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Abstract

The end-to-end learning approach for autonomous driving has sparked great interest in both aca-

demic and industry in recent years. The approach can be defined as learning a model that maps

ಎom sensory input, such as image ಎames ಎom a camera, to driving actions for controlling the au-

tonomous vehicle such as steering. Compared to the traditional autonomous driving system, which

oಏen includes perception, localization, mapping, and path planning, the end-to-end learning ap-

proach offers a more efficient method of utilizing large amounts of expert driver demonstrations

to achieve fully autonomous driving without acquiring expensive labeling such as bounding box for

objects.

The end-to-end learning for autonomous driving can be done by supervised learning, where a

model is tuned to minimize the differences between predicted actions and ground-truth actions.

The training data is usually obtained ಎom expert demonstrations. A model trained in this way,

however, suffers ಎom bad performance due to the mismatch between the samples visited by a

learned model and those collected by an expert driver. In the first part of the thesis, we introduce

the end-to-end approaches via both supervised learning and imitation learning with different data
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augmentation methods to address the data mismatch issue. The data augmentation in supervised

learning approach is done by synthetically generating new samples to simulate driving situations

that are different ಎom the ones in expert demonstrations. We show that using such automatically-

augmented data, a trained model using supervised learning can drive a car to follow a lane in various

conditions on highways and local roads.

Instead of generating new samples, another way to do data augmentation is via collecting new

samples during testing and querying an expert to label the new samples. Since it is costly to query

an expert, we introduce an imitation learning algorithm called SafeDAgger that can significantly

reduce the number of query times and train a driving model more efficiently. The experiments

show that a trained model can successfully drive a car in a simulator to do lane following and

overtaking.

The expert demonstrations provided by humans, however, oಏen show significant variability

due to latent factors such as different driving preferences of different human drivers. A model

trained using such human demonstrations to minimize the differences between the expert and the

predicted actions may drive a vehicle into a dangerous situation such as crashing into the vehicle

ahead. In the second part of the thesis, therefore, we introduce a variational mixture density

network with a discrete latent variable to address this issue. The experimental results show that

the trained model can not only mimic expert behaviors but also learn the variability of driving

actions ಎom expert demonstrations.

In the last part of the thesis, we will introduce a simulator to support the training and evaluation

of the end-to-end autonomous driving models in video games. Leveraging this simulator, we

demonstrate that the trained model can drive a truck following a navigation map in a video game.

In summary, this thesis introduces the end-to-end learning approaches for autonomous driving
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to address the data mismatch issue and to learn the variability of expert driving actions. Our results

show that the trained models can drive vehicles to accomplish driving tasks such as lane following,

overtaking, and making turns in the simulated driving environments.
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1
Introduction

1.1 Autonomous driving

The rapid development of the technologies in computer vision and machine learning has enabled

researchers and industry leaders to make significant progress in achieving autonomous driving.

Today, autonomous driving technology is making a prominent appearance in our society. Vehi-
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cles equipped with advanced driver assistance systems (ADAS) can accomplish autonomous driving

in several scenarios such as highway driving. These technologies aim to reduce the number and

severity of road accidents. Every year, approximately ⒈35 million people lose their lives in auto-

mobile accidents, and up to 50 million people suffer accident-related iǌuries (Organization, 2019).

Ninety-four percent of serious crashes are due to risky driving and to errors people make while be-

hind the wheel (highway traffic safety administration, 2019). A self-driving revolution that reduces

traffic accidents has the potential to positively impact the lives of millions of people. Furthermore,

once fully autonomous driving is achieved, we no longer have to keep our hands on the wheel or

our eyes on the road, which would ಎee us to read or get work done while traveling. The average

American spends nearly 300 hours in their car each year (Association, 2019), which is over seven

full work weeks. That is a ton of potential productivity lost. Autonomous vehicles can eliminate

or at least mitigate these issues.

1.1.1 History and background information

Since the 1980s, industrial leaders and researchers have been working on developing a fully au-

tonomous vehicle that is comfortable, reliable, and safe for high-speed driving in the real world.

Road tests and self-driving competitions held around the world identi௫ shortcomings and diffi-

culties in both soಏware and hardware and allow autonomous driving technologies to be rapidly

improved. Although some known problems remain unresolved, more and more vehicles with a

certain level of autonomous driving ability are running on the road.

In 1995, “No Hands Across America” was introduced as one of the first long-distance road tests

for autonomous driving (Jochem and Pomerleau, 1995). A trained neural network was used to

steer a vehicle driving across the United States while human drivers controlled its acceleration and
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braking. This was also one of the earliest research works to demonstrate end-to-end learning for

autonomous lane keeping.

The next major competition called DARPA Grand Challenges was initiated by the Defense

Advanced Research Projects Agency (DARPA) in 2003 (Rouff and Hinchey, 2011). It required

autonomous vehicles to drive in off-road environments without the aid of road markings. Around

the same time, the DAVE project was introduced to demonstrate an end-to-end learning system for

off-road vehicle control using only visual input (Muller et al., 2006). In this project, a convolutional

neural network was trained to predict steering angles based on images ಎom leಏ and right cameras.

Aಏer the DARPA Grand Challenges competition, researchers started to tackle the challenges

of urban driving in complex environments with dense traffic. Since road tests for autonomous

urban driving were not permitted at that time, they faced considerable difficulty in addressing the

challenges and making evaluations in real-world environments.

In 2007, the DARPA Urban Challenge was held to provide a real urban driving environment,

which included an intersection and simulated highway on-ramp (Rouff and Hinchey, 2011). This

competition provided opportunities for researchers to assess the capabilities and limits of au-

tonomous driving in complex urban environments. The autonomous vehicles in the challenge

were developed with the capability of localizing to the environment; they detected and tracked

objects using various sensing, perception, and localization technologies (Leonard et al., 2008).

Four vehicles completed the challenge, including teams ಎom Stanford University, Carnegie Mel-

lon University, Massachusetts Institute of Technology and Virginia Polytechnic Institute and State

University. Although the road-test scenarios used in the DARPA Urban Challenge were much

more similar to daily driving compared to those in previous competitions, they were still con-

strained to low-speed driving and simple situations that lack some common roadway obstacles,
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Figure 1.1: Overview of a traditional autonomous driving system.

including pedestrians and cyclists.

1.1.2 Overview of autonomous driving systems

To date, most of these autonomous driving systems can be categorized into two main classes:

traditional autonomous driving systems and end-to-end autonomous driving systems.

Traditional autonomous driving system

As a brief overview, a traditional autonomous driving system can be divided into five main compo-

nents, shown in Fig. ⒈1: perception, localization and mapping, path planning, decision making,

and vehicle control (Cheng, 2011).

Similar to human vision, the perception component uses sensors to continuously scan and

analyze its surrounding environment. This component usually consists of functions for obstacle

detection and tracking, traffic sign recognition, and lane marker detection based on various sen-

sor inputs. The localization and mapping component calculates the global and local locations of

the vehicle and also maps the environment based on sensor data. Path planning uses perception

and localization information to calculate possible safe and ideal routes for the vehicle to drive. The
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decision-making component is designed to generate the optimal path based on the available routes,

the vehicle’s state, and environmental information. Finally, the vehicle control module determines

the driving commands, such as steering angle, acceleration, etc., that drives the vehicle along the

determined optimal route.

Although promising progress has been made in developing the traditional autonomous driving

system, there are still many challenges towards building a fully autonomous driving vehicle. The

perception component in the traditional autonomous driving systems needs to recognize specific

human-designed features such as traffic signs, traffic lights, lane markers and bounding boxes

for driving-relevant objects, which requires a large amount of expensive manually-labeled data.

Some of the tasks such as semantic segmentation are still considered as open research questions in

computer vision. Besides, the traditional autonomous driving systems today widely utilize pre-built

high definition (HD) maps. These maps are detailed, static, and highly accurate records of the

surrounding environment. Typically, the autonomous vehicles rely heavily on this prior information

for accurate localization and for detecting and recognizing obstacles. However, there are several

obvious limitations to the use of HD maps. First, the static maps are quite expensive to build

and to keep current with dynamic environments that change over time. Second, the reliance of

autonomous vehicles on pre-built maps limits their capability to react and adapt to new situations

such as construction zones. These drawbacks have inspired research into the end-to-end learning

approach for autonomous driving that does not require manual decomposition of the autonomous

driving system and detailed maps (Bojarski et al., 2016; Zhang and Cho, 2017).
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Figure 1.2: Overview of an end-to-end autonomous driving system.

End-to-end autonomous driving system

We define end-to-end autonomous driving as a single, self-contained driving system that carries out

all processes automatically, ಎom mapping based on sensory input, such as a ಎont-facing camera,

to the actions necessary for driving, such as steering, braking and acceleration. An end-to-end

autonomous driving system is oಏen designed to learn ಎom expert demonstrations rather than

depend upon manually-designed tasks and modules.

Although the end-to-end learning approach simplifies self-driving systems, it is challenging to

train a model that encompasses everything ಎom mapping very high-dimension, pixel-level sensor

inputs to controlling low-dimension continuous control signals. In this thesis, we will intro-

duce several methods to address the following major challenges of using the end-to-end learning

approach for autonomous driving:

• Mismatch in data distribution at test time between human drivers and the learned driving

model.

• Uncertainty in the human driving actions used for training.

• Difficulty of testing and evaluating the driving model.
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1.2 Thesis structure

The organization of this dissertation is as follows: In the first two chapters, we aim to address the

mismatched data distribution issue using data augmentation. Chapter 2 introduces an end-to-end

learning approach for the lane following task based on supervised learning with data augmentation.

Chapter 3 presents an end-to-end learning approach for both following and changing lane tasks

based on query-efficient imitation learning. Chapter 4 introduces a variational mixture density

network to address the uncertainty in the human driving actions. Chapter 5 presents a general

driving simulator for training and testing models in video games that use end-to-end learning

approaches. Leveraging this simulator, we demonstrate that the trained model can drive a truck

following a navigation map in a video game.
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2
End-to-end Autonomous Driving via

Supervised Learning

In 1989, Autonomous Land Vehicle In a Neural Network (ALVINN), a three-layer neural network

trained for the task of lane following, drove a retrofitted Army ambulance around Carnegie Mellon

University under controlled field conditions without any human intervention (Pomerleau, 1989).
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ALVINN is one of the first examples of an autonomous vehicle using the end-to-end learning

approach.

The ALVINN net featured two kinds of sensory inputs: 1) a 30x32 image streamed ಎom a

camera mounted on the top of the vehicle, and 2) 8x32 image encoding range information captured

by a laser range finder.

The output layer of the ALVINN network could be divided into two groups of units. The

first group, consisting of one unit, indicated whether the texture of the road in the current image

was lighter or darker than the non-road. During testing, this unit was also recursively sent to the

network’s input layer. The second group, consisting of 45 units, represented the turning curvature

along the direction that the vehicle should travel in order to remain in the center of the road.

Activation of the middle part of the units represented straight driving, while activation of the leಏ

or right units represented leಏ or right turns. In order to convert the network’s output active levels

into a steering direction, a Gaussian curve with a fixed width was used to fit the output units. The

peak of the best fit Gaussian determined the vehicle’s steering.

The ALVINN net inspired our work in many ways. It demonstrated that an end-to-end trained

neural network could successfully drive a vehicle along a road. It also showed the importance of

having sufficient variability in the training data set to cover different driving conditions. In this

chapter, we will introduce an end-to-end learning method that trains a neural network to steer a

vehicle for lane following.
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2.1 End-to-end learning for autonomous driving

We define the end-to-end learning for autonomous driving as learning a function to map sensor

inputs, such as the images ಎom a ಎont-facing camera, to driving commands, such as steering

angle. The mapping function can be of any appropriate form; here we use a convolutional neural

network (CNN), as a CNN takes advantage of local spatial coherence in the sensor inputs, which

are oಏen represented as RGB images.

2.2 Supervised learning

One means for learning such a mapping function is the reinforcement learning method. In rein-

forcement learning, the learning models are guided by sparse rewards such as travel time, vehicle

condition, and the like. Although reinforcement learning has been applied to many promising and

successful projects, such as playing computer games, it is challenging to utilize directly for develop-

ing an autonomous vehicle. There are three major issues in training an autonomous driving system

via reinforcement learning. First, damage to the environment or other agents is a severe safety con-

cern for autonomous driving. In a simulation, we can afford many failures without worrying about

safety issues. However, in a real environment, car crashes and accidents are not acceptable. Second,

many failures while learning in a real environment are also not affordable. For example, we cannot

just let the car hit objects many times in order to learn how to avoid obstacles. Third, it is costly

to run experiments in real environments, as well as time-consuming; reality cannot be sped up like

a simulation.

Another means for learning the mapping function is the supervised learning method, in which
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a set of demonstrations are provided that consist of pairs of sensor inputs and driving commands.

More specifically, both sensor inputs and driving signals are recorded while a human drives the

car, and these are used to train the mapping function. However, solely using captured data to train

such a mapping function is not effective because the demonstrations only provide correct actions;

the model does not learn how to recover ಎom mistakes. In this chapter, we introduce an approach

to address this issue via data augmentation.

2.3 Data collection

To train the mapping function, we need to capture both sensor inputs and the corresponding

driving commands. For sensor inputs, we decided to use images captured ಎom the three ಎont-

facing cameras mounted on the car hood. Much like the viewpoint of a human driver, these

images should contain enough visual information for performing the lane following task. The

specific position of the cameras is not critical; in fact, a position behind the windshield might be a

better choice for camera mounting, as its higher placement would provide a better view and is the

interior would be more stable with regard to wind while driving. We used three GoPro cameras

rather than just one in order to capture sequences of images simultaneously; the rationale behind

this setup is related to data augmentation, and will be explained later in section ⒉4. The final

camera positions are shown in Fig. ⒉1.

During demonstrations, the steering angle is captured via the vehicle’s Controller Area Network

(CAN) Bus. The CAN Bus can be viewed as a simple network that permits any system in the car

to listen to and send commands. In order to make the system independent of car geometry, we

represent the steering command as 1/r, where r is the turning radius in meters. We use 1/r
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Figure 2.1: Camera setup for data collection. The cameras are mounted using suction cups and
secured with ropes to avoid accidental loss. One camera is mounted on the center of the hood,
while the other two are mounted on the leಏ and right sides of the car. All cameras face straight
ahead. We use a remote controller to control all three cameras at the same time.

instead of r to prevent a singularity when driving straight (the turning radius for driving straight

would be infinity). 1/r smoothly transitions through zero ಎom leಏ turns (negative values) to right

turns (positive values).

Training data was collected through driving on a wide variety of roads and in a diverse set of

lighting and weather conditions. Road types represented include highways, two-lane roads (with

and without lane markings), residential roads with parked cars, tunnels, and unpaved roads. Various

road textures were captured in the dataset, including different road paint colors and different lane

marker conditions (Bojarski et al., 2016). Representative training samples in Fig. ⒉2 illustrate the

various road textures and lane marker conditions in the dataset.
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Figure 2.2: Representative training data samples showing various road textures and lane marker
conditions. Potential issues for autonomous lane following include missing lane markers, bad road
painting, and reflected light.

2.4 Data augmentation

The dataset contains single images s sampled ಎom video, paired with the corresponding steering

command a. A sample image is shown in Fig. ⒉3.

Figure 2.3: Sample image ಎames captured by the leಏ camera (leಏ), center camera (middle), and
right camera (right).

Training only with data ಎom human demonstrations is not sufficient. A model trained using

13



Expert trajectory

Trained model

Situations not seen in 
training dataset 

Figure 2.4: The mismatch between the samples visited by a learned model and those collected by
an expert driver. The rectangle represents a car driven by the trained model, the red dashed line
shows the driving trajectory of the trained model, and the blue dashed line shows the trajectory
of a human driver. The trained model makes a small mistake and the car deviates ಎom the center
of the lane. Since the new situation were never seen before, the trained model may output driving
actions that cause the car crash.

only human demonstrations can suffer ಎom bad performance due to the mismatch between the

samples visited by a learned model and those collected by an expert driver. In our case, most of the

training samples were collected while driving in the center of the lane, which is not guaranteed to

be the case during testing; the trained model makes small mistakes during testing and will driಏ

ಎom the center of the lane. Therefore, a vehicle driven by the trained model will ultimately crash

because it does not know how to recover ಎom the new, non-center state that was not represented

in the training set as shown in Fig. ⒉4.

The data mismatch issue can be addressed by adding new samples to cover situations the car

will encounter when trying out the trained model. In order to generate the actions for these

new samples, we could ask the human expert to label all samples generated by the trained model

and then retrain the model. However, doing such labeling work for autonomous driving is time-
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Figure 2.5: Synthetic actions not represented by demonstration data: shiಏ ಎom the center of the
lane (leಏ) and rotation ಎom the direction of the lane (right). The blue dashed line indicates the
center of the lane.

consuming and challenging. For example, it is difficult to identi௫ the ideal degree of the steering

wheel ಎom an image. Instead of manually labeling, we introduce a data augmentation method that

synthetically generates samples. Each generated sample represents the car in one of the various

shiಏs ಎom the center of the lane and rotations ಎom the direction of the road. Fig. ⒉5 shows the

two kinds of scenarios generated by data augmentation in which a vehicle does not correctly follow

the lane.

We obtained the images for two specific off-center shiಏs ಎom the leಏ and right cameras, and

simulated additional shiಏs between the cameras and all rotations by camera viewpoint transfor-

mation of the image ಎom the nearest camera. Precise viewpoint transformation requires depth

information for each pixel in an image, which we did not have. We therefore approximated the

transformation by assuming all points below the horizon to be on flat ground and all points above

the horizon to be infinitely far away. We manually chose the position of the horizon and use it for

all images in the training set.

The shiಏ operation to transfer the raw pixel position (u, v) below the horizon to the new pixel
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Figure 2.6: Data augmentation: augmented data is generated via image transformation to simulate
shi঒ and rotate situations. The corresponding steering command is adjusted to one that would
return the vehicle to following the center of the lane.

position (u′, v′) is defined as:

u′

v′

 =

 u

v ∗ (1 + s ∗ (u− uh))

 (⒉1)

uh is the vertical coordinate of the horizon. s is the shiಏ parameter, which represents how

much we want to shiಏ.

We define the rotate operation of the image transformation as:

u′

v′

 =

 u

v ∗ (1 + θ ∗ (ub − u))

 (⒉2)

ub is the vertical coordinate of the bottom of the image.

The assumption works fine for flat terrain, but introduces distortions for objects that stick above
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Figure 2.7: Sample images generated by data augmentation.
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Figure 2.8: Histograms of steering angles before and aಏer data augmentation. In the raw data set,
most steering angles fall within the tiny range of [-0.05, 0.05], due to vehicles driven by humans
only requiring small adjustments to follow a lane.

the ground, such as cars, poles, trees, and buildings. Fortunately, these distortions do not greatly

affect network training; the three-camera setting helps to reduce artifacts introduced by image

transformation. Additionally, we crop the raw image, only showing the part below the horizon

and removing any black pixels introduced by the transformation. Fig. ⒉2 shows a mini-batch of

image samples generated using the data augmentation approach.

For transformed images, we adjusted each steering label to one that would steer the vehicle

back to the desired location and orientation within a certain driving distance. Fig.⒉8 shows the

histograms of steering angles before and aಏer data augmentation.
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Finally, the augmented data contains both raw data and the images transformed with random

shiಏ s and rotation θ parameters and adjusted steering labels. The transformed images have dimen-

sions of 66x200, which is an ideal input size for the convolutional neural network performing the

lane following task. A high-resolution input image costs more in computing time without carry-

ing additional useful information. Importantly, system latency is a critical concern for autonomous

driving. In any single loop of a real-time autonomous driving system, we need to perform sensor

input capture, image transformation, model prediction, and feeding of the control signal to the

vehicle. This enforces strict constraints on the run-time of the model’s predictions.

2.4.1 Data Selection

In order to train a neural network, we need to select training ಎames ಎom the raw recorded video

data. We labeled our collected data with road type, weather condition, and driver activity (staying

in a lane, switching lanes, turning, and so forth) (Bojarski et al., 2016). To train a CNN for

lane following, we only selected data where the driver was staying in a lane; other activities were

discarded. We then sample that video at ten ಎames per second (FPS). A higher sampling rate

would include images that are highly similar and thus would not provide much useful information.

2.5 Neural network structure and training

To run the system in real time, we started with a simple feed-forward CNN include a normal-

ization layer, five convolutional layers, and three fully-connected layers, shown in Fig. ⒉9. This

convolutional neural network works surprisingly well for the lane following task. The input image

is split into YUV planes and passed to the network. This convolutional neural network structure
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works surprisingly well for the lane following task.

The first layer of the network performs image normalization. The normalizer is hard-coded

and will remain fixed throughout the learning process. Performing normalization in the network

allows the normalization scheme to be altered with the network architecture and to be accelerated

via GPU processing.

The convolutional layers were chosen empirically through a series of experiments that varied

layer configurations. We use strided convolutions in the first three convolutional layers, with a 2×2

stride and a 5×5 kernel, and non-strided convolutions with a 3×3 kernel in the last two convolutional

layers. The five convolutional layers are followed by three fully-connected layers that lead to an

output vehicle control value, the inverse turning radius.

The procedure for training the neural network is shown in Fig. ⒉10. We trained the neural

network on the augmented data set with randomly transformed images. For the loss function, we

used the Least Square (L2) error between the steering label and model prediction.

Loss(πθ) =
1

N

N∑
n=1

∥πθ(sn)− an∥2 (⒉3)

Neural network weights were updated at each batch step using the stochastic gradient descent

(SGD) optimization method.

Aಏer training, the neural network can generate steering commands using only images ಎom the

center camera. Each generated steering command is fed to the controller module, which drives the

vehicle.
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Figure 2.9: Structure of the convolutional neural network used for lane following.
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Figure 2.10: Training procedure for the CNN used for lane following.

2.6 Video simulator

We can evaluate actual lane following performance of the model by letting it drive in a real envi-

ronment; however, it is time-consuming and not safe to perform a road test for every evaluation.

Therefore, we need a simulation method by which to evaluate autonomous driving performance in

order to generate results quickly without worrying about real-world failures.

Instead of building a sophisticated simulation platform, we proposed to develop a video sim-

ulator that simulates trained models performing the lane following task using recorded video.

Specifically, an image ಎame ಎom a recorded video is fed to our trained model to generate a steer-

ing command. Then we can apply image transformation on the next ಎame of that recorded video

to simulate driving based on the predicted steering command. Running this process in a loop

allows us to measure driving performance in the recorded video. A simplified block diagram of the

simulation system is shown in Fig. ⒉11.
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Figure 2.11: Video simulator system.

The simulator takes pre-recorded videos ಎom a forward-facing camera on a human-driven

vehicle and generates images that approximate what would appear if the CNN were instead steering

the vehicle. These test videos are time-synchronized with recorded steering commands generated

by the human driver.

Since human drivers might not drive in the center of the lane at all times, we manually calibrated

the lane center associated with each ಎame used by the simulator. We used this position as the

ground truth to measure lane following performance.

The simulator transforms the original images to account for departures ಎom ground truth.

Note that this transformation also includes any discrepancy between the human-driven path and

the ground truth, and is accomplished by the same methods described in Section ⒉ The simulator

accesses the recorded test video along with the synchronized steering commands that occurred

when the video was captured. It sends the first ಎame of the video, adjusted for any departures

ಎom ground truth, to the input of the trained CNN. The CNN then returns a steering command

for that ಎame. The CNN steering commands, as well as the recorded human-driver commands,
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are fed into the dynamic model of the vehicle to update its simulated position and orientation.

The simulator then modifies the next ಎame in the test video so that the image appears as if the

vehicle were at the position that resulted ಎom following the CNN-generated steering command.

We then feed this new image to the CNN and repeat the process.

The simulator records the off-center distance (distance ಎom the car to the lane center), the

yaw, and the distance traveled by the virtual car. When the off-center distance exceeds one meter,

a virtual human intervention is triggered, and the virtual vehicle position and orientation are reset

to match the ground truth of the corresponding ಎame of the original test video.

2.7 Evaluation

The model’s driving performance is measured using both the video simulator and on-road tests.

Video simulator evaluation is usually done first in order to develop a better understanding of the

model’s performance before carrying out the on-road test. In simulation tests, we have the network

provide steering commands for an ensemble of prerecorded test routes that correspond to about a

total of three hours and 100 miles of driving in Monmouth County, Ǌ. The test data was taken in

various lighting and weather conditions and included highways, local roads, and residential streets.

2.7.1 Simulation tests

We estimate what percentage of time the network is capable of appropriately driving the car (au-

tonomy), determined by counting simulated human interventions (see Section ⒉6). Such inter-

ventions occur when the simulated vehicle departs ಎom the center of the lane by more than one

meter. We assume that in real life, an actual intervention would require a total of six seconds: this
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Autonomy = 100.0%Simulator

Figure 2.12: Screenshot of the simulator. The area on the leಏ is filled black since it is unknown
due to image transformation. The highlighted wide rectangle below the horizon is the image area
that is sent to the CNN.

is the time required for a human to retake control of the vehicle, re-center it, and then restart the

self-steering mode. The percentage of autonomy r is defined as follows:

r = 1− n ∗ T
t

(⒉4)

n is the number of human interventions. T is the time for human intervention in seconds, 6

in our case. t is the elapsed time of the simulated test.

2.8 Summary

In this chapter, we present an end-to-end learning approach via supervised learning to train a con-

volutional neural network. To address the data mismatch issue, we introduce a data augmentation

method by generating augmented sensor inputs and steering automatically. For fast evaluation, we

developed a video simulator which allows measuring the lane following performance before road
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tests. The results show that a small amount of training data ಎom less than a hundred hours of

driving was sufficient to train a vehicle to drive in different conditions, on highways, local roads,

and residential roads in sunny, cloudy, and rainy conditions.
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3
End-to-end Autonomous Driving via

Imitation Learning

In the previous chapter, we have introduced an end-to-end learning approach via supervised learn-

ing for the lane-following task. We address the data distribution mismatch issue by using data

augmentation. The data augmentation is done by synthetically generating new samples to cover
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the situations where the vehicle does not drive in the center of a lane. The data augmentation

works well for lane following as off-center samples can be generated using image transformation

and the corresponding steering label can be estimated automatically. However, what if we want

to go beyond lane following to do more complex driving tasks such as changing lanes? This re-

quires an alternative approach for data augmentation. In this chapter, we therefore introduce a

data aggregation approach to imitation learning to address the data mismatch issue of end-to-end

learning for autonomous driving.

Imitation plays a crucial role in human learning. None of us learns in a vacuum; rather, the

way we learn is very oಏen a direct result of our observation of those around us. We learn driving

skills by imitating what an expert does; we learn language ಎom hearing our parents converse;

my two-year-old daughter Claire learns to use a spoon ಎom the way I use mine. This is true

regardless of whether we directly imitate or use an idea in a different way, and we do this ಎom

a very young age (Williamson et al., 2010). Imitation learning algorithms have been successfully

applied to many applications, including playing computer games such as car racing (Ross et al.,

2010), building controllers (Coates et al., 2008), and sports analytics (Le et al., 2017). In this

chapter, we introduce how to carry out end-to-end learning for autonomous driving via imitation

learning in an efficient and safe manner.

3.1 Imitation learning for autonomous driving

In this section, we describe imitation learning in the context of learning a policy for driving a car.
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3.1.1 State transition and reward

When an agent, a car in our case, travels around the world, the surrounding environment (the

world) is defined as a set of states S. Each state is accompanied by a set of possible actions A(S).

According to the state transition function δ : S × A(S)→ S, any given state s ∈ S transitions

to another state s′ ∈ S when an action a ∈ A(S) is performed. The transition function may be

either deterministic or stochastic.

For each sequence of state-action pairs, there is an associated (accumulated) reward r:

r(Ω = ((s0, a0), (s1, a1), (s2, a2), . . .)),

where st = δ(st−1, at−1).

A reward may be implicit in the sense that it is observed only when there is a failure. Such a

reward comes in the form of a binary value, with 0 corresponding to any unsuccessful run (e.g.,

crashing into another car so that the car breaks down), while any successful run (e.g., driving

indefinitely without crashing) receives a reward. This is the case in which we are interested in. In

learning to drive, the reward is simply defined as follows:

r(Ω) =

 1, if there was no crash,

0, otherwise

3.1.2 Policies

A policy is a function that maps a state observation ϕ(s) to one a of the actions available A(s) at

the state s. An underlying state s describes the surrounding environment perfectly, while a policy
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oಏen has only limited access to the state via its observation ϕ(s). In the context of end-to-end

autonomous driving, s summarizes all necessary information about the road (e.g., number of lanes,

existence of other cars or pedestrians), while ϕ(s) is, for instance, an image ಎame captured by a

ಎont-facing camera.

We have two separate policies. First, the primary policy π is a policy that learns to drive a car,

which is also called the learned policy. Usually, this policy does not observe the full, underlying

state s but only has access to the state observation ϕ(s), which is a pixel-level RGB image ಎame

ಎom a ಎont-facing camera. This policy is implemented as a function parameterized by a set of

parameters θ.

The other policy is the reference policy π∗. This policy may or may not be optimal, but is

assumed to be a good policy that we want the primary policy to imitate. The reference policy oಏen

refers to the policy executed by an expert, thus is also called the expert policy. In the context of

autonomous driving, a reference policy can be a human driver.

Policy cost

Unlike previous works on imitation learning (e.g. (Daumé Iii et al., 2009; Ross et al., 2010;

Chang et al., 2015)), we introduce a concept of cost to a policy. The cost of querying a policy for

an appropriate action varies significantly based on how the policy is implemented. For instance,

it is expensive to query a reference policy if it is a human driver. On the other hand, it is much

cheaper to query a primary policy, which is oಏen implemented as a classifier. Therefore, we analyze

an imitation learning algorithm in terms of how many queries it makes to a reference policy.
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3.1.3 Driving

A car is driven by querying a policy for an action based on a state observation ϕ(s) at each time

step. The policy observes an image ಎame s ಎom a ಎont-facing camera and returns both the angle

of the steering wheel (u ∈ [−1, 1]) and a binary indicator for braking (b ∈ {0, 1}). We call this

strategy of relying on a single fixed policy a naive strategy.

Reachable states

With a set of initial state Sπ
0 ⊂ S, each policy π defines a subset of the reachable states Sπ. That

is, Sπ = ∪∞t=1S
π
t , where Sπ

t =
{
s|s = δ(s′, π(ϕ(s′))) ∀s′ ∈ Sπ

t−1

}
. In other words, a car

driven by a policy π will only visit the states in Sπ.

We use S∗ to refer to a set reachable by the reference policy. When learning to drive, this

reference set is intuitively smaller than that of any other reasonable, non-reference policy. This

happens because the reference policy avoids any state that is likely to lead to a low reward, such as

crashing into other cars and roadblocks or driving off the road.

3.1.4 Supervised learning

Imitation learning aims to find a primary policy πθ that imitates a reference policy π∗. As we

discussed in Chapter 2, we can carry out imitation learning as supervised learning, which is called

behavior cloning. In supervised learning, a car is first driven by a reference policy while collecting

the state observations ϕ(s) of the visited states, resulting in D = {ϕ(s)1, ϕ(s)2, . . . , ϕ(s)N} .

30



Based on this dataset, we define a loss function as

lsupervised(π, π
∗, D) =

1

N

N∑
n=1

∥π(ϕ(s)n)− π∗(ϕ(s)n)∥2. (⒊1)

Then, a desired primary policy can be written as π̂ = argminπ lsupervised(π, π
∗, D).

A major issue with this supervised learning approach stems ಎom the imperfection of the pri-

mary policy π̂ even aಏer training. This imperfection likely leads the primary policy to a state s

that is not included in the reachable set S∗ of the reference policy, i.e., s /∈ S∗. As this state

cannot have been included in the training setD ⊆ S∗, the behavior of the primary policy becomes

unpredictable. Such imperfection arises ಎom many possible factors, including sub-optimal loss

minimization, bias in the primary policy, stochastic state transition, and partial observability.

3.2 DAgger: Beyond supervised learning

Amajor characteristic of the supervised learning approach described above is that only the reference

policy π∗ generates training examples. A direct consequence of this is that the training set is almost

a subset of the reference reachable set S∗. This issue can be addressed by imitation learning or

learning-to-search (Daumé Iii et al., 2009; Ross et al., 2010).

In an imitation learning ಎamework, the primary policy, which is currently being estimated, is

used in addition to the reference policy when generating training examples. The overall training

set used to tune the primary policy then consists of both the states reachable by the reference

policy and those reachable by the intermediate primary policies. This makes it possible for the

primary policy to correct its path toward a good state when it visits a state unreachable by the

reference policy, i.e., s ∈ Sπ\S∗.
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DAgger is one such imitation learning algorithm, proposed in (Ross et al., 2010). This algo-

rithm fine-tunes a primary policy initially trained with the supervised learning approach described

earlier. Let D0 and π0 be the supervised training set (generated by a reference policy) and the

initial primary policy trained in a supervised manner. Then, DAgger iteratively performs the fol-

lowing steps: At each iteration i, first, additional training examples are generated ಎom a mixture

of the reference π∗ and primary πi−1 policies (i.e.

βiπ
∗ + (1− βi)πi−1 (⒊2)

) and combined with all the previous training sets: Di = Di−1 ∪ {ϕ(s)i1, . . . , ϕ(s)iN} . The

primary policy is then fine-tuned, or trained ಎom scratch, by minimizing lsupervised(θ,Di) (see

Eq. (⒊1).) This iteration continues until the supervised cost on a validation set stops improving.

DAgger does not rely on the availability of explicit reward; this makes it suitable for building

an end-to-end autonomous driving model that drives on the road indefinitely. However, it is

certainly possible to incorporate an explicit reward with other imitation learning algorithms, such

as SEARN (Daumé Iii et al., 2009), AggreVaTe (Ross and Bagnell, 2014) and LOLS (Chang

et al., 2015). Although we focus on DAgger in this section, our proposal also applies generally to

any learning-to-search type of imitation learning algorithm.

Limitations of DAgger

At each iteration, DAgger queries the reference policy for each and every collected state. In other

words, the cost of DAgger CDAgger
i at the i-th iteration is equivalent to the number of training

examples collected, i.e. CDAgger
i = |Di|. In total, the cost of DAgger for learning a primary policy

is CDAgger =
∑M

i=1 |Di|, excluding the initial supervised learning stage.
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This high cost of DAgger comes with a more practical issue when the reference policy is a human

operator, or in our case a human driver. First, as noted in (Ross et al., 2013), a human operator

cannot drive well without actual feedback, which is the case when using DAgger as the primary

policy drives most of the time. This leads to suboptimal labelling of the collected training examples.

Furthermore, this constant operation easily exhausts a human operator, making it difficult to scale

the algorithm toward more iterations.

Another issue is that it is not safe to run DAgger in real-world road tests since it may seriously

damage the environment, especially in the beginning when the reference policy πθ is not good.

3.3 SafeDAgger

We propose an extension of DAgger that minimizes the number of queries made to the refer-

ence policy both during training and testing. In this section, we describe this extension, called

SafeDAgger, in detail.

3.3.1 Safety classifier

Distinct ಎom previous approaches to imitation learning, oಏen as learning-to-search (Daumé Iii

et al., 2009; Ross et al., 2010; Chang et al., 2015), we introduce a classifier csafe, to which we refer

as a safety classifier. This classifier takes as input both the partial observation of a state ϕ(s) and

a primary policy π and returns a binary label indicating whether the primary policy π is likely to

deviate ಎom a reference policy π∗ without querying it.
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We define the deviation of a primary policy π ಎom a reference policy π∗ as

ϵ(π, π∗, ϕ(s)) = ∥π(ϕ(s))− π∗(ϕ(s))∥2 .

Note that the error metric can be flexibly chosen depending on the target task. For autonomous

driving, the metric can be any information that is helpful in determining whether a given state

is safe or not. For instance, we can use the distances between the autonomous vehicle and the

surrounding objects. We simply use the L2 distance between the reference steering angle and the

predicted steering angle, ignoring the brake indicator.

Then, with this defined deviation, the optimal safety classifier c∗safe is defined as

c∗safe(π, ϕ(s)) =

 0, if ϵ(π, π∗, ϕ(s)) > τ

1, otherwise
, (⒊3)

where τ is a predefined threshold. The safety classifier decides whether the choice made by the

policy π at the current state can be trusted with respect to the reference policy. We emphasize

again that this determination is done without querying the reference policy.

Learning

A safety classifier is not given, meaning that it needs to be estimated during learning. A safety

classifier csafe can be learned by collecting another set of training examples:*

D′ = {ϕ(s)′1, ϕ(s)′2, . . . , ϕ(s)′N}

*It is possible to simply set aside a subset of the original training set for this purpose.
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The safety classifier is trained to minimize a binary cross-entropy loss defined as follows:

lsafe(csafe, π, π
∗, D′) =

− 1

N

N∑
n=1

c∗safe(ϕ(s)
′
n) log csafe(ϕ(s)

′
n, π)+ (⒊4)

(1− c∗safe(ϕ(s)
′
n)) log(1− csafe(ϕ(s)

′
n, π)),

where we model the safety classifier as returning a Bernoulli distribution over {0, 1}.

Driving: Safe strategy

The naive strategy is a default go-to strategy in most applications of reinforcement learning or

imitation learning. We can improve on the naive strategy by designing a safe strategy that utilizes

the proposed safety classifier csafe. In this strategy, the safety classifier determines at each point in

time whether it is safe to let the primary policy drive. If so (i.e. csafe(π, ϕ(s)) = 1,) we use the

action returned by the primary policy (i.e. π(ϕ(s)).) If not (i.e. csafe(π, ϕ(s)) = 0,) we let the

reference policy drive instead (i.e. π∗(ϕ(s)).)

Assuming a good safety classifier is available, this strategy avoids any dangerous situation arising

ಎom an imperfect primary policy that may lead to a low reward (e.g., a crash.) In the context of

learning to drive, this safe strategy can be thought of as letting a human driver take control based

on an automated decision.† Note that this driving strategy is applicable regardless of the learning

algorithm used to train the primary policy.
†Such intervention has been carried out manually by a human driver (Pomerleau, 1992).

35



Discussion

The proposed safety classifier has the potential to address the unsafety issue up to a certain point.

First, since a separate training set is used to train the safety classifier, it is more robust to unseen

states than the primary policy. Second and more importantly, the safety classifier finds and exploits

a simpler decision boundary between safe and unsafe states instead of trying to learn a complex

mapping ಎom state observation to control variable. For instance, in learning to drive, the safety

classifier may simply learn to distinguish between a crowded road and an empty road and determine

that it is safer to let the primary policy drive on an empty road.

However, the safety classifier is not without problem. A major potential issue with the safe

strategy of driving is that the safety classifier may pass control to the reference policy, or a human

driver, most of the time, defeating the whole purpose of the model learning to drive. This tendency

can be mitigated by setting the threshold τ to a lower value, but doing so inevitably results in the

unsafe driving experience. Later on, however, we show that SafeDAgger automatically decreases

the number of queries to the reference policy as learning progresses (with a fixed τ ).

Relationship to a value function

A value function V π(s) in reinforcement learning computes the reward a given policy π can achieve

in the future when starting ಎom a given state s (Sutton and Barto, 1998). This description reveals a

clear connection between the safety classifier and the value function. The safety classifier csafe(π, s)

determines whether a given policy π is likely to fail if it operates at a given state s, in terms of

deviation ಎom the reference policy. By assuming that a reward is only given at the very end of a

policy run, and that the reward is 1 if the current policy acts exactly like the reference policy and

otherwise 0, the safety classifier precisely returns the value of the current state.
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A natural question that follows is whether the safety classifier can drive a car on its own or

not. This perspective on the safety classifier as a value function suggests a way to directly use

the safety classifier to drive a vehicle. At a given state s, the best action â can be selected to

be argmaxa∈A(s) csafe(π, δ(s, a)). This is however not possible under the current formulation,

as the transition function δ is unknown. We may extend the definition of the proposed safety

classifier so that it considers a state-action pair (s, a) instead of a state alone and predicts the

safety in the next time step, which makes it closer to a Q function. This still encounters an issue

when the action is continuous, such as the steering wheel angle, as it requires us to run a potentially

expensive optimization routine.

Algorithm 1 SafeDAgger Blue fonts highlight differences ಎom vanilla DAgger.

1: Collect D0 using a reference policy π∗

2: Collect Dsafe using a reference policy π∗

3: π0 = argminπ lsupervised(π, π
∗, D0)

4: csafe,0 = argmincsafe
lsafe(csafe, π0, π

∗, Dsafe ∪D0)
5: for i = 1 doM
6: Collect D′ using the safe strategy πi−1 and csafe,i−1

7: Subset Selection:
D′ ← {ϕ(s) ∈ D′|csafe,i−1(πi−1, ϕ(s)) = 0}

8: Di = Di−1 ∪D′

9: πi = argminπ lsupervised(π, π
∗, Di)

10: csafe,i = argmincsafe
lsafe(csafe, πi, π

∗, Dsafe ∪Di)
11: end for
12: return πM and csafe,M

3.3.2 SafeDAgger: Safety classifier in the loop

We describe here the proposed SafeDAgger, presented in Alg. 1, which aims to reduce the number

of queries to a reference policy during iterations. At the core of SafeDAgger lies the safety classifier
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introduced earlier in this section. This implementation incorporates two major modifications ಎom

the original DAgger.

First, we use the safe strategy, instead of the naive strategy, to collect training examples (line

6 in Alg. 1). This allows an agent to simply give up and hand over the control to the reference

policy when it is not safe to drive itself, thereby collecting training examples with a much further

horizon without crashing. This would have been impossible with the original DAgger unless a

manually-forced take-over measure was implemented (Ross et al., 2013).

Furthermore, unlike the original DAgger’s random switch in Eq. (⒊2), the proposed approach

oಏen gives a longer-term window of control to the reference policy, thereby making it more suitable

for a human driver.

Second, the subset selection (line 7 in Alg. 1) drastically reduces the number of queries made of

the reference policy. Only the small subset of states where the safety classifier returns 0 need to be

labelled with reference actions. This is in contrast to the original DAgger, where all collected states

had to be queried against the reference policy. The cost of the SafeDAgger at each iteration, in the

context of reference queries, is CSafeDAgger
i = O(τ̃)C

DAgger
i , where τ̃ = τ

maxs∈S ϵ(π,π∗,ϕ(s))
≤ 1.

Furthermore, this subset selection allows subsequent supervised learning to focus more on

difficult cases, which almost always correspond to the states that are problematic (i.e., S\S∗.)

This reduces the total number of training examples without losing important ones, thereby making

this algorithm data-efficient.

Once the primary policy is updated with Di, which is the union of the initial training set D0

and all difficult examples collected so far, we update the safety classifier. This step ensures that

the safety classifier correctly identifies which states are difficult/dangerous for the latest primary

policy. This has an effect of automated curriculum learning (Bengio et al., 2009) with a mixed
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strategy (Zaremba and Sutskever, 2014), where the safety classifier selects training examples of

appropriate difficulty at each iteration.

Despite these differences, the proposed SafeDAgger inherits many of the theoretical guarantees

ಎom DAgger. This is achieved by gradually increasing the threshold τ of the safety classifier

(Eq. (⒊3)). If τ > ϵ(π, ϕ(s)) for all s ∈ S, SafeDAgger reduces to the original DAgger with

βi (ಎom Eq. (⒊2)) set to 0. However, we later observe empirically that this is not necessary, and

that training with the proposed SafeDAgger with a fixed τ automatically and gradually reduces the

portion of the reference policy during data collection over iterations.

3.4 Experiment

3.4.1 Simulation environment

We use TORCS (tor, accessed May 12, 2016), a racing car simulator, for empirical evaluation.

We chose TORCS for the following reasons: First, it has been used widely and successfully as a

platform for research on autonomous racing (Loiacono et al., 2008), although most of the previous

work, except for (Koutník et al., 2013; Chen et al., 2015), is not comparable as radars instead of

cameras were used for observing states. Second, TORCS is a light-weight simulator that can be

run on an off-the-shelf workstation. Third, TORCS is open-source soಏware, making it easy to

interface with other soಏware, in our case the program Torch.

The original TORCS was designed as a car racing game, where racing cars can drive ಎeely

within the track and even hit each other for overtaking. In order to incorporate normal driving

environments such as highway driving, we needed to modi௫ the TORCS by creating the lane

markets and programming the car agent to follow pre-defined traffic rules.
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Figure 3.1: Representative road textures and lane markers used with TORCs.

Tracks

To simulate highway driving with multiple lanes, we modified the original TORCS road surface

textures by adding various lane configurations that incorporated different numbers and types of

lanes. The maximum number of lanes for a track is three, which is enough to demonstrate changing

lanes. Fig. ⒊1 shows representative lane configurations.

We used ten different tracks in total for our experiments, splitting them into two disjointed sets:

seven training tracks and three test tracks. All training examples as well as validation examples

were collected ಎom the training tracks only, and the trained primary policy was tested on the test

tracks.

The ten tracks shown in Fig. ⒊2 contain different road textures, different lane configurations,

various weather conditions, and different surrounding environments, providing a rich simulation

environment for autonomous driving.

Reference policy π∗

We implement our own reference policy, which has access to an underlying state configuration.

The state includes car position, car heading direction, car speed, and distances to other cars. The

reference policy follows a simple traffic rule. Cars driven by the reference policy either follow the

current lane (accelerating up to the speed limit), change lanes if there is a slower car in ಎont and
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⒜ Training tracks

⒝ Test tracks

Figure 3.2: Training and test tracks with sample ಎames.

an available lane to the leಏ or right, or brake to avoid occlusion. The reference policy is defined in

Alg. 2.

We follow the TORCS robot car tutorial (Wymann, 2006) to program the car to follow the

reference policy via computing the desired steering, acceleration, and brake commands. Once a

target lane is set, a desired steering command s at each time step is calculated with Eq. (⒊5) so

that the car follows the target lane.

s = (θ − |Lc − Lt|
wroad

) ∗ C (⒊5)

θ is the angle between the lane direction and car direction. Lc represents the coordinate of

the lane we are driving on. Lt presents the coordinate of the target lane we want to change to.

|Lc−Lt| is the distance between the current lane and the target lane. wroad the width of the road.

C is a pre-defined parameter to control how quickly we want to make the change.
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Algorithm 2 Reference Policy
1: initialize the target lane, car speed, and car position randomly within the track
2: while simulator is running do
3: compute the distance to the preceding cars in each lane
4: if distance to the preceding car in the same lane within certain threshold then
5: if leಏ lane exists and leಏ lane change available then
6: set target lane to be leಏ lane
7: else if right lane exists and right lane change available then
8: set target lane to be right lane
9: else
10: Slow down
11: end if
12: end if
13: compute steering command
14: compute acceleration/brake command
15: end while

The desired speed of the vehicle is determined by road curvature and the distance to other

cars. The car speed controller controls the brake and acceleration paddle so that the car adheres

to the desired speed. To achieve smooth car-following behavior, we use the simplified velocity

car-following model (Newell, 1961) to compute the desired speed as shown in Eg. (⒊6)

vd = vmax(1− exp
−c ∗ d
vmax

) (⒊6)

d is the distance to the car in ಎont, and c is a pre-defined parameter to control how quickly the

car changes speed. vmax is the maximum car speed allowed on the track. We randomly initialize a

maximum speed vmax for each car, therefore a great deal of overtaking occurs during the simulation,

which produces many interesting traffic situations.
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3.4.2 Data collection

To collect data, we use a car in TORCS driven by a pre-defined reference policy. To simulate

traffic on each training track, we add 40 cars driven by the same reference policy. In addition to

the initial supervised learning stage, we run up to three iterations. In the case of SafeDAgger, we

collect 30k, 30k, and 10k training examples (aಏer the subset selection in line 6 of Alg. 1.) In the

case of the original DAgger, we collect up to 390k samples each iteration and uniform-randomly

select 30k, 30k, and 10k training examples.

Instead of using only the initial training set Dsafe to train the safety classifier network, we also

use the training data Di.

This data collection strategy was designed to keep consistent the amount of data used for train-

ing a primary policy network. Note that the number of queries to the reference policy is much

higher (up to 39-fold) with the original DAgger, as it queries both primary and reference policy

simultaneously for every single image ಎame.

Data representation

The collected data contains videos recorded by a ಎont-facing camera in the game, and labels cor-

responding to each video ಎame. When used as input for the neural network, the video ಎames

are scaled and cropped to 160× 72 pixel images with three color channels (red, green and blue).

Sample images ಎom each track are shown in Fig. ⒊2. The label contains twelve variables, given

in the following list:

⒈ Sc ∈ [−1, 1]: angle of the steering wheel

⒉ Ib ∈ {0, 1}: if the car is braking
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⒊ Ill ∈ {0, 1}: if there is a lane to the leಏ

⒋ Ilr ∈ {0, 1}: if there is a lane to the right

⒌ Icl ∈ {0, 1}: if there is a car ahead in the leಏ lane

⒍ Icm ∈ {0, 1}: if there is a car ahead in the same lane

⒎ Icr ∈ {0, 1}: if there is a car ahead in the right lane

⒏ Dcl ∈ R: distance to the car ahead in the leಏ lane

⒐ Dcm ∈ R: distance to the car ahead in the same lane

⒑ Dcr ∈ R: distance to the car ahead in the right lane

⒒ Pc ∈ [−1, 1]: position of the car within the lane

⒓ Ac ∈ [−1, 1]: angle between the direction of the car and the direction of the lane

The first two variables in the list, both underlined, are driving command variables. The other ten

variables are state configurations that are observed only by the reference policy; they are hidden to

both the primary policy and safety classifier. All variables are used as target labels during training,

but only the driving commands (steering Sc and braking Ib) are used to drive a car during testing.

3.4.3 Policy networks

Primary policy πθ

We use a deep convolutional neural network that has five convolutional layers followed by a set

of fully-connected layers. This convolutional network takes as input a pixel-level image ಎom a

ಎont-facing camera. It predicts the angle of the steering wheel ([−1, 1]) and whether to brake
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Input - 3×160×72
Conv1 - 64×3×3

Max Pooling - 2× 2

Conv2 - 64×3×3
Max Pooling - 2× 2

Conv3 - 64×3×3
Max Pooling - 2× 2

Conv4 - 64×3×3
Max Pooling - 2× 2

Conv5 - 128×5×5

FC-2 FC-2 FC-2 FC-2 FC-2 FC-64 FC-1 FC-1 FC-1 FC-1 FC-1FC-2 FC-1
Ill Ilr Icl Icm Icr Ib Sc Dcl Dcm Dcr Pc Ac

Table 3.1: Configuration of a primary policy network. Each convolutional layer is denoted by
“Conv - # channels × height × width”. Max pooling without overlap follows each convolutional
layer. We use rectified linear units for point-wise nonlinearities. Only the shaded part of the full
network is used during tests.

({0, 1}). Furthermore, the network predicts as an auxiliary task the car’s affordances, including

the existence of a lane to the leಏ or right and the existence of another car to the leಏ, right, or

in ಎont of the car. We have found this multi-task approach to easily outperform a single-task

network, confirming the promise of multi-task learning ಎom (Caruana, 1997). The details of the

convolutional neural network are shown in Table ⒊1.

Safety classifier csafe

We use a feed-forward network to implement a safety classifier. The activation of the primary

policy network’s last hidden convolutional layer is fed through two fully-connected layers followed

by a soಏmax layer with two categories corresponding to 0 and 1. We choose τ = 0.0025 as our

safety classifier threshold so that approximately 20% of initial training examples are considered
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Figure 3.3: The histogram of the log square errors of the steering angle aಏer supervised learning
only. The dashed line is located at τ = 0.0025. 77.70% of the training examples are considered
safe.

unsafe, as shown in Fig. ⒊3.

In Fig. ⒊4, we present twenty sample ಎames. The top ten ಎames were considered safe (0) by a

trained safety classifier, while the bottom ones were considered unsafe ⑴. At this point, it seems

that the safety classifier determines the safety of a current state observation based on two criteria:

⑴ the existence of other cars, and ⑵ whether entering a sharp curve.

3.4.4 Evaluation

Training and driving strategies

We mainly compare three training strategies; ⑴Supervised Learning, ⑵ DAgger (with βi =

Ii=0) and ⑶ SafeDAgger. For each training strategy, we evaluate trained policies with each of

two driving strategies: ⑴ naive and ⑵ safe.
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Safe ಎames

Unsafe ಎames

Figure 3.4: Sample image ಎames sorted according to a safety classifier trained on a primary policy
right aಏer the supervised learning stage. The number in each ಎame is the probability of the safety
classifier returning 1.

Evaluation metrics

We evaluate each combination by letting it drive up to three laps on the three test tracks . All runs

are repeated under two conditions, with and without traffic, while recording three metrics. The

first metric is the number of completed laps in which the car did not go outside the track, averaged

over all three tracks. When a car drives out of the track, we immediately halt. Second, we look at

the damage accumulated while driving. Damage occurs each time the car bumps into another car.

Instead of a raw, accumulated damage level, we report the damage per lap. Lastly, we report the

mean squared error of steering angle, computed while the primary policy drives.
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Figure 3.5: ⒜ Average number of laps (↑), ⒝ damage per lap (↓), ⒞ the mean squared error
of steering angle for each configuration (training strategy–driving strategy) over each iteration and
⒟ the portion of time driven by the reference policy during testing. We use dashed and solid
curves for the cases with and without traffic, respectively.
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3.5 Results and analysis

In Fig. ⒊5, we present the results in terms of both average laps and damage per lap. The first

thing we notice is that a primary policy trained using supervised learning alone (the 0-th iteration)

works perfectly when used in tandem with a safety classifier. The safety classifier switched to the

reference policy for ⒎11% and ⒑81% of the time without and with traffic during the test.

Second, in terms of both metrics, the primary policy trained with the proposed SafeDAgger

makes much faster progress than the original DAgger. Aಏer the third iteration, the primary policy

trained with SafeDAgger is perfect. We coǌecture that this is due to the automated curriculum

learning effect. Furthermore, the examination of the mean squared difference between the primary

policy and the reference policy reveals that SafeDAgger brings the primary policy closer to the

reference policy more rapidly.

As a baseline, we show the performance of a primary policy trained using purely supervised

learning in Fig. ⒊5⒜–⒝. The performance clearly illustrates that supervised learning alone can-

not train a primary policy well even when an increasing number of training examples are presented.

In Fig. ⒊5⒟, we observe that the portion of time the safety classifier switches to the reference

policy while driving decreases as the SafeDAgger iteration progresses. We coǌecture that this

happens because SafeDAgger encourages the primary policy’s learning to focus on those cases

deemed difficult by the safety classifier. When the primary policy was trained with the original

DAgger (which does not take into account the difficulty of each collected state), the rate of decrease

was much smaller. Essentially, using the safety classifier and SafeDAgger together results in a

virtuous cycle of fewer and fewer queries to the reference policy during both training and testing.

Lastly, we conduct one additional run with SafeDAgger while training a safety classifier to
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predict the deviation of a primary policy ಎom the reference policy one second in advance. We

observe a similar trend, which makes the SafeDAgger a realistic algorithm for deployment in

practice.

3.6 Summary

In this chapter, we have proposed an extension of DAgger, called SafeDAgger, which allows a

primary policy to learn without catastrophic experience. We first introduced a safety classifier that

prevents a primary policy ಎom falling into a dangerous state by automatically switching between it

and the reference policy without querying the reference policy. This safety classifier is used during

data collection stages in the proposed SafeDAgger, which can collect a set of progressively difficult

examples while minimizing the number of queries to the reference policy. Extensive experiments

with simulated autonomous driving showed that SafeDAgger not only queries the reference policy

less but also trains the primary policy more efficiently.
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4
Variational Mixture Density Networks

As illustrated in the previous chapter, the goal of imitation learning is to train a primary policy

to mimic expert demonstrations without access to an explicit reward signal. Expert demonstra-

tions provided by humans, however, oಏen show significant variability due to latent factors such as

different driving preferences of different human drivers. It is also the case that the same person

may make different choices when encountering similar situations. For example, in an overtaking
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scenario, a human driver can choose to pass via either the leಏ or the right lane. A model trained

by minimizing the square errors between such expert actions and predicted actions may drive the

car into a dangerous situation at test time. In the example of overtaking shown in Fig. ⒋1, the

model trained in such way outputs actions that will cause the car to crash into the vehicle ahead.

Steering

Figure 4.1: The uncertainty of driving actions in an overtaking scenario: the car can pass the
vehicle ahead either on the leಏ or the right. The average of these two actions, which would be
learned by a model πθ(s) trained to minimize the square errors of driving actions between expert
demonstrations and model predictions, will cause the car to crash into the vehicle ahead.

In this chapter, we will introduce a proposed approach, variational mixture density networks

(VMDN) with a categorical latent variable to address the expert demonstration uncertainty issue.

Our experiences with this method show that it can not only mimic expert demonstrations but also

capture their underlying latent structure.
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4.1 Mixture density networks

Before introducing our proposed variational mixture density network, we will first discuss how to

address this driving actions uncertainty issue by learning the conditional probability distribution of

driving actions with a Gaussian Mixture Model (GMM) using Mixture Density Networks (MDN)

(Bishop, 1994). The mixture density networks (Bishop, 1994) is defined as the weighted sum of a

number of component densities. The component densities are chosen ಎom a particular parametric

class of densities, such as Gaussian, which is considered to model the data distribution in hand. A

k components mixture density network is defined as:

p(y; θ) =
K∑
k=1

πkp(y; θk), (⒋1)

where p(y; θk) is denoted as the k-th component density and θk represents the density pa-

rameters. We use πk to denote the weight for the k-th component in the mixture densities. The

weights πk can be viewed as the probability p(k) that a data sample will be drawn ಎom the com-

ponent k, which must satis௫ the following properties: ⒤ πk ∈ [0, 1], (ii)
∑K

k=1 πk = 1. θ

contains all parameters {θ1, ..., θk, π1, ..., πK}.

Supposing we use Gaussian components, the mixture density network for approximating the

conditional distribution p(a|s) is defined as:

p(a|s) =
K∑
k=1

πk(s)N (a|µk(s), diag(σ2
k(s))), (⒋2)
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s is the state, which is usually represented as sensor inputs, and a is the driving action.
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Figure 4.2: Gaussian mixture model with three components. The red curve shows the mixture
densities.

4.1.1 Model approach

We can use the outputs of a conventional neural network to govern the parameters of the Gaussian

mixture model. The output unit activations of the network are denoted as a = {aπ,aµ,aσ}.

If there are K components, the output unit activations can be viewed as a group of: aπk that

determines the coefficients πk(s), aσk that determines the variances σk(s), and aµk that determines

the means µk(s).
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The constraints for the mixing coefficients can be achieved using soಏmax outputs:

πk(s) =
exp(aπk)∑K
l=1 exp(a

π
l )

(⒋3)

The variances must satis௫ σk ≥ 0 and can be represented using the exponentials of the acti-

vations aσk

σk(s) = exp(σσ
k ) (⒋4)

Finally, as there are no constraints on the means µk(x), we just represent them with the

network output activations:

µk(s) = aµk (⒋5)

The mixture density network, which contains the parameters denoted asw, is trained to min-

imize the negative logarithm of the conditional likelihood of correct driving commands a∗i :

L(w) = −
N∑

n=1

log

{
K∑
k=1

πk(sn,w)N (a∗n|µk(an,w), σk(an,w))

}
(⒋6)

The model architecture for the mixture density network is shown in Fig. ⒋3

Then we can train this mixture network with the stochastic gradient descent (SGD) method.
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4.1.2 Inference

In order to let the model drive the vehicle, we need to generate the driving action a. One method is

to find the most likely solutions based on the conditional density function p(a|sn), which can be

predicted by a trained mixture density network given the sensor inputs s. However, this method

requires expensive numerical iteration, which is not suitable for real-time driving tasks. Another

method, one of the simplest, is to calculate the conditional average of driving commands. This is

given by:

E[a|s] =
K∑
i=1

πk(s)µk(s)

However, as we discussed at the beginning of this chapter, the conditional distribution for the

driving model is supposed to be a multimodal distribution. We cannot directly use the average of

valid driving actions because that average is not necessarily itself a valid driving action and may lead

to a dangerous situation.
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A simple alternative method is to first select the component with the largest mixing coefficient,

then select the mean of the selected component.

â = µ(s, k̂),where k̂ = argmax
k

πk(s)

This is clearly suboptimal, but can be computed efficiently during the test time.

Limitations

Before moving on to the proposed variational mixture density network, it is worth discussing

the limitation of the mixture density networks. We observe that the presence of the summation

over the number of components k appears inside the logarithm in the MDN loss function ⒋6.

By maximizing the logarithm likelihood of conditional probability p(a|s), one component of the

GMMmay ‘collapse‘ on a particular sample, which causes the logarithm likelihood to go to infinity

(Bishop, 2006, p.434). In addition, there is an issue of numerical instability when training a mixture

density network, for example arithmetic underflow, which has been discussed by many researchers

(Almahairi, 2014; Bonnett, 2016). A number of tricks such as gradient clipping and variance

clipping need to be used to stabilize the training process (Guillaumes, 2017). Conversely, instead

of directly maximizing the logarithm likelihood, we can maximize the variational lower bound on

the logarithm likelihood. By doing so, we will show that the logarithm function acts directly on

the Gaussian, which avoids the numerical instability issue.
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4.2 Variational mixture density networks

Before introducing our proposed variational mixture density network, we first discuss the varia-

tional inference ಎamework.

4.2.1 Variational inference framework

For any given choice of a distribution q(z) defined over the latent variable z, the following decom-

position of p(a|s) holds:

log p(a|s) = LELBO(q) +DKL(q(z)||p(z|s, a)) (⒋7)

where we have:

LELBO(q) =
∑
z

q(z) log{p(a, z|s)
q(z)

} (⒋8)

DKL(q||p) = −
∑
z

q(z) log{p(z|s, a)
q(z)

} (⒋9)

LELBO is oಏen called the variational lower bound or evidence lower bound. Since the Kullback–

Leibler divergence DKL(q||p) ≥ 0, it follows that log p(a|s) ≥ LELBO. Maximizing the vari-

ational variational lower bound LELBO will allow us to maximize the likelihood function. The

variational lower bound LELBO can be further decomposed as:
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LELBO =
∑
z

q(z) log{p(a, z|s)
q(z)

}

= Eq(z)[log p(a|s, z)]−DKL(q(z)||p(z|s))

=
∑
z

q(z) log p(a|s, z)−DKL(q(z)||p(z|s))

Relative to the likelihood in the MDN loss function Eq. ⒋6, the summation over the compo-

nents k and the logarithm have been interchanged. Now we can use the neural network to govern

the parameters of the prior distribution q(z|s), the approximated posterior distribution q(z), and

the conditional distribution p(a|s, z).

4.2.2 Variational mixture density networks

In our proposed variational mixture density network, we use a discrete variable Z ∈ {1, . . . , K}

as the latent variable. We then use a neural network α(s) to model the conditional prior over the

latent variable:

p(z|s) = Categorical(α1(s), . . . , αK(s)),

and use another neural network β(s, a) to approximate a conditional posterior over the latent

variable:

q(z|s, a) = Categorical(β1(s, a), . . . , βK(s, a)).
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The likelihood function is then defined as

p(a|s, z) = N (a|µ(s, z), diag(σ2(s, z))).

We can then write the variational lower bound to be the marginal, conditional log-probability

of a given s as

L(s, a) = Ep(z|s,a)[log p(a|s, z)]− DKL(q(z|s, a)∥p(z|s))

If we fix the variances in the likelihood function to be constant σ2(s, z) = Const, then the

mean µ(s, z) can be viewed as our primary policy for predicting driving commands πθ(s, z =

k) = µ(s, z = k) and the variational lower bound can be rewritten as:

L(s, a) = Ep(z|s,a)[−∥πθ(s, z)− a∥2]− δDKL(q(z|s, a)∥p(z|s)) (⒋10)

The first term represents the expectation of prediction loss over the latent variable z. The

hyper-parameter δ represents the trade-off between minimizing action prediction error and fitting

the prior.

4.2.3 Inference for driving

Based on the method of inferring the latent variable Z ∈ {1, . . . , K}, we have two strategies

by which to apply a trained variational mixture density network to driving. First, we can select
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the latent code k by maximizing the learned prior k̂ = argmaxk α(s, z = k), then predict the

driving action using â = πθ(s, z = k̂) at each time step t. Alternatively, we can manually set

the latent variable z at test time to achieve different driving behaviors. This second strategy comes

ಎom our intuition for the latent variable. The latent variable z can be viewed as a high-level driving

command such as ”change into the leಏ lane.”

4.2.4 Model architecture

We use three convolutional neural networks α(s), β(s), π(x, z) to model the three parts p(z|s),

p(z|s, a), and µ(s, z). The ಎames ಎom sensor inputs are first encoded via a feed-forward convo-

lutional neural network, which is shared across all three parts of the model. The model architecture

is shown in Fig. ⒋4.

4.2.5 Discussion

The mixture density network can also be viewed as a model with a latent variable. One can

think of mixture density as modelling a process in which first a component k is selected ac-

cording to the multinomial distribution p(k) = {π1, ..., πK}, and then a sample is drawn

ಎom the corresponding component density p(a|µk(s), sigmak(s)). The component density

p(a|µk(s), sigmak(s)) can be viewed as a conditional distribution p(a|s, k). Thus, the marginal

probability p(a|s) is given by p(a|s) =
∑K

k=1 p(a|s, k)p(k). We can think of the component

k a latent variable: only action a is observed, and the information in k is missing.

Unlike in MDN, our proposed VMDN model addresses the difficulty in maximizing the like-

lihood function p(a|s) by maximizing the variational lower bound. By doing so, we can have the

logarithm appear inside the summation over the components k. The VMDN loss function can
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Figure 4.4: Model architecture for the variational mixture density network. The sensor input
encoder is shared across all three parts. We use one hot encoding for the latent variable z as the
input of the policy network π(s, z).

be explained by two terms: the expectation of prediction loss and the KL-divergence term, which

prevents z ಎom just copying the information of the ground truth actions a.

4.3 Experiments

We evaluate our proposed model in the racing game TORCS, described in Chapter ⒊ For this

evaluation, we alter the reference policy to perform lane changes randomly; in other words, the

car driven by the controller is tasked with lane following, and randomly changes lanes while doing

so. In this scenario, there are three different driving tasks: 1) following the lane, 2) changing

lane to the leಏ, and 3) changing lane to the right. Our goal is to have VMDN capture these
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three separate modes ಎom expert demonstrations without any additional supervision signals. We

follow the same data collection process as discussed in Chapter ⒊ The model inputs xT :0 are the

past T -ಎame images captured by a ಎont-facing camera mounted on the racing car in the game at

time step t0. The model outputs y0:P are the P -ಎame future driving commands. The encoder

is a five-layer CNN that outputs a flattened 64-dimensional vector as the sensor feature. In the

prediction model, the latent variable encoded as one hot vector is first fed to a network with three

fully-connected layers, then is concatenated with the sensor feature.

We train all models with the ADAM optimizer and learning rate η = 0.0002. For the varia-

tional mixture density work, we set δ = 1e− 3.

4.3.1 Mean square error of driving commands

We first evaluate the performance of the deterministic model using Gaussian regression, mixture

density network (MDN) and proposed variational mixture density network (VMDN) by comparing

the mean square error (MSE) between the ground-truth driving commands and model predictions.

In the case of mixture density network, we have two inference strategies:

⒈ Greedy inference: â = µk̂(s), where k̂ = argmaxk πk(s).

⒉ Best MSE inference: â = µk̂(s), where k̂ = argminkMSE(µk(s), a
∗), a∗ is the ground-

truth action given by the expert demonstrations.

In the case of variational mixture density network, we have three inference strategies:

⒈ Greedy inference: â = π(s, ẑ), where ẑ = argmaxk αk(s)

⒉ Best MSE inference: â = π(s, ẑ), where ẑ = argminkMSE(G(s, zk), a
∗)
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⒊ Max posterior inference: â = π(s, ẑ), where ẑ = argmaxk βk(s, a)

When comparing these networks with the baseline model Gaussian regression, we only use the

greedy inferenceMSE results. Tab. ⒋1 shows that bothMDN and VMDN outperform the baseline

model and that VMDN performs best overall. We additionally used the best MSE inference to

compare model performance when choosing the best k.

Inference Deterministic MDN VMDN
Greedy 0.0124 0.0097 0.0021

Best MSE - 0.0064 0.0010
Max posterior - - 0.0011

Table 4.1: Mean square error of steering determined through different inference strategies.

4.3.2 Driving trajectory visualization

To show that our proposed model can learn the underlying latent structure of expert demon-

strations, we determine driving trajectories in the context of different latent codes. We calculate

the driving trajectory by simulating the actions that would occur if we executed the sequence of

predicted diving commands ak = π(s, zk).

In Fig. ⒋6, we show that our proposed model can distinguish the three driving tasks. The

prior distribution given by α(s) represents confidence in the corresponding latent code.

4.3.3 In game evaluation

We let the trained VMDN model drive the racing car in TORCS. When manually setting the

latent variable z ∈ {1, 2, 3}, the car can achieve all three driving tasks. Fig. ⒋7 shows the sensor
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Figure 4.5: Driving trajectory: For each time step, we assume the moving distance in the y
direction is a constant dy. ϕt denotes the angle between the lane direction and heading of the
vehicle at time step t. The position of the vehicle coordinate (xt, yt) is calculated by yt = yt−1+dy
and xt = xt−1 + dy tanϕt−1.
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Figure 4.6: Visualization of various driving trajectories based on the different latent variables zk.
The top row shows the image ಎames of the sensor input. The second row shows the corresponding
human driving trajectories. The third row shows the various driving trajectories based on different
latent codes. The last row shows the learned prior distribution p(z|s). This figure empirically
illustrates that the three dimensional latent variable z1:3 can be viewed as a set of high-level driving
commands, which are lane following, leಏ lane changing, right lane changing.
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Left lane change
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Right lane change

Figure 4.7: Screenshot of sensor inputs for VMDN evaluation in TORCS, illustrating that the
driving behavior of the car driven by the trained model can be controlled by the latent variable.

inputs for the VMDN in the three driving tasks when given different latent variables.

4.4 Summary

In this chapter, we introduce a variational mixture density model with a categorical latent variable to

address the uncertainty issues of driving actions for learning an end-to-end driving model. Learn-

ing these latent variables does not require any direct supervision signals beyond expert demon-

strations. Our experimental results in the TORCS simulator show that VMDN can automatically

distinguish certain human driving tasks such as lane following and lane changing. The latent

variable can be used as a high-level driving command to perform different driving tasks.

66



5
Driving Simulation for End-to-end

Autonomous Driving

With the boom of researches in autonomous driving, there is also a growing need for driving

simulators to train models and evaluate the driving performances. It is true that an ideal evaluation

is to let the trained vehicle drive on the real roads. However, it is impractical for most research
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groups as testing in a physical environment requires significant funds and human resources to build

the inಎastructure and manage the requisite hundreds of cars. As a result, many researchers choose

to use simulation tools when developing and evaluating algorithms in the field of autonomous

driving. There are some distinct advantages to using simulation tools for autonomous driving:

• Cheap and unlimited simulated dataDriving simulators like racing games can generate unlim-

ited quantities of synthetic data extremely quickly and without much engineering overhead.

Multiple simulators can also be run simultaneously, allowing for parallelization that is not

usually feasible in a real-world environment.

• Low risk and rapid prototyping This is especially important for autonomous driving, as it is

necessary to evaluate risk by testing extensively in a simulator before letting a model drive

on the road. Companies take the safety of on-road test driving very seriously, and require

drivers to be trained to operate an autonomous vehicle. In a simulator, we can quickly try

new models without worrying about damage to the environment or a vehicle.

• Reproducible experiments In the real world, it is impossible to reproduce a particular ex-

periment, as the environment changes in ways we cannot control. In a simulator, we can

easily run experiments under identical driving conditions to debug or compare different

algorithms.

In this chapter, we will first discuss the driving simulators that have been widely used in aca-

demic researches, and then we will introduce the ಎamework of the simulator SEEL we designed

to support training and evaluation of the end-to-end autonomous driving systems in video games.

Finally, we will demonstrate one example that utilizes the simulator to train and test a model to

drive a truck following a navigation map in a video game. By using the navigation map as an
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Figure 5.1: Schematic of the simulator used in autonomous driving research.

additional input, the trained model can make turns at intersections or exit highways according to

the map instructions.

5.1 Simulator for autonomous driving research

The driving simulator used in most autonomous driving researches is a driving game engine with all

necessary interfaces for autonomous driving. This game engine is usually built upon many soಏware

modules that render the scene to be driven through and simulate driving by taking commands ಎom

device inputs. Interfaces are used to capture sensor inputs, obtain model outputs, and to apply those

outputs as device inputs in order to control the vehicle in the game engine.

The extant driving simulators used in research have been developed either by hacking or mod-

i௫ing a particular computer game or building an engine ಎom scratch. When using a computer

game platform, most such are racing games because their driving scenarios are relatively simple

and the games are easily modified. For instance, the racing-style simulators Super Tux Kar, The

Open Racing Car Simulator (TORCS), and World Rally Championship 6 (WRC6) are widely used

as simulators in imitation learning and reinforcement learning (Ross et al., 2010; Chen et al.,

2015; Zhang and Cho, 2017; Perot et al., 2017). However, while these racing-style simulators
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Figure 5.2: Screenshots of representative racing simulators: Super Tux Kar (top-leಏ), TORCS
(top-right),WRC6 (bottom-leಏ), and Udacity’s Self-Driving Car Simulator (bottom-right).

have the advantage of simplicity, they are far ಎom approximating real driving scenarios; they are

characterized by non-realistic rendering, monotonous landscapes, and limited driving tasks. Mak-

ing modifications to these aspects is a game-specific and time-consuming process. For example,

in order to modi௫ an open-source game like TORCS to serve as a driving simulator, we generally

need to go through the whole design document to understand the code ಎamework, then dive into

the source code to hack specific parts. Sometimes it is necessary to manually generate data for

rendering, such as textures, tracks, and terrains. This time-consuming work must be done for

every game to be used as a driving simulator.

In contrast, simulators built ಎom scratch, such as CARLA: An Open Urban Driving Simula-

tor(Dosovitskiy et al., 2017) and Udacity’s Self-Driving Car Simulator(Udacity, 2017), are designed

70



ಎom the ground up for autonomous driving research. Therefore, the interfaces for training and

evaluating models in the game are well defined. However, these simulators are still game-specific

and offer limited driving environment content. Building a realistic game simulator ಎom scratch

is usually not economically feasible for research groups. Instead of doing so, we can use existing

realistic driving games such as Grand The঒ Auto V * and American Truck Simulator† as the simula-

tor engine and build the necessary interface for autonomous driving research. One such universal

interface is SEEL (Simulator for End-to-end Learning), which was implemented in Python and

designed to unite the game engine with a general interface for sensor capture and controller sim-

ulation. SEEL does not rely on any particular game engine, which gives researchers the ಎeedom

to work with any video games that run under Linux, including non-driving games.

5.2 Framework of the simulator

SEEL provides a simple interface between a video game and a model that needs to interact with

the video game. Its implementation includes functions to capture sensor inputs ಎom a screenshot

of the video game and to generate control signals and emulate virtual devices such as a joystick for

controlling the game. We implemented SEEL in a multi-processed environment in which modules

including a game, player, controller, and recorder were sub-processes of SEEL, allowing us to run

SEEL alongside a video game in real time. Communication between these processes occurs via

queue data structures so that the program itself is ಎee ಎom the burden of synchronization. Data

such as sensor inputs, control signals, and other customized information such as the speed of the

truck are collected at each time step as the state of the simulator. We can generate a data set by
*http://www.rockstargames.com/V
†http://americantrucksimulator.com
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Figure 5.3: Block diagram of the simulator ಎamework. The simulator state, including sensor
inputs and control signals, is shared across all modules and updated at each time step.

recording this state data ಎame by ಎame and displaying them in the user interface of the simulator.

Game module. The game module is a game resource interface that can be accessed by a model

through SEEL. Game resources include information ಎom game windows, sensor inputs, and game

utilities such as pause and resume game. Sensor inputs are generated ಎom screenshots of the game

windows and displayed in the SEEL user interface. One challenge in the development of the game

module was reducing the latency of screen capturing and producing sensor inputs while running

at a stable ಎamerate. The ಎamerate of the sequence of sensor inputs in the simulation must match

that used to train the model, making it critical to run the simulator in real time with multi-ಎame

sensor inputs.

Player module. The player module contains different virtual players who generate play commands

such as steering angles, thereby playing games while observing the sensor inputs. These play

commands are generated based on either model outputs (model player) or physical device outputs

(human player).

Controller module. The controller module is designed to emulate a standard game control device
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Figure 5.4: Simulator interface.

such as a keyboard, mouse, joystick, or steering wheel. It generates control signals ಎom player

commands by following a customized control strategy. Using the controller module, we can switch

between model and human players to control, or we can even generate control signals by mixing

driving commands ಎom all players according to a pre-defined strategy. This allows us to efficiently

perform imitation learning, in which we need to switch between different policies ಎequently.

User interface. The user interface is designed to provide a convenient means for controlling the

simulator, visualizing simulator state, and modi௫ing the configuration.
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5.3 End-to-end driving using navigation map

In this section, we start by discussing the limitations of previous driving systems and then introduce

an end-to-end driving system that uses a navigation map. We use SEEL in coǌunction with the

video game American Truck Simulator ‡ to train and evaluate the proposed model.

5.3.1 Navigation commands for urban driving

The previous chapters described how to train a model to drive using end-to-end learning methods.

However, these autonomous driving systems are limited to simple driving tasks such as lane follow-

ing and lane changing, and the optimal actions were inferred ಎom perceptual inputs alone. What

happens if a car approaches an intersection? The sensor inputs ಎom cameras are not sufficient to

decide turns. High-level navigation commands such as make a le঒ turn at the next intersection are

needed to achieve fully autonomous driving, but are lacking in the existing implementations of an

end-to-end learning system. In other words, the inputs for the end-to-end driving system need to

include both perceptual inputs and navigation commands. How can these navigation commands be

generated? One method is to first define a set of high-level navigation commands such as leಏ turn,

right turn, or go straight, then ask human to label them for all cases in which we need to make

a choice. In short, this is like driving to the destination by following a list of driving directions.

Such manual labeling is time-consuming, and sometimes complicated because it is challenging to

generate simple navigation commands when we face complex intersections.
‡American Truck Simulator is a vehicle simulation game developed by the Czech company SCS Soಏware. In the

game, players drive trucks and deliver trailer-moved goods to a designated location to earn money. The game is set
in an abridged 1:20 scale version of the western United States, which makes it a realistic environment for testing an
autonomous driving system.
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Figure 5.5: Samples of complex intersections based on actual intersections(of City Transporta-
tion Officials, 2019). These irregular intersections, which result ಎom successive urban develop-
ments, make for difficult-to-describe navigation commands.

Instead of using a set of manually-defined navigation commands, we propose to use the navi-

gation map itself as an additional input for the end-to-end learning system. A navigation map can

usually be generated automatically with the vehicle’s Global Positioning System (GPS) signal and

dynamic routing service. Using the map naturally resolves the complex-intersection issue because

geometry information is encoded in the street map.

5.3.2 Model architecture

In order to drive by following a navigation map, the model needs to take both sensor inputs and

navigation map as inputs for the prediction of driving commands. The model is a feed-forward

convolutional neural network, which contains two types of encoders corresponding to the video

ಎames captured ಎom cameras and the navigation maps:

⒈ Sensor-input encoder Ec(Xt−k:t): the sensor inputs Xt−k:t contain a sequence of video

ಎames captured ಎom multiple cameras in American Truck Simulator. The encoder Ec, a

feed-forward convolutional network, takes these ಎames as inputs for generating the feature

map. The lower-level convolutional layers are shared across different camera inputs and

different time steps.
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Figure 5.6: Model architecture for end-to-end learning using a navigation map.

⒉ Map encoder Em(Mt): Mt is the navigation map at time step t. Please note that, unlike

with the multi-ಎame camera inputs, we only provide a navigation map for a single time

step becauseMt should contain enough navigating information. We also add some random

noise to the time step t during training. We want the navigation map to provide rough

guidance, like ”make a leಏ turn,” instead of precise detail as in ”turn the steering wheel two

degrees to the leಏ in 40 milliseconds.” In other words, we want the driving system to be

more reliant on the camera inputs. In reality, a GPS map is quite noisy, and furthermore it

is not interesting to train a model to drive while relying heavily on a precise navigation map.

The outputs of the camera-ಎame encoder Ec and the map encoder Em are concatenated and fed

to the output network, which is a neural network with several fully-connected layers, in order to

predict the driving commands at, including steering angle, brake, and acceleration. The details of

the model architecture are shown in Fig. ⒌6.

We defined the per-sample loss function as the mean square loss between the predicted driving
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commands â and human driving commands a.

L(â,a) = ∥â− a∥2 (⒌1)

5.3.3 Experiments

Data collection

We use a Logitech G27 § to control the truck in ATS because it resembles the physical driving

experience. The driving mode in the game is set to use an automatic transmission in order to

simpli௫ operation and remove the need for the model to learn to control both clutch and shiಏer for

acceleration, as this is not the main interest of our work. We collected training data by manually

driving the truck using G27 controller in ATS to randomly-selected destinations following the

navigation map provided in-game. The setup for data collection is shown in Fig. ⒌7

We collected data for a diverse set of traffic, lighting, surrounding environment, and weather

conditions. Fig. ⒌8 shows some samples ಎom our data set. Most scenarios in the data set con-

cern highway driving, but some feature urban driving, including traffic lights and all kinds of

intersections.

While driving, SEEL runs in the background to collect screenshots and control signals, which

are the steering angle and acceleration captured ಎom the G27 controller. At each time step, the

sensor inputs consist of three RGB video ಎames captured ಎom one ಎont-facing camera and two

rear-facing cameras. The ಎont-facing camera covers the ಎont-view vision context. The two rear-

facing cameras mounted on the leಏ and right side of the truck cover side vision context, and provide
§The Logitech G27 is an electronic steering wheel designed for a driving simulator game. It consists of a steering

wheel, a set of stainless steel pedals for braking, acceleration, and clutch, and a shiಏer unit.
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G27 controller

Game screenshotDriving routes

Figure 5.7: Setup for data collection in American Truck Simulator.

the necessary side view information when making turns or lane changes. The navigation map is

provided by ATS. Fig. ⒌9 shows a sample of the sensor inputs and navigation map.

Model training and results

The detailed model architecture is shown in Fig. ⒌10. Our proposed model consists of three parts:

1) a sensor-input encoder, 2) a map encoder, and 3) a join net. The sensor-input encoder contains

a camera shared net and a camera feature net. Within the camera shared net, the weights of the

convolutional layers are shared across different camera inputs. Additionally, the camera shared net

has two kinds of sharing layers. The convolutional layers are shared for all ಎames across different

cameras and different time steps. Aಏer that, the ಎame features, the outputs of the ಎame net,

78



Figure 5.8: Representative data collected in ATS.

are concatenated along with different time steps and fed to the temporal net. The convolutional

layers within the temporal net are shared across different camera inputs, and output temporal

feature maps. All camera feature maps and the feature map generated ಎom the map encoder are

concatenated and fed to the join net. Finally, the outputs of the join net are the driving commands

used to control the truck.

The model is trained using the ADAM optimizer (Kingma and Ba, 2014) with mini-batches

of 40 samples and an initial learning rate of η = 0.0002. To evaluate the trained model, we use
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Center camera Navigation mapLeft camera Right camera

Figure 5.9: Representative sensor inputs and navigation map ಎom our dataset.

SEEL to let the trained model drive a truck in ATS while following the in-game navigation map.

The model can successfully make correct turns at intersections and when exiting highways.

Difficulties Although the model can follow the navigation map to a certain degree, we observe

that it is challenging to train a model to drive a truck in ATS. Some of the difficulties are as follows:

• The truck can crash and get stuck on objects that are not visible ಎom the camera inputs.

For example, the wheels of the truck can get stuck on the curb when making turns at

intersections. This happens even for a human driver, and can be hard to avoid.

• The speed control for the truck is complicated. More specifically, when given only the

camera inputs, it is difficult to train a model to control speed through the gas and brake

pedals accurately. For example, in order to stop before an intersection or exit a highway,

the truck needs to be slowed down in advance. The need to slow down is difficult to tell

ಎom the camera inputs. Even when keeping the truck driving at a certain speed, we need to

continuously adjust the gas and brake pedal according to the truck, road, weather, and traffic

conditions. As an alternative, we suggest training the model to predict the desired driving

speed and let the vehicle controller regulate the gas and brake to adhere to the desired speed.

• It is difficult to train a model to enter the correct lane before or aಏer making a turn at an
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intersection due to the limited camera view; there are no obvious clues such as lane markers

at intersections.

5.4 Summary

In this chapter, we introduced SEEL as an interface to support the development, training, and

evaluation of the end-to-end learning approaches for autonomous driving. By leveraging SEEL,

we can train and test models via end-to-end learning to drive a truck while following a navigation

map in American Truck Simulator. SEEL provided us with tools to capture and transform the

sensor inputs and to send control signals to a video game by emulating physical devices in the Linux

system. We hope that other researchers working on autonomous driving and artificial intelligence

will build upon this work and benefit ಎom using SEEL.
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6
Conclusion

During recent decades, researchers and industry leaders have mainly focused on developing au-

tonomous driving systems using a mediated perception approach, which includes perceiving and

analyzing the environment, localizing the ego-vehicle, and planning individual trajectories and

maneuvers. Although significant progress has been made towards building a fully autonomous

vehicle, many challenges remain unresolved. Notably, the mediated perception approach oಏen
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involves many manually-defined sub-tasks such as lane marker detection, traffic sign recognition,

and tracking of cars and pedestrians (Geiger et al., 2013). These individual sub-tasks themselves

remain open research questions, and their implementation can make autonomous driving systems

overcomplicated. Certain aspects of the information obtained ಎom these sub-tasks are necessary,

such as the distance ಎom the vehicle in ಎont, whereas other information is useful but unnecessary,

such as detailed semantic scene understanding or accurate depth map estimation. Furthermore,

these individual sub-tasks defined in the medicated perception approach remain to be open re-

search questions and can make the autonomous driving system overcomplicated. It is also standard

for autonomous vehicle systems to rely on accurate GPS positioning and prior information such as

a high-definition map. However, heavy reliance on prior information can lead a driving system to

suffer when handling novel situations that arise ಎom dynamic driving environments. For instance,

autonomous driving vehicles cannot localize themselves when on bridges due to the limited num-

ber of distinguishing landmarks, and therefore are unable to drive over bridges without human

intervention (Coren, 2018).

The end-to-end deep learning approach offers an alternative to continuously detecting and

classi௫ing objects and localizing the vehicle, as it directly maps sensor inputs to driving actions.

In this thesis, we explored such approaches for autonomous driving.

In Chapter 2, we demonstrated the potential of the end-to-end learning ಎamework by training

a deep neural network to do lane following, and furthermore achieved long-distance lane following

in a real-world environment without any human intervention. Our success consists of prior work,

which has inspired an increasing number of studies in this field over the past three years (Xu et al.,

2017; Codevilla et al., 2018; Chen et al., 2019).

In Chapter 3, we introduced SafeDAgger, a more general end-to-end learning approach for
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autonomous driving via query-efficient imitation learning. By using a safety classifier, SafeDAgger

queries the reference policy significantly less and therefore trains a primary policy more efficiently.

In Chapter 4, we introduced the use of variational mixture density networks (VMDNs) to model

the uncertainty in driving actions. We showed that a VMDN could automatically distinguish spe-

cific driving tasks such as following a lane or making a lane change. The latent variable introduced

in VMDN can be viewed as a high-level driving command. At test time, the latent variable can be

manually set to achieve different driving behaviors.

In Chapter 5, we introduced SEEL, a general simulator for end-to-end learning that supports

development, training, and evaluation for autonomous driving. SEEL provides tools for capturing

the sensor inputs ಎom driving video games and for control of the vehicle in-game by the trained

model. We demonstrate that a deep neural network trained using end-to-end learning can drive a

truck while following the navigation map in a video game.

6.1 Future work

Although many promising advances and technologies have been developed for autonomous driving,

industrial leaders such as Waymo acknowledge that present autonomous vehicle systems are not

yet robust to drive themselves under all conditions and that full autonomy may not be achieved

very soon. We hope that the end-to-end learning approach provides an interesting and promising

alternative to classical autonomous driving techniques. To conclude this thesis, there are several

avenues of future work we would like to highlight.
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6.1.1 Temporal information

In autonomous driving, it is essential to maintain the temporal consistency of driving actions.

Learning a model of driving actions ಎom individual video ಎames can produce inconsistent driving

actions, which may lead to dangerous situations. It is also necessary for autonomous driving to

predict and recognize the movements of surrounding objects such as pedestrians, which is especially

critical in the urban driving environment. By leveraging the temporal structure of sensor input

data, a model learned the motion of surrounding objects and predicted time-consistent driving

actions to ensure a smooth autonomous driving experience (Chi and Mu, 2017). In the field of

video prediction, there is much exciting research work being done that leverages the temporal

structure of video data (Denton et al., 2017; Denton and Fergus, 2018). The development of

end-to-end learning methods using temporal information may provide more robust and efficient

driving systems.

6.1.2 Predicting the future

Predicting scene dynamics is an important research topic in computer vision, especially for au-

tonomous driving. For instance, to achieve autonomous driving in urban scenarios, it is extremely

helpful to have accurate models for the dynamic surrounding environment that facilitate future

prediction and planning of the driving path ahead. There is some initial work in this area (Luc

et al., 2017; Henaff et al., 2019). Since scene dynamics can be learned using unsupervised learning,

this is a great way to utilize large amounts of unlabeled data such as video ಎames captured while

driving, and would benefit end-to-end learning approaches.
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6.1.3 Multi-task learning

The end-to-end learning approaches for autonomous driving introduced in this thesis predict driv-

ing commands such as steering angle, brake, and acceleration. While we focused on optimizing

this single task, we may have ignored information that might help the system perform even better,

specifically, information ಎom the training signals of highly related tasks such as predicting vehicle

speed or the presence of a car ahead within a certain distance. By sharing representations between

related tasks, we can train the driving model to produce better and more reliable generalizations.

Using multi-task learning for autonomous driving can combine the end-to-end learning approach

with the commonly-used mediated perception approach.
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