 and incremented every time the center variable x̃ is updated.

• A method that we call MVADOWNPOUR, where we compute the moving average

1We have compared asynchronous ADMM [61] with EASGD in our setting as well, the performance is
nearly the same. However, ADMM ’s momentum variant is not as stable when using large communication
period τ .

43

of the center variable x̃ as follows: zt+1 = (1 − α)zt + αx̃t, and the moving rate

α was chosen to be constant, and z0 = x̃0. The t denotes the master clock and is

defined in the same way as for the ADOWNPOUR method.

All the sequential comparator methods (p = 1) are listed below:

• SGD [9] with constant learning rate η.

• Momentum SGD (MSGD) [55] with constant (Nesterov’s) momentum rate δ.

• ASGD [45] with moving rate αt+1 = 1
t+1 .

• MVASGD [45] with moving rate α set to a constant.

We perform experiments on two benchmark datasets: CIFAR-10 (we refer to it as CI-

FAR)2 and ImageNet ILSVRC 2013 (we refer to it as ImageNet)3. We focus on the

image classification task with deep convolutional neural networks. We first explain the

experimental setup in Section 4.1 and then present the main experimental results in

Section 4.2. We present further experimental results in Section 4.3 and discuss the effect

of the averaging, the momentum, the learning rate, the communication period, the data

and parameter communication tradeoff, and finally the speedup.

4.1 Experimental setup

For all our experiments we use a GPU-cluster interconnected with InfiniBand. Each node

has 4 Titan GPU processors where each local worker corresponds to one GPU processor.

The center variable of the master is stored and updated on the centralized parameter

server [16]. Our implementation is available at https://github.com/sixin-zh/mpiT.

To describe the architecture of the convolutional neural network, we will first introduce

a notation. Let (c, x, y) denotes the size of the input image to each layer, where c is the

number of color channels and (x, y) denotes the horizontal and the vertical dimension of

2Downloaded from http://www.cs.toronto.edu/~kriz/cifar.html.
3Downloaded from http://image-net.org/challenges/LSVRC/2013.

44

https://github.com/sixin-zh/mpiT
http://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/challenges/LSVRC/2013

the input. Let C denotes the fully-connected convolutional operator and let R denotes

the rectified linear non-linearity (relu, c.f. [35]), P denotes the max pooling operator,

L denotes the linear operator and D denotes the dropout operator with rate equal to

0.5 and S denotes the the softmax nonlinearity. We use the cross-entropy loss for the

classification.

For the ImageNet experiment we use the similar approach to [49] with the follow-

ing 11-layer convolutional neural network: (3, 221, 221)
C,R−−−−−→

(7,7,2,2)
(96, 108, 108)

P−−−−−→
(3,3,3,3)

(96, 36, 36)
C,R−−−−−→

(5,5,1,1)
(256, 32, 32)

P−−−−−→
(2,2,2,2)

(256, 16, 16)
C,R−−−−−→

(3,3,1,1)
(384, 14, 14)

C,R−−−−−→
(2,2,1,1)

(384, 13, 13)
C,R−−−−−→

(2,2,1,1)
(256, 12, 12)

P−−−−−→
(2,2,2,2)

(256, 6, 6)
L,R,D−−−−→

0.5
(4096, 1, 1)

L,R,D−−−−→
0.5

(4096, 1, 1)
L,S−−→ (1000, 1, 1).

For the CIFAR experiment we use the similar approach to [58] with the following 7-layer

convolutional neural network: (3, 28, 28)
C,R−−−−−→

(5,5,1,1)
(64, 24, 24)

P−−−−−→
(2,2,2,2)

(64, 12, 12)
C,R−−−−−→

(5,5,1,1)

(128, 8, 8)
P−−−−−→

(2,2,2,2)
(128, 4, 4)

C,R−−−−−→
(3,3,1,1)

(64, 2, 2)
L,R,D−−−−→

0.5
(256, 1, 1)

L,S−−→ (10, 1, 1).

Note that the numbers below the rightarrow of the C and P operator represent the kernel

size (first horizontal and then vertical), the stride size (first horizontal and then vertical)

and the padding size (if exists, first horizontal and then vertical) on each of the two

sides of the image. The number below the rightarrow of the D operator emphasizes the

dropout rate 0.5 [54].

In our experiments, all the methods we run use the same initial parameter chosen ran-

domly, except that we set all the biases to zero for CIFAR case and to 0.1 for ImageNet

case. This parameter is used to initialize the master and all the local workers4. We add

l2-regularization λ
2 ‖x‖

2 to the loss function F (x). For ImageNet we use λ = 10−5 and

for CIFAR we use λ = 10−4. We also compute the stochastic gradient using mini-batches

of sample size 128.

4On the contrary, initializing the local workers and the master with different random seeds ’traps’ the
algorithm in the symmetry breaking phase.

45

Data preprocessing

For the ImageNet experiment, we re-size each RGB image so that the smallest dimension

is 256 pixels. We also re-scale each pixel value to the interval [0, 1]. We then extract

random crops (and their horizontal flips) of size 3 × 221 × 221 pixels and present these

to the network in mini-batches of size 128.

For the CIFAR experiment, we use the original RGB image of size 3 × 32 × 32. As

before, we re-scale each pixel value to the interval [0, 1]. We then extract random crops

(and their horizontal flips) of size 3× 28× 28 pixels and present these to the network in

mini-batches of size 128.

The training and test loss and the test error are only computed from the center patch

(3 × 28 × 28) for the CIFAR experiment and the center patch (3 × 221 × 221) for the

ImageNet experiment.

Data prefetching (Sampling the dataset by the local workers in parallel)

We will now explain precisely how the dataset is sampled by each local worker as uni-

formly and efficiently as possible. The general parallel data loading scheme on a single

machine is as follows: we use k CPUs, where k = 8, to load the data in parallel.

Each data loader reads from the memory-mapped (mmap) file a chunk of c raw images

(preprocessing was described in the previous subsection) and their labels (for CIFAR

c = 512 and for ImageNet c = 64). For the CIFAR, the mmap file of each data loader

contains the entire dataset whereas for ImageNet, each mmap file of each data loader

contains different 1/k fractions of the entire dataset. A chunk of data is always sent

by one of the data loaders to the first worker who requests the data. The next worker

requesting the data from the same data loader will get the next chunk. Each worker

requests in total k data chunks from k different data loaders and then process them

before asking for new data chunks. Notice that each data loader cycles5 through the

5Its advantage is observed in [10].

46

data in the mmap file, sending consecutive chunks to the workers in order in which it

receives requests from them. When the data loader reaches the end of the mmap file,

it selects the address in memory uniformly at random from the interval [0, s], where

s = (number of images in the mmap file modulo mini-batch size), and uses this address

to start cycling again through the data in the mmap file. After the local worker receives

the k data chunks from the data loaders, it shuffles them and divides it into mini-batches

of size 128.

4.2 Experimental results

For all experiments in this section we use EASGD with β = 0.9 and α = β/p, for

all momentum-based methods we set the momentum term δ = 0.99 and finally for

MVADOWNPOUR we set the moving rate to α = 0.001. We start with the experiment

on CIFAR dataset with p = 4 local workers running on a single computing node.

For all the methods, we examined the communication periods from the following set

τ = {1, 4, 16, 64}. For each method we examined a wide range of learning rates. The

learning rates explored in all experiments are summarized in Table 4.1, 4.2 and 4.3. The

CIFAR experiment was run 3 times independently from the same random initialization

and for each method we report its best performance measured by the smallest achievable

test error.

From the results in Figure 4.1, 4.2, 4.3 and 4.4, we conclude that all DOWNPOUR-based

methods achieve their best performance (test error) for small τ (τ ∈ {1, 4}), and become

highly unstable for τ ∈ {16, 64}. While EAMSGD significantly outperforms comparator

methods for all values of τ by having faster convergence. It also finds better-quality

solution measured by the test error and this advantage becomes more significant for

τ ∈ {16, 64}. Note that the tendency to achieve better test performance with larger τ is

also characteristic for the EASGD algorithm. We remark that if the stochastic gradient

is sparse, DOWNPOUR empirically performs well with large communication period [20].

47

Table 4.1: Learning rates explored for each method shown in Figure 4.1, 4.2, 4.3 and 4.4
(CIFAR experiment).

η

EASGD {0.05, 0.01, 0.005}
EAMSGD {0.01, 0.005, 0.001}

DOWNPOUR
ADOWNPOUR {0.005, 0.001, 0.0005}

MVADOWNPOUR

MDOWNPOUR {0.00005, 0.00001, 0.000005}
SGD, ASGD, MVASGD {0.05, 0.01, 0.005}

MSGD {0.001, 0.0005, 0.0001}

Table 4.2: Learning rates explored for each method shown in Figure 4.5, 4.6 and 4.7
(CIFAR experiment).

η

EASGD {0.05, 0.01, 0.005}
EAMSGD {0.01, 0.005, 0.001}

DOWNPOUR {0.005, 0.001, 0.0005}
MDOWNPOUR {0.00005, 0.00001, 0.000005}

SGD, ASGD, MVASGD {0.05, 0.01, 0.005}
MSGD {0.001, 0.0005, 0.0001}

Table 4.3: Learning rates explored for each method shown in Figure 4.8 and 4.9 (Ima-
geNet experiment).

η

EASGD 0.1

EAMSGD 0.001

DOWNPOUR for p = 4: 0.02
for p = 8: 0.01

SGD, ASGD, MVASGD 0.05

MSGD 0.0005

48

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=1

MSGD(p=1)
DOWNPOUR
ADOWNPOUR
MVADOWNPOUR
MDOWNPOUR
EASGD
EAMSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=1

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=1

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=1

Figure 4.1: Training and test loss and the test error for the center variable versus a
wallclock time for communication period τ = 1 on CIFAR dataset with the 7-layer
convolutional neural network. p = 4.

49

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=4

MSGD(p=1)
DOWNPOUR
ADOWNPOUR
MVADOWNPOUR
EASGD
EAMSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=4

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=4

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=4

Figure 4.2: Training and test loss and the test error for the center variable versus a
wallclock time for communication period τ = 4 on CIFAR dataset with the 7-layer
convolutional neural network. p = 4.

50

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=16

MSGD(p=1)
DOWNPOUR
ADOWNPOUR
MVADOWNPOUR
EASGD
EAMSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=16

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=16

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=16

Figure 4.3: Training and test loss and the test error for the center variable versus a
wallclock time for communication period τ = 16 on CIFAR dataset with the 7-layer
convolutional neural network. p = 4.

51

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=64

MSGD(p=1)
DOWNPOUR
ADOWNPOUR
MVADOWNPOUR
EASGD
EAMSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=64

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=64

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=64

Figure 4.4: Training and test loss and the test error for the center variable versus a
wallclock time for communication period τ = 64 on CIFAR dataset with the 7-layer
convolutional neural network. p = 4.

52

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=4

MSGD(p=1)
DOWNPOUR(τ=1)
MDOWNPOUR(τ=1)
EASGD(τ=10)
EAMSGD(τ=10)

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

p=4

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=4

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=4

Figure 4.5: Training and test loss and the test error for the center variable versus a
wallclock time with the number of local workers p = 4 for parallel methods on CIFAR
with the 7-layer convolutional neural network.

53

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=8

MSGD(p=1)
DOWNPOUR(τ=1)
MDOWNPOUR(τ=1)
EASGD(τ=10)
EAMSGD(τ=10)

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

p=8

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=8

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=8

Figure 4.6: Training and test loss and the test error for the center variable versus a
wallclock time with the number of local workers p = 8 for parallel methods on CIFAR
with the 7-layer convolutional neural network.

54

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=16

MSGD(p=1)
DOWNPOUR(τ=1)
MDOWNPOUR(τ=1)
EASGD(τ=10)
EAMSGD(τ=10)

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

p=16

50 100 150
20

40

60

80

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=16

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=16

Figure 4.7: Training and test loss and the test error for the center variable versus a
wallclock time with the number of local workers p = 16 for parallel methods on CIFAR
with the 7-layer convolutional neural network.

55

0 50 100 150
1

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=4

MSGD(p=1)
DOWNPOUR(τ=1)
EASGD(τ=10)
EAMSGD(τ=10)

0 50 100 150
2

3

4

5

6

wallclock time (hour)

te
st

 lo
ss

 (
n

ll)

p=4

0 50 100 150

50

60

70

80

90

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

p=4

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

p=4

Figure 4.8: Training and test loss and the test error for the center variable versus a
wallclock time with the number of local workers p = 4 on ImageNet with the 11-layer
convolutional neural network.

56

0 50 100 150

1

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=8

MSGD(p=1)
DOWNPOUR(τ=1)
EASGD(τ=10)
EAMSGD(τ=10)

0 50 100 150
2

3

4

5

6

wallclock time (hour)

te
st

 lo
ss

 (
n

ll)

p=8

0 50 100 150

50

60

70

80

90

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

p=8

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

p=8

Figure 4.9: Training and test loss and the test error for the center variable versus a
wallclock time with the number of local workers p = 8 on ImageNet with the 11-layer
convolutional neural network.

57

We next explore different number of local workers p from the set p = {4, 8, 16} for the

CIFAR experiment, and p = {4, 8} for the ImageNet experiment6. For the ImageNet

experiment we report the results of one run with the best setting we have found. EASGD

and EAMSGD were run with τ = 10 whereas DOWNPOUR and MDOWNPOUR were

run with τ = 1.

For the CIFAR experiment, the results are in Figure 4.5, 4.6 and 4.7. EAMSGD achieves

significant accelerations compared to other methods, e.g. the relative speedup for p = 16

(the best comparator method is then MSGD) to achieve the test error 21% equals 11.1.

It’s noticeable that the smallest achievable test error by either EASGD or EAMSGD

decreases with larger p. This can potentially be explained by the fact that larger p

allows for more exploration of the parameter space. In the next section, we discuss

further the trade-off between exploration and exploitation as a function of the learning

rate (section 4.3.2) and the communication period (section 4.3.3).

For the ImageNet experiment, the results are in Figure 4.8 and 4.9. The difficulty in this

task is that we need to manually reduce the learning rate, otherwise the training loss

will stagnate. Thus our initial learning rate is decreased twice over time, by a factor of

5 and then 2, when we observe that the online predictive loss [12] stagnates. EAMSGD

again achieves significant accelerations compared to other methods, e.g. the relative

speedup for p = 8 (the best comparator method is then DOWNPOUR) to achieve the

test error 49% equals 1.8, and simultaneously it reduces the communication overhead

(DOWNPOUR uses communication period τ = 1 and EAMSGD uses τ = 10). However,

there’s an annealing effect here in the sense that depending on the time the learning rate

is reduced, the final test performance can be quite different. This makes the performance

comparison difficult to define. In general, this is also a difficulty in comparing the NP-

hard problem solvers.

6For the ImageNet experiment, the training loss is measured on a subset of the training data of size
50,000.

58

4.3 Further discussion and understanding

4.3.1 Comparison of SGD, ASGD, MVASGD and MSGD

For comparison we also report the performance of MSGD which outperformed SGD,

ASGD and MVASGD on the test dataset. Recall that the way we compare the perfor-

mance between different methods is based on the smallest achievable test error. Since

the test dataset is fixed a prior, we may have the tendency to overfit this test dataset.

Indeed, as we shall see in the Figure 4.10. One could use cross-validation to remedy this,

we however emphasize that the point here is not to seek the best possible test accuracy,

but to see all the possibilities that we can find, i.e. the richness of the dynamics arising

from the neural network. We are aware that we could not exhaust all the possibilities.

Figure 4.10 shows the convergence of the training and test loss (negative log-likelihood)

and the test error computed for the center variable as a function of wallclock time for

SGD, ASGD, MVASGD and MSGD (p = 1) on the CIFAR experiment. We observe that

the final test performance of ASGD and MSGD are quite close to each other. But ASGD

is much faster from the beginning. This explains why we do not see much speedup of the

EASGD method (e.g. in Figure 4.1, 4.2, 4.3) and can sometimes be even slower (e.g. in

Figure 4.4). It is caused by the sensitivity of the test performance to the choice of the

learning rate. We shall discuss this phenomenon further in the next section 4.3.2.

Figure 4.11 shows the convergence of the training and test loss (negative log-likelihood)

and the test error computed for the center variable as a function of wallclock time for

SGD, ASGD, MVASGD and MSGD (p = 1) on the ImageNet experiment. Note that

for all CIFAR experiments we always start the averaging for the ADOWNPOUR and

ASGD methods from the very beginning of each experiment. But for the ImageNet ex-

periments we start the averaging for the ASGD and MVASGD at the first time when we

reduce the learning rate. We have tried to start the averaging from the right beginning,

both of the training and test performance are poor and they look very similar to the

59

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

SGD
ASGD
MVASGD
MSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

50 100 150
20

30

40

50

60

70

80

90

wallclock time (min)

te
st

 e
rr

o
r

(%
)

50 100 150
17

18

19

20

21

22

wallclock time (min)

te
st

 e
rr

o
r

(%
)

Figure 4.10: Convergence of the training and test loss (negative log-likelihood) and
the test error (original and zoomed) computed for the center variable as a function of
wallclock time for SGD, ASGD, MVASGD and MSGD (p = 1) on the CIFAR experiment.

60

0 50 100 150

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

SGD
ASGD
MVASGD
MSGD

0 50 100 150

3

4

5

6

wallclock time (hour)
te

st
 lo

ss
 (

n
ll)

0 50 100 150

50

60

70

80

90

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

Figure 4.11: Convergence of the training and test loss (negative log-likelihood) and
the test error (original and zoomed) computed for the center variable as a function
of wallclock time for SGD, ASGD, MVASGD and MSGD (p = 1) on the ImageNet
experiment.

61

ASGD curve in Figure 4.11. The big difference between ASGD and MVASGD is quite

striking and worth further study.

4.3.2 Dependence of the learning rate

This section discusses the dependence of the trade-off between exploration and exploita-

tion on the learning rate. We compare the performance of respectively EAMSGD and

EASGD for different learning rates η when p = 16 and τ = 10 on the CIFAR experiment.

We observe in Figure 4.12 that higher learning rates η lead to better test performance for

the EAMSGD algorithm which potentially can be justified by the fact that they sustain

higher fluctuations of the local workers. We conjecture that higher fluctuations lead to

more exploration and simultaneously they also impose higher regularization. This pic-

ture however seems to be opposite for the EASGD algorithm for which larger learning

rates hurt the performance of the method and lead to overfitting. Interestingly in this

experiment for both EASGD and EAMSGD algorithm, the learning rate for which the

best training performance was achieved simultaneously led to the worst test performance.

4.3.3 Dependence of the communication period

This section discusses the dependence of the trade-off between exploration and exploita-

tion on the communication period. We observe in Figure 4.13 that EASGD algorithm

exhibits very similar convergence behavior when τ = 1 up to even τ = 1000 for the

CIFAR experiment, whereas EAMSGD can get trapped at a quite high energy level (of

the objective) when τ = 100. This trapping behavior is due to the non-convexity of

the objective function. It can be avoided by gradually decreasing the learning rate, i.e.

increasing the penalty term ρ (recall α = ηρ), as shown in Figure 4.13. In contrast, the

EASGD algorithm does not seem to get trapped by any saddle point at all along its

trajectory.

62

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EASGD

0.05
0.01
0.005

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EASGD

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EAMSGD

0.01
0.005
0.001

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EAMSGD

Figure 4.12: Convergence of the training loss (negative log-likelihood, original) and the
test error (zoomed) computed for the center variable as a function of wallclock time for
EAMSGD and EASGD run with different values of η on the CIFAR experiment. p = 16,
τ = 10.

63

The performance7 of EASGD being less sensitive to the communication period compared

to EAMSGD is another striking observation.

It’s also very important to notice the tail behavior of the asynchronous EASGD method,

i.e. what would happen if some local worker had finished the gradient updates and

stopped the communication with the master. In the EAMSGD case in Figure 4.13, we

see that the final training loss and test error can both become worse. This is due to the

situation that some of the local workers have stopped earlier than the others, so that the

averaging effect on the center variable is diminished.

4.3.4 The tradeoff between data and parameter communication

In addition, we report in Table 4.4 the breakdown of the total running time for EASGD

when τ = 10 (the time breakdown for EAMSGD is almost identical) and DOWNPOUR

when τ = 1 into computation time, data loading time and parameter communication

time. For the CIFAR experiment the reported time corresponds to processing 400 ×

128 data samples whereas for the ImageNet experiment it corresponds to processing

1024× 128 data samples. For τ = 1 and p ∈ {8, 16} we observe that the communication

time accounts for significant portion of the total running time whereas for τ = 10 the

communication time becomes negligible compared to the total running time (recall that

based on previous results EASGD and EAMSGD achieve best performance with larger

τ which is ideal in the setting when communication is time-consuming).

We shall now examine the data communication cost in detail. Let’s focus on the ImageNet

case. Based on the Table 4.4, for each single GPU (p = 1, τ = 1), it takes around 1248

seconds to process 1024 mini-batches of size 128. This is approximately processing one

mini-batch per second. Each mini-batch consists of 128 × 3 × 221 × 221 pixels. If each

7Compared to all earlier results, the experiment in this section is re-run three times with a new
random seed and with faster cuDNN package on two Tesla K80 nodes (developer.nvidia.com/cuDNN
and github.com/soumith/cudnn.torch). Also to clarify, the random initialization we use is by default
in Torch’s implementation. All our methods are implemented in Torch (torch.ch). The Message Pass-
ing Interface implementation MVAPICH2 (mvapich.cse.ohio-state.edu) is used for the GPU-CPU
communication.

64

developer.nvidia.com/cuDNN
github.com/soumith/cudnn.torch
torch.ch
mvapich.cse.ohio-state.edu

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EASGD

τ=1
τ=10
τ=100
τ=1000

50 100 150
16

18

20

22

24

26

28

wallclock time (min)
te

st
 e

rr
o

r
(%

)

EASGD

50 100 150

0.5

1

1.5

2

2.5

wallclock time (min)

tr
ai

ni
ng

 lo
ss

 (
nl

l)

EAMSGD

τ=1,γ=0
τ=10,γ=0
τ=100,γ=0
τ=100,γ=1e−4

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EAMSGD

Figure 4.13: Convergence of the training loss (negative log-likelihood, original) and the
test error (zoomed) computed for the center variable as a function of wallclock time for
EASGD and EAMSGD (p = 16, η = 0.01, β = 0.9, δ = 0.99) on the CIFAR experiment
with various communication period τ and learning rate decay γ. The learning rate is
decreased gradually over time based each local worker’s own clock t with ηt = η/(1 +
γt)0.5.

65

p = 1 p = 4 p = 8 p = 16

τ = 1 12/1/0 11/2/3 11/2/5 11/2/9

τ = 10 NA 11/2/1 11/2/1 12/2/1

p = 1 p = 4 p = 8

τ = 1 1248/20/0 1323/24/173 1239/61/284

τ = 10 NA 1254/58/7 1266/84/11

Table 4.4: Approximate computation time, data loading time and parameter communi-
cation time [sec] for DOWNPOUR (top line for τ = 1) and EASGD (the time breakdown
for EAMSGD is almost identical) (bottom line for τ = 10). Left time corresponds to CI-
FAR experiment and right table corresponds to ImageNet experiment. The computation
and the communication time may have some overlap, due to the MPI implementation.

pixel value is represented by one byte, then each mini-batch is around 18 MB. As the

whole dataset has around 1,300,000 images, it would take 174 GB. In fact, we have

compressed the images as JPEG, so that the whole dataset is only around 36 GB. Thus

we gain a compression ratio around 1/5, i.e. we can assume each mini-batch size is 18/5

= 3.6 MB. The required data communication rate is thus 3.6 MB/sec. On the other

hand, the DOWNPOUR method with τ = 1 requires communicating the whole model

parameter per mini-batch. As the parameter size is around 233 MB, we need the network

bandwidth at least 233 MB/sec per local worker (we have not even accounted for the

gradient communication, which can double this cost). The parameter communication

cost is thus at least 66 times of the data communication cost. In the ImageNet case,

having access to the full dataset by the local workers is indeed a good tradeoff.

4.3.5 Time speed-up

In Figure 4.14 and 4.15, we summarize the wall clock time needed to achieve the same

level of the test error for all the methods in the CIFAR and ImageNet experiment as a

function of the number of local workers p. For the CIFAR (Figure 4.14) we examined the

following levels: {21%, 20%, 19%, 18%} and for the ImageNet (Figure 4.15) we examined:

{49%, 47%, 45%, 43%}. If some method does not appear on the figure for a given test

error level, it indicates that this method never achieved this level. For the CIFAR

experiment we observe that from among EASGD, DOWNPOUR and MDOWNPOUR

methods, the EASGD method needs less time to achieve a particular level of test error.

66

We observe that with higher p each of these methods does not necessarily need less

time to achieve the same level of test error. This seems counter intuitive though recall

that the learning rate for the methods is selected based on the smallest achievable test

error. For larger p smaller learning rates were selected than for smaller p which explains

our results. Meanwhile, the EAMSGD method achieves significant speed-up over other

methods for all the test error levels. For the ImageNet experiment we observe that all

methods outperform MSGD and furthermore with p = 4 or p = 8 each of these methods

requires less time to achieve the same level of test error.

4.4 Additional pseudo-codes of the algorithms

DOWNPOUR pseudo-code

Algorithm 3 captures the pseudo-code of the implementation of DOWNPOUR used in

this paper. Similar to the asynchronous behavior of EASGD that we have described

in Chapter 2 (Section 2.2), DOWNPOUR method also performs several steps of local

gradient updates by each worker i before pushing back the accumulated gradients vi to

the center variable. To be more precise, at the beginning of each period, the i-th worker

reads a new center variable x̃ from the parameter server. Then it performs τ local SGD

steps from the new x̃. All the gradients are accumulated (added) and at the end of that

period, the total sum vi is pushed (added) back to the parameter server. The center

variable is updated by summing the accumulated gradients from any of the local workers.

Notice that we do not use any adaptive learning scheme as having been done in [16].

MDOWNPOUR pseudo-code

Algorithms 4 and 5 capture the pseudo-codes of the implementation of momentum

DOWNPOUR (MDOWNPOUR) used in this paper. Algorithm 4 describes the behavior

of each local worker and Algorithm 5 describes the behavior of the master. Note that

67

 1 4 8 16
0

50

100

150

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

level 21%

MSGD
EAMSGD
EASGD
DOWNPOUR
MDOWNPOUR

 1 4 8 16
0

50

100

150

level 20%

p
w

al
lc

lo
ck

 t
im

e
(m

in
)

 1 4 8 16
0

50

100

150

level 19%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

 1 4 8 16
0

50

100

150

level 18%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

Figure 4.14: The wall clock time needed to achieve the same level of the test error
thr as a function of the number of local workers p on the CIFAR dataset. From left to
right: thr = {21%, 20%, 19%, 18%}. Missing bars denote that the method never achieved
specified level of test error.

.

68

1 4 8
0

50

100

150

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

level 49%

MSGD
EAMSGD
EASGD
DOWNPOUR

1 4 8
0

50

100

150

level 47%

p
w

al
lc

lo
ck

 t
im

e
(h

o
u

r)

1 4 8
0

50

100

150

level 45%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

1 4 8
0

50

100

150

level 43%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

Figure 4.15: The wall clock time needed to achieve the same level of the test error thr
as a function of the number of local workers p on the ImageNet dataset. From left to
right: thr = {49%, 47%, 45%, 43%}. Missing bars denote that the method never achieved
specified level of test error.

.

69

Algorithm 3: DOWNPOUR: Processing by worker i and the master

Input: learning rate η, communication period τ ∈ N
Initialize: x̃ is initialized randomly, xi = x̃, vi = 0, ti = 0

Repeat
if (τ divides ti) then

x̃ ← x̃ + vi

xi ← x̃
vi ← 0

end
xi ← xi − ηgi

ti
(xi)

vi ← vi − ηgi
ti

(xi)
ti ← ti + 1

Until forever

unlike the DOWNPOUR method, we do not use the communication period τ . This is

because the Nesterov’s momentum is applied to the center variable. Each worker reads

an interpolated variable x̃ + δv from the master, and then sends back the stochastic

gradient evaluated at that point. In case p = 1, MDOWNPOUR is equivalent to the

MSGD method.

Algorithm 4: MDOWNPOUR: Processing by worker i

Initialize: xi = x̃

Repeat
Receive x̃+ δv from the master: xi ← x̃+ δv
Compute gradient gi = gi(xi)
Send gi to the master

Until forever

Algorithm 5: MDOWNPOUR: Processing by the master

Input: learning rate η, momentum term δ
Initialize: x̃ is initialized randomly, vi = 0,

Repeat
Receive gi

v ← δv − ηgi
x̃← x̃+ v
Send x̃+ δv

Until forever

70

Chapter 5

The Limit in Speedup

This chapter studies the limitation in speedup of several stochastic optimization methods:

the mini-batch SGD, the momentum SGD and the EASGD method. In Section 5.1, we

study first the asymptotic phase of these methods using an additive noise model. The

continuous-time SDE (stochastic differential equation) approximation of its SGD update

is an Ornstein Uhlenbeck process. Then we study the initial phase of these methods using

a multiplicative noise model in Section 5.2. The continuous-time SDE approximation of

its SGD update is a Geometric Brownian motion. In Section 5.3, we study the stability

of the critical points of a simple non-convex problem and discuss when the EASGD

method can get trapped by a saddle point.

5.1 Additive noise

We (re-)study the simple additive noise model: one-dimensional quadratic objective with

Gaussian noise (as in Section 3.1.1). The objective function evaluated at state x ∈ R is

defined to be the average loss of the quadratic form (hx− ξ)2, i.e.

min
x∈R

E[(hx− ξ)2]. (5.1)

71

Here h > 0 is a scalar, and the expectation is taken over the random variable ξ, which

follows a Gaussian distribution. For simplicity, we assume further that ξ is zero mean

and has a constant variance σ2 > 0.

5.1.1 SGD with mini-batch

The update rule for the SGD method for solving the problem in Equation 5.1 is

xt+1 = xt − η(hxt − ξt), (5.2)

where x0 is the initial starting point.

Notice that in the continuous-time limit, i.e. for small η, we can approximate the process

in Equation 5.2 by an Ornstein Uhlenbeck process [32] as follows,

dX(t) = −hX(t)dt+
√
ησdB(t).

In the discrete-time case, the bias term (the first-order moment Ext) in Equation 5.2

will decrease at a linear rate 1− ηh, i.e.

Ext+1 = (1− ηh)Ext.

The second-order moment Ex2
t changes as

Ex2
t+1 = (1− ηh)2Ex2

t + η2σ2. (5.3)

Thus the variance will increase as

Vxt+1 = Ex2
t+1 − (Ext+1)2 = (1− ηh)2Ex2

t + η2σ2 − (1− ηh)2(Ext)2

= (1− ηh)2Vxt + η2σ2,

72

with Vx0 = 0. As t → ∞, we get Vx∞ = η2

1−(1−ηh)2
σ2. If we use mini-batch of size p,

the variance of the noise ξt is then reduced by p, and this asymptotic variance becomes

η2

1−(1−ηh)2
σ2

p . The convergence rate of the bias term, 1− ηh, is however not improved by

increasing the mini-batch size p.

5.1.2 Momentum SGD

We now study the update rule for the MSGD (Nesterov’s momentum) method for solving

Equation 5.1,

vt+1 = δvt − η(h(xt + δvt)− ξt),

xt+1 = xt + vt+1,
(5.4)

where x0 is the initial starting point and v0 = 0 is the initial velocity set to zero.

Let δh = δ(1− ηh), ηh = ηh, then Equation 5.4 is equivalent to

vt+1 = δhvt − ηhxt + ηξt,

xt+1 = xt + vt+1.

In case that δh is chosen independently of h, the update is no different to the heavy

ball method [44]. But the momentum term δh above equals δ(1− ηh), thus it implicitly

depends on h. As we usually choose δ to be smaller than one, δh is upper bounded by

1− ηh. This fact saves us from the variance explosion as δ tends to one.

More precisely, the second-order moment equation can be computed as follows,

v2
t+1 = (δhvt − ηhxt + ηξt)

2

= δ2
hv

2
t + η2

hx
2
t + η2ξ2

t − 2δhηhvtxt + 2δhηvtξt − 2ηhηxtξt

x2
t+1 = (xt + vt+1)2 = x2

t + 2vt+1xt + v2
t+1

vt+1xt = (δhvt − ηhxt + ηξt)xt = δhvtxt − ηhx2
t + ηxtξt

vt+1xt+1 = vt+1(xt + vt+1) = vt+1xt + v2
t+1.

(5.5)

73

Now taking expectation on both sides of the Equation 5.5, we obtain the following

recursive relation
Ev2

t+1

Evt+1xt+1

Ex2
t+1

 =


δ2
h −2δhηh η2

h

δ2
h δh(1− 2ηh) −ηh(1− ηh)

δ2
h 2δh(1− ηh) (1− ηh)2


︸ ︷︷ ︸

M


Ev2

t

Evtxt

Ex2
t

+


η2σ2

η2σ2

η2σ2

 . (5.6)

To see the asymptotic behavior, assume v2
∞ = limt→∞ Ev2

t , vx∞ = limt→∞ Evtxt, and

x2
∞ = limt→∞ Ex2

t . Then by solving


v2
∞

vx∞

x2
∞

 =


δ2
h −2δhηh η2

h

δ2
h δh(1− 2ηh) −ηh(1− ηh)

δ2
h 2δh(1− ηh) (1− ηh)2



v2
∞

vx∞

x2
∞

+


η2σ2

η2σ2

η2σ2

 ,

we obtain

v2
∞ =

2

(1− δh)(2(1 + δh)− ηh)
η2σ2,

vx∞ =
1

(1− δh)(2(1 + δh)− ηh)
η2σ2,

x2
∞ =

1 + δh
ηh(1− δh)(2(1 + δh)− ηh)

η2σ2. (5.7)

From Equation 5.7, we see that for the asymptotic variance x2
∞ to be strictly positive,

we should assume −1 < δh < 1 and 0 < ηh < 2(1 + δh). Moreover, compared to the

asymptotic variance of SGD (the case that δ = 0), we can check, for example, that in

the region ηh ∈ (0, 1) and δh ∈ (0, 1), the asymptotic variance of MSGD is always larger.

On the other hand, the above condition −1 < δh < 1 and 0 < ηh < 2(1 + δh) is also the

condition for the matrix M in Equation 5.6 to remain (strictly) stable, i.e. the largest

absolute eigenvalue is (strictly) smaller than one. In fact, we have three eigenvalues for

74

the matrix M as follows,

z1 = δh,

z2 =
(1−ηh)2−2ηhδh+δ2h−

√
((1−ηh)2−2ηhδh+δ2h)2−4δ2h

2 ,

z3 =
(1−ηh)2−2ηhδh+δ2h+

√
((1−ηh)2−2ηhδh+δ2h)2−4δ2h

2 .

(5.8)

Let 2b = z2 + z3 = (1− ηh)2− 2ηhδh + δ2
h and c = z2z3 = δ2

h. Then z2 and z3 are the two

roots (in z) of z2 − 2bz + c = 0. In general, if z2, z3 are real-valued, i.e. b2 − c > 0, then

we have two cases:

• b > √c implies z3 = b+
√
b2 − c > √c > z2 = b−

√
b2 − c > 0,

• b < −√c implies z2 = b−
√
b2 − c < −√c < z3 = b+

√
b2 − c < 0.

On the other hand, if z2, z3 are not real-valued, i.e. b2 − c ≤ 0, then |z3| = |z1| = |z2| =
√
c. Recall that |z1| = |δh| =

√
c.

We see thus for the (strict) stability of the matrix M in Equation 5.6, we need
√
c =

|δh| < 1 and |z3| < 1 because the condition b < −√c is never satisfied for any real δh.

The condition for |z3| = b+
√
b2 − c < 1 is that 2b− c < 1, i.e. 0 < ηh < 2(1 + δh).

Moreover, as in [32], we can try to minimize |z3| with respect to δ such that the rate

of convergence of the second order moment is maximized for a given η. We shall prove

that the minimal |z3| is achieved at δh = (
√
ηh − 1)2. In fact, it happens when b =

√
c,

i.e. the optimal rate is at the edge where the eigenvalues transit from real-valued to the

complex-valued. Notice that b =
√
c gives us two positive solutions: δh = (

√
ηh − 1)2

and δh = (
√
ηh + 1)2. Since b = 1

2 [(δh − ηh)2 + 1− 2ηh] is a quadratic function in δh, the

fact that b =
√
c has two positive solutions means that the quadratic function intersects

twice with the line δh in the first orthant. If ηh ≥ 1/4, the first intersection point is

to the left of the minimum of b, and the second intersection point is to the right of the

minimum, i.e. (
√
ηh − 1)2 ≤ ηh < (

√
ηh + 1)2. But if 0 < ηh < 1/4, both intersection

points will be both to the right of the minimum of b, i.e. ηh < (
√
ηh− 1)2 < (

√
ηh + 1)2.

75

Nevertheless, in either case, we can show b >
√
c whenever δh < (

√
ηh − 1)2. Thus, in

the range δh < (
√
ηh − 1)2, we have z3 >

√
c > z2 > 0. We thus only need to find the

minimum of z3 in the range δh ∈ (−1, (
√
ηh − 1)2], because |z3| = δh is monotonically

increasing in the range 1 > δh > (
√
ηh − 1)2. We now show that the minimal value

of z3 is (
√
ηh − 1)2 in this range. In fact, if ηh ≥ 1/4, b is monotonically decreasing

in this range, thus z3 ≥ b reaches its minimum at δh = (
√
ηh − 1)2 with z3 = b. If

0 < ηh < 1/4, b firstly decreases for δh < ηh, then increases for ηh ≤ δh ≤ (1 − √ηh)2.

We show that z3 is still monotonically decreasing in these two ranges of δh. We check

whether ∂z3
∂δh

= (δh − ηh)(1 + b√
b2−c)− δh

1√
b2−c < 0 holds. For δh < ηh, this is equivalent

to z3 >
δh

δh−ηh ; for ηh < δh ≤ (1−√ηh)2, this is equivalent to z3 <
δh

δh−ηh . The former one

is true in the range 0 < δh < ηh, because z3 is always positive. One can check that this is

still true in the range −1 < δh < 0. The latter one is equivalent to b+
√
b2 − c < δh

δh−ηh .

Taking square on both sides, we can check that b < δh
δh−ηh and b2 − c < (δh

δh−ηh − b)
2,

based on 0 < δh − ηh < 1− 2
√
ηh < 1.

Thus we conclude that for a fixed ηh such that 0 < ηh < 2(1 + δh), the minimal |z3| over

−1 < δh < 1 is obtained at

δh = (
√
ηh − 1)2,

with the minimal value z3 = b +
√
b2 − c = b =

√
c = δh = (

√
ηh − 1)2. Compared to

the rate (1− ηh)2 in the SGD case (Equation 5.3), MSGD can indeed help if ηh is small

enough (usually ηh = ηh is close to the inverse of the condition number of the Hessian in

higher dimensional case). To check our above reasoning, we have computed numerically

the spectral norm of the matrix M , sp(M), which is given in Figure 5.1. Note that when

ηh > 1, we have the optimal momentum rate being negative, i.e. δ =
(
√
ηh−1)2

(1−ηh) < 0.

Perhaps the most special behavior for MSGD is that when the momentum rate δ gets

close to 1, the asymptotic variance of x2
∞ in Equation 5.7 still remains bounded, i.e.

x2
∞ = 1+1−ηh

η2h(2(1+1−ηh)−ηh)
η2σ2 = 2−ηh

4−3ηh
σ2

h2
for δ = 1 (or δh = 1 − ηh). This contrasts to

the behavior of the heavy ball method, whose asymptotic variance tends to infinity as

76

η
 (

e
ta

)

δ (delta)

sp(M) of MSGD in Additive noise case

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.1: The largest absolute eigenvalue of the matrix M (sp(M)) in Equation 5.6 as
a function of the learning rate η ∈ (0, 2) and the momentum rate δ ∈ (−1, 1). h = 1.

77

δ → 1 [32].

5.1.3 EASGD and EAMSGD

We can now study the moment equation for the EASGD and EAMSGD method. For

EASGD, we have the following update rules

xit+1 = xit − η(hxit − ξit) + α(x̃t − xit),

x̃t+1 = x̃t + β(1
p

∑p
i=1 x

i
t − x̃t).

(5.9)

Denote yt = 1
p

∑p
i=1 x

i
t and ξt = 1

p

∑p
i=1 ξ

i
t, then Equation 5.9 can be reduced to

yt+1 = yt − η(hyt − ξt) + α(x̃t − yt),

x̃t+1 = x̃t + β(yt − x̃t).
(5.10)

Similar to MSGD, the second-order moment equation for Equation 5.10 is as follows,

y2
t+1 = ((1− ηh− α)yt + αx̃t + ηξt)

2

= (1− ηh− α)2y2
t + α2x̃2

t + η2ξ2
t

+ 2α(1− ηh− α)ytx̃t + 2η(1− ηh− α)ytξt + 2αηx̃tξt,

yt+1x̃t+1 = ((1− ηh− α)yt + αx̃t + ηξt)((1− β)x̃t + βyt)

= (1− ηh− α)βy2
t + (1− ηh− α)(1− β)ytx̃t + αβytx̃t + α(1− β)x̃2

t

+ ηξt((1− β)x̃t + βyt),

x̃2
t+1 = (1− β)2x̃2

t + β2y2
t + 2β(1− β)ytx̃t.

(5.11)

78

Taking expectation on both sides of the Equation 5.11, we get


Ey2

t+1

Eyt+1x̃t+1

Ex̃2
t+1

 =


(1− ηh− α)2 2α(1− ηh− α) α2

(1− ηh− α)β (1− ηh− α)(1− β) + αβ α(1− β)

β2 2β(1− β) (1− β)2


︸ ︷︷ ︸

M


Ey2

t

Eytx̃t

Ex̃2
t

+


η2 σ2

p

0

0

 .

(5.12)

Similar to the analysis of MSGD, we get the following asymptotic variance,

y2
∞ = lim

t→∞
Ey2

t =
(2− β)(1− β)ηh + β(2− α− β)

ηh[(2− β)(2− ηh)− 2α][α+ β + ηh(1− β)]

η2σ2

p
, (5.13)

yx̃∞ = lim
t→∞

Eytx̃t =
β((2− β)(1− ηh)− α)

ηh[(2− β)(2− ηh)− 2α][α+ β + ηh(1− β)]

η2σ2

p
,

x̃2
∞ = lim

t→∞
Ex̃2

t =
−β(1− β)ηh + β(2− α− β)

ηh[(2− β)(2− ηh)− 2α][α+ β + ηh(1− β)]

η2σ2

p
. (5.14)

For the above asymptotic variance to be positive, in particular x2
∞, we can assume

ηh > 0,

β > 0,

(2− β)(2− ηh)− 2α > 0,

2−α−β−ηh+βηh
α+β+ηh(1−β) > 0.

(5.15)

Moreover, if 0 < β < 1, the asymptotic variance of the center variable x̃2
∞ is strictly

smaller than that of the spatial average y2
∞ (by comparing Equation 5.13 and 5.14).

Interestingly, if β > 1, it becomes strictly bigger.

Note that it’s still not very clear whether Equation 5.15 is the necessary and sufficient

condition for the matrix M (in Equation 5.12) to be (strictly) stable. However, if we look

back to the earlier result in Section 3.1.1 about the condition in Equation 3.4, they are

nearly the same, except maybe for the last formula. The last formula in Equation 5.15

reads 0 < α+ β + ηh − βηh < 2. The left inequality implies βηh < α+ β + ηh. Based on

79

the third formula in Equation 5.15, we have thus α + β + ηh < 2 + βηh
2 < 2 + α+β+ηh

2 .

This gives us the last formula for the condition in Equation 3.4, which is α+β+ ηh < 4.

Conversely, assuming α > 0 (as assumed in Section 3.1.1 for β = pα), then one can

check that α + β + ηh < 4 implies the last formula in Equation 5.15, which also reads

α− 1 < (ηh − 1)(β − 1) < α+ 1.

Perhaps the most striking observation is that the optimal α such that the convergence

rate (of the moment Equation 5.12) is maximized turns out to be negative, given ηh > 0

and β > 0 fixed.

The three eigenvalues of the matrix M in Equation 5.12 are

z1= −α+ (1− ηh)(1− β),

z2= b−
√
b2 − c,

z3= b+
√
b2 − c,

(5.16)

where b = 1
2 [(α − (1 − ηh − β))2 + 1 − 2βηh], c = [α − (1 − ηh)(1 − β)]2 = z2

1 . Denote

α′ = z1 = −α+ (1− ηh)(1− β), then b = 1
2 [(α′− ηhβ)2 + 1− 2βηh] and c = (α′)2. Using

exactly the same analysis and the result from the MSGD case, we get that the minimal

|z3| over −1 < α′ < 1 is obtained at

α′ = (
√
βηh − 1)2,

which is equivalent to

α = −(
√
β −√ηh)2. (5.17)

The situation that the coupling constant α being negative, while β being positive suggests

a very different perspective to understand EASGD. It seems that our earlier condition

β = pα is unnecessary and is sub-optimal in this case. To check our above results,

we have computed numerically the spectral norm of the matrix M for a fixed β = 0.9,

which is given in Figure 5.2. However, we are in danger this time if we were to simulate

80

EASGD using the optimal α given in Equation 5.17. In Figure 5.3, we illustrate an

unstable behavior in such optimal case. The reason is that our above analysis is based

on the reduced Equation 5.10, rather than the original Equation 5.9.

In the original Equation 5.9, we have the following form of the drift matrix

Mp =



1− α− ηh 0 ... 0 α

0 1− α− ηh 0 ... α

... 0 ... 0 ...

0 ... 0 1− α− ηh α

β′ β′ ... β′ 1− β


, (5.18)

whose first p rows correspond to the local workers’ updates, and the last row correspond

to the master’s update. The p + 1 eigenvalues Mp can be computed recursively as

follows: let Ip+1(z) = det(Mp − z), then we have Ip+1(z) = (1 − α − ηh − z)Ip(z) −

αβ′(1− α− ηh − z)p−1 = · · · = (1− α− ηh − z)p−1[(1− β − z)(1− α− ηh − z)− pαβ′].

Notice that β′ = β/p, thus we have two eigenvalues which do not depend on p, i.e.

(1− β − z)(1− α− ηh− z)− αβ = 0, and an extra eigenvalue which only shows up for

p > 1, i.e. z = 1 − α − ηh. This extra eigenvalue z = 1 − α − ηh is completely ignored

in our reduced Equation 5.10. Then what is the optimal α for the matrix Mp instead?

The three eigenvalues of the matrix Mp in Equation 5.18 are

z1= 1− α− ηh,

z2= b−
√
b2 − c,

z3= b+
√
b2 − c,

(5.19)

where b = 1
2(2− β − ηh − α), c = (1− ηh)(1− β)− α.

Given ηh > 0 and β > 0 fixed, we shall prove that

• if β > ηh: the optimal α = 0.

• if β < ηh: the optimal α = −(
√
β −√ηh)2.

81

η
 (

e
ta

)

α (alpha)

sp(M) of EASGD (β=0.9) in Additive noise case

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: The largest absolute eigenvalue of the matrix M in Equation 5.12 as a
function of the learning rate η ∈ (0, 2) and the moving rate α ∈ (−1, 1). h = 1 and
β = 0.9.

82

20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

10
5

t (step)

x̃
2

 EASGD (η=0.1,β=0.9,p=4) in Additive noise case

α = β/p
α = -(

√
β-
√
η)2

Figure 5.3: Three independent simulations of EASGD using the elastic averaging α =
β/p and the optimal α given in Equation 5.17. The x-axis is the time step t in the EASGD
updates of Equation 5.9. The y-axis is the squared distance of the center variable to the
optimum zero, i.e. x̃2

t . We have chosen h = 1, σ = 10−2, p = 4, η = 0.1 and β = 0.9.

83

The proof idea is similar to the MSGD case, so we shall be more brief. Let’s focus on the

variable c = (1− ηh)(1− β)− α instead of the variable α itself. Rewrite Equation 5.19

with z1 = c+β(1− ηh), b = 1
2(c−βηh + 1). We find that for b2 > c, we only need c > c2

or c < c1, where c1 = (
√
βηh − 1)2, and c2 = (

√
βηh + 1)2. We also observe that the line

z1 as a function of c intersects with the quadratic curve z2 or z3 at c0 = (1− ηh)(1− β)

(i.e. at α = 0). At c = c0, z1 = 1 − ηh, z2 = 1 − 1
2(β + ηh) − 1

2 |β − ηh|, and z3 =

1 − 1
2(β + ηh) + 1

2 |β − ηh|. If β > ηh, then z3 = z1 at c = c0. Otherwise z2 = z1 at

c = c0. We can check that the negative optimal α = −(
√
β −√ηh)2 is given at c = c1,

where z2 and z3 meet and transit from real-valued to complex-valued. Note that z1 is

an increasing function of c, and if it intersects with z3, the optimal α becomes 0 (rather

than being negative). They are illustrated in Figure 5.4 and 5.5 as a function of α under

the two conditions, i.e. β > ηh and β < ηh. We also computed numerically the spectral

norm of the matrix Mp for a fixed β = 0.9, which is given in Figure 5.6. Finally, we

show in Figure 5.7 the optimal case of EASGD under the condition β < ηh.

We have studied the the second-order moment equation 5.12 of the reduced system

(Equation 5.10), and the first-order moment equation 5.18 of the original system (Equa-

tion 5.9) for the EASGD method. We found that the reduced system can lose critical

information about the stability of the original system. However, the eigenvalues are still

closely related in the first-order moment matrix Mp and the second-order moment M , i.e.

the z2 and z3 in Equation 5.16 and 5.19. Thus for the EAMSGD method, we shall only

focus on the first-order moment equation. Its asymptotic variance, which can obtained

from the second-order moment equation, is rather complicated and will not be discussed.

For EAMSGD, we have the following update rules

vit+1 = δvit − η(h(xit + δvit)− ξit),

xit+1 = xit + vit+1 + α(x̃t − xit),

x̃t+1 = x̃t + β(1
p

∑p
i=1 x

i
t − x̃t).

84

-1.0 - 0.5 0.5 1.0
Α

0.5

1.0

1.5

È z3 È

È z2 È

È z1 È

Figure 5.4: The absolute value of the eigenvalues of z1, z2 and z3 in Equation 5.19.
ηh = 0.1 and β = 0.9.

-1.0 - 0.5 0.5 1.0
Α

0.5

1.0

1.5

È z3 È

È z2 È

È z1 È

Figure 5.5: The absolute value of the eigenvalues of z1, z2 and z3 in Equation 5.19.
ηh = 1.5 and β = 0.9.

85

η
 (

e
ta

)

α (alpha)

sp(M) of EASGD (β=0.9,p=2) in Additive noise case

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.6: The largest absolute eigenvalue of the matrix Mp in Equation 5.18 as a
function of the learning rate η ∈ (0, 2) and the moving rate α ∈ (−1, 1). h = 1 and
β = 0.9. Note that we computed this spectrum using p = 2, as we have discussed in the
text, it is independent of the choice of p for p > 1.

86

20 40 60 80 100 120 140 160 180 200

10
−8

10
−6

10
−4

10
−2

10
0

t (step)

x̃
2

 EASGD (η=1.5,β=0.9,p=4) in Additive noise case

α = β/p
α = -(

√
β-
√
η)2

Figure 5.7: Three independent simulations of EASGD using the elastic averaging α =
β/p and the optimal α given in Equation 5.17. The x-axis is the time step t in the EASGD
updates of Equation 5.9. The y-axis is the squared distance of the center variable to the
optimum zero, i.e. x̃2

t . We have chosen h = 1, σ = 10−2, p = 4, η = 1.5 and β = 0.9.

87

We have the following form of the drift matrix for the first-order moment equation,

Mp =



δh −ηh 0 0 0

δh 1− ηh − α 0 0 α

0 0 δh −ηh 0

0 0 δh 1− ηh − α α

...

...

0 β′ 0 β′ 1− β



, (5.20)

such that [v1
t+1, x

1
t+1, v

2
t+1, x

2
t+1, . . . , x̃t+1]T = Mp[v

1
t , x

1
t , v

2
t , x

2
t , . . . , x̃t]

T . Recall that δh =

δ(1 − ηh), ηh = ηh, and β′ = β/p. We can compute the eigenvalues of the above drift

matrix Mp recursively, and one can check that they are again independent of the choice

of p for p > 1, as in the EASGD case. More precisely, we have

det|Mp − z| = (u(z))p−1v(z) = 0, (5.21)

where u(z) = z2 − (1− η− α− δ)z + δ(1− α) and v(z) = (δ− z)(1− η− α− z)(1− β −

z) + ηδ(1− β − z)− αβ(δ − z).

The solution of the Equation 5.21 is quite complicated as it involves a third-order poly-

nomial which is irreducible. It would be difficult to obtain the optimal δ or α as before.

So we computed numerically the spectral norm of the matrix Mp in Equation 5.20 for

a fixed β = 0.9 and δ = 0.99 (which we used in the experiment in Chapter 4). It is

given in Figure 5.8. This result suggests that the optimal α increases as the η (or ηh as

h = 1) decreases. Recall our result of MSGD in Figure 5.1: the optimal δ increases as

η decreases. This is consistent with the choice of the learning rate and the momentum

rate scheduling in the Nesterov’s optimal methods in literature [28]. We have seen that

there’s an intimate connection between MSGD and EASGD when we were studying the

optimal momentum rate δ and the optimal moving rate α. It suggests that we may also

88

find interesting rate scheduling for EASGD, as well as EAMSGD based on the convex

analysis. However, we should be careful as the optimal α for EASGD is either zero or

negative, while for EAMSGD it can be positive as well.

5.2 Multiplicative noise

In this section, we study a multiplicative noise model, which attempts to capture the ini-

tial behavior of the stochastic optimization method. It is complementary to the additive

noise model, which captures the asymptotic behavior.

Our starting point is the following linear regression problem

min
a∈R

E[(v − au)2],

where the expectation E is taken over the joint distribution of (u, v). If the input

data (u, v) satisfies v = a∗u, we may reduce the above problem to the following one-

dimensional case,

min
x∈R

E[(xu)2]. (5.22)

An interesting perspective of this problem is that we can assume that u2 of the input

data follows a Gamma distribution Γ(λ, ω), with mean λ/ω and variance λ/ω2. Note

that if u follows a Gaussian distribution with mean zero and variance σ2, then λ = 1/2

and ω = 1/(2σ2).

5.2.1 SGD with mini-batch

Given x0 ∈ R, the mini-batch SGD method for solving the multiplicative noise problem

in Equation 5.22 is as follows,

xt+1 = xt − ηu2
txt, (5.23)

where η > 0, and ut is an i.i.d input process.

89

η
 (

e
ta

)

α (alpha)

sp(M) of EAMSGD (δ=0.99,β=0.9,p=2)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.8: The largest absolute eigenvalue of the matrix Mp in Equation 5.20 as a
function of the learning rate η ∈ (0, 2) and the moving rate α ∈ (−1, 1). h = 1, β = 0.9
and δ = 0.99. Note that we computed this spectrum again using p = 2, as we have
discussed in the text, it is independent of the choice of p for p > 1.

90

As we assumed that u2
t follow a Gamma distribution Γ(λ, ω), it’s easy to verify that if

we use mini-batch of size p, Equation 5.23 becomes

xt+1 = xt − η
1

p

p∑
i=1

(uit)
2xt, (5.24)

and this mini-batch 1
p

∑p
i=1(uit)

2 also follows a Gamma distribution Γ(pλ, pω), since the

mean of the mini-batch is not changed and the variance is divided by p.

We also notice that in the continuous-time limit, i.e. for small η, we can approximate

the process in Equation 5.24 by a Geometric Brownian motion [32] as follows,

dX(t) = −λ
ω
X(t)dt+

√
η

√
λ

pω2
X(t)dB(t).

An interesting behavior of the geometric Brownian Motion is that its variance can explode

(go to infinity), yet the path of the stochastic process still converges almost surely towards

zero. In such case, we can observe along the path a few extreme large values. These

extreme values may however cause trouble to the stability of the nonlinear dynamics

in the training of deep learning models. So our goal here is to control this variance by

studying again the second-order moment equation.

Going back to the discrete process defined by Equation 5.24. Denote ξt = 1
p

∑p
i=1(uit)

2,

we have

x2
t+1 = (1− ηξt)2x2

t . (5.25)

Taking expectation on both sides of the Equation 5.25, we obtain

E[x2
t+1] = (1− 2η

pλ

pω
+ η2 pλ(pλ+ 1)

(pω)2
)E[x2

t] = (1− 2η
λ

ω
+ η2λ(pλ+ 1)

pω2
)E[x2

t]. (5.26)

The rate of convergence defined by the above second-moment equation 5.26 is 1−2η λω +

η2 λ(pλ+1)
pω2 . It is monotone decreasing as p increases and will saturate at a limit 1−2η λω +

91

η2 λ2

ω2 = (1 − η λω)2. Given p, we can optimize this convergence rate with respect to the

choice of the learning rate η. This optimal learning rate is given by

ηp =
pω

pλ+ 1
=

ω

λ+ 1/p
. (5.27)

From this formula, we can see that as p evolves, ηp will change a lot if λ is much

smaller than 1/p. In other words, if λ is very big compared to 1/p, then the change

in ηp is not that much as we increases the mini-batch size p. Thus we can expect that

the speedup we would gain depends heavily on the distribution of the input data, in

particular the shape parameter λ of the Gamma distribution. Suppose for p = 1, the ξt

follows the Gamma distribution Γ(λ, ω). Its probability density function is ωλ

Γ(ω)ξ
λ−1e−ωξ.

We illustrate this probability density function in Figure 5.9 for the standard Gaussian

case (λ = 1/2, ω = 1/2) with p = 1, p = 2 and p = 4. We see that when λ is smaller

than one, the probability density function has a pole at zero and has also a slower decay

(heavier tail) toward infinity. By increasing the mini-batch size p, the probability density

function becomes more and more concentrated near its mean. Thus the mini-batch is

more effective for such input distribution with very large spread (i.e. small λ).

5.2.2 Momentum SGD

Given x0 ∈ R and v0 = 0, the MSGD method for solving the multiplicative noise problem

in Equation 5.22 is as follows,

vt+1 = δvt − ηξt(xt + δvt),

xt+1 = xt + vt+1,
(5.28)

where ξt follows a Gamma distribution Γ(λ, ω).

Denote δt = δ(1−ηξt) and ηt = ηξt, the second-order moment equation can be computed

92

10
−3

10
−2

10
−1

10
0

10
1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

PDF of Gamma distribution Γ(λ,ω)

λ=0.5,ω=0.5

λ=1,ω=1

λ=2,ω=2

Figure 5.9: The probability density function of the Gamma distribution Γ(λ, ω). The
x-axis and y-axis are both in log-scale to enlarge the singularity at zero and the decay
of the tail toward infinity.

93

as follows,

v2
t+1 = (δ(1− ηξt)vt − ηξtxt)2 = (δtvt − ηtxt)2

= δ2
t v

2
t − 2ηtδtvtxt + η2

t x
2
t ,

vt+1xt = (δtvt − ηtxt)xt = δtvtxt − ηtx2
t ,

x2
t+1 = (xt + vt+1)2 = x2

t + 2vt+1xt + v2
t+1

= x2
t + 2(δtvtxt − ηtx2

t) + δ2
t v

2
t − 2ηtδtvtxt + η2

t x
2
t ,

= δ2
t v

2
t + (1− 2ηt + η2

t)x
2
t + (2δt − 2ηtδt)vtxt,

vt+1xt+1 = vt+1(xt + vt+1) = vt+1xt + v2
t+1

= δtvtxt − ηtx2
t + δ2

t v
2
t − 2ηtδtvtxt + η2

t x
2
t

= δ2
t v

2
t + (−ηt + η2

t)x
2
t + δt(1− 2ηt)vtxt.

(5.29)

Taking expectation on both sides of the Equation 5.29, we obtain the following recursive

relation (Ev2
t+1,Ex2

t+1,Evt+1xt+1)T = M(Ev2
t ,Ex2

t ,Evtxt)T , where

M =


δ2(1− 2ηu1 + η2u2) η2u2 −2δη(u1 − ηu2)

δ2(1− 2ηu1 + η2u2) 1− 2ηu1 + η2u2 2δ(1− ηu1)− 2δη(u1 − ηu2)

δ2(1− 2ηu1 + η2u2) −ηu1 + η2u2 δ(1− ηu1)− 2δη(u1 − ηu2)

 , (5.30)

u1 = λ
ω and u2 = λ(λ+1)

ω2 .

Now we can compare the numerical spectral norm of the matrix M for various choices of

the input data distribution parameterized by λ and ω. In Figure 5.10, we illustrate the

standard Gaussian case, i.e. uit follows i.i.d. N (0, 1) in Equation 5.24. In Figure 5.11

and 5.12 we illustrate the resulting effect if we use mini-batch of size p = 2 and p = 4.

Recall that for δ = 0, we have the optimal learning rate in Equation 5.27. It achieves

nearly the optimal convergence rate (smallest sp(M)) in these Figures. We also observe

that the optimal momentum rate is actually 0 at these optimal learning rates. One can

check such observation in Figure 5.13. Thus contrary to our earlier MSGD results in the

additive noise case (Figure 5.1), the momentum can slow down the optimal convergence

94

rate. However, we can yet ask, given η and δ fixed, what is the region of input data

distribution λ and ω such that the momentum helps. We find that the answer is for

relatively small slope λ
ω (c.f. Figure 5.14). This phenomenon of acceleration is consistent

with our earlier analysis of MSGD in the additive noise case (c.f. Figure 5.1).

5.2.3 EASGD and EAMSGD

We now focus on the EASGD updates for solving the problem in Equation 5.22,

xit+1 = xit − ηξitxit + α(x̃t − xit),

x̃t+1 = x̃t − β
p

∑p
i=1(x̃t − xit),

(5.31)

where ξit follows a Gamma distribution Γ(λ, ω).

The second-order moment equation can be computed as follows,

(xit+1)2 = (1− α− ηξit)2(xit)
2 + 2α(1− α− ηξit)x̃txit + α2(x̃t)

2,

(x̃t+1)2 = (1− β)2(x̃t)
2 + 2β(1− β)(1

p

∑p
i=1 x̃tx

i
t) + β2

p2
∑p

i=1,j=1 x
i
tx
j
t ,

x̃t+1x
i
t+1 = (1− β)(1− α− ηξit)x̃txit + α(1− β)(x̃t)

2

+ (1− α− ηξit)βp
∑p

j=1 x
i
tx
j
t ,

xit+1x
j
t+1 = (1− α− ηξit)(1− α− ηξjt)xitxjt + α2(x̃t)

2

+ α(1− α− ηξit)x̃txit + α(1− α− ηξjt)x̃txjt , i 6= j.

(5.32)

95

η
 (

e
ta

)

δ (delta)

sp(M) of MSGD (λ=0.5,ω=0.5)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.10: The largest absolute eigenvalue of the matrix M in Equation 5.30 as a
function of the learning rate η ∈ (0, 1) and the momentum rate δ ∈ (−1, 1). λ = 0.5,
ω = 0.5.

96

η
 (

e
ta

)

δ (delta)

sp(M) of MSGD (λ=1,ω=1)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.11: The largest absolute eigenvalue of the matrix M in Equation 5.30 as a
function of the learning rate η ∈ (0, 1) and the momentum rate δ ∈ (−1, 1). λ = 1,
ω = 1.

97

η
 (

e
ta

)

δ (delta)

sp(M) of MSGD (λ=2,ω=2)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.12: The largest absolute eigenvalue of the matrix M in Equation 5.30 as a
function of the learning rate η ∈ (0, 1) and the momentum rate δ ∈ (−1, 1). λ = 2,
ω = 2.

98

−1 −0.5 0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

δ (delta)

s
p

(M
)

sp(M) of MSGD with η=λ/(ω+1)

λ=0.5,ω=0.5

λ=1,ω=1

λ=2,ω=2

Figure 5.13: The largest absolute eigenvalue of the matrix M in Equation 5.30 as a
function of the momentum rate δ ∈ (−1, 1) at η = λ

ω+1 . (λ, ω) ∈ {(0.5, 0.5), (1, 1), (2, 2)}.

99

λ
 (

la
m

b
d

a
)

ω (omega)

sp(M) of MSGD (η=1,δ=0)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
 (

la
m

b
d

a
)

ω (omega)

sp(M) of MSGD (η=0.1,δ=0.9)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
 (

la
m

b
d

a
)

ω (omega)

sp(M) of MSGD (η=0.1,δ=0)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

λ/ω (slope)

s
p

(M
)

sp(M) of MSGD (η=0.1,δ=0.9)

r = 1
r = 10
r =

√
λ2 + ω2 = 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

λ/ω (slope)

s
p

(M
)

sp(M) of MSGD (η=0.1,δ=0)

Figure 5.14: The largest absolute eigenvalue of the matrix M in Equation 5.30 as a
function of the input Gamma distribution Γ(λ, ω) in the range ω ∈ (0, 100) and the
λ ∈ (0, 100). (η, δ) ∈ {(1, 0), (0.1, 0), (0.1, 0.9)}.

100

Taking expectation on both sides of the Equation 5.32, we get

E(xit+1)2 = [(1− α− η λω)2 + η2 λ
ω2]E(xit)

2 + 2α(1− α− η λω)E(x̃tx
i
t) + α2E(x̃t)

2,

E(x̃t+1)2 = (1− β)2E(x̃t)
2 + 2β(1− β)1

p

∑p
i=1 E(x̃tx

i
t) + β2

p2
∑p

i=1,j=1 E(xitx
j
t),

E(x̃t+1x
i
t+1) = (1− β)(1− α− η λω)E(x̃tx

i
t) + α(1− β)E(x̃t)

2

+ (1− α− η λω)βp
∑p

j=1 E(xitx
j
t) + αβ(1

p

∑p
j=1 E(x̃tx

j
t)),

E(xit+1x
j
t+1) = (1− α− η λω)(1− α− η λω)E(xitx

j
t) + α2E(x̃t)

2

+ α(1− α− η λω)E(x̃tx
i
t) + α(1− α− η λω)E(x̃tx

j
t), i 6= j.

(5.33)

We can reduce the above system (Equation 5.33) into a closed form by introducing

at = E[(x̃t)
2], bt =

1

p

p∑
i=1

E[(xit)
2], ct =

1

p

p∑
i=1

E[x̃tx
i
t], dt =

1

p2

p∑
i=1

p∑
j=1

E[xitx
j
t].

We get (at+1, bt+1, ct+1, dt+1)T = M(at, bt, ct, dt)
T , where

M =



(1− β)2 0 2β(1− β) β2

α2 (1− α− η λω)2 + η2 λ
ω2 2α(1− α− η λω) 0

α(1− β) 0 (1− β)(1− α− η λω) + αβ (1− α− η λω)β

α2 η2 λ
pω2 2α(1− α− η λω) (1− α− η λω)2


.

(5.34)

We will analyze the spectral norm of the matrix M in the limit p goes to infinity. We

focus on the question that whether the stability region (i.e. the spectral norm be smaller

than one) with respect to the learning rate η will be enlarged for large p.

Case I: α = β/p

The characteristic polynomial of M in Equation 5.34 can be written as

P (z) = [z−(1−β)2][z−(1−β)(1−η λ
ω

)][z−(1−2η
λ

ω
+η2λ(λ+ 1)

ω2
)][z−(1−η λ

ω
)2]+Oz(

1

p
),

101

where Oz(
1
p) is the remaining polynomial in z of order 1

p and higher. The four leading

order eigenvalues of P (z) are z1 = (1−β)2, z2 = (1−β)(1−η λω), z3 = (1−2η λω+η2 λ(λ+1)
ω2),

z4 = (1− η λω)2. We need necessarily β ∈ (0, 2), and in such case the stability condition

for η is the same as the SGD case (c.f. Equation 5.26), i.e. |1 − 2η λω + η2 λ(λ+1)
ω2 | < 1.

Thus the stability region of EASGD remains the same as SGD in the limit p goes to

infinity, i.e.

0 < η <
2ω

λ+ 1
.

In the Figure 5.15, 5.16, 5.17 and 5.18, we illustrate the stability region for different λ,

ω and p. Compared with the MSGD method in the Figure 5.13, EASGD improves its

optimal convergence rate:

• λ = 0.5, ω = 0.5: sp(M) = 0.5742 at p = 6 and η = 0.3814 for EASGD vs.

sp(M) = 0.6667 for MSGD with η = λ
ω+1 = 1

3 and δ = 0.

• λ = 1, ω = 1: sp(M) = 0.4317 at p = 7 and η = 0.5225 vs. sp(M) = 0.5 for MSGD

with η = λ
ω+1 = 1

2 and δ = 0.

• λ = 2, ω = 2: sp(M) = 0.2945 at p = 9 and η = 0.6647 vs. sp(M) = 0.3333 for

MSGD with η = λ
ω+1 = 2

3 and δ = 0.

Note that EASGD ’s optimal convergence rate is achieved for some finite p. This is in

contrast to the mini-batch SGD method (c.f. Equation 5.27).

Case II: α is independent of β and p

The characteristic polynomial of M of Equation 5.34 can be written as

P (z) = (z − z1)(z − z2)(z − z3)(z − z4) +Oz(
1

p
),

where z1 = (1 − β)(1 − η λω) − α, z2 = (1 − α)2 − 2(1 − α)η λω + η2 λ(λ+1)
ω2 , z3 + z4 =

2 + α2 − (2− β)β − (2− η λω)η λω − 2α(1− β − η λω), z3z4 = z2
1 .

102

η
 (

e
ta

)

p

sp(M) of EASGD (λ=0.5,ω=0.5,β=0.9,α=β/p)

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.15: The largest absolute eigenvalue of the matrix M in Equation 5.34 as a
function of the learning rate η ∈ (0, 1) and the number of workers p ∈ [1, 64]. λ = 0.5,
ω = 0.5, β = 0.9, α = β/p.

103

η
 (

e
ta

)

p

sp(M) of EASGD (λ=1,ω=1,β=0.9,α=β/p)

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.16: The largest absolute eigenvalue of the matrix M in Equation 5.34 as a
function of the learning rate η ∈ (0, 1) and the number of workers p ∈ [1, 64]. λ = 1,
ω = 1, β = 0.9, α = β/p.

104

η
 (

e
ta

)

p

sp(M) of EASGD (λ=2,ω=2,β=0.9,α=β/p)

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.17: The largest absolute eigenvalue of the matrix M in Equation 5.34 as a
function of the learning rate η ∈ (0, 1) and the number of workers p ∈ [1, 64]. λ = 2,
ω = 2, β = 0.9, α = β/p.

105

η
 (

e
ta

)

p

sp(M) of EASGD (λ=10,ω=10,β=0.9,α=β/p)

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.18: The largest absolute eigenvalue of the matrix M in Equation 5.34 as a
function of the learning rate η ∈ (0, 2) and the number of workers p ∈ [1, 64]. λ = 10,
ω = 10, β = 0.9, α = β/p. The minimal sp(M) = 0.0868 is achieved at p = 29 and
η = 0.8929.

106

These four eigenvalues depend on λ, ω, β, α, p and η. It’s not as clear here on how to

choose an optimal α. We can however still find the stability region with respect of η in

the limit p→∞. We ask given λ, ω, β and α, what is the range of η such that the four

eigenvalues lie on the unit circle of the complex plane. We also observe that the optimal

α can be positive for large p, in contrast to the additive noise case (c.f. Figure 5.19

and 5.6). Thus to simplify our analysis, we only consider η > 0, α ∈ (0, 1) and β ∈ (0, 1).

It turns out that in this case,

• |z1| < 1: 0 < η < 2−α−β
1−β

ω
λ .

• |z2| < 1: 0 < η < ω(1−α)
λ+1 + ω2

λ(λ+1)

√
λ2

ω2 + λ
ω2 (2α− α2).

• |z3| < 1 and |z4| < 1: 0 < η < 4−2α−2β
2−β

ω
λ .

We can also check that 2−α−β
1−β

ω
λ > 4−2α−2β

2−β
ω
λ , thus we only need to maximize the

min0<α<1{4−2α−2β
2−β

ω
λ ,

ω(1−α)
λ+1 + ω

λ(λ+1)

√
λ2 + λ(2α− α2)}. We now prove that the maxi-

mum is achieved at α = 1 −
√
λ. In fact, this is the maximum of the second term, and

at that α, the first term equals 4−2α−2β
2−β

ω
λ = 2+2

√
λ−2β

2−β
ω
λ , and the second term equals

√
λ

λ+1(ω + ω
λ) = ω√

λ
. The first term being larger than the second term, thus we conclude

that the maximal value ω√
λ

is indeed achieved at α = 1−
√
λ.

Based on the Equation 5.27, the stability region for SGD is 0 < η < 2ω
λ+1 ; for mini-

batch SGD with p → ∞, it is 0 < η < 2ω
λ . For EASGD, it is 0 < η < ω√

λ
, with

p → ∞ and α = 1 −
√
λ. In case λ = 0.5, ω = 0.5, we can check from Figure 5.19 that

α = 1−
√

0.5 = 0.2929 achieves the widest range of η ∈ (0,
√

0.5) for M to be stable.

For the EAMSGD method, it’s much more difficult to analyze the second-order moment

equation. It involves a linear system of nine variables: at = E(x̃2
t), bt = 1

p

∑
i E(xit)

2, ct =

1
p

∑
i E(x̃tx

i
t), dt = 1

p2
∑

i,j E(xitx
j
t), et = 1

pE(x̃tv
i
t), ft = 1

p2
∑

i,j E(vitv
j
t), gt = 1

pE(vit)
2,

ht = 1
p

∑
i E(xitv

i
t), kt = 1

p2
∑

i,j E(xitv
j
t). The linear matrix is quite complicated, so we

will not present it here.

107

η
 (

e
ta

)

α (alpha)

sp(M) of EASGD (λ=0.5,ω=0.5,β=0.9,p=100)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.19: The largest absolute eigenvalue of the matrix M in Equation 5.34 as a
function of the learning rate η ∈ (0, 1) and the moving rate α ∈ (−1, 1). λ = 0.5,
ω = 0.5, β = 0.9, p = 100. The minimal sp(M) = 0.5024 is achieved at η = 0.4343 and
α = 0.2525.

108

5.3 A non-convex case

Here’s an amusing non-convex case which sheds some light on when EASGD will work

and when it will not work. Recall our formalization of the problem in Chapter 1, Equa-

tion 1.2:

min
x1,...,xp,x̃

p∑
i=1

E[f(xi, ξi)] +
ρ

2
‖xi − x̃‖2,

where we refer to xi’s as local variables and we refer to x̃ as a center variable.

If f(xi, ξi) = 1
4(1−(xi)2)2, which is deterministic (independent of ξi) and one-dimensional.

We see that f has two minimum xi = 1 and xi = −1. It also has a saddle point at xi = 0.

We ask how large ρ should be such that the xi’s will have a common minimum. Let’s

assume that p = 2, we see that if ρ = 0, then x1 = −1 and x2 = 1 can be a stable solu-

tion. This is the scenario that the ’elasticity’ of EASGD is broken. We have observed a

related phenomenon in EAMSGD when the communication period is too large (τ big)

in the Figure 4.13 of Chapter 4. More formally, we have the following objective for p = 2

workers,

min
x,y,z∈R

1

4
(1− x2)2 +

1

4
(1− y2)2 +

ρ

2
‖x− z‖2 +

ρ

2
‖y − z‖2. (5.35)

The partial derivative of our objective in Equation 5.35 with respect to x, y and z is:

∂
∂x = (x2 − 1)x+ ρ(x− z)
∂
∂y = (y2 − 1)y + ρ(y − z)
∂
∂z = ρ(z − x) + ρ(z − y).

(5.36)

The question is that what are all the critical points of the objective in Equation 5.35.

By setting the derivative to zero in Equation 5.36, they should satisfy z = x+y
2 and

(x2 − 1)x+ ρ(x− x+y
2) = 0

(y2 − 1)y + ρ(y − x+y
2) = 0.

(5.37)

109

Observing three special cases: x = y = z = 1, x = y = z = −1 and x = y = z = 0.

We can guess that x = −y is also a solution. In fact, they should satisfy z = 0,

(x2 − 1)x + ρ(x − 0) = 0 and (y2 − 1)y + ρ(y − 0) = 0. We have thus either x = 0 or

x2 = 1 − ρ (resp. y = 0 or y2 = 1 − ρ). If ρ < 1, then we indeed find a real critical

point x =
√

1− ρ, y = −√1− ρ, z = 0. Is this critical point stable? To answer this, we

compute the Hessian of our objective in Equation 5.35 with respect to x, y and z:

H =


3x2 − 1 + ρ 0 −ρ

0 3y2 − 1 + ρ −ρ

−ρ −ρ 2ρ.

 . (5.38)

Evaluating this Hessian at the critical point x =
√

1− ρ, y = −√1− ρ, z = 0, we can

compute its smallest eigenvalue and see when it is positive definite. Figure 5.20 shows

that the smallest eigenvalue is always positive in the range ρ ∈ (0, 2/3). This suggests

that this critical point can indeed be stable, i.e. it is a local optimum introduced by

EASGD when the penalty term ρ is small enough.

For completeness, we now prove that all the critical points are either of the form x = y or

of the form x = −y. In fact, adding the two Equations in 5.37 gives us (x2− 1)x+ (y2−

1)y = 0, i.e. x3 + y3 = x+ y = (x2 − xy + y2)(x+ y). Subtracting these two Equations

gives us x3−x−y3 +y+ρ(x−y) = 0, i.e. x3−y3 = (1−ρ)(x−y) = (x2 +xy+y2)(x−y).

If x 6= y and x 6= −y, then

x2 − xy + y2 = 1

x2 + xy + y2 = 1− ρ.
(5.39)

Adding and subtracting again the two Equations in 5.39, we obtain x2 + y2 = 1− ρ
2 , and

xy = −ρ
2 . There’s no real solution satisfying these two conditions for any ρ > 0.

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

ρ (rho)

minimum eigenvalue of Hessian

Figure 5.20: The smallest eigenvalue of the Hessian matrix H in Equation 5.38 as a
function of the penalty term ρ, evaluated at the critical point x =

√
1− ρ, y = −√1− ρ,

z = 0.

111

Chapter 6

Scaling up Elastic Averaging SGD

This chapter discusses how to scale up the EASGD method to hundreds and thousands

of processors. In Section 6.1, we first propose a tree-structured extension of the EASGD

method called EASGD Tree. The basic idea and the design principle are discussed in

Section 6.1.1, and the numerical results are presented in Section 6.1.2. We present two

different communication schemes for the EASGD Tree method. As we had seen the

advantage of EAMSGD, we also accelerate EASGD Tree with Nesterov ’s momentum

method. In Section 6.2, we unify the DONWPOUR method and the EASGD method

by considering a Gauss-Seidel reformulation of the EASGD update rules in the syn-

chronous scenario. This unification suggests the possibility of using both DONWPOUR

and EASGD under the EASGD Tree. It also suggests that in-between the DONWPOUR

and the EASGD method there may be some even better method.

6.1 EASGD Tree

The original motivation of EASGD Tree is to run SGD at multiple time scales, where

each scale corresponds to the use of a different learning rate. It naturally gives rise

to a hierarchical tree structured organization of the processors. In literature, the tree

112

idea has shown up in various contexts. For example, the tree was used to scale up

the asynchronous SGD method by aggregating the delayed gradients computed by the

intermediate nodes and the leaf nodes [2]. It can also be used to efficiently implement

the Broadcast/AllReduce operation as in MPI [1, 62]. The benefit of using a tree is that

the number of links to connect a very large number of nodes is minimal. The trade-off

is that the connectivity of the whole tree is not robust to the link failure. However, the

tree structure has its own charm for its simplicity. The main theoretical challenge is to

understand its convergence property in terms of the root of the tree. This still remains

open.

6.1.1 The algorithm

We start from introducing the EASGD Tree algorithm. There are two important aspects

that can guide us to design such an algorithm, one is the computation, the other is the

communication.

• Do we need intermediate node to perform the gradient computation? We had hoped

that each tree node runs SGD in parallel with a smaller and smaller learning rates

as the depth of the tree node decreases (from bottom to top). Each intermediate

node (i.e. except the leaf node) is expected to average out the noise of its chil-

dren. The root can thus achieve the smallest variance. One benefit that each node

performs its own gradient computation is that it can reduce the bias of the spatial

averaging of its children away from the local optimum. The disadvantage is that

each node will have the overhead for both computation and communication. In

case each tree node uses only one CPU core, it needs to tradeoff the computation

speed for the communication throughput. In addition, in the HPC environment

(where we run our experiments), we have not observed any visible performance

improvement for the intermediate node to perform the gradient computation. It’s

also complicated to choose a proper learning rate decay for different levels of the

113

tree nodes. On the other hand, if we were to remove the intermediate node’s gradi-

ent computation, we can still preserve the multi-scale variance reduction property

using the elastic averaging. Moreover, the root node of the tree behaves as the

center variable of the EASGD method. Thus in the following we only discuss the

EASGD Tree method without intermediate node’s gradient computation.

• There are at least two different ways to design the communication protocol. One is

locally synchronous, the other is fully asynchronous. We observe that the local syn-

chronization protocol (as in our asynchronous EASGD in Section 2.2) may cause

extra waiting time for the parent and the children nodes, but it can give better con-

vergence property (due to a smaller parameter staleness). The fully asynchronous

protocol can in theory hide completely this waiting time by allowing each node

asynchronously broadcasts its parameter to its neighbours without blocking any

computation. In the scale that we simulate the EASGD Tree, we have to use the

fully asynchronous protocol as it saves significantly the time which is spent on the

chain of waiting. In our HPC environment, the fully asynchronous protocol works

well if the network link is stable over time.

• The communication cost is different within a machine and across a machine. We

would thus structure the tree nodes from bottom-up, i.e. the leaf nodes are al-

located on one machine so that their variance can be averaged out the quickest

possible. The intermediate nodes including the root of the tree will then have to

communicate across the machine boundary (in our HPC environment, there are

20 physical CPU cores per machine). These communication should happen less

frequently. We will thus introduce two levels of the communication periods. The

first communication period is between the leaf nodes and their parents. The second

(smaller) one is between the intermediate nodes. We will also distinguish the push

up (toward parent) period and the push down (toward children) period. With this,

we can trade-off more push up communication for less push down communication.

114

xc(i,1) xc(i,2)

xi

xp(i)

send xi every
τ

up
steps to its

parent

send xi every
τ

down
steps to

second child

update on
any parameter
arrival

update on
any parameter
arrival

send xi every
τ

down
steps to

first child

Figure 6.1: The behavior of EASGD Tree in Algorithm 6.

Based on the above discussion, we now present the EASGD Tree in Algorithm 6. Fig-

ure 6.1 illustrates this. This generic pseudocode does not distinguish the leaf node,

the intermediate node and the root node, so let’s describe their difference first. As in

EASGD, each node starts with the same initial parameter x0 and sets its local clock

ti to 0. It performs non-blocking read (Irecv) and non-blocking send (Isend) with its

parent and children (if any). Every τup local steps, it sends its parameter to its parent.

Every τdown local steps (number of local gradient updates), it sends its parameter to the

d children. We denote d to be the degree of the d-ary tree we consider here. Each node

also needs to check if there’s any new arrival of the parameter from its parent or its d

children. This needs to be interleaved with the gradient computation to achieve high I/O

throughput. On receiving a new parameter, a moving average with the moving rate α

is performed. If it is the leaf node, then a stochastic gradient descent step with learning

rate η is performed per local step; otherwise it replaces the gradient descent step with a

while loop, looping for roughly the same amount of time as a gradient step, just to apply

115

the moving average on any new parameter arrival. Note that for each node, they can

use different communication period τup and τdown. We discuss two such possible schemes

below. They are illustrated in Figure 6.2.

x4 x5 x6 x7

x2 x3

x1

τ
2

τ
2

τ
1

τ
1

τ
1 τ

1

x4 x5 x6 x7

x2 x3

x1

τ
d

τ
u

τ
d

τ
d

τ
u

τ
u

Scheme 1:
Root node and intermediate nodes
communicate every τ

2
steps.

Leaf nodes
communicate every τ

1
steps.

Scheme 2:
Communicate with
parent node every
τ

u
steps;

Communicate with
children nodes
every τ

d
steps.

Figure 6.2: The two communication schemes of the EASGD Tree.

The first scheme is based on the idea of multi-scale averaging. We would like to have a

fast averaging process at the bottom level, and a slower averaging process at the top and

intermediate level. Let τ1 be the fast communication period between the leaf nodes and

their parents. Let τ2 be the slow communication period between the intermediate nodes.

For the leaf nodes, i.e. without child, we set τup = τ1, τdown = NaN . For their parents

(which should sit on the same machine as their children), we set τup = τ2, τdown = τ1.

For the rest of the intermediate nodes, except for the root node, we set τup = τdown = τ2.

Lastly, for the root node, we set τup = NaN , τdown = τ2.

The second scheme is to mimic the behavior of EASGD for β being large and α being

small (c.f. Equation 2.3 and 2.4). We use a large τup to represent large β, and a small

τdown to represent small α. For simplicity, we set each tree node with the same τup = τu

and τdown = τd, except for the leaf node with τdown = NaN and the root node with

τup = NaN .

116

There’s a subtle difference between EASGD and EASGD Tree. As we discussed in

Section 2.2, the design of EASGD follows the Jacobi form. In EASGD Tree, we use

instead the Gauss-Seidel form to perform the moving average. This is because the time

when the parameter will arrive is not predictable in general, so we’d rather perform the

update just-in-time. Nevertheless, we should be careful to avoid performing the moving

average during the gradient update. Moreover, there’s a deeper connection between the

Jacobi/Gauss-Seidel method and EASGD/DOWNPOUR method that we shall discuss

in the next Section 6.2. Thus EASGD Tree is somewhere in-between EASGD and

DOWNPOUR.

Algorithm 6: EASGD Tree
Processing by worker i, with its parent p(i) and children {c(i, j)|j = 1, . . . , d}.
Input: learning rate η, moving rate α, communication period τup and τdown ∈ N
Initialize: xi = x0, ti = 0

Irecv xp(i) from parent p(i)

Irecv xc(i,j) from children {c(i, j)|j = 1, . . . , d}
Repeat
if (τup divides ti) then

Isend xi to parent p(i)
end
if (τdown divides ti) then

Isend xi to children {c(i, j)|j = 1, . . . , d}
end

if there is new arrival of xp(i) then

xi ← xi + α(xp(i) − xi)
end

if there is new arrival of xc(i,j) then

xi ← xi + α(xc(i,j) − xi)
end
xi ← xi − η∇f(xi, ξi

ti
)

ti ← ti + 1
Until forever

6.1.2 The result

In this section, we show empirically the advantage and the challenge to scale up the

EASGD Tree to a few hundreds of CPU cores. Since we are limited by the number

117

GPUs available, all the results are run on CPUs. The experiment setup is thus different

to our earlier results in Section 4.1. We report the results based on CIFAR-10 dataset

using a low-rank convolutional neural-network model [56]. The low-rank convolution

approximation saves us a lot of CPU computation time, so we can simulate the long

term behavior of the algorithm within 12 hours. We do not use any data augmentation

as we did in Chapter 4, because it requires extra CPUs to pre-process the input data.

Each data point is sampled uniformly random with replacement (different to what we

did in Section 4.1). As in [56], we center the input pixel values by the mean and the

standard deviation for each of the three channels using the training data. We also add

l2-regularization λ
2 ‖x‖

2 to the loss function with λ = 0.0001.

For consistency, we describe the detailed model1 using the notation in Section 4.1:

(3, 32, 32)
C−−−−−−−→

(1,5,1,1,0,2)
(10, 32, 32)

C,R−−−−−−−→
(5,1,1,1,2,0)

(96, 32, 32)
P−−−−−→

(2,2,2,2)
(96, 16, 16)

C−−−−−−−→
(1,5,1,1,0,2)

(51, 16, 16)
C,R−−−−−−−→

(5,1,1,1,2,0)
(128, 16, 16)

P−−−−−→
(2,2,2,2)

(128, 8, 8)
C−−−−−−−→

(1,5,1,1,0,2)
(51, 8, 8)

C,R−−−−−−−→
(5,1,1,1,2,0)

(256, 8, 8)
P−−−−−→

(2,2,2,2)
(256, 4, 4)

C,R−−−−−−−→
(1,1,1,1,0,0)

(64, 4, 4)
D,L,R−−−−→

0.5
(256, 1, 1)

D,L,S−−−−→ (10, 1, 1).

In the following experiments, we call CIFAR-lowrank the experiment that is just de-

scribed. We use a d-ary tree with degree d = 16 and p = 256 leaf nodes running on

16 machines. For simplicity, we set the moving rate α at each node to be a constant

0.9/(16 + 1). First we examine the two communication schemes that we have discussed

above. Figure 6.3 shows the performance of the first communication scheme using period

τ1 = 10 and τ2 = 100. Figure 6.4 shows the performance of the second communication

scheme using τu = 8 and τd = 80. We see that the first communication scheme achieves

a faster convergence in terms of the training loss. All the six runs are nearly the same

at the beginning. However, five runs out of the six have diverged in the middle of the

training. We have chosen a quite large learning rate which can trigger this instability.

The second communication scheme is more stable. Only one out of the six runs has

diverged. It has a slower convergence in terms of the training loss, but it consistently

1see also in https://github.com/chengtaipu/lowrankcnn/blob/master/cifar/models/baseline_

lowrank_cudnn.lua

118

https://github.com/chengtaipu/lowrankcnn/blob/master/cifar/models/baseline_lowrank_cudnn.lua
https://github.com/chengtaipu/lowrankcnn/blob/master/cifar/models/baseline_lowrank_cudnn.lua

achieves a lower test error (the smallest one is 15.32%, compared to the smallest test

error of the first scheme which is 16.86%). Also notice that there are two runs with a

slower initial convergence rate. This may be related to the network traffic.

Next we examine the effect of the momentum when using a mini-batch size of 16. We use

mini-batch as we have observed that the momentum can help more when the stochastic

gradient variance is smaller (c.f. also Figure 5.14). Moreover, it would be nice to see

whether using a relatively small mini-batch size can still hurt the test performance. As

in EAMSGD, we can apply Nesterov’s momentum to each of the leaf node during the

gradient computation. Compared to the earlier results (without using mini-batch) in

Figure 6.3 and 6.4, we increase the total training time from 3 hours to 12 hours. This is

because we do not have more CPU resources to parallelize the mini-batch computation.

It takes 0.13sec/step in the minibatch case vs. 0.01sec/step in the case without using

mini-batch.

In Figure 6.5, 6.6 and 6.7, we report the results of the momentum in the first communi-

cation scheme. We see that without using momentum (i.e. δ = 0), the training process is

still not very stable as before. Three out of the six runs have diverged. Using momentum

δ = 0.9 allows us to reduce the learning rate by a factor of ten (see also the discussion

of Figure 5.14), and gives a much more stable training process. Also they look almost

identical, except for the two curves marked in e and f. This difference is due to a longer

initialization of all the nodes. Using momentum δ = 0.99 is also very stable, though the

results are more varied.

In Figure 6.8, 6.9 and 6.10, we report the results of the momentum in the second commu-

nication scheme. Without using momentum is still not as stable. The curve a and c have

stopped in the middle without any indication of divergence. But they did have diverged

and ended with NaN. Nevertheless, the curve b gives a smallest test error 15.4%. The

second communication scheme again leads to better test performance. Using momentum

δ = 0.9 gives a smallest test error 14.91% in curve b. Using momentum δ = 0.99 also

119

0 1 2 3

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=10,τ

2
=100

a
b
c
d
e
f

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=10,τ

2
=100

0 1 2 3

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
1
=10,τ

2
=100

0 1 2 3

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
1
=10,τ

2
=100

0 1 2 3
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=10,τ

2
=100

0 1 2 3
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=10,τ

2
=100

Figure 6.3: EASGD Tree on CIFAR-lowrank using the first communication scheme with
τ1 = 10 and τ2 = 100. Training loss and error, test loss and error of the root node versus a
wallclock time. We run this experiment six times independently (labeled with a,b,c,d,e,f)
with a same random initialization. p = 256, d = 16, η = 5e− 3, α = 0.9/(d+ 1).

120

0 1 2 3

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=8,τ

d
=80

a
b
c
d
e
f

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=8,τ

d
=80

0 1 2 3

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
u
=8,τ

d
=80

0 1 2 3
0.5

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
u
=8,τ

d
=80

0 1 2 3
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=8,τ

d
=80

0 1 2 3
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=8,τ

d
=80

Figure 6.4: EASGD Tree on CIFAR-lowrank using the second communication scheme
with τu = 8 and τd = 80. Training loss and error, test loss and error of the root node
versus a wallclock time. We run this experiment six times independently (labeled with
a,b,c,d,e,f) with a same random initialization. p = 256, d = 16, η = 5e−3, α = 0.9/(d+1).

121

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=1,τ

2
=10,δ=0

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=1,τ

2
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
1
=1,τ

2
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
1
=1,τ

2
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=1,τ

2
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=1,τ

2
=10,δ=0

Figure 6.5: EASGD Tree on CIFAR-lowrank using the first communication scheme with
τ1 = 1 and τ2 = 10. Training loss and error, test loss and error of the root node versus a
wallclock time. We run this experiment six times independently (labeled with a,b,c,d,e,f)
with a same random initialization. p = 256, d = 16, η = 5e − 2, α = 0.9/(d + 1). The
momentum rate δ = 0.

122

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=1,τ

2
=10,δ=0.9

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=1,τ

2
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
1
=1,τ

2
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
1
=1,τ

2
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=1,τ

2
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=1,τ

2
=10,δ=0.9

Figure 6.6: EASGD Tree on CIFAR-lowrank using the first communication scheme with
τ1 = 1 and τ2 = 10. Training loss and error, test loss and error of the root node versus a
wallclock time. We run this experiment six times independently (labeled with a,b,c,d,e,f)
with a same random initialization. p = 256, d = 16, η = 5e − 3, α = 0.9/(d + 1). The
momentum rate δ = 0.9.

123

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=1,τ

2
=10,δ=0.99

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
1
=1,τ

2
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
1
=1,τ

2
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
1
=1,τ

2
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=1,τ

2
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
1
=1,τ

2
=10,δ=0.99

Figure 6.7: EASGD Tree on CIFAR-lowrank using the first communication scheme with
τ1 = 1 and τ2 = 10. Training loss and error, test loss and error of the root node versus a
wallclock time. We run this experiment six times independently (labeled with a,b,c,d,e,f)
with a same random initialization. p = 256, d = 16, η = 5e − 4, α = 0.9/(d + 1). The
momentum rate δ = 0.99.

124

0 1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=1,τ

d
=10,δ=0

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=1,τ

d
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
u
=1,τ

d
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
u
=1,τ

d
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=1,τ

d
=10,δ=0

0 1 2 3 4 5 6 7 8 9 10 11 12
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=1,τ

d
=10,δ=0

Figure 6.8: EASGD Tree on CIFAR-lowrank using the second communication scheme
with τu = 1 and τd = 10. Training loss and error, test loss and error of the root node
versus a wallclock time. We run this experiment six times independently (labeled with
a,b,c,d,e,f) with a same random initialization. p = 256, d = 16, η = 5e−2, α = 0.9/(d+1).
The momentum rate δ = 0.

125

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=1,τ

d
=10,δ=0.9

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=1,τ

d
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
u
=1,τ

d
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
u
=1,τ

d
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=1,τ

d
=10,δ=0.9

0 1 2 3 4 5 6 7 8 9 10 11 12
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=1,τ

d
=10,δ=0.9

Figure 6.9: EASGD Tree on CIFAR-lowrank using the second communication scheme
with τu = 1 and τd = 10. Training loss and error, test loss and error of the root node
versus a wallclock time. We run this experiment six times independently (labeled with
a,b,c,d,e,f) with a same random initialization. p = 256, d = 16, η = 5e−3, α = 0.9/(d+1).
The momentum rate δ = 0.9.

126

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=1,τ

d
=10,δ=0.99

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ
u
=1,τ

d
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

wallclock (hour)

tr
ai

n
 e

rr
o

r
(%

)

τ
u
=1,τ

d
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
n

ll)

τ
u
=1,τ

d
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=1,τ

d
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11 12
15
16
17
18
19
20
21
22
23

wallclock (hour)

te
st

 e
rr

o
r

(%
)

τ
u
=1,τ

d
=10,δ=0.99

Figure 6.10: EASGD Tree on CIFAR-lowrank using the second communication scheme
with τu = 1 and τd = 10. Training loss and error, test loss and error of the root node
versus a wallclock time. We run this experiment six times independently (labeled with
a,b,c,d,e,f) with a same random initialization. p = 256, d = 16, η = 5e−4, α = 0.9/(d+1).
The momentum rate δ = 0.99.

127

0 1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

wallclock (hour)

tr
ai

ni
ng

 lo
ss

 (
nl

l)
EASGD Tree on CIFAR−lowrank

τ
1
=1,τ

2
=10,δ=0

τ
1
=1,τ

2
=10,δ=0.9

τ
1
=1,τ

2
=10,δ=0.99

τ
u
=1,τ

d
=10,δ=0

τ
u
=1,τ

d
=10,δ=0.9

τ
u
=1,τ

d
=10,δ=0.99

0 1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

ni
ng

 lo
ss

 (
nl

l)

EASGD Tree on CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11

20

40

60

80

wallclock (hour)

tr
ai

n
er

ro
r

(%
)

EASGD Tree on CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
nl

l)

EASGD Tree on CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11

20

40

60

80

wallclock (hour)

te
st

 e
rr

or
 (

%
)

EASGD Tree on CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11
15

16

17

18

19

20

21

22

23

wallclock (hour)

te
st

 e
rr

or
 (

%
)

EASGD Tree on CIFAR−lowrank

Figure 6.11: EASGD Tree on CIFAR-lowrank using the first and second communication
scheme with momentum. Training loss and error, test loss and error of the root node
versus a wallclock time. The curve e in Figure 6.5, the curve e in Figure 6.6, the curve
a in Figure 6.7, the curve b in Figure 6.8, the curve b in Figure 6.9 and the curve d in
Figure 6.10 are selected and plotted.

128

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2

wallclock (hour)

tr
ai

ni
ng

 lo
ss

 (
nl

l)
CIFAR−lowrank

DOWNPOUR(p=16)
EASGD(p=16)
EASGD Tree(p=256)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

wallclock (hour)

tr
ai

ni
ng

 lo
ss

 (
nl

l)

CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

wallclock (hour)

tr
ai

n
er

ro
r

(%
)

CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1.5

2

wallclock (hour)

te
st

 lo
ss

 (
nl

l)

CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

wallclock (hour)

te
st

 e
rr

or
 (

%
)

CIFAR−lowrank

0 1 2 3 4 5 6 7 8 9 10 11 12
15

16

17

18

19

20

21

22

23

wallclock (hour)

te
st

 e
rr

or
 (

%
)

CIFAR−lowrank

Figure 6.12: Best test performance of DOWNPOUR (p=16), EASGD (p=16), and
EASGD Tree (p=256) on CIFAR-lowrank. Training loss and error, test loss and er-
ror (of the center variable or the root node) versus a wallclock time. The momentum is
not applied (δ = 0).

129

gives a smallest test error 14.91% in curve d. The most surprising observation is that

the curve a has a large peak between hour 8 and 9. We have investigated the log and

found that it is correlated with the network traffic.

We can now compare all the momentum results by selecting the best test performance

curve in previous results. They are summarized in Figure 6.11. It’s very clear that

the two communication schemes give very different performance. The first scheme gives

better training performance, while the second scheme gives better test performance.

The momentum no longer plays a significant role to determine the test performance as

in EAMSGD, but it is still helpful. To explain why still remains very open.

For completeness, we compare EASGD, DOWNPOUR with p = 16, and the EASGD

Tree with p = 256. Figure 6.12 shows the best test performance for each method,

selected among a wide range of the learning rates.

6.2 Unifying EASGD and DOWNPOUR

It’s beneficial to write down the updates of the DOWNPOUR method (Algorithm 3 in

Section 4.4) in a synchronous scenario. For simplicity, let’s assume that the commu-

nication period τ = 1. The global clock t is shared among the local workers. Every

step DOWNPOUR performs the following updates to solve the original Problem 1.1 in

Chapter 1:

xit+1 = x̃t − η∇f(x̃t, ξ
i
t),

x̃t+1 = x̃t +
∑p

i=1(xit+1 − x̃t).
(6.1)

Now compare with the EASGD updates (from Equation 2.4 in Chapter 2):

xit+1 = xit − η∇f(xit, ξ
i
t)− α(xit − x̃t),

x̃t+1 = x̃t + β
p

∑p
i=1(xit − x̃t).

(6.2)

We realize that it’s possible to unify these two methods by drawing a parallel between

130

the classical Jacobi and Gauss-Seidel methods. To motivate this connection, let’s look

back at the convergence result of EASGD. Lemma 3.1.1 indicates that the divergence

can happen if the condition 3.4 is not satisfied. One might wonder why there’s such

a stability condition. After all, EASGD performs only the gradient descent and the

moving averages. Each of these operations is contractive on its own! A short answer is

that EASGD is formalized in the Jacobi form rather than the Gauss-Seidel form in order

to capture the delay of the parameter communication. We can transform the EASGD ’s

Jacobi form in Equation 6.2 to a Gauss-Seidel form as follows:

xit+1/2 = xit − α(xit − x̃t),

xit+1 = xit+1/2 − η∇f(xit+1/2, ξ
i
t+1/2),

x̃t+1 = x̃t + β
p

∑p
i=1(xit+1 − x̃t).

(6.3)

The first and the third step in Equation 6.3 is contractive if we choose α ∈ (0, 2) and

β ∈ (0, 2). Thus the stability condition 3.4 is too much a constraint in this case. Notice

that the DOWNPOUR method in Equation 6.1 is equivalent to the EASGD ’s Gauss-

Seidel form in Equation 6.3 with α = 1 and β = p. It is in this sense that DOWNPOUR

and EASGD get connected! However, β = p can be very large, how can it be stable?

For stability analysis, we consider again the quadratic case where ∇f(x, ξ) = x. We can

reduce the Equation 6.3 by introduing x̄t = 1
p

∑p
i=1 x

i
t as follows:

x̄t+1/2 = x̄t − α(x̄t − x̃t),

x̄t+1 = x̄t+1/2 − ηx̄t+1/2,

x̃t+1 = x̃t + β(x̄t+1 − x̃t).

(6.4)

This is a linear system which can be written as (x̄t+1, x̃t+1)T = M(x̄t, x̃t)
T , where

M =

 1 0

β 1− β


 1− η 0

0 1


 1− α α

0 1

 . (6.5)

131

We evaluate the two eigenvalues z1 and z2 of this matrix M , which should satisfy the

equation z2 − 2bz + c = 0. One can check that

b = 1
2(2− β − η − α(1− β)(1− η)),

c = (1− η)(1− α)(1− β).
(6.6)

We need a basic lemma to study the stability, i.e. when the absolute value of z1 and z2

are smaller than one.

Lemma 6.2.1. Let z1 and z2 be the two roots of the polynomial z2 − 2bz + c = 0 with

real coefficients b ∈ R and c ∈ R, then the sufficient and necessary condition for |z1| < 1

and |z2| < 1 is

− 1 < c < 1, c > 2b− 1, c > −2b− 1. (6.7)

Proof. There are two cases to consider. The first one is the real-valued case, i.e. b2 > c.

The second one is the imaginary case, i.e. b2 ≤ c. If b2 ≤ c, then |z1| = |z2| = c2 < 1

is equivalent to −1 < c < 1. If b2 > c then we can suppose z1 = b +
√
b2 − c and

z2 = b −
√
b2 − c. The condition −1 < z2 < z1 < 1 is equivalent to c > 2b − 1, b < 1,

c > −2b − 1 and b > −1. Combining the condition from the two cases gives us the

Equation 6.7.

Applying the Lemma 6.7 to the above case in Equation 6.6, we obtain the stability

condition for the reduced linear system 6.4 as below,

−1 < c < 1, 0 < βη < 2(c+ 1),

where c = (1− η)(1− α)(1− β). It’s easy to verify this since 2b = c+ 1− βη.

We summarize the obtained stability condition (using Mathematica) in the following

theorem.

Theorem 6.2.1. Assume η > 0, α > 0 and β > 0, the stability condition for the linear

system 6.4 is equivalent to union of the following set of conditions:

132

• 0 < η < 1, 0 < β < 1 and 0 < α < c2,

• 0 < η < 1, β = 1 and α > 0,

• 0 < η < 1, 1 < β ≤ 2 and 0 < α < c3,

• 0 < η < 1, 2 < β < 4/η and c2 < α < c3,

• η = 1, 0 < β < 2 and α > 0,

• 1 < η < 2, 0 < β < 1 and 0 < α < c3,

• 1 < η < 2, β = 1 and α > 0,

• 1 < η < 2, 1 < β < 2 and 0 < α < c2,

• 2 ≤ η ≤ 4, 0 < β < 1 and c2 < α < c3,

• η > 4, 0 < β < 4/η and c2 < α < c3,

where

c2 =
4− 2β − 2η + βη

2− 2β − 2η + 2βη
, c3 =

−β − η + βη

1− β − η + βη
.

There is only one condition above which satisfies the DOWNPOUR method when p > 2.

This condition is 0 < η < 1, 2 < β < 4/η and c2 < α < c3. It means that if β = p is very

large, we need to use quite small learning rate such that 0 < η < 4/p. Moreover, α has

to stay very close to 1 (i.e. forgetting all the local memory). This is because c2 tends

to 1 as β = p tends to infinity (assume βη < 4 always holds); and c3 tends to 1 as well.

For example, this condition does not hold for α = 0.9 and β = 16, for any η > 0. This is

rather surprising: the stability condition for α = 1 and β = 16 is 0 < η < 1/8. However,

there’s no η > 0 for α = 0.9 and β = 16 to be stable. This suggest DOWNPOUR is

a very peculiar singleton in the class of the methods defined by Equation 6.3. EASGD

has much more flexibilities as it operates in the region where β ∈ (0, 2). In practice, we

have observed that the case β = 1, 0 < η < 2, α > 0 works well. It is very dangerous to

operate in the region of η > 2 when α is small.

133

Chapter 7

Conclusion

In this thesis, we focused on the problem of training large-scale deep learning models in

a parallel and distributed computing environment.

Our starting point is a reformulation of the global variable consensus problem into an

unconstrained optimization problem using a quadratic penalty between each local vari-

able and the center variable. By reinterpreting the gradient of the quadratic penalty

as an averaging process, we introduced the Elastic Averaging SGD (EASGD) method.

The EASGD maintains the stochastic nature of the sequential SGD method through a

weak coupling between the local variables and the center variable. Each local variable is

optimized using an SGD-based method. The averaging process attracts the local vari-

able and the center variable toward each other so that all of them move toward a local

optimum. The center variable can slowly track the spatial average of the local variables,

thus having a smaller variance. We then discussed how to extend the EASGD method

to the asynchronous scenario, and how to accelerate it using the momentum.

We proceeded to study the convergence rate the EASGD method in terms of the center

variable. In the synchronous scenario, we discussed the variance reduction effect of the

EASGD method by increasing the number of local variables, for both quadratic and

strongly-convex case. We also introduced a double averaging sequence in the spirit of

134

the Polyak ’s averaging and showed that it is indeed asymptotically optimal. We then

compared the stability region of the EASGD method with the ADMM method in the

round-robin scheme, where we have found quite unusual instability region for the ADMM

method.

Having studied the (local) convergence property of the EASGD method, we applied its

asynchronous extension to train deep learning models. We focused on the CIFAR-10 and

ImageNet ILSVRC 2013 dataset for image classification in a supervised learning setting.

The (global) convergence behavior of the EASGD method was simulated starting from

a random initialization. We found that the EASGD method accelerates the training of

the baseline SGD method. Moreover, it is very communication efficient compared to the

asynchronous SGD method DOWNPOUR. After combining with Nesterov ’s momentum

method, we obtained EAMSGD and it achieved even better test accuracy. We also dis-

cussed the tradeoff between the data communication and the parameter communication.

In our cases, it turned out to save the total bandwidth a lot by using more data com-

munication for less parameter communication (recall EASGD method needs to sample

the whole dataset in order to avoid the bias of the stochastic gradient).

Based on the empirical results we have obtained, we asked what is the limit of the

speedup by increasing the number of processors. We studied first an additive noise

model to capture the asymptotic behavior of various stochastic optimization method,

then we proposed a multiplicative noise model to capture the initial behavior of these

methods. For the additive noise case, we first studied the SGD method with mini-batch.

We saw that increasing the mini-batch size (i.e. number of processors) can reduce the

asymptotic variance, but it is not able to increase the convergence speed. We then studied

the momentum SGD in the Nesterov ’s form, and showed that faster convergence speed

is possible, but that will lead to larger asymptotic variance. We have also generalised

the EASGD method by decoupling (de-symmetrize) the elastic averaging between the

center variable and the local variables, and found that the EASGD method can behavior

like a momentum SGD with a negative moving average rate in some optimal sense (i.e.

135

the center variable pushes the local variables instead of pulling). For the multiplicative

noise case, we have found that SGD method with mini-batch can greatly improved the

initial convergence speed by choosing the optimal (larger) learning rate. However, the

momentum SGD is not as effective in this case. The EASGD method is also slower than

SGD with mini-batch, but its stability region is still improved by increasing the number

of processors. We showed that given an infinite number of processors, the improvement

for stability region of EASGD depends on the spread of the Gamma distribution of the

input data. The larger the spread, the more the improvement.

Back to our starting point, we studied an interesting non-convex case for the EASGD

method based on the an unconstrained objective we have introduced. We have discussed

the stability of the critical points. We found that when the quadratic penalty is too

small (i.e. the coupling between the center variable and the local variable is too weak),

the EASGD method can introduce a stable local optimum trapped by a saddle point.

Knowing the theoretical limitation of the speedup, we scale up the EASGD by using a

tree structured network topology. We showed empirically that EASGD Tree can further

accelerate the training speed, but no longer in a linear speedup region. This is somehow

predicted by our analysis in the multiplicative noise model. The surprising observation

is EASGD Tree can still yield better test accuracy when the local variables fluctuate

further from the center variable. Moreover, inspired by the design of the EASGD Tree

in the asynchronous scenario, we carefully distinguished the difference between the Jacobi

form of EASGD with its Gauss-Seidel form, which in turn unified the EASGD and the

DOWNPOUR method in the synchronous scenario.

We conclude with a few open problems from convex optimization, non-convex optimiza-

tion, distributed and parallel computing, statistical and deep learning.

• The smoothing property of EASGD for non-smooth convex optimization. We have

discussed the connection between the quadratic penalty term in Equation 1.2 and

the Moreau-Yosida regularization. Can one expect a good rate of convergence?

136

• The connection between EAMSGD and Katyusha [3]. Katyusha is an accelerated

variance reduction method. The speedup of its acceleration is dragged back by a

center variable so as to achieve a smaller variance. This resembles the role of the

center variable in EAMSGD.

• In the simulation of EASGD Tree, we have seen that network congestion can occur.

Is there a good way to detect when the network becomes slow so as to avoid the

potential congestion? This is an adaptive learning rate problem. It is not very

simple as we have seen in Chapter 5 that the optimal moving rate can sometime

be positive, but sometime be negative.

• The convergence analysis of the EASGD Tree is still missing. The basic tool [57]

based on the mean-field method (i.e. treating each node the same) seems to be too

macroscopic to capture the global (e.g. multi-scale variance reduction) behavior of

the EASGD Tree.

• The description of the asynchronous behavior using vector-clock [53]. Although we

have unified EASGD and DOWNPOUR in the synchronous scenario, it is still not

clear how to measure their behavior in the asynchronous scenario and in the real-

time workloads. The idea of using vector-clock from the distributed computing is

worthing exploring in the future.

• How non-convex is the energy landscape? A related question may be what to

do when EASGD is trapped by a saddle point. Also why there is a such a big

difference between ASGD and MVASGD as we have studied in Figure 4.11?

• What is the role of the oscillation in deep learning to achieve better test perfor-

mance? We have observed that both EAMSGD and EASGD Tree can achieve

better test performance when the oscillation of the local variables is sufficiently

large. Looking back to the Dropout [54] and DropConnect [58] regularization, is

there any deeper reason in common [51]?

137

Bibliography

[1] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford. A reliable effective terascale

linear learning system. The Journal of Machine Learning Research, 15(1):1111–

1133, 2014.

[2] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In NIPS,

pages 873–881, 2011.

[3] Z. Allen-Zhu. Katyusha: Accelerated variance reduction for faster sgd. arXiv

preprint arXiv:1603.05953, 2016.

[4] S. Azadi and S. Sra. Towards an optimal stochastic alternating direction method

of multipliers. In ICML, 2014.

[5] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learning: Parallel

and distributed approaches. Camridge Universityy Press, 2011.

[6] D. P. Bertsekas. A new class of incremental gradient methods for least squares

problems. SIAM Journal on Optimization, 7(4):913–926, 1997.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation. Prentice

Hall, 1989.

[8] V. Borkar. Asynchronous stochastic approximations. SIAM Journal on Control and

Optimization, 36(3):840–851, 1998.

138

[9] L. Bottou. Online algorithms and stochastic approximations. In Online Learning

and Neural Networks. Cambridge University Press, 1998.

[10] L. Bottou. Curiously fast convergence of some stochastic gradient descent algo-

rithms. Unpublished open problem offered to the attendance of the SLDS 2009

conference, 2009.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization

and statistical learning via the alternating direction method of multipliers. Found.

Trends Mach. Learn., 3(1):1–122, 2011.

[12] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line

learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057,

2004.

[13] A. Choromanska, M. B. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss

surfaces of multilayer networks. In AISTATS, 2015.

[14] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms

via accelerated gradient methods. In Advances in neural information processing

systems, pages 1647–1655, 2011.

[15] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar,

B. Kaul, and P. Dubey. Distributed deep learning using synchronous stochastic

gradient descent. arXiv preprint arXiv:1602.06709, 2016.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato,

A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks.

In NIPS, 2012.

[17] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed on-

line prediction using mini-batches. The Journal of Machine Learning Research,

13(1):165–202, 2012.

139

[18] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex

optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[19] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed

optimization: convergence analysis and network scaling. Automatic control, IEEE

Transactions on, 57(3):592–606, 2012.

[20] M. Feng, B. Xiang, and B. Zhou. Distributed deep learning for answer selection.

CoRR, abs/1511.01158, 2015.

[21] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the

heavy-ball method for convex optimization. In Control Conference (ECC), 2015

European, pages 310–315. IEEE, 2015.

[22] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. Intel-

ligent Systems, IEEE, 24(2):8–12, 2009.

[23] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of

stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

[24] M. R. Hestenes. Optimization theory: the finite dimensional case. Wiley, 1975.

[25] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger,

and E. P. Xing. More effective distributed ml via a stale synchronous parallel

parameter server. In Advances in Neural Information Processing Systems 26, pages

1223–1231. Curran Associates, Inc., 2013.

[26] H. Kim, J. Park, J. Jang, and S. Yoon. Deepspark: Spark-based deep learn-

ing supporting asynchronous updates and caffe compatibility. arXiv preprint

arXiv:1602.08191, 2016.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Sys-

tems 25, pages 1106–1114, 2012.

140

[28] G. Lan. An optimal method for stochastic composite optimization. Mathematical

Programming, 133(1-2):365–397, 2012.

[29] J. Langford, A. Smola, and M. Zinkevich. Slow learners are fast. In NIPS, 2009.

[30] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural

networks: Tricks of the trade, pages 9–48. Springer, 2012.

[31] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for

stochastic optimization. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 661–670. ACM, 2014.

[32] Q. Li, C. Tai, and W. E. Dynamics of stochastic gradient algorithms. CoRR,

abs/1511.06251, 2015.

[33] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization.

In Advances in Neural Information Processing Systems, pages 3366–3374, 2015.

[34] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. Sparknet: Training deep

networks in spark. arXiv preprint arXiv:1511.06051, 2015.

[35] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pages 807–814, 2010.

[36] A. Nedić, D. Bertsekas, and V. Borkar. Distributed asynchronous incremental sub-

gradient methods. In Inherently Parallel Algorithms in Feasibility and Optimization

and their Applications, volume 8 of Studies in Computational Mathematics, pages

381 – 407, 2001.

[37] A. Nedi and A. Ozdaglar. Cooperative distributed multi-agent optimization. In

D. P. Palomar and Y. C. Eldar, editors, Convex Optimization in Signal Processing

and Communications, pages 340–386. Cambridge University Press, 2009. Cambridge

Books Online.

141

[38] Y. Nesterov. Introductory lectures on convex optimization, volume 87. Springer

Science & Business Media, 2004.

[39] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,

103(1):127–152, 2005.

[40] J. Nocedal and S. Wright. Numerical Optimization, Second Edition. Springer New

York, 2006.

[41] A. Olshevsky and J. N. Tsitsiklis. Convergence speed in distributed consensus and

averaging. SIAM review, 53(4):747–772, 2011.

[42] H. Ouyang, N. He, L. Tran, and A. Gray. Stochastic alternating direction method

of multipliers. In Proceedings of the 30th International Conference on Machine

Learning, pages 80–88, 2013.

[43] T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. Gpu asynchronous stochastic gra-

dient descent to speed up neural network training. arXiv preprint arXiv:1312.6186,

2013.

[44] B. T. Polyak. Introduction to optimization. Optimization Software New York, 1987.

[45] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by

averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[46] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild: A Lock-Free Approach to

Parallelizing Stochastic Gradient Descent. In NIPS, 2011.

[47] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[48] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent

and application to data-parallel distributed training of speech dnns. In Interspeech

2014, September 2014.

142

[49] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:

Integrated recognition, localization and detection using convolutional networks. In

International Conference on Learning Representations (ICLR2014), 2014.

[50] O. Shamir. Fundamental limits of online and distributed algorithms for statistical

learning and estimation. In NIPS, 2014.

[51] D. J. Sherratt. Oscillation helps to get division right. Proceedings of the National

Academy of Sciences, page 201601792, 2016.

[52] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering

the game of go with deep neural networks and tree search. Nature, 529(7587):484–

489, 2016.

[53] M. Singhal and A. Kshemkalyani. An efficient implementation of vector clocks.

Information Processing Letters, 43(1):47–52, 1992.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014.

[55] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization

and momentum in deep learning. In ICML, 2013.

[56] C. Tai, T. Xiao, X. Wang, and W. E. Convolutional neural networks with low-rank

regularization. In ICLR, 2016.

[57] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deter-

ministic and stochastic gradient optimization algorithms. In 1984 American Control

Conference, pages 484–489, 1984.

[58] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural

networks using dropconnect. In ICML, 2013.

143

[59] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-mean-

square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.

[60] O. Yadan, K. Adams, Y. Taigman, and M. Ranzato. Multi-gpu training of convnets.

In Arxiv, 2013.

[61] R. Zhang and J. Kwok. Asynchronous distributed admm for consensus optimiza-

tion. In T. Jebara and E. P. Xing, editors, Proceedings of the 31st International

Conference on Machine Learning (ICML-14), pages 1701–1709. JMLR Workshop

and Conference Proceedings, 2014.

[62] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware async-sgd for distributed

deep learning. arXiv preprint arXiv:1511.05950, 2015.

[63] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient

descent. In NIPS, 2010.

144

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	What is the problem
	Formalizing the problem
	An overview

	Elastic Averaging SGD (EASGD)
	Synchronous EASGD
	Asynchronous EASGD
	Momentum EASGD

	Convergence Analysis of EASGD
	Quadratic case
	One-dimensional case
	Generalization to multidimensional case

	Strongly convex case
	Stability of EASGD and ADMM

	Performance in Deep Learning
	Experimental setup
	Experimental results
	Further discussion and understanding
	Comparison of SGD, ASGD, MVASGD and MSGD
	Dependence of the learning rate
	Dependence of the communication period
	The tradeoff between data and parameter communication
	Time speed-up

	Additional pseudo-codes of the algorithms

	The Limit in Speedup
	Additive noise
	SGD with mini-batch
	Momentum SGD
	EASGD and EAMSGD

	Multiplicative noise
	SGD with mini-batch
	Momentum SGD
	EASGD and EAMSGD

	A non-convex case

	Scaling up Elastic Averaging SGD
	EASGD Tree
	The algorithm
	The result

	Unifying EASGD and DOWNPOUR

	Conclusion
	Bibliography

