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Abstract

Contacts are essential to virtually every aspect of life and play a vital role in many physical

phenomena. Because of this, the study of contact mechanics has a deep wealth of knowledge.

Surprisingly, however, simulating contact is a challengewithmany parameters to carefully adjust.

Incorrect parameters can result in numerical explosions, intersections, and other failures. Our

research seeks to address these problems by developing robust methods that can handle arbitrary

scenarios with guaranteed success.

In this thesis, we introduce the Incremental Potential Contact (IPC) method. IPC is the first

simulation algorithm for deformable and rigid bodies that is unconditionally robust, requires

minimal parameter tuning, and provides a direct way of controlling the trade-off between running

time and accuracy. We further back up these claims by providing a large-scale benchmark of

continuous collision detection (CCD) algorithms (a core component of the IPC method) based

on their efficiency and correctness. As part of this study, we introduce the first efficient CCD

algorithm that is provably conservative. For extended accuracy and efficiency, we show how

nonlinear geometry and function spaces can be used within the IPC framework. Finally, we

introduce the first physically-based adaptive meshing strategy which produces more accurate

discretizations depending on elastic, contact, and frictional forces.

This work and our open-source implementations have quickly garnered attention from the

computer graphics, mechanical engineering, and biomechanical engineering communities for

their robustness and ability to seamlessly handle scenarios that have long been a challenge. This

vi



marks a large step towards democratizing simulation tools for design, robotics, biomechanical,

and visual effects applications, among others.
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1 | Introduction

Every day we interact and manipulate the world through touch. This simple act has become

so ingrained in our lives that we often take it for granted. However, the physical laws governing

this interaction are surprisingly complex. Underlying these interactions are numerous nonlinear

contact and frictional forces. Simulating these forces in a virtual environment has been the topic

of much research over the past 50 years [Ball 1981; Harmon et al. 2009; Kane et al. 1999; Kikuchi

and Oden 1988; Moreau 1973; Ortiz and Stainier 1999]. An ideal simulation algorithm for this

should be efficient, accurate, and robust. However, up to this point, no prior work has been able

to fully satisfy these criteria seamlessly. Existing methods often make trade-offs between accu-

racy and efficiency, or require extensive parameter tuning to achieve robustness. In this thesis,

we introduce the Incremental Potential Contact (IPC) method, which is the first simulation algo-

rithm for deformable and rigid bodies that is unconditionally robust, requires minimal parameter

tuning, and provides a direct way of controlling the trade-off between running time and accuracy.

Anecdotally, this line of work stems from an attempt to use existing simulation software to

test the viability of computer-aided designs by performing large sweeps over design parameters

(Figure 1.1). However, we quickly ran into difficulties with this approach as each change in design

would often lead to intersecting and infeasible results. This is because prior methods require per-

scene tuning of simulation parameters (see for example Figure 1.2). So while this area of research

was largely thought to be solved [Harmon et al. 2009], we show here that existing methods often

require user expertise and care to get viable results. In contrast, the methods proposed here aim

1



Figure 1.1: Shape optimization failure. Here we want to study the effects of link shape on the bend-
ability of a “chainmail” sleeve. We simulate the sleeve with two different link shapes as a collection
of rigid bodies in the Project Chrono physics engine [Tasora et al. 2016]. The simulation succeeds in
producing valid results for the first design (top row), but when we increase the size of the links outer plate
(middle row) we get intersections and eventually topological discontinuities (circled in red) as the links
pass through each other. To resolve these issues a user would have to manually adjust the simulation
parameters. This is impractical at large scale or for long-running simulations. In contrast, our work is able
to guarantee a feasible result independent of the geometry or loading conditions.

to be as parameter-free as possible, and, more importantly, the feasibility of results is wholly

independent of parameter choice.

We start by introducing the IPC algorithm in Chapter 2 in the context of nonlinear elasto-

dynamics. IPC maintains an intersection- and inversion-free trajectory regardless of material

parameters, time step sizes, impact velocities, severity of deformation, or boundary conditions

enforced. Constructed with a custom nonlinear solver, IPC enables efficient resolution of time-

stepping problemswith separate, user-exposed accuracy tolerances that allow independent speci-
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ℎ = 0.01 s ℎ = 0.001 s ℎ = 0.0001 s

Figure 1.2: Parameter tuning. Incorrect parameters can lead to intersections, jittering, or even numeri-
cal explosions. This necessitates per-scene parameter tuning. For example, here we try to stack five cubes
in the Project Chrono physics engine [Tasora et al. 2016] using a large timestep size (ℎ), but this results in
large intersections. When reducing the timestep size, the stack looks better but if we look closely (right)
we still have intersections (circled in red). We are only able to avoid intersections by using an even smaller
timestep size. Using a small timestep size works well on this example, but for more complicated examples
it can be challenging, if not impossible, to find a single set of parameters that works over all scenes. This
makes prior methods difficult to use at a large scale (e.g., reinforcement learning or shape optimization)
because each scene variation requires different parameters.

fication of the physical accuracy of the dynamics and the geometric accuracy of surface-to-surface

conformation. This enables users to decouple, as needed per application, desired accuracies for

a simulation’s dynamics and geometry. The resulting time stepper solves contact problems that

are intersection-free (and thus robust), inversion-free, efficient (at speeds comparable to or faster

than available methods that lack both convergence and feasibility), and accurate (solved to user-

specified accuracies). To our knowledge, this is the first implicit time-stepping method, across

both the engineering and graphics literature that can consistently enforce these guarantees as we

vary simulation parameters.

Additionally, we provide an extensive comparison of available simulation methods, research

libraries, and commercial codes in Appendix B. We confirm that available engineering and com-

puter graphics methods, while each succeeding admirably in custom-tuned regimes, often fail

with instabilities, egregious constraint violations, and/or inaccurate and implausible solutions,
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as we vary input materials, contact numbers, and timestep size. We also exercise IPC across a

wide range of existing and new benchmark tests and demonstrate its accurate solution over a

broad sweep of reasonable time-step sizes and beyond (up to ℎ = 2 s) across challenging large-

deformation, large-contact stress-test scenarios with meshes composed of up to 2.3M tetrahedra

and processing up to 498K contacts per time step. For applications requiring high accuracy, we

demonstrate tight convergence on all measures. While, for applications requiring lower accura-

cies, e.g. animation, we confirm IPC can ensure feasibility and plausibility even when specified

tolerances are lowered for efficiency.

As part of Chapter 2, we discuss the role continuous collision detection (CCD) plays in deter-

mining a safe step size. Initially investigated by Provot [1997], this topic has been addressed

by numerous authors. Some propose to ignore floating-point error entirely in favor of effi-

ciency [Provot 1997; Vouga et al. 2011] while others carefully account for these errors [Redon

et al. 2002a; Snyder 1992]. Brochu and Bridson [2009] and Tang et al. [2014], propose custom

tailored algorithms designed to “exactly” produce the correct Boolean answer to if objects col-

lide. However, we show in Chapter 3 that despite the widespread use of CCD algorithms, existing

algorithms are either: (1) correct but impractically slow, (2) efficient but incorrect, introducing

false negatives which will lead to interpenetration, or (3) correct but over-conservative, reporting

a large number of false positives which might lead to inaccuracies when integrated into a sim-

ulator. We do so by the introduction of a large-scale benchmark with an accompanying dataset

of symbolically calculated ground truth to over 60 million queries. We use the benchmark to

evaluate the accuracy, correctness, and efficiency of state-of-the-art CCD algorithms, both with

and without a minimum separation.

To close the gap between efficient and reliable methods, we introduce a new method that is

not only efficient but provably conservative. Additionally, this algorithm allows for an explicit

trade-off between runtime efficiency and the number of false positives reported.

We then extend the IPC algorithm to handle rigid bodies in Chapter 4. This marks the first
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implicit time-stepping algorithm for rigid body dynamics, with contact and friction, that guar-

antees intersection-free configurations at every time step. Importantly, our algorithm explicitly

models the curved trajectories traced by rigid bodies in both collision detection and response.

For collision detection, we propose a conservative narrow-phase collision detection algorithm

for curved trajectories, which reduces the problem to a sequence of linear CCD queries with

minimum separation (Chapter 3). We demonstrate the effectiveness of this method by introduc-

ing a benchmark for rigid body simulation and show that our approach, while less efficient than

alternatives, can robustly handle a wide array of complex scenes, which cannot be simulated with

competing methods, without requiring per-scene parameter tuning.

With the finite element method (FEM) (utilized in Chapter 2) there are two common ap-

proaches for increasing accuracy: 𝑝-refinment (i.e., utilizing high-order geometry and/or inter-

polatory bases) and ℎ-refinement (i.e., refining the mesh spatially). While these approaches are

directly applicable and well suited to elastic deformation [Hu et al. 2018; Manteaux et al. 2015;

Mitchell and McClain 2014; Schneider et al. 2019a, 2018], their application to contacting elas-

todynamics and in particular IPC remains an open problem. To address this we introduce two

methods.

First, we investigate the use of higher-order geometry (i.e., curved meshes) and functional

interpolations (i.e., nonlinear displacements) in Chapter 5. High-order bases provide major ad-

vantages over linear ones in terms of efficiency, as they provide (for the same physical model)

higher accuracy for the same running time, and reliability, as they are less affected by locking

artifacts and mesh quality. However, detecting and handling contact between curved surfaces

is computationally expensive negating any possible performance benefits. Thus, we show it is

possible to decouple the mesh used for elasticity from the surface mesh used for contact and fric-

tion. Our approach is based on the observation that each IPC optimization step used to minimize

the elasticity, contact, and friction potentials leads to linear trajectories even in the presence of

nonlinear meshes or nonlinear finite element (FE) bases. It is thus possible to retain the strong
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non-penetration guarantees and large time steps of the original formulation while benefiting

from the high-order bases and high-order geometry. We accomplish this by mapping displace-

ments and resulting contact forces between a linear collision proxy and the underlying high-order

representation.

Second, in Chapter 6 we explore the topic of adaptive meshing (AM) while preserving invari-

ants such as remaining intersection-free. We propose In-Timestep Remeshing, a fully coupled,

adaptive meshing algorithm for contacting elastodynamics where remeshing steps are tightly in-

tegrated, implicitly, within the timestep solve. Our algorithm refines and coarsens the domain

automatically by measuring physical energy changes within each ongoing timestep solve. This

provides consistent, degree-of-freedom-efficient, productive remeshing that, by construction, is

physics-aware and so avoids the errors, over-refinements, artifacts, per-example hand-tuning,

and instabilities commonly encountered when remeshing with timestepping methods. Our in-

timestep computation then ensures that each simulation step’s output is both a converged stable

solution on the updated mesh and a temporally consistent trajectory with respect to the model

and solution of the last timestep. At the same time, the output is guaranteed safe (intersection-

and inversion-free) across all operations. We demonstrate applications across a wide range of

extreme stress tests with challenging contacts, sharp geometries, extreme compressions, large

timesteps, and wide material stiffness ranges – all scenarios well-appreciated to challenge exist-

ing remeshing methods.

An important contribution in conjunction with the algorithmic designs discussed in this the-

sis is the continued development of several open-source libraries. Both within computer graph-

ics and beyond (e.g., biomechanics [Gholamalizadeh et al. 2022; Moshfeghifar et al. 2022] and

robotics [Kim et al. 2022]) we see the quick adoption and improvement of our work thanks in

large part to these libraries. This is despite there being widely used and long-standing commer-

cial (e.g., AnsysTM [Ansys, Inc. 2023], ABAQUSTM [Smith 2023], COMSOL [COMSOL Inc. 2022],

and Houdini [SideFX 2023]) and open-source (e.g., FEBio [Maas et al. 2012], FEniCS [Logg et al.
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2011], and SOFA [Faure et al. 2012]) alternatives. In turn, this highlights the impact potential of

this work.
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2 | Incremental Potential Contact:

Intersection- and Inversion-free

Large Deformation Dynamics

2.1 Introduction

Contact is ubiquitous and often unavoidable and yet modeling contacting systems continues

to stretch the limits of available computational tools. In part, this is due to the unique hurdles

posed by contact problems. Several intricately intertwined physical and geometric factors make

contact computations hard, especially in the presence of friction and nonlinear elasticity.

Real-world contact and friction forces are effectively discontinuous, immediately making the

time-stepping problems very stiff, especially if the contact constraints are enforced exactly. On

the other hand, even small violations of exact contact constraints (which are nonconvex) can

lead to impossible-to-untangle geometric configurations, with a direct impact on physical accu-

racy and stability. In addition, stiff contact forces often lead to extreme deformations, resulting

in element inversions for mesh-based discretization. Friction modeling then introduces further

challenges with asymmetric force coupling and rapid switching between sliding and sticking

modes.

In this work, our goal is to achieve very high robustness (by which we mean the absence
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Figure 2.1: Squeeze out. Incremental Potential Contact (IPC) enables high-rate time stepping, here
with ℎ = 0.01s, of extreme nonlinear elastodynamics with contact that is intersection- and inversion-free
at all time steps, irrespective of the degree of compression and contact. Here a plate compresses and
then forces a collection of complex soft elastic FE models (181K tetrahedra in total, with a neo-Hookean
material) through a thin, codimensional obstacle tube. The models are then compressed entirely together
forming a tight mush to fit through the gap and then once through they cleanly separate into a stable
pile.

of catastrophic failures or stagnation) for contact modeling even for the most challenging elas-

todynamic contact problems with friction. Robustness should be obtained independent of user-

controllable accuracy in time-stepping, spatial discretization and contact resolution, while main-

taining efficiency required to solve large-scale problems. At the same time we wish to also ensure

that all accuracies – across the board – are efficiently attainable (of course with additional cost)

when required.

With these goals in mind, we reexamine the contact problem formulation, discretization and

numerical methods from scratch, building on numerous ideas and observations from prior work.

Our Incremental Potential Contact (IPC) solver is constructed for mesh-based discretizations

of nonlinear volumetric elastodynamic problems supporting large nonlinear deformations, im-

plicit time-stepping with contact, friction and boundaries of arbitrary codimension (points, cur-

ves, surfaces, and volumes). A key principle we follow is that while the physics and shape can be

approximated arbitrarily coarsely, the geometric constraints (absence of intersections of the ap-
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proximate geometry and inversions of elements) are maintained exactly at all times. We achieve

this for essentially arbitrary target time steps and spatial discretization resolution.

The key element of our approach is the formulation of the contact problem and the customized

numerical method to solve it. As a starting point, we use an exact contact constraint formula-

tion, described in terms of an unsigned distance function, and rate-based maximal dissipation for

friction.

For every time step, we solve the discrete nonlinear contact problem with a given tolerance

using a smoothed barrier method, ensuring that the solution remains intersection-free at all inter-

mediate steps. We use a comparably smoothed, arbitrarily close, approximation to static friction,

also eliminating the need for an explicit Coulomb constraint, and cast friction forces at every time

step in a dissipative potential form, using an alternating lagged formulation. All forces can then

be solved by unconstrained minimization.

Our barrier formulation for contact has several important properties: 1) it is an almost ev-

erywhere 𝐶2 function of the unsigned distances between mesh elements, 𝐶1 continuous for a

measure-zero set of configurations; 2) its support is restricted to a small part of the configuration

space close to configurations with contact. The former property makes it possible to use rapidly

converging Newton-type unconstrained optimization methods to solve the barrier approxima-

tion of the problem, the latter ensures that additional contact forces are applied highly locally

and that only a small set of terms of the barrier function need to be computed explicitly during

optimization. Jointly they enable stable, conforming contact between geometries.

To guarantee a collision-free state at every time step, feasibility is maintained throughout all

nonlinear solver iterations: the line search in our customized Newton-based solver is augmented

with efficient, filtered CCD accelerated by a conservative CFL-type contact bound on line search

step sizes. Friction forces are resolved directly in the same solver via our lagged potential with

geometric accuracy improved by alternating updates.
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2.1.1 Contributions

In summary, IPC solves nonlinear elastodynamic trajectories that are intersection- and inver-

sion-free, efficient and accurate (solved to user-specified accuracies) while resolving collisions

with both nonsmooth and codimensional obstacles. To our knowledge, this is the first implicit

time-stepping method, across both the engineering and graphics literature, with these properties.

We demonstrate the efficacy of IPCwith stress tests containing large deformations, many con-

tact primitive pairs, large friction, tight collisions as well as sharp and codimensional obstacles.

Our technical contributions include

• A contact model based on the unsigned distance function;

• An almost everywhere 𝐶2, 𝐶1-continuous barrier formulation, approximating the contact

problem with arbitrary accuracy, with barrier support localized in the configuration space,

enabling efficient time-stepping;

• Contact-aware line search that continuously guarantees penetration-free descent steps wi-

th CCD evaluations accelerated by a conservative-bound contact-specific CFL-inspired fil-

ter;

• A new variational friction model with smoothed static friction, formulated as a lagged dis-

sipative potential, robustly resolving challenging frictional contact behaviors; and

• A new benchmark of simulation test sets with careful evaluation of constraint and time

stepping formulations along with an extensive evaluation of existing contact solvers.

2.2 Contact Model

We focus on solving numerical time-integration for nonlinear volumetric elastodynamicmod-

els with contact. These models can interact with fixed and moving obstacles which can be of
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arbitrary dimension (surfaces, curves and points). The simulation domain is discretized with fi-

nite elements. Given 𝑛 nodal positions, 𝑥 , finite-element mass matrix, 𝑀 , and a hyper-elastic

deformation energy, Ψ(𝑥), the contact problem extremizes the extended-value action

𝑆 (𝑥) =
∫ T

0

(1
2
¤𝑥⊤𝑀 ¤𝑥 − Ψ(𝑥) + 𝑥⊤(𝑓𝑒 + 𝑓𝑑)

)
𝑑𝑡 .

on an admissible set of trajectories A, which we discuss below. Here 𝑓𝑒 are external forces and 𝑓𝑑

are dissipative frictional forces. We assume, for simplicity, that all object geometry is discretized

with 𝑛-dimensional piecewise-linear elements, 𝑛 = 1, 2, 3.

Admissible trajectories. We construct a new definition of admissibility based on unsigned

distance functions that has a number of advantages. Most importantly, in the context of our work,

it naturally allows us to formulate exact contact constraints in terms of constraints on collisions

between pairs of primitives (triangles, vertices and edges), and can be defined in exactly the same

way for objects of any dimensions (points, curves, surfaces and volumes).

Specifically we define trajectories 𝑥 (𝑡), with 𝑥 ∈ R3𝑛 as intersection-free, if for all moments 𝑡 ,

𝑥 (𝑡) ensures that the distance 𝑑 (𝑝, 𝑞) between any distinct points 𝑝 and 𝑞 on the boundaries of

objects is positive. In the space of trajectories, the set of intersection-free trajectories forms an

open setA𝐼 , as it is defined by strict inequalities. Optimization problems may not have solutions

in this set; for this reason, we add the limit trajectories to it, which involve contact. Specifically,

we define the set of admissible trajectories A as the closure of A𝐼 . In other words, a trajectory is

admissible, if it is intersection-free, or there is an intersection-free trajectory arbitrarily close.

Note that this closure is not equivalent to replacing the constraint𝑑 (𝑝, 𝑞) > 0with𝑑 (𝑝, 𝑞) ≥ 0;

the latter is always satisfied for unsigned distances, so that all trajectories would be admissible.

This is not the case for our definition. Consider for example, a point moving towards a plane. If

its trajectory touches the plane and then turns back, an arbitrarily small perturbation makes it

intersection-free, and the trajectory is in A. However, if the trajectory crosses the plane small
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perturbations do not make it intersection-free. This highlights the need for our treatment even

in the volumetric setting as the boundaries of our mesh upon which we impose constraint are

exactly surfaces whose potential collisions include the point-face case above.

We can describeA𝐼 directly in terms of constraints on unsigned distances 𝑑 between surface

primitives (vertices, edges, and faces in the simulation surface mesh and domain boundaries).

We denote this set of mesh primitives T . Equivalently to the more general definition above,

a piecewise-linear trajectory 𝑥 (𝑡) starting in an intersection-free state 𝑥0 is admissible, if for

all times 𝑡 , the configuration 𝑥 (𝑡) satisfies positive distance constraints 𝑑𝑖 𝑗 (𝑥 (𝑡)) > 0 for all

{𝑖, 𝑗} ∈ B, where B ⊂ T × T is the set of all non-adjacent and non-incident surface mesh

primitive pairs.

We then observe that the distance between any pair of primitives is bounded from below by

the distance for triangle-vertex and edge-edge pairs, if there are no intersections. For this reason,

it is sufficient to enforce constraints 𝑑𝑘 (𝑥 (𝑡)) > 0 continuously in time, for all 𝑘 ∈ C ⊂ B where C

contains all non-incident point-triangle and all non-adjacent edge-edge pairs in the surface mesh.

Time discretization. Discretizing in time, we can directly construct discrete energies whose

stationary points give an unconstrained time step method’s update [Ortiz and Stainier 1999].

Concretely, given nodal positions 𝑥𝑡 and velocities 𝑣𝑡 , at time step 𝑡 , we formulate the time step

update for new positions 𝑥𝑡+1 as the minimization of an incremental potential (IP) [Kane et al.

2000], 𝐸 (𝑥, 𝑥𝑡 , 𝑣𝑡 ), over valid 𝑥 ∈ R3𝑛 . For example the IP for implicit Euler is then simply

𝐸 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) = 1
2 (𝑥 − 𝑥)

⊤𝑀 (𝑥 − 𝑥) − ℎ2𝑥⊤𝑓𝑑 + ℎ2Ψ(𝑥), (2.1)

where ℎ is the time step size and 𝑥 = 𝑥𝑡 +ℎ𝑣𝑡 +ℎ2𝑀−1𝑓𝑒 . IPs for implicit Newmark (see Section 2.7)

and many other integrators follow similarly by simply treating their update rule as stationarity

conditions of a potential with respect to variations of 𝑥𝑡+1.

The addition of contact constraints restricts minimization of the IP to admissible trajecto-
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ries [Kane et al. 1999; Kaufman and Pai 2012] and so yields for our model the following time step

problem:

𝑥𝑡+1 = argmin
𝑥

𝐸 (𝑥, 𝑥𝑡 , 𝑣𝑡 ), 𝑥𝜏 ∈ A, (2.2)

where 𝑥𝜏 , 𝜏 ∈ [𝑡, 𝑡 + 1], is the linear trajectory between 𝑥𝑡 and 𝑥𝑡+1.

Our goal is to define a numerical method for approximating the solution of this problem in

Equation (2.2). Solving it is challenging due to the complex nonlinearity of the admissibility

constraint, especially in the context of large deformations.

In turn, when frictional forces in Equation (2.2) include frictional contact, solving the time

step problem becomes all the more challenging as 𝑓𝑑 is now governed by the Maximal Dissipa-

tion Principle [Moreau 1973] and so must satisfy further challenging, asymmetric and strongly

nonlinear consistency conditions [Simó and Hughes 1998]. We present a friction formulation in

Section 2.5 that is naturally integrated into this formulation via a lagged dissipative potential.

We further define a set of piecewise-linear surfaces as 𝜖-separated, if the distance between

two boundary points of the set is at least 𝜖 , unless these are on the same element of the boundary.

An 𝜖-separated trajectory is then a trajectory for which surfaces stay 𝜖-separated. We denote the

set of such trajectories A𝜖 .

To handle contact constraints, in our algorithm, we use the following overall approach: (a) the

IP function 𝐸 is unmodified on A𝜖 – the set of trajectories for which any 𝜖-separated trajectory

extremizes the action are preserved; (b) we introduce a barrier term that vanishes for trajecto-

ries in A𝜖 and diverges as the distance between any two boundary points vanishes, converting

the problem to an unconstrained optimization problem. This barrier, together with continuous

collision detection within minimization steps, ensure that trajectories remain in A𝐼 .

This algorithm then guarantees that the trajectories are modified, compared to the exact solu-

tion, in an arbitrarily small, user-controlled (by 𝜖) region near object boundaries and, at the same

time, always remain admissible.
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2.2.1 Trajectory Accuracies

Adiscrete contacting trajectory is accurate if it satisfies 1) admissibility, 2) discretemomentum

balance, 3) positivity, 4) injectivity and 5) complementarity.

In the discrete setting, momentum balance requires that the gradient of the incremental po-

tential, ∇𝑥𝐸 (𝑥), balance against the time-integrated contact forces. Its accuracy, is then exactly

measured by the residual error in the optimization of the constrained incremental potential. We

simply and directly control accuracy of momentum balance by setting stopping tolerance in our

nonlinear optimization; see Section 2.4.5.

In turn positivity means that contact forces’ signed magnitudes, 𝜆𝑘 , per contact pair 𝑘 ∈ C,

are always non-negative and so push surfaces but do not pull. Our method guarantees exact

positivity.

Combined with admissibility, injectivity requires positive volumes for all tetrahedra in the

simulation mesh. This invariant is enforced when a non-inverting energy density function (e.g.,

neo-Hookean) is modeled.1

Finally, the classic definition of complementarity in contact mechanics [Kikuchi and Oden

1988] is the requirement that contact forces enforcing admissibility can only be exerted between

surfaces if they are touching with no distance between them. We do not allow 𝑑𝑘 (𝑥) = 0, and so

define a comparable measure of discrete 𝜖-complementarity requiring

𝜆𝑘 max(0, 𝑑𝑘 (𝑥) − 𝜖) = 0, ∀𝑘 ∈ C (2.3)

to measure how well contact accuracy is achieved. Discrete complementarity is then satisfied

whenever distances between all contact pairs, defined as surface pairs with nonzero contact

forces, are less than the 𝜖 and converge to complementarity as we reduce 𝜖 .
1When an invertible deformation model (e.g. fixed corotational) is modeled, injectivity need not be preserved in

computation. We primarily focus on non-inverting neo-Hookean but will also demonstrate the weaker invertible
case with fixed corotational.
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2.3 Related Work

Computational contact modeling is a fundamental and long studied task in mechanics well

covered from diverse perspectives in engineering, robotics and computer graphics [Brogliato

1999; Kikuchi and Oden 1988; Stewart 2001; Wriggers 1995]. At its core the contact problem com-

bines enforcement of significant and challenging geometric non-intersection constraints with the

resolution of a deformable solid’s momentum balance. The latter task is well-explored, often in-

dependent of contact [Belytschko et al. 2000; Stuart and Humphries 1996]. We focus below on

related works in defining contact constraints, implicitly time stepping with contact and friction,

and barriers.

2.3.1 Constraints and Constraint Proxies

Contact simulation requires a computable model of admissibility and so a choice of contact

constraint representation. For volumetric models, admissibility generally begins with description

of a signed distance function. This allows a clean formulation of the continuous model. However,

when it comes to computing non-intersection on deformable meshes, choices for representing

non-intersection must be made and a diversity of constraint representations exist. Contact con-

straints for deformable meshes, in both engineering [Belytschko et al. 2000; Wriggers 1995] and

graphics [Bridson et al. 2002; Daviet et al. 2011; Harmon et al. 2009, 2008; Otaduy et al. 2009; Ver-

schoor and Jalba 2019] are most commonly defined pairwise between matched surface primitives.

Existing methods most often define a local, signed distance evaluation using a diverse array

of nonlinear proxy functions as well as their linearizations. These include linear gap functions,

linearized constraints built from geometric normals, as well as a number of oriented volume

constraints [Kane et al. 1999; Sifakis et al. 2008]. These nonlinear proxies, such as the tetrahedral

volumes formed between surface point-face and edge-edge pairs, are only locally valid. They

can introduce artificial ghost contact forces when sheared, false positives when rotated (e.g. for
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Figure 2.2: Nonsmooth, codimensional collisions. Left: thin volumetric mat falls on codimensional
(triangle) obstacles. Right: a soft ball falls on a matrix of point obstacles, front and bottom views.

edge-edge tetrahedra), discontinuities when traversing surface element boundaries, and, in many

methods, must still be further linearized and so introduce additional levels of approximation in

order to solve a constrained time step.

Alternately gap functions and other related methods approximate signed distance functions

for pairs of primitives by locally projecting a linearized distance measure between pairwise sur-

face primitives onto a fixed geometric normal [Otaduy et al. 2009; Wriggers 1995]. As discussed

in Erleben [Erleben 2018] these “contact point and normal” based constraint functions can be in-

consistent over successive iterations and so are highly sensitive to surface andmeshing variations

with well known failure modes if care is not taken. Indeed, as we investigate in Section 2.8.3, even

with iterative updates of these linear constraints inside sequential quadratic programming (SQP)-

type methods, time stepping with gap functions and related representations produces highly var-

ied results whose success or failure is largely dependent on the scene simulated. In turn, all of

these challenges are only further exacerbated when simulations encounter the sharp, nonsmooth,

and even codimensional collisions imposed by meshed obstacles [Kane et al. 1999]; see e.g. Fig-

ure 2.2.

Recent fictitious domain methods [Jiang et al. 2017; Misztal and Bærentzen 2012; Müller et al.

2015; Pagano and Alart 2008; Zhang et al. 2005] offer a promising alternative. In these methods,
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motivated by global injectivity conditions [Ball 1981] negative space is separately discretized

by a compatible discretization sometimes called an air-mesh [Müller et al. 2015]. Maintaining

a non-negative volume on elements of this mesh then guarantees non-inversion. However, as

with locally defined proxy volumes, the globally defined mesh introduces increasingly severe

errors, e.g., shearing and locking forces, as it distorts with the material mesh. In 2D this can

be alleviated by local [Müller et al. 2015] or global [Jiang et al. 2017] remeshing, however this is

highly inefficient in 3D, does not provide a continuous constraint representation for optimization,

nor, even with remeshing, can it resolve sliding and resting contact where air elements must

necessarily be degenerate [Li et al. 2018b].

Alternately, discrete signed distance fields (SDF) representations can be constructed via a

number of approximation strategies over spatial meshes [Jones et al. 2006]. However, while state-

of-the-art adaptive SDF methods now gain high-resolution accuracy for sampling against a fixed

meshes [Koschier et al. 2017], they can not yet be practically updated at rates suitable for de-

formable time steps, much less at rates suitable for querying deformations at every iterate within

a single implicit time step solve [Koschier et al. 2017]. At the same time, discontinuities across el-

ement boundaries, while improved in recent works, still preclude smooth optimization methods.

We observe that while approximating signed distance pairwise between surface mesh ele-

ments is problematic, unsigned distance is well defined. We then design a new contact model for

exact admissibility constraints in terms of unsigned distances between mesh-element pairs. This

model of constraint is constructed sufficiently smooth to enable efficient, super-linear Newton-

type optimization, maintains exact constraint satisfaction guarantees throughout all steps (time

steps and iterations) and requires evaluation of just mesh-surface primitive pairs.

2.3.2 Implicit Time Step Algorithms for Contact

With choice of contact constraint proxy,𝑔(𝑥) ≥ 0, the solve for the implicit time-step update is

then the minimization of the contact-constrained IP [Doyen et al. 2011; Kane et al. 1999; Kaufman
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and Pai 2012],

min
𝑥

𝐸 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) s.t. 𝑔(𝑥) ≥ 0. (2.4)

The variational problem Equation (2.4), or its approximation is then minimized to compute the

configuration at each time step.

This is typically done with off-the-shelf [Nocedal andWright 2006] or customized constrained

optimization techniques. In engineering, commonly used methods include SQP [Kane et al. 1999],

augmented Lagrangian and occasionally interior point methods [Belytschko et al. 2000]. All such

methods iteratively linearize constraint functions and elasticity. However, both nonlinear con-

straint functions and their linearizations are generally valid only in local regions of evaluation

and so can lead to intersections due to errors at larger time steps, faster speeds and/or larger de-

formations. For example, Kane et al.’s [1999] volumes are only valid under a strong assumption

of the relative position of contact primitive pairs.

In turn linearization of the full constraint set can also introduce additional error, result in

infeasible sub-problems, locking and/or constraint drift [Erleben 2018]. This often requires com-

plex and challenging (re-)evaluations of constraints in inter-penetrating states. Even when such

obstructions are not present, iterated constraint linearization generally can not guarantee inter-

penetration-free state except upon convergence and so often must resort to small time steps and

non-physical fail-safes in order to limit damage caused by missed constraint enforcement.

Although SQP- [Kane et al. 1999] and linear complementarity problem (LCP)/quadratic pro-

gramming (QP)-based contact solvers [Kaufman et al. 2008] support and generally employ a va-

riety of constraint-set culling and active-set update strategies, e.g., incrementally adding newly

detected collisions at each iteration [Otaduy et al. 2009; Verschoor and Jalba 2019], they also can

become infeasible and generate constraint drift when linearizing and filtering constraints.

Irrespective of how the contact-IP is solved and constraints are enforced, we then remain faced

with combinatorial explosion in the number of contact constraints to handle. Determining the
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active set, i.e., finding which constraints are necessary for admissibility and so can not be ignored,

remains an outstanding computational challenges. At the same time, to take large time steps or

handle large deformation, we must resolve strongly nonlinear deformation energies in balance

with contact forces. This requires line search. However, for constrained optimization methods,

e.g., SQP, efficient line search in the presence of large numbers of active constraints remains an

open problem [Bertsekas 2016; Nocedal and Wright 2006]. For this reason, existing methods in

graphics currently avoid line search altogether and are, as a consequence, mostly restricted to

quadratic energy models per time step [Otaduy et al. 2009; Verschoor and Jalba 2019] and, often,

small time step sizes for even moderate material stiffness [Verschoor and Jalba 2019].

2.3.3 Friction

The addition of accurate friction with stiction only increases the computational challenge for

time stepping deformation [Wriggers 1995]. Friction forces are tightly coupled to the compu-

tation of both deformation and the contact forces that prevent intersection. These side condi-

tions are generally formulated by their own governing variational Maximal Dissipation Princi-

ple (MDP) [Goyal et al. 1991; Moreau 1973] and thus introduce additional nonlinear, nonsmooth

and asymmetric relationships to dynamics. In transitions between sticking and sliding modes

large, nonsmooth jumps in both magnitude and direction are made possible by frictional contact

model. Asymmetry, in turn, is a direct consequence of MDP: frictional forces are not uniquely de-

fined by the velocities they oppose, and are also determined by additional consistency conditions

and constraints, e.g., Coulomb’s law. One critical consequence is that there is no well-defined

potential that we can add to an IP to directly produce contact friction via minimization.

To address these challenges, frictional contact is often solved by seeking a joint solution to

the optimality conditions of MDP together with the discretized equations of motion (the latter

are equivalent to optimality conditions for 𝐸). This requires, however, simultaneously solving for

primal velocity unknowns together with a large additional number of dual contact and friction
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force unknowns. These latter variables then scale in the number of active contacts and their

number grows large for even moderately sized simulation meshes.

To solve these systems it is generally standard to apply iterative per-contact, nonlinear Gauss-

Seidel-type methods [Alart and Curnier 1991; Bridson et al. 2002; Daviet et al. 2011; Jean and

Moreau 1992; Kaufman et al. 2014]. Here elasticity is again often, but not always, linearized

per time step, while contact and friction constraints are similarly often approximated per itera-

tion with a range of linear and nonlinear proxies. Alternate iteration strategies [Kaufman et al.

2008; Otaduy et al. 2009] have also been applied. However, as in the frictionless setting, all such

splittings remain challenging to solve with guarantees for complex, real-world scenarios. Most

recently, the same discrete formulation has been solved with new custom-designed algorithms –

both with nonsmooth Newton-type strategies [Bertails-Descoubes et al. 2011; Macklin et al. 2019]

and an extension of the Conjugate Residual method [Verschoor and Jalba 2019] with improved

accuracy and efficiency.

2.3.4 Barrier Functions

Barrier functions are commonly applied in nonlinear optimization, especially in interior-point

methods [Nocedal and Wright 2006]. Here primal-dual interior point methods are generally fa-

vored with Lagrange multipliers as additional unknowns for improved convergence. For contact

problems, this impractically enlarges system sizes by orders-of-magnitude. Here we focus on a

primal solution suited for contact problems. Similarly, the vast majority of the literature focuses

on globally supported functions, which are not viable for contact due to the quadratic set (collision

primitive pairs) of constraints that must be considered. Recently, a fewworks have begun exploit-

ing locally supported barriers [Harmon et al. 2009; Schüller et al. 2013; Smith and Schaefer 2015].

Harmon et al. [2009] propose a set of layered discrete penalty barriers that grow unbounded as

the configuration reaches toward contact. While well-suited for small time-step explicit meth-

ods, the incremental construction of the barriers challenge application in implicit time integration
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with Newton-type optimization. Most recently methods in geometry processing [Schüller et al.

2013; Smith and Schaefer 2015] propose locally supported barriers in the context of 2D mesh

parametrization to prevent element inversion and overlap. Our formulation builds on a similar

idea. Here we design smoothed, local barriers custom-constructed for the challenges of resolving

contact-response and preventing intersection between 3D mesh-primitives.

2.3.5 Summary

In summary, state-of-the-art methods for contact simulation are often highly effective per

example. However, in order to do so they generally require significant hand-tuning per simulation

set-up in order to obtain successful simulation output, i.e., stable, nonintersecting, plausible, or

predictive output. Currently, many of the tuned parameters, as we discuss in Section 2.8.3, are

not physical but rather guided by expected intersection constraint violation errors and stability

needs, and so need to be experimentally determined by many simulation test runs. Thus, to

date, direct, fully automated simulation has not been available for contact simulation – despite

contact’s fundamental role in many design, engineering, robotics, learning and animation tasks.

Towards a direct, “plug-and-play” contact simulation framework we propose IPC. Across a wide

range of mesh resolutions, time step sizes, physical conditions, material parameters and extreme

deformations we confirm IPC performs and completes simulations to requested accuracy without

algorithm parameter tuning.

2.4 Primal Barrier Contact Mechanics

In this section, we describe how we solve our time step problem (Equation (2.2)) formulated

in Section 2.2. We defer consideration of friction to Section 2.5, focusing on handling contact

dynamics here. We solve the minimization problem (Equation (2.2)) with primitive-pair admissi-

bility constraints using a carefully designed barrier-augmented incremental potential that can be
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Algorithm 2.1 Barrier Aware Projected Newton
1: procedure BarrierAwareProjectedNewton(𝑥𝑡 , 𝝐)
2: 𝑥 ← 𝑥𝑡

3: Ĉ ←ComputeConstraintSet(𝑥, 𝑑) ⊲ Sections 2.4.6 and 2.6.1
4: 𝐸prev ← 𝐵𝑡 (𝑥, 𝑑, Ĉ)
5: 𝑥prev ← 𝑥

6: do
7: 𝐻 ← SPDProject(∇2

𝑥𝐵𝑡 (𝑥, 𝑑, Ĉ)) ⊲ Section 2.4.3
8: 𝑝 ← −𝐻−1∇𝑥𝐵𝑡 (𝑥, 𝑑, Ĉ)
9: // CCD line search: ⊲ Section 2.4.4
10: 𝛼 ← min(1, StepSizeUpperBound(𝑥, 𝑝, Ĉ))
11: do
12: 𝑥 ← 𝑥prev + 𝛼𝑝
13: Ĉ ←ComputeConstraintSet(𝑥, 𝑑)
14: 𝛼 ← 𝛼/2
15: while 𝐵𝑡 (𝑥, 𝑑, Ĉ) > 𝐸prev

16: 𝐸prev ← 𝐵𝑡 (𝑥, 𝑑, Ĉ)
17: 𝑥prev ← 𝑥

18: Update 𝜅, BCs and equality constraints ⊲ Appendices A.5 and A.6
19: while 1

ℎ
∥𝑝 ∥∞ > 𝝐𝑑

20: return 𝑥

evaluated efficiently. In turn, to solve this potential we design a custom, contact-aware, Newton-

type solver, outlined inAlgorithm 2.1, with constraint culling for efficient evaluation of objectives,

gradients and Hessians (Section 2.4.3).

2.4.1 Barrier-Augmented Incremental Potential

To enforce distance constraints 𝑑𝑘 (𝑡) > 0, for all 𝑘 ∈ C, we construct a continuous barrier

energy𝑏 (Section 2.4.2), that creates a highly localized repulsion force, affectingmotion onlywhen

primitives are close to collision, and vanishing if primitives are a small user-specified distance

apart. We then augment the time step potential 𝐸 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) with a sum of these barriers over all
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possible pairs in C. The barrier-augmented IP is then

𝐵𝑡 (𝑥) = 𝐸 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) + 𝜅
∑︁
𝑘∈C

𝑏
(
𝑑𝑘 (𝑥)

)
, (2.5)

with𝜅 > 0 an adaptive conditioning parameter automatically controlling the barrier stiffness (see

Section 2.4.3 and our Supplemental for details.).

Minimizing Equation (2.5) enables the solution of contact-constrained dynamics with uncon-

strained optimization. Computing the energy naively, however, would require evaluation of the

barrier functions for all 𝑂 ( |T |2) pairs. To address similar challenges many simulation methods

simply remove constraints corresponding to distant primitives that are hoped to be unnecessary

for the current solution. However, this tempting operation is dangerous, as significant errors and

instabilities can be introduced when constraint sets are modified and critical collisions can also

be missed (see Sections 2.3 and 2.8). Instead, we design smooth barrier functions that allow us to

compute the barrier energy exactly and efficiently for all constraints while evaluating distances

only for a small subset of pairs of primitives that are close and simultaneously ensuring that the

rest smoothly evaluate to zero.

2.4.2 Smoothly Clamped Barriers

We begin by defining a smooth barrier function composed of terms that are local for every

primitive pair, that is each term is exactly zero if the two primitives are far away, enabling reliable

and efficient pruning of pairs in C without change to the solution.

We start by defining a computational distance accuracy target, 𝑑 > 0 (corresponding to 𝜖 in

Section 2.2) that specifies the maximum distance at which contact repulsions can act. We then

construct a barrier potential that approaches infinity at zero distance, initiates contact forces for

pairs closer than the target distance, 𝑑 , and applies no repulsion at distances greater than 𝑑 .

Considering the smooth log-barrier function commonly applied in optimization [Boyd and

24



Vandenberghe 2004] gives ln(𝑑/𝑑), where 𝑑 is the unsigned distance evaluation between a prim-

itive pair. However, simply truncating this function produces an unacceptably non-smooth en-

ergy which cannot be efficiently optimized and is effectively no better than simply discarding

constraints. Some examples of problems this generates in optimization are covered in the sup-

plemental. We thus propose a smoothly clamped barrier to regain superlinear convergence for

Newton-type methods

𝑏 (𝑑,𝑑) =


−(𝑑 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑 < 𝑑

0 𝑑 ≥ 𝑑.

(2.6)

Our barrier function is now 𝐶2 at the clamping threshold, and it is exactly zero for pairs beyond

the target accuracy (see Figure 2.3). Now, without harm, at any configuration 𝑥 , we only need to

evaluate barrier terms for the culled constraint set

𝐶 (𝑥) = {𝑘 ∈ 𝐶 : 𝑑𝑘 (𝑥) ≤ 𝑑},

composed of barriers between close primitives. As we increase accuracy by specifying smaller 𝑑

we then need to evaluate increasingly smaller numbers of contact barriers, albeit with increased

cost in nonlinearity.

Next, while the barrier function 𝑏 (𝑑, 𝑑) itself is now 𝐶2, the distance function it evaluates

between primitives will be𝐶0 for certain unavoidable configurations; i.e., parallel edge-edge col-

lisions – see Figure 2.9. For this reason, we multiply the barrier terms for edge-edge collisions

by a mollifier that ensure our distance function is 𝐶1 (and piecewise 𝐶2) for all primitive pair

types. Distance evaluation and mollifier are discussed in detail in Section 2.6. Additional impor-

tant considerations related to numerical stability and roundoff error in distance evaluation are

then detailed further in the Supplemental.
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Figure 2.3: Barriers. Left: log barrier function clamped with varying continuity. We can augment the
barrier to make clamping arbitrarily smooth (see our Supplemental). We apply our 𝐶2 variant for best
tradeoff: smoother clamping improves approximation of the discontinuous function while higher-order
continuity introduces more computational work. Right: our 𝐶2 clamped barrier improves approximation
to the discontinuous function as we make our geometric accuracy threshold, 𝑑 , smaller.

2.4.3 Newton-type Barrier Solver

Projected newton (PN) methods are second-order unconstrained optimization strategies for

minimizing nonlinear nonconvex functions where the Hessian may be indefinite. Here we apply

and customize PN to the barrier-augmented IP (Equation (2.5)). At each iteration, we project each

local energy stencil’s Hessian to the cone of symmetric positive semi-definite (PSD) matrices (see

SPDProject function in Algorithm 2.1) prior to assembly. Specifically, following Teran et al. [2005]

we project per-element elasticity Hessians to PSD. We then comparably project the Hessian of

each barrier to PSD. Each barrier Hessian has the form

𝜕2𝑏

𝜕𝑑2∇𝑥𝑑 (∇𝑥𝑑)
⊤ + 𝜕𝑏

𝜕𝑑
∇2
𝑥𝑑 (2.7)

and so can be constructed as a small matrix restricted to the vertices in the stencil of the bar-

rier’s primitive pair. The addition of mass matrix terms then ensures that the assembled total IP

Hessian is symmetric positive definite (SPD). Originally we also investigated a Gauss-Newton
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approximation to the above barrier Hessian, taking only the first, SPD term in the sum. However,

we find that resulting search directions are far less efficient than using the full projected barrier

Hessian.

Termination. For termination of the solver we check the infinity norm of the Newton search

direction scaled by time step (but unscaled by line-search step size). Specifically we solve each

time step’s barrier IP to an accuracy satisfying 1
ℎ
∥𝐻−1∇𝐵𝑡 (𝑥)∥∞ < 𝝐𝑑 . This provides affine in-

variance and a characteristic measure using the Hessian’s natural scaling as metric. Accuracy is

then directly defined by 𝝐𝑑 in physical units of velocity (and so is independent of time-step size

applied) and consistently measures quadratically approximated distance to local optima across

examples with varying scales and conditions.

Barrier stiffness adaptation. We automatically adapt our barrier stiffness to provide repul-

sive scaling that balances necessary distances against conditioning from the barrier stiffness. Our

barrier-augmented potential, 𝐵𝑡 , has two key parameters: 𝑑 and 𝜅, that jointly scale the effective

stiffness of each contact barrier. The strength of our barriers’ contact forces (equivalently La-

grange multipliers) are directly determined during minimization by evaluating distances, 𝑑𝑘 , and

stiffness, 𝜅. When 𝜅 is too small, contact-pair distances must become tiny to exert sufficient re-

pulsion. On the other hand, when 𝜅 is too large, contact-pair distances must be below 𝑑 in order

to exert non-zero force, but at the same time remain exceedingly close to 𝑑 so as to not exert

too large a repulsion. Both cases thus generate unnecessary ill-conditioning and nonsmoothness

that challenge efficiency. As we directly control geometric accuracy by setting 𝑑 , this frees 𝜅 to

adaptively condition our Newton-solver to improve convergence. While conceptually one could

imagine finding improved scalings of 𝜅 by hand, per example, this is unacceptable and inefficient

for an automated simulation pipeline. Instead, in our Supplemental, we derive our stiffness up-

date algorithm that automatically adapts barrier stiffness per iterate for improved conditioning.
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Relation to homotopy solves. While in IPC we directly set and solve for a desired target

accuracy 𝑑 , a natural alternative is to solve with a homotopy as is typical in interior point meth-

ods. We initially experimented with this approach: solving for larger distances (and so less stiff

systems) and then decreasing to the target distance, 𝑑 , over successive nonlinear solves. We find,

however, that this is unnecessary for elastodynamics where the direct barrier solves we employ

are much more efficient. In part, this is because we typically have a good warm start available

from the prior time step.

2.4.4 Intersection-aware Line Search

While our barrier energy is infinite for contact, this by itself does not guarantee that con-

straints 𝑑𝑘 (𝑡) > 0 are not violated by the solver. Standard line search [Nocedal and Wright 2006],

e.g, back-tracking withWolfe conditions, can find an energy decrease in configurations that have

passed through intersection, resulting in a step that takes the configuration out of the admissible

set.

Smith and Schaefer’s [2015] line-search filter computes the largest step size in 2D per trian-

gle and per boundary point-edge pair that first triggers inversion or overlap, and then take the

minimum as a step size upper bound for the current Newton iteration to stay feasible. Taking

inspiration from this line-search filter we propose a continuous, intersection-aware line search

filter for 3Dmeshes. In each line search we first apply CCD to conservatively compute a large fea-

sible step size along the descent step. We then apply back-tracking line search from this step size

upper bound to obtain energy decrease. CCD then certifies that each step taken is always valid.

When we apply barrier-based energy densities (our default) for our elasticity potential, Ψ, i.e.,

neo-Hookean, we combine the inversion-aware line search filter [Smith and Schaefer 2015] with

our intersection-aware filter to obtain descent steps. In combination this guarantees that every

step of position update in our solver (and so simulation) maintains an inversion- and intersection-

free trajectory.
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2.4.5 IPC Solution Accuracy

Revisiting accuracy we confirm momentum balance is directly satisfied by IPC after conver-

gence. For example, for implicit Euler we have

∇𝑥𝐵𝑡 (𝑥, 𝑑) = 0 =⇒ 𝑀 (𝑥 − 𝑥
ℎ2 ) = −∇Ψ(𝑥) +

∑︁
𝑘∈C

𝜆𝑘∇𝑑𝑘 (𝑥), (2.8)

where our contact forces 𝜆𝑘 are given by barrier derivatives

𝜆𝑘 = − 𝜅
ℎ2

𝜕𝑏

𝜕𝑑𝑘
. (2.9)

Comparable discrete momentum balance follows when we apply alternate time integration meth-

ods, e.g. implicit Newmark. Positivity is then confirmed directly by Equation (2.9) and observing

that our barrier function definition guarantees 𝜕𝑏
𝜕𝑑𝑘
≤ 0. In turn our above line-search filters guar-

antee admissibility and, when applicable for barrier-type elasticity energy densities, injectivity.

Finally, our barrier definition ensures discrete complimentarity is always satisfied as contact forces

can not be applied at distance more than 𝜖 = 𝑑 away.

2.4.6 Constraint Set Update and CCD Acceleration

Every line search, prior to backtracking, performs CCD to guarantee non-intersection, while

every evaluation of energies and their derivatives compute distances to update the culled con-

straint set, Ĉ(𝑥). To accelerate these computations, we construct a combined spatial hash and

distance filtering structure to efficiently reduce the number of primitive-pair distance checks.

Then, to further accelerate intersection-free stepping along each Newton iterate’s descent direc-

tion, 𝑝 , we derive an efficient conservative bound motivated by CFL conditions [Courant et al.

1967]. As in force evaluations we aim to avoid unnecessary and expensive CCD computation on

primitive pairs not in Ĉ. We leverage the fact that all contact pairs not in Ĉ are at distances greater
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Figure 2.4: Extreme stress test: rod twist for 100s. We simulate the twisting of a bundle of thin
volumetric rod models at both ends for 100s. IPC efficiently captures the increasingly conforming contact
and expected buckling while maintaining an intersection- and inversion-free simulation throughout. Top:
at 5.5s, before buckling. Bottom: at 73.6s, after significant repeated buckling is resolved.

than �̂ , and use the maximal relative search step in � of each such pair to obtain a conservative

upper bound on step size. We then need only perform the CCD tests on primitive pairs in Ĉ. This

CCD culling generally provides an average 50 % speed-up for all CCD costs across our simula-

tions, with negligible increase in Newton iterations and an overall impact of 10 % improvement

in simulation times. Details on these accelerations and our adaptive application of this bound (to

avoid taking overly conservative steps) are detailed in our Supplemental.

2.5 Variational friction forces

Frictional contact adds contact-dependent dissipative forcing to our system. At macroscale

these friction forces are modeled by the MDP [Moreau 1973]. MDP posits that frictional forces

maximize rate of dissipation in relative motion directions orthogonal to contact constraints up to

amaximummagnitude imposed by limit surfaces, e.g. asmodeled byCoulomb’s constraint [Goyal
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et al. 1991].

2.5.1 Discrete friction

To include frictional contact in our time stepping, we add local friction forces 𝐹𝑘 for every

active surface primitive pair, 𝑘 ∈ 𝐶 (𝑥). For each such pair 𝑘 , at current state 𝑥 , we construct a

consistently oriented sliding basis𝑇𝑘 (𝑥) ∈ R3𝑛×2. Each𝑇𝑘 is built so that𝑢𝑘 = 𝑇𝑘 (𝑥)⊤(𝑥 −𝑥𝑡 ) ∈ R2

gives the local relative sliding displacement at contact 𝑘 , in the frame orthogonal to the distance

vector between closest points on the two primitives defining 𝑑𝑘 (𝑥). See Section 2.6 and our

supplemental document for details on construction of 𝑇𝑘 (𝑥). The corresponding sliding velocity

is then 𝑣𝑘 = 𝑢𝑘/ℎ ∈ R2.

Maximizing dissipation rate subject to the Coulomb constraint defines friction forces varia-

tionally

𝐹𝑘 (𝑥, 𝜆) = 𝑇𝑘 (𝑥) argmin
𝛽∈R2

𝛽⊤𝑣𝑘 s.t. ∥𝛽 ∥ ≤ 𝜇𝜆𝑘 (2.10)

where 𝜆𝑘 is the contact force magnitude and 𝜇 is the local friction coefficient.

Friction forces governed by Equation (2.10) are bimodal. If ∥𝑣𝑘 ∥ > 0, there is sliding and the

corresponding friction force opposes it with 𝐹𝑘 = −𝜇𝜆𝑘𝑇𝑘 (𝑥) 𝑢𝑘
∥𝑢𝑘 ∥ . If ∥𝑣𝑘 ∥ = 0, there is sticking

and the corresponding static friction force is 𝐹𝑘 = −𝜇𝜆𝑘𝑇𝑘 (𝑥) 𝑓 , where the friction direction 𝑓 can

take any value in the closed 2D unit disk.

2.5.2 Challenges to Computation

Friction forces 𝐹𝑘 are then challenging to solve for in three interconnected ways. First, 𝐹𝑘 is

nonsmooth. In transitions between sticking and sliding modes, nonsmooth jumps in both mag-

nitude and direction are possible. Second, because of sticking modes, 𝐹𝑘 in MDP is not uniquely
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Figure 2.5: Friction benchmark: stiff card house. Left: we simulate a frictionally stable “card” house
with 0.5𝑚 × 0.5𝑚 × 4𝑚𝑚 stiff boards (𝐸 = 0.1𝐺𝑃𝑎). Right: we impact the house at high-speed from above
with two blocks; elasticity is now highlighted as the thin boards rapidly bend and rebound.

defined by displacements until we have found a solution satisfying stationarity:

∇𝐵𝑡 (𝑥) − ℎ2
∑︁
𝑘∈C

𝐹𝑘 (𝑥, 𝜆) = 0. (2.11)

Third, there is no well defined dissipation potential whose spatial gradient will generate friction

forces. As a consequence, frictional contact forces do not naturally fit into variational time-

stepping frameworks.

To tackle these challenges, we first examine 𝐹𝑘 as a nonsmooth function of 𝑢𝑘 . Next, as in

our barrier treatment of contact, we smooth the friction function with controlled and bounded

accuracy. Then, in order to apply friction as an energy potential in our variational solve, we lag

updates of the sliding bases 𝑇𝑘 and contact forces 𝜆𝑘 over nonlinear solves within each time step

(or over time steps). This allows us to define a smooth dissipative potential for friction that can

be consistently integrated into our Newton-type solver.
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2.5.3 Smoothed Static Friction

During each of our Newton iterations any transitions of sliding displacements to or from stick-

ing conditions will introduce large and sudden jumps in friction forces, 𝐹𝑘 . These discontinuities,

if left unmollified, would severely slow and even break convergence of gradient-based optimiza-

tion; see Section 2.7. To enable efficient and stable optimization, we smooth the friction-velocity

relation in the transition to static friction.

We start with a useful and equivalent (re-)expression for friction forces:

𝐹𝑘 = −𝜇𝜆𝑘𝑇𝑘 (𝑥) 𝑓 (∥𝑢𝑘 ∥) 𝑠 (𝑢𝑘), (2.12)

with 𝑠 (𝑢𝑘) = 𝑢𝑘
∥𝑢𝑘 ∥ when ∥𝑢𝑘 ∥ > 0, while 𝑠 (𝑢𝑘) takes any 2D unit vector when ∥𝑢𝑘 ∥ = 0. The fric-

tionmagnitude function, 𝑓 , is then correspondingly nonsmoothwith 𝑓 (∥𝑢𝑘 ∥) = 1when ∥𝑢𝑘 ∥ > 0,

and 𝑓 (∥𝑢𝑘 ∥) ∈ [0, 1] when ∥𝑢𝑘 ∥ = 0.

To smooth 𝑓 , and so Equation (2.12), with bounded approximation error, we first define a ve-

locity magnitude bound 𝜖𝑣 (in units of𝑚/𝑠) below which sliding velocities 𝑣𝑘 = 𝑢𝑘/ℎ are treated

as static. Then, we define a smoothed approximation of 𝑓 with 𝑓1. We maintain 𝑓1(𝑦) = 1 for

all 𝑦 > ℎ𝜖𝑣 , (sliding) while for 𝑦 ∈ [0, ℎ𝜖𝑣 ], we require 𝑓1(𝑦) to smoothly and monotonically

transition from 1 to 0 over a finite range. This forms a bijective map from velocity magnitudes

to friction magnitudes for velocities below the 𝜖𝑣 limit. For smoothing, we experiment with sat-

isfying interpolating polynomials ranging from 𝐶0 to 𝐶2. Increased continuity order introduces

greater smoothing and faster error reduction for decreasing 𝜖𝑣 , at the cost of introducing greater

nonlinearity into the IP solve. In the end, we find that our 𝐶1 interpolant

𝑓1(𝑦) =


− 𝑦2

𝜖2
𝑣ℎ

2 +
2𝑦
𝜖𝑣ℎ

, 𝑦 ∈ (0, ℎ𝜖𝑣 )

1, 𝑦 ≥ ℎ𝜖𝑣 ,

(2.13)
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Figure 2.6: Friction smoothing in 1D. Left: increasing orders of our polynomials better approximate the
friction-velocity relation with increasing smoothness. Right: Our𝐶1 construction improves approximation
to the exact relation as wemake our frictional accuracy threshold, 𝜖𝑣 , and so the size of static friction zone,
smaller.

provides best balance – yielding a continuous force Jacobian while introducing less nonlinearity

and so fewer overall iterations in testing. See Figure 2.6 and our discussion in the Supplemental.

2.5.4 Variationally Approximated Friction

With a smooth and uniquely defined 𝐹𝑘 for each 𝑢𝑘 , we are now able to define friction forces

solely based on nodal displacement unknowns. A next natural step would then be to define a

so-called dissipative potential [Kane et al. 2000; Pandolfi et al. 2002] for inclusion in our opti-

mization. An ideal potential would be a scalar function with respect to 𝑥 whose gradient returns

𝐹𝑘 . However, even with our smoothing, no well-defined displacement-based potential for fric-

tion exists, and 𝐹𝑘 cannot be approximated by a potential force without introducing significant

approximation errors. In other words, we do not have a variational form of friction that we can

yet minimize.

We start by making dependence of our friction on both 𝑇𝑘 (𝑥) and 𝜆𝑘 (𝑥) explicit:

𝐹𝑘 (𝑥, 𝜆𝑘 ,𝑇𝑘) = −𝜇𝜆𝑘𝑇𝑘 𝑓1( | |𝑢𝑘 | |)
𝑢𝑘

| |𝑢𝑘 | |
. (2.14)
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Now, if we set𝑇𝑘 = 𝑇𝑘 (𝑥) and 𝜆𝑘 = 𝜆𝑘 (𝑥) this friction evaluation is exact. However, if we decouple

dependence of the evaluated sliding basis and contact force from 𝑥 and instead lag them to values,

𝜆𝑛,𝑇𝑛 , from a prior nonlinear solve (or previous time step) 𝑛, then all remaining terms in the

expression for friction are integrable. The lagged friction force is then 𝐹𝑘 (𝑥, 𝜆𝑛𝑘 ,𝑇
𝑛
𝑘
) and provides

a simple and compact friction potential,

𝐷𝑘 (𝑥) = 𝜇𝜆𝑛
𝑘
𝑓0( | |𝑢𝑘 | |). (2.15)

Here 𝑓0 is given by the relations 𝑓 ′0 = 𝑓1 and 𝑓0(𝜖𝑣ℎ) = 𝜖𝑣ℎ so that 𝐹𝑘 (𝑥) = −∇𝑥𝐷𝑘 (𝑥). This

potential provides easy-to-compute Hessian, ∇2
𝑥𝐷𝑘 (𝑥), and energy contributions to the barrier

potential, described in detail in the supplemental document. Our full friction potential is then

𝐷 (𝑥) = ℎ2 ∑
𝑘∈C 𝐷𝑘 (𝑥), and the frictional barrier-IP potential for the time step 𝑡 + 1 is

𝐵𝑡 (𝑥, 𝑑) + 𝐷 (𝑥). (2.16)

Friction Hessian projection. For our Newton method (Section 2.4.3), we again need to pro-

ject the friction potential Hessian to the space of PSD matrices. The friction Hessian structure is

similar to that of elasticity, in that it can be written as a product of the 𝑇𝑘 matrices. This allows

us to apply the same strategy as used for elasticity Hessians, and so we need only perform a 2× 2

PSD projection for each friction term per primitive pair. This is detailed in our Supplemental.

2.5.5 Frictional Contact Accuracy

Accuracy of friction forces generated by each solution of our IP (Equation (2.16)) are defined

by the static threshold, sliding basis and contact force magnitudes.

Static friction threshold. As we apply smaller 𝜖𝑣 we decrease the range of sliding velocities

that we exert static friction upon and correspondingly sharpen the friction forces towards the
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Figure 2.7: Friction benchmark: Masonry arch. IPC captures the static stable equilibrium of a 20 m
high cement (𝜌 = 2300 kg/m3, 𝐸 = 20 GPa, 𝜈 = 0.2) arch with tight geometric, 𝑑 = 1 µm, and friction,
𝜖𝑣 = 10−5 m/s accuracy. Decreasing 𝜇 then obtains the expected instability and the stable arch does not
form (see our supplemental videos). Inset: zoomed 100× (orange) highlights the minimal gaps with a
geometric accuracy of small 𝑑 .

exact nonsmooth friction relation. Decreasing 𝜖𝑣 thus reduces stiction error while increasing

compute times as we introduce a sharper nonlinearity in a tighter range; see Figure 2.6. For

accurate reproduction of dynamic behaviors with friction and for visually plausible results, we

observed that 𝜖𝑣 = 10−3ℓ𝑚/𝑠 , where ℓ is characteristic length (i.e. bounding box size), works well

as a default across a wide range of examples with friction coefficients. See e.g., Figure 2.8. As

static accuracy becomes important, we then find solutions with 𝜖𝑣 = 10−5𝑚/𝑠 work well. We have

further confirmed IPC convergence down to 𝜖𝑣 = 10−9𝑚/𝑠 . See, for example, our reproduction of

the stable frictional contact structures in themasonry arch and card house examples in Figures 2.5

and 2.7.

Friction direction and magnitude. We improve accuracy of the direction and magnitude of

the friction forces by solving successive minimizations of Equation (2.16) within each time step.

For each solve we update the lagged𝑇𝑛 and 𝜆𝑛 (warm-starting from the previous time step) with

results from the last nonlinear solve. Convergence of lagged iterations is then achieved when we
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reach approximate momentum balance with

∥∇𝐵𝑡 (𝑥𝑡+1) − ℎ2
∑︁
𝑘∈C

𝐹𝑘 (𝑥𝑡+1, 𝜆𝑡+1,𝑇 𝑡+1)∥ ≤ 𝜖𝑑 , (2.17)

where 𝜖𝑑 is the targeted dynamics accuracy.

We confirm lagged iterations rapidly converge over nonlinear solves with our FE models

for the well-known, standard frictional benchmarks, e.g., block-slopes, catenary arches and card

houses. See Figures 2.5 and 2.7 and Section 2.7. However, we emphasize that we do not have con-

vergence guarantees for lagging. In particular, we have identified cases with large deformation

and/or high speed impacts where we do not reach convergence for𝑇 and 𝜆 in the friction forces.

Thus, in our large-deformation frictional examples we apply just a single lagging iteration. In

these cases, sliding directions and contact force magnitudes in the friction force evaluation may

not match. However, even in these cases, all other guarantees, including non-intersection, mo-

mentum balance (as in the frictionless case) and accurate stiction are maintained. More generally,

we observe high-quality, predictive frictional results for large deformation examples independent

of the number of lagging iterations applied; see e.g. Figure 2.16. We also emphasize that for fric-

tionless models, IPC continues to guarantee convergence for contact and elasticity with just a

single nonlinear solve per time step.

2.6 Distance Computation

Evaluating unsigned distance functions between point-triangle and edge-edge pairs requires

care as closed-form distance formulas change with relative position of surface primitives.

2.6.1 Combinatorial Distance Computation

Unsigned distances are given by the closest points on the two primitives evaluated.
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Figure 2.8: Large deformation, frictional contact test. We drop a soft ball (𝐸 = 104𝑃𝑎) on a roller
(made transparent to highlight friction-driven deformation). Here IPC simulates the ball’s pull through
the rollers with extreme compression and large friction (𝜇 = 0.5).

Distance between a point 𝑣𝑃 and a triangle 𝑇 = (𝑣𝑇 1, 𝑣𝑇 2, 𝑣𝑇 3) can be formulated as a con-

strained optimization problem,

DPT =min
𝛽1,𝛽2
| |𝑣𝑃 − (𝑣𝑇 1 + 𝛽1(𝑣𝑇 2 − 𝑣𝑇 1) + 𝛽2(𝑣𝑇 3 − 𝑣𝑇 1)) | |

𝑠 .𝑡 . 𝛽1 ≥ 0, 𝛽2 ≥ 0, 𝛽1 + 𝛽2 ≤ 1.
(2.18)

Similarly the distance between edges 𝑣11-𝑣12 and 𝑣21-𝑣22 is

DEE =min
𝛾1,𝛾2
| |𝑣11 + 𝛾1(𝑣12 − 𝑣11) − (𝑣21 + 𝛾2(𝑣22 − 𝑣21)) | |

𝑠 .𝑡 . 0 ≤ 𝛾1, 𝛾2 ≤ 1.
(2.19)

Each possible active set of these twominimizations corresponds to a closed-form distance formula.

In each, at most two constraints can be active at the same time.

• When two constraints are active in either Equation (2.18)) or (Equation (2.19), the distance
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between primitives is a point-point distance evaluation:

𝑑𝑃𝑃 = | |𝑣𝑎 − 𝑣𝑏 | |. (2.20)

Here 𝑣𝑎 and 𝑣𝑏 correspond to 𝑣𝑃 and a 𝑣𝑇𝑖 for Equation (2.18)), or to the two endpoints of

the edges in the edge-edge pair for Equation (2.19).

• When a single constraint is active in either Equation (2.18)) or (Equation (2.19), the distance

in both cases becomes a point-edge distance evaluation:

𝑑𝑃𝐸 =
| | (𝑣𝑎 − 𝑣𝑐) × (𝑣𝑏 − 𝑣𝑐) | |

| |𝑣𝑎 − 𝑣𝑏 | |
. (2.21)

Here (𝑣𝑎, 𝑣𝑏) corresponds to one of the triangle edges of 𝑇 and 𝑣𝑐 = 𝑣𝑃 for Equation (2.18)),

or else (𝑣𝑎, 𝑣𝑏) corresponds to one of the edges in the edge-edge pair and 𝑣𝑐 corresponds to

an endpoint of the other edge for Equation (2.19).

• When no constraints are active in either Equation (2.18)) or Equation (2.19), distance com-

putations are simply parallel-plane distance evaluations. For the point-triangle pairing in

Equation (2.18) this is

𝑑𝑃𝑇 = | (𝑣𝑃 − 𝑣𝑇 1) ·
(𝑣𝑇 2 − 𝑣𝑇 1) × (𝑣𝑇 3 − 𝑣𝑇 1)
| | (𝑣𝑇 2 − 𝑣𝑇 1) × (𝑣𝑇 3 − 𝑣𝑇 1) | |

|, (2.22)

while for the edge-edge pairing in Equation (2.19) it is

𝑑𝐸𝐸 = | (𝑣11 − 𝑣21) ·
(𝑣12 − 𝑣11) × (𝑣22 − 𝑣21)
| | (𝑣12 − 𝑣11) × (𝑣22 − 𝑣21) | |

|. (2.23)

For evaluations of 𝑑 , ∇𝑑 , and ∇2𝑑 , we apply the currently valid, closed-form distance formula

(either point-point (PP), point-edge (PE), point-triangle (PT), or edge-edge (EE) above) and its
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Figure 2.9: Nonsmoothness of parallel edge-edge distance. When edge 𝐴𝐵 and 𝐶𝐷 are parallel, the
distance computation can be reduced to either (a) 𝐶 −𝐴𝐵 point-edge or (b) 𝐷 −𝐴𝐵 point-edge. Then for
the trajectory of 𝐶 moving down from above 𝐷 , the distance gradient is not continuous at the parallel
point even though the distance is always continuously varying.

analytic derivatives. The formula to apply, at each evaluation of a surface pair, is determined by

the active constraint subset defined by the current relative positions of the pair’s primitives. This

information is computed and stored together with our culled constraint set Ĉ data, and so is then

available for direct use whenever computing barrier energies and derivatives. This treatment is

analogous to storing and reusing singular value decompositions of deformation gradients for elas-

ticity computations. As in elasticity, our distance state and evaluations can efficiently be reused

for all energy and derivative evaluations at the same nodal positions. Correspondingly, having

now reduced general point-triangle and edge-edge distance evaluations to the above closed-form

formulas, we can directly compute and store our sliding bases, 𝑇𝑘 (𝑥), for friction computation

with respect to each case; please see our Supplemental for details.

2.6.2 Differentiabilty of 𝑑

In collision-resolution methods, close-to-parallel edge-edge contacts are notorious failure

modes – to the extent that existingmethods often ignore this case by throwing out all correspond-

ing constraints [Harmon et al. 2008]. However, despite the challenges imposed, these constraint

cases cannot be removed, as doing so would lead to intersection. The reason for the difficulty in

these cases is the (lack of) differentiability of the distance function for some configurations. Each

above analytic formula for distances corresponds to a subset of the relative configuration space
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of a primitive pair. For example, for vertex-triangle pairs, relative configurations are completely

characterized by fixing the triangle and varying 𝑣𝑃 positions. If the projection of 𝑣𝑃 to𝑇 is in the

triangle interior, no constraints are active, while if the projection lies on the interior of a triangle

edge then one constraint is active. Otherwise, two constraints are active.

Each of these geometric criteria defines a subset of R3, where one of the three analytic for-

mulas is valid. The distance function is 𝐶∞ inside each such domain, and, in general, is 𝐶1 at the

boundaries between domains. However, the critical exception is in parallel edge-edge configura-

tions: at these points, the distance function is not differentiable (see Figure 2.9). Configurations

close to these parallel edge-edge conditions, when reached, lead to unacceptably slow conver-

gence of Newton iterations or even convergence failures altogether. Numerically, the issue is

similar to the 𝐶0-continuous friction problem we faced in Section 2.5.2. To resolve this issue,

we once again apply a local smoothing solution to mollify the barrier corresponding to nearly

parallel edge-edge contact conditions.

We smooth by multiplying all edge-edge barrier terms by a piecewise-polynomial mollifier

closely analogous to our static-friction smoother; recall Figure 2.6. Here, for each edge-edge

contact pair 𝑘 , we define 𝑒𝑘 (𝑥) to vanish when edges (𝑣11𝑣12−𝑣21𝑣22) are parallel and to smoothly

grow to 1 as the edge-pair become far from parallel,

𝑒𝑘 (𝑥) =


− 1
𝜖2
×
𝑐2 + 2

𝜖×
𝑐 𝑐 < 𝜖×,

1 𝑐 ≥ 𝜖×,

(2.24)

where 𝑐 = | | (𝑣12−𝑣11) × (𝑣22−𝑣21) | |2 and 𝜖× = 10−3 | |𝑣′12−𝑣′11 | |2 | |𝑣′22−𝑣′21 | |2 is defined with respect

to edge-edge vertex-pair rest positions 𝑣′.

Our mollified edge-edge barriers are then 𝑒𝑘 (𝑥)𝑏
(
𝑑𝑘 (𝑥)

)
and so now extend our barrier po-

tentials to a piecewise𝐶∞, everywhere𝐶1-continuous (for nonintersecting configurations) barrier

formulation. At the same time our barriers now remain sufficient to guarantee that no collisions
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are missed: there are always point-triangle contact pairs at distance no more than the parallel

edge-edge distance; see our Supplemental for details on this. In turn, our construction of the

parallel-edge mollifier then minimizes its impact on edge-edge pair barriers as they move away

from degeneracy. While in principle increasing smoothness to𝐶1 is sufficient to avoid most dra-

matic degeneracy failures, there are additional numerical stability issues to be addressed related

to nearly parallel edges. Please see our Supplemental for details.

Now, with this third and last smoothing in place we have an overall time-stepping potential

for contact and friction that can leverage superlinear convergence and robustness of Newton-type

stepping. As we analyze in Sections 2.7 and 2.8 below (see Section 2.7.1) this gains robust simu-

lation against failure – even when simulating challenging conditions with unavoidable numbers

of degenerate evaluations.

2.7 Evaluation

Our IPC code is implemented in C++, parallelizing assembly and evaluations with Intel TBB,

applying CHOLMOD [Chen et al. 2008] with approximate minimum degree (AMD) reordering

for linear system solves in all examples (except for the squishy ball example – see below) and

Eigen [Guennebaud et al. 2010a] for linear algebra routines. We run most experiments on a

4-core 3.5 GHz Intel Core i7, a 4-core 2.9 GHz Intel Core i7, and a 8-core 3.0 GHz Intel Xeon

machine. Machine use per example is summarized along with performance statistics and problem

parameters in Table 2.2 and in our Supplemental. The reference implementation, scripts used to

generate these results and our benchmarks are released as an open-source project.

Linear system computations and solves. We compute elasticity and barrier Hessians (with

PSD projections) in parallel, and have designed and implemented a custommulti-threaded, sparse

matrix data structure construction routine that, given the connectivity graph of nodes, efficiently
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builds the compressed sparse row (CSR) formatwith index entries ready. While we utilize efficient

symbolic factorization and parallel numerical factorization routines in CHOLMOD [Chen et al.

2008] compiled with Intel Math Kernel Library (MKL) LAPACK and BLAS, we also tested IPC

with AMGCL [Demidov 2019] – a multigrid preconditioned solver. Here, we found behavior is as

might be expected, less memory overhead and faster linear solves by avoiding direct factorization.

However, for majority of examples the large deformations and many contacts generate poorly

conditioned systems. We then found AMGCL requires extensive parameter tuning to perform

well and still can not compete, in general, with the parallel direct solver. All examples in the

following then apply CHOLMOD for linear solves, with the exception of our largest, squishy ball

example (Figure 2.22), where we apply AMGCL.

Models and practical considerations. We primarily employ the non-inverting, neo-Hook-

ean (NH) elasticity model and implicit Euler time stepping. In the following examples we also ap-

ply and evaluate implicit Newmark time stepping, aswell as the invertible fixed corotational (FCR)

elasticity model. While for clarity in the preceding we derive IPC with unmodified distance eval-

uations, for numerical accuracy and efficiency our implementation applies squared distances for

evaluations of the barrier, we use𝑏 (𝑑2, 𝑑2), and related computations, thus avoiding squared roots.

In turn expressions for contact forces, 𝜆𝑘 , and related terms must be modified, from our direct

exposition and derivations above. To do so we rescale for consistent dimensions and units in our

implementation; see our Supplemental for details. Finally and importantly we note that IPC’s bar-

rier formulation requires nonzero separation distances to be strictly satisfied at initialization and

then guarantees it throughout simulation. Exact initialization at zero distance is neither possible

(as the barrier of course diverges) nor for that matter physically meaningful. Contact, including

resting contact, instead occurs around the specified geometric distance accuracy given by the

user. Here we demonstrate simulated configurations with distances down to 10−8 m reached in

simulation (e.g., arch in Figure 2.7) or initialized by users.
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Figure 2.10: Aligned, close and nonsmooth contact tests. Pairs of before and after frames of de-
formable geometries initialized with exact alignment of corners and/or asperities; dropped under gravity.
We confirm both nonsmooth and conforming collisions are accurately and stably resolved.

Evaluation and tests. Below we first introduce a set of unit tests for seemingly simple yet

challenging scenarios with nonsmooth, aligned and close contacts (Section 2.7.1), stress tests in-

volving large deformation and high velocities (Section 2.7.2), and friction (Section 2.7.3). We next

study IPC’s scaling, run time, and accuracy behavior as we vary simulation problem parameters

(Section 2.7.4). Finally, we present an extensive, quantitative comparison with previous works in

Section 2.8.

2.7.1 Unit Tests

Aligned, close and nonsmooth contact. We apply a set of unit tests exercising closely align-

ed, conforming and nonsmooth contact known to stress contact algorithms. We build them with

two simple models: a single tetrahedron and an 8-node unit cube; see Figures 2.10 and 2.11.

For contact handling, these seemingly simple tests are designed to trigger degenerate edge cases

that often cause failure in existing methods (see Section 2.8). IPC resolves all cases including

those in which we exercise exact parallel edge-edge (e.g., Figure 2.10 middle) and point-point

(e.g., Figure 2.10, left) collisions. For unit tests like Figure 2.10 right we drop objects into slotted

obstacles so that they fit tightly with tiny gaps; here IPC retrieves a tight conforming fit into a

1 µm gap.

Erleben’s fundamental cases. Erleben [2018] proposes unit tests (see Figure 2.11 top row)

for contact constraint failure testing. Here these tests are again simple but designed to challenge
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Figure 2.11: Erleben’s tests. Top: fundamental test cases to challenge mesh-based collision handling
algorithms proposed by Erleben [2018]. Bottom: IPC robustly passes all these tests even when stepped at
frame-rate size time steps.

mesh-based collision-handling algorithms. IPC again resolves all tests robustly (see Figure 2.11,

bottom row), even when stepped at frame-rate size time steps.

Tunneling. Tunneling through obstacles when simulating high-speed velocities is a common

failure mode in dynamic contact modeling. We thus add an example to our unit tests: we fire

an elastic ball (diameter 0.1 m) at a fixed 0.02 m thin board at successive speeds of 10, 100, and

1000 m/s stepped at ℎ = 0.02 s. IPC accurately rebounds at large time step without tunneling in

all cases.

Large mass and stiffness ratio tests. Contact resolution between objects with largely vary-

ing scale, mass, and/or stiffness ratios has long-challenged time stepping methods due to ill-

conditioning. In Figure 2.12, we simulate IPC dropping of a range of objects upon each other

with widely varying weight and stiffness. Here we apply � = 0.1 GPa for the sphere, board, and

large cube, � = 1 MPa for the small cube and the mat holding the sphere, and � = 10 kPa for the

mat dropped on boards. For the stiff ball and large cube, we set their respective densities to 2×

and 10× that of softer objects (1000 kg/m3) to add large mass ratios to the challenge. Regardless of

these different ill-conditioned settings, IPC simulates all scenes robustly and efficiently without

any artifacts; see also our supplemental videos.
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Figure 2.12: Large Mass and Stiffness ratios.

Chains. While resolving transient collisions exercises stability, large numbers of persistent,

coupled contacts, as in a long chain of elastic links, exercises contact constraint accuracy. A small

amount of constraint error integrated over time will cause such chains to break. We simulate

chains of 100 elastic links under gravity, observe stable oscillations and shock-propagation while

shorter chains stably bounce – all preserve constraints; see our supplemental videos.

2.7.2 Stress Tests

We next consider IPC’s ability to resolve a range of extreme stress-test examples motivated

by well-known pre-existing challenges and previously proposed benchmarks.

Funnel. To confirm contact resolution under strong boundary conditions, extreme compres-

sion, and elongation, we pull a stiff NH material dolphin model through a codimensional funnel

mesh obstacle. We step IPC at large time steps of ℎ = 0.04s with up to 32.3K contacts per step.

The resulting simulation is intersection- and inversion-free throughout with the model regaining
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funnel

Figure 2.13: Funnel test. Top: the tip of a stiff neo-Hookean dolphin model is dragged through a long,
tight funnel (a codimensional mesh obstacle). Middle top: due to material stiffness and tightness of fit
the tip of the model is elongated well before the tail pulls through. Middle bottom: extremity of the de-
formation is highlighted as we zoom out immediately after the model passes through the funnel. Bottom:
finally, soon after pulling through, the dolphin safely recovers its rest shape. We confirm that the simula-
tion is both intersection- and inversion-free throughout all time steps.

its rest shape once pulled through (Figure 2.13).

Thin volumetric meshes. Thin geometries notoriously stress contact simulations. Likewise,

as more simulation nodes are involved in collision stencils, simulation challenges grow. Here we

test IPC’s handling of extreme cases with both challenges, by simulating single layer meshes of

tetrahedra. Here IPC robustly handles the contacts with accurate solutions at all time steps across

a range of large deformation contact examples (Figures 2.5, 2.12, and 2.14).

Extreme and extended twisting. As large deformation high-contact examples, we twist thin

mats (Figure 2.14), rods (Figure 2.4), and Armadillos (Figure 2.21, bottom) with rotating speeds

of 72 ◦/s at both ends. We simulate the twist of both the rods and mats for 100s – efficiently
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Figure 2.14: Stress test: extreme twisting of a volumetric mat for 100s. Left: IPC simulation at 10s
after 2 rounds of twisting at both ends. Right: at 40s after 8 rounds of twisting. This model, designed to
stress IPC, has all of its 45K simulation nodes lying on the mesh surface.

Figure 2.15: Trash Compactor. An octocat (left) and a collection of models (right) are compressed to a
small cube by 6 moving walls and then released. Here, under extreme compression IPC remains able to
preserve intersection- and inversion-free trajectories solved to requested accuracies.

capturing increasingly tight conforming contact and expected buckling in all simulations.

Compactor test. In Figure 2.15, we test the “trash” compactor-type examples from Harmon

et al. [2009]. After releasing the compactor from the extreme compression point we clearly see

that the tentacles of the octocat model and correspondingly the sphere, mat, and bunnies models

are all cleanly separated.

48



Figure 2.16: Roller tests. Simulating the Armadillo roller fromVerschoor and Jalba [2019] (samematerial
parameters) in IPC now captures the expected stick-slip behavior for the high-friction, moderate stiffness
conditions.

Rollers compression and stick-slip instability. To combine extreme deformation with fric-

tion, we match the set-up of the kinematic roller test from Verschoor and Jalba [2019] with the

same originally applied, high friction coefficient 𝜇 = 0.5 (Figure 2.16). This scene is highly chal-

lenging due to the competing large magnitude of the friction and the large compression induced

by the rollers. Here, with a moderately stiff material (𝐸 = 5 × 105 Pa Young’s modulus) we ob-

serve that IPC with our friction model obtains the expected stick-slip instability effects that such

competition should generate. In simulation we observe deformation grows in opposition to static

friction in the rollers until stress overcomes static friction and we observe slip – this process is

then repeated. This stick-slip effect is captured by our Armadillo with moderate stiffness when

tested with both the NH and FCR elasticity models (see our supplemental videos for the motion).

We also note, as expected, when we subsequently test with softer material, i.e., 𝐸 = 5 × 105 Pa,

we get smooth rolling behavior for the Armadillo, as expected, without stick slip.

Codimensional collision obstacles. Collision obstacles, especially in animation and gam-

ing, are often most easily expressed in their default form as triangle meshes or even unorganized

triangle soups. While highly desirable in applications, codimensional collision types are not gen-

erally supported by available simulation methods, which often suffer tunneling, snagging, and
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Figure 2.17: Codimensional collision objects: pin-cushions. We drop a soft ball onto pins composed
of codimensional line-segments and then torture it further by pressing down with another set of codi-
mensional pins to compress from above. IPC robustly simulates the ball to a “safe”, stable resting state
under compression against the pins.

Figure 2.18: Codimensional collision objects: rollers. We modify the ball roller example from Fig-
ure 2.8 by using only the edge segments (left) or even just vertices (right) for the moving roller obstacle.
For these extremely challenging tests IPC continues robust simulation exhibiting tight compliant shapes
in contact regions pressed by the sharp obstacles.

resulting instabilities when exposed to them. To our knowledge IPC is the first algorithm to sta-

bly and accurately resolve collisions between volumes and codimensional collision objects. We

perform a set of tests dropping different objects on planes, segments, and points, see e.g., Fig-

ures 2.2, 2.17, and 2.18. Collisions are stably resolved and we see tight compliance to the sharp

poking obstacles in contacting regions.

Codimensional rollers. What if we modify the roller test in Figure 2.8, leaving only the edges

or even only the points for the roller obstacles? This leads to our codimensional roller tests
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(Figure 2.18). Here, with solely codimensional wire (just edges) and points (just vertices) rollers,

the big ball still pulls inwards, forming tightly pressed geometries in the contact regions as it is

compressed and pulled against and then out of the codimensional rollers (Figure 2.18). For sharp

point rollers we require negligible friction (for points we apply 𝜇 = 10−3) to pull the ball inwards

as the sharp points directly grab the deforming surface.

Sqeeze out stress test. A plate compresses and then forces a collection of complex soft

material models into a tight conforming mush through a thin co-dimensional tube obstacle. Once

through they cleanly separate (Figure 2.1).

High speed impact test. To examine IPC’s fidelity in capturing high-speed dynamicswematch

the reported material properties and firing speed of an experiment of foam practice ball fired at

high-speed towards a fixed steel wall. In Figure 2.19 top, we show key frames of a high-speed

capture of the event. Middle: we visualize velocity magnitudes simulated by IPC, stepped with

implicit Newmark and the NH material, at the same corresponding times in the simulation, and

bottom the IPC-simulated geometry. Here we observe both the expected shockwave propagating

through the sphere during the finite-time collision as well as the overall matching dynamics and

shape across the simulation. Please see our supplemental video for complete simulation mov-

ing through the phases of inelastic collision impact: compression (first shockwave), restoration

(second shockwave), and release.

2.7.3 Frictional Contact Tests

To examine IPC’s frictional model we simulate a set of increasingly challenging frictional

benchmark tests. All utilize a tight accuracy of 𝜖𝑣 = 10−5 m/s and apply lagged iterations to update

sliding bases and normal forces until the system is confirmed as fully converged by satisfying

Equation (2.11).
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Figure 2.19: High-speed impact test. Top: we show key frames from a high-speed video capture of a
foam practice ball fired at a fixed plate. Matching reportedmaterial properties (0.04mdiameter, � = 107Pa,
� = 0.45, � = 1150kg/m3) and firing speed (�0 = 67m/s), we apply IPC to simulate the set-up with
Newmark time stepping at ℎ = 2 × 10−5s to capture the high-frequency behaviors. Middle and bottom:
IPC-simulated frames at times corresponding to the video frames showing respectively, visualization of
the simulated velocity magnitudes (middle) and geometry (bottom).

Block tests. We start by placing stiff elastic blocks on a slope with tangent at 0.5. Here for

� = 0.5, IPC generates the expected result of frictional equilibrium – the block does not slide.

Switching to � = 0.49, IPC then immediately sets the block sliding, again matching the analytic

solution.

Frictionally dependent structures. We test IPC on the challenging, frictionally dependent

stable structure tests from Kaufman et al. [2008]. We model both the card house (Figure 2.5) and

masonry arch (Figure 2.7) with stiff deformable materials. We further extend the challenge of the
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Figure 2.20: Stick-slip. oscillations with friction simulated with IPC by dragging an elastic rod along a
surface.

arch with a precarious base balanced on sharp edges. We obtain long-term stable structures with

� = 0.5 and � = 0.2 respectively and confirm that they fall apart as we reduce to � = 0.2 and

� = 0.1 respectively (see our supplementals for statistics and videos).

Stick-slip instability. Finally, we script the motion of the top of a thin, volumetric elastic rod

pushed slightly down towards, and then along a surface (� = 0.35) to test stick-slip oscillations.

As in the Armadillo roller example, large static friction creates a buildup of elastic energy in

the rod which is released when the friction force, opposing sliding contact, is exceeded by the

tangential stiffness at the contact. This interaction between the friction forces and the sliding

velocities becomes periodic, and so induces self-excited oscillations that buildup and dissipate

energy; see Figure 2.20 and our supplemental video.

2.7.4 Scaling, Performance, and Accuracy

Varying time step sizes. Existing contact-resolution methods generally rely on small time

step sizes for simulation success. As demonstrated above, IPC is able to simulate across a wide
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Table 2.1: Increasing time step sizes to frame-rate and beyond. Here we demonstrate tradeoffs
in varying time step sizes for the same tight twisted rods example (2.5K nodes, 6.9K tets, 4.6K faces,
𝐸 = 104𝑃𝑎) with a 4-core 2.9GHz Intel Core i7 CPU, 16GB memory. # iters is the number of Newton
iterations per time step or in total for the simulation sequences.

h (s) # constraints
avg (max)

per time step total
t (s) # iters t (s) # iters

0.002 137 (430) 0.29 2.12 862 6351
0.005 194 (584) 0.36 2.37 435 2843
0.01 269 (707) 0.38 2.65 229 1591
0.025 435 (1.0K) 0.38 2.69 91 645
0.05 551 (1.2K) 0.46 3.06 56 368
0.1 597 (1.3K) 0.73 4.75 44 285
0.2 607 (1.2K) 1.79 14.37 54 431
0.5 653 (1.4K) 11.39 100.58 137 1207
1 708 (1.3K) 18.41 188.17 110 1129
2 843 (1.3K) 52.02 522.00 156 1566

range of time step sizes ℎ and so can capture a range of different frequency effects. Choice of

time step size for IPC is then simply a question of accuracy required per application as balanced

against efficiency needed, rather than a predicate required for success. To investigate the effect

of varying time step size, ℎ, in IPC we simulate the tight twisted rods example (Figure 2.4) for 6 s.

We range ℎ from 0.002 to 2 s. In Table 2.1 we observe that transitioning from large to small time

step sizes, our method improves its per time-step performance – but not by orders of magnitude.

This is because the costs of intersection-free time stepping, distance computation and CCD do

not change much. Since we do not miss any contacts, the number of constraints we process

decrease only sublinearly as we decrease time step sizes. This is a key computational feature

to ensure feasibility and robustness. On the other hand, we happily observe that our method is

robust even well beyond standard time step sizes. While, in general, such excessively large step

sizes beyond frame-rate are not useful for dynamics, this offers a robust opportunity for quasi-

statically computing equilibria subject to challenging contact conditions. When we deploy IPC

with implicit Euler IP (taking advantage of numerical dissipation), these very-large time steps

rapidly compute equilibria with extreme contact conditions in just a few steps.
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Figure 2.21: Scaling tests. Top: applying increasing resolution meshes ranging from 3K to 219K nodes
we examine the time (left) and memory (right) scaling behavior of IPC on a range of resolutions of the
twisting Armadillo and twisting mat (Figure 2.14) examples. Bottom: frames from the highest-resolution
twisting Armadillo example (219K nodes, 928K tets).

Scaling. In Figure 2.21 (top), we study scaling behavior of IPC, with twisting mat (Figure 2.14)

and twisting Armadillo (Figure 2.21, bottom) simulations of increasing-resolutionmeshes ranging

from 3K to 219K nodes. Armadillo is a representative volumetric model while the single-layer

mat is an extreme example designed to especially stress IPC. The mat meshes importantly have

all simulation nodes on their surfaces and so, as contacts tighten in the twisting mat, they can

form arbitrarily dense Hessians. For the mat we observe iteration count, memory and contact

counts increase linearly with resolution, while timing increases in a slight superlinear trend. For

the more standard volumetric Armadillo model we observe iteration count remains flat as we

increase resolution, while timing and memory increase linearly.

In addition, when mesh sizes and contacts grow large, available memory can potentially pre-
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Figure 2.22: Squishy ball. Simulated by IPC an elastic squishy ball toy model (688K nodes, 2.3M tets)
is thrown at a glass wall. The left three frames show side views before, at, and after the moment of
maximal compression during impact. The right-most frame then shows the view behind the glass during
the moment of maximal compression, highlighting how all of the toy’s intricately intertwined tendrils
remain intersection free.

clude application of direct linear solvers. To confirm IPC applicability in these settings we simu-

late the firing of a 688K node, 2.3M tetrahedra, squishy ball model from Zheng and James [2012]

at a glass board using AMGCL’s [Demidov 2019] multigrid-preconditioned iterative linear solver.

Here both the large element count and the large numbers of collisions enabled by the toy’s many

colliding tendrils introduce very large system solves during the most contact-rich steps colliding

against the glass (Figure 2.22).

Performance. Comprehensive statistics on all simulations, models, parameters and perfor-

mance are reported in Table 2.2 and in our Supplemental. For reference dynamics please see

our supplemental videos.

Accuracy. User-facing parameters in IPC have three accuracies that can be specified: 1) dynam-

ics accuracy (�� ), defining how well dynamics are resolved; 2) geometric accuracy (�̂), defining

how close objects can come to touching; and 3) stiction accuracy (�� ), defining how well static

friction is resolved. All three provide users direct and intuitive control (with meaningful physical

units) of the trade-off between accuracy and compute cost.
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In our extensive testing, IPC converges to satisfy these requested accuracies while always

maintaining an intersection- and inversion-free state. These guarantees (non-intersection, non-

inversion) hold even as we radically increase speed of collision at large time step, apply extreme

deformations, and model highly stiff materials. We have tested this across a wide range of test

examples with material stiffnesses up to 𝐸 = 2×1011 Pa and have confirmed our IPC implementa-

tion’s ability to converge to tight tolerances for all these measures when requested with 𝜖𝑑 down

to 10−7 m/s, 𝜖𝑣 down to 10−8 m/s, and 𝑑 down to 1 µm.

As we discuss and demonstrate in Sections 2.3 and 2.8, all previously available methods in-

troduce computational error for these accuracy measures; to our knowledge, IPC is the first to

provide and expose direct and separable control of them. Our singular exception, as detailed

in Section 2.5 above, is the number of frictional lagging iterations applied. When accurate fric-

tion is required, e.g., our arch, stick-slip and card house experiments, we set no upper bound

on this parameter. Then as discussed above, in these examples IPC fully converges and is en-

tirely parameter-free. However, (as detailed above) we do not have convergence guarantees for

lagging, and in our large-deformation frictional examples we apply a single lagging iteration.

In these cases, as discussed in Section 2.5.5, sliding directions and contact forces in the friction

may not match. However, even in such cases all other guarantees, including non-intersection are

maintained. We observe high-quality results regardless of number of lagging iterations applied

or accuracies specified.

Finally, on the other end of the spectrum in many applications, e.g., animation, it can be

desirable to trade accuracy for efficiency. We confirm robust, plausible behavior for IPC when we

set very large, loose tolerances on all the above parameters, e.g., with 𝜖𝑑 = 10−1 m/s, while still

maintaining feasible (non-inverting, non-intersecting) trajectory guarantees.
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Exact CCD admissibility check. IPC’s collision aware line search ensures intersection-free

trajectories. Our implementation applies standard floating-point CCD2 combined with the con-

servative advancement strategies detailed in Section 2.4 and our Supplemental to ensure efficient,

intersection-free stepping. Exact CCD then offers the possibility for aggressive advancement of

intersection-free steps and so improved efficiency. To this end we tested the robust CCDmethods

from both Bridson et al. [2002] and Tang et al. [2014] but found the reference implementations for

each missed critical intersections in degeneracies. We then reimplemented Bridson et al. [2002]

with rationals. While this version now guarantees exactness, it is much slower (∼30×) than our

floating-point implementation. Currently we apply this exact CCD just for re-analysis as a post

step check after every Newton iterate to test three of our challenging contact stress tests: octocat

on codimensional “knives”, ball roller and mat twist. We confirm that every step taken in every

time step was intersection free in these examples.

Varying material model. A general expectation from unconstrained simulation is that mod-

eling with non-invertible materials like NH should be more costly than comparable set-ups with

invertible materials like FCR. However, when studying our large deformation examples with con-

tact we find that the picture is more complex. Here the larger bottleneck is generally resolving

contact barrier terms. In many examples, we then observe that simulations with NH and FCR

have comparable costs. In a number of other simulations with extreme contact conditions (e.g.,

pin-cushion and mat twist) element degeneracies allowed by FCR actually increase the overall

cost of simulation well over the same simulations with the NH material. Finally, in other cases

where stress is most extreme (e.g., armadillo roller and dolphin funnel), NH entails more cost

than the comparable simulation with FCR.
2https://github.com/evouga/collisiondetection
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2.8 Comparisons

We perform extensive quantitative comparisons with existing algorithms and commercial

codes used in both computer graphics (Section 2.8.1) and mechanical engineering (Section 2.8.2).

Then, to more fairly compare across a large class of previous contacts algorithms based on SQP-

type methods, we implement their core contact resolution procedures in a single framework, and

perform a large scale comparison on our benchmark test set (Section 2.8.3). While our implemen-

tations are not finely tuned as for the first two sets of comparisons, this approach allows us to

compare the core algorithmic components in a common, objective and unbiased context.

2.8.1 Computer Graphics Comparisons

Contact algorithms in graphics often target performance with small compute budgets and so

admirably face many efficiency challenges in balancing fidelity against speed. We investigate

what happens if we push these methods’ settings to be most accurate without regard to speed,

e.g., max iteration caps of 1M per step and time steps down to 10−5 s. Here, nevertheless, we still

document failures, e.g., tunneling, non-convergence, instabilities and ghost forces, even on very

simple test examples.

Verschoor and Jalba [2019]. We apply the reference implementation of Verschoor and Jalba

[2019] to reproduce available scenes with their default and reported input parameters. Here

we observe that small adjustments to time step sizes and material parameters lead to divergent

simulations. Specifically, the Armadillo roller example does not converge when applying the

implementation’s default time step of ℎ = 10−3 s for a range of stiffnesses of 𝐸 = 5 × 104, 5 ×

105, and 5 × 106 Pa, nor when applying the default material setting 𝐸 = 5 × 105 Pa for a range of

time step sizes of ℎ = 10−3, 2 × 10−3, 4 × 10−3, and 10−2 s. In all these cases the implementation

maxes out at its default max-iteration cap of 1M.
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We extract the Armadillo mesh, roller models and replicate the same example in IPC with

identical scene settings. Here it is noteworthy that IPC applies fully nonlinear NH and FCRmodels

with variational friction while the reference code (matching paper) linearizes elasticity once per

time step. As covered in Section 2.7.2, IPC obtains the stick-slip oscillations expected in this

setting (see also our video), when rolling the Armadillo. This does not match the Verschoor and

Jalba reference code nor paper video. Artificial material softening due to the per-step linearization

of Verschoor and Jalba’s elasticity likely explains the difference. We confirm this in Section 2.7.2

where IPC’s fully nonlinear simulation of the Armadillo roller, with a softer 𝐸 = 105 Pa (5× softer)

does not, as expected, stick-slip.

SOFA. SOFA [Faure et al. 2012] is an open-source simulation framework featuring a range of

physical models. These include deformable models via FEM. We modify a SOFA demo scene to

simulate the five-link chain example with the top link fixed and four free FE links. We use the

linear elasticity model (most robust) and found SOFA to provide a stable solution for the chain

with large time steps up to ℎ = 10−2 s. We extend the chain to ten links and are unable to find

a converging time step size (tested down to ℎ = 10−4 s). Please see our Supplemental for the full

SOFA simulation settings.

Houdini. Houdini [SideFX 2023] is a widely used visual effects (VFX) tool that provides two

performant simulation methods for deformable volumes: 1) a FE solver with co-rotated linear

and neo-Hookean materials, and 2) Vellum, a state-of-the-art Position Based Dynamics (PBD)

solver. While capable of producing impressive effects – especially for rapid collision denting and

bouncing, we find that both solvers suffer in different ways when enforcing contact constraints

accurately is critical. As a simple demonstration we again apply the chain example.

Trying a simple, lower-stiffness, 5-link chain we aim Houdini’s FE solver towards robustness

over speed by finely tetrahedralizing the link rings (∼8000 tets per ring), applying small time steps

(we tried increasing solver substeps to ℎ ≈ 1 ms), and increasing collision passes (up to 16). Up to
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and including these maximum settings we observe rings tunneling through. We verify the same

tunneling with both FE solvers provided in Houdini 18 (GNL,GSL), with both available materials.

With similar stretchy material, IPC is able to accurately resolve the chain collisions even with a

much coarser mesh (∼500 tets per ring), and frame-rate size time steps, e.g., ℎ = 0.04 s.

For the same 5-link scene, Houdini’s Vellum PBD system does better, avoiding tunneling.

However, as we increase numbers of links different tradeoffs (expected of PBD) are exposed. For

example, a 35-link chain, requires collision passes and/or substeps to be increased quite high to

prevent tunneling. However, this unavoidably changes the material (stiffer) and introduces bias-

ing, in this case with sideways ghost forces. Careful experimentation with substep, smoothing,

and constraint iteration parameters do not help alleviate these issues. For long chains (e.g., 100

links) we confirm IPC produces stable results, with accurate physical effects (e.g., shockwaves).

See our supplemental videos.

2.8.2 Comparison with Engineering Codes

We compare IPC with two commercial engineering codes, COMSOL [COMSOL Inc. 2022] and

ANSYS [Ansys, Inc. 2023], and one open-source engineering simulation framework [Krause and

Zulian 2016]. For all three codes we set up exceedingly simple scenes involving small numbers

of objects. All three methods generate intersection during simulation and exhibit instabilities

highly dependent on parameters and tuning choices. In stark contrast to these three engineering

solutions, IPC resolves a range of contact problems, demonstrates robust output across parame-

ters, and ensures feasible trajectories. Please see our Supplemental for details on this comparison

set.
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2.8.3 Large Scale Benchmark Testing with SQP-type Methods

We focus on frictionless contact to compare a wide range of recently developed, implicit time-

stepping algorithms. Removing the various and diverse treatments for friction allows us to care-

fully consider behavior with contact for a broad set of recent methods [Daviet et al. 2011; Harmon

et al. 2008; Jean and Moreau 1992; Kane et al. 1999; Kaufman et al. 2008, 2014; Macklin et al. 2019;

Otaduy et al. 2009; Verschoor and Jalba 2019] in a common test-harness framework. This is be-

cause all thesemethods, once friction is removed, follow a common iterated, Newton-type process

to solve each time step as follows: 1) To help reduce constraint violation heuristic distance off-

sets/thickenings are applied to constraints; 2) at the start of each time step collision detection is

performed to update a running estimate of active constraints; 3) The currently determined active

(and possibly offset) constraint set and the IP energy are respectively approximated by first and

second-order expansions; 4) The resulting quadratic energy is minimized subject to the linearized

inequality constraints. This is a QP problem and so a bottleneck. A wide range of algorithms thus

focus particularly on the efficient solution of this QP with custom approaches including QP, CR,

LCP and nonsmooth-Newton strategies. Given the common sequential QP structure, we will

jointly refer to them going forward as SQP-type. 5) A resulting displacement is then found and

applied to the current iterate. This entire process is then repeated until a termination criteria is

reached.

The above methods then differ in amount of offset, choice of constraint function, active set

update strategy, IP approximations – most in graphics use just a fixed quadratic energy approxi-

mation (and so linearized elasticity) per time step, and choice of QP solver.

Here we focus on the ability of these methods to achieve convergent and accurate solves on

a benchmark composed of our unit tests from Section 2.7.1 and a few additional low-resolution

examples. To eliminate uncertainty of errors from thewide range of QPmethods, we use the same

state-of-the-art, albeit slow, QP solver Gurobi [Gurobi Optimization, LLC 2019] for all methods
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and test each simulation method across a grid of variations on an high-performance computing

(HPC) cluster.

We implement three common constraint types: the projected gap function, see e.g., Harmon

et al. [2008]; the volume based proxy of Kane et al. [1999]; and the CCD-based gap function,

see e.g., Otaduy et al. [2009] and Verschoor and Jalba [2019]. For each constraint type we test

on a 3D sweep of (a) time steps (10−2, 10−3, 10−4, and 10−5 s), (b) constraint offsets (10−2, 10−3,

10−4, and 10−5), and (c) both fully nonlinear SQP and the graphics-standard of per time-step fixed

quadratic approximation of the elastic energy with nonlinear constraints.

A general pattern appears in our results (entire output is provided in the Supplemental): for

simulations to succeed all methods require small time step and/or large constraint offset. With

large time steps accuracy of the constraint linearization diminishes, thus larger constraint offsets

are necessary to compensate for constraint violations. A too large constraint offset leads to fail-

ures as the local QPmay become infeasible. Additionally, with large constraint offset, a constraint

pair may initially violate the constraints (a common-case for self-collision due to arbitrarily small

distances between elements). While it is possible to recover from such initial constraint viola-

tions, this rarely happens in our experiments. In contrast, we (re-)confirm IPC is unconditionally

robust across all test cases and time steps in the benchmark.

2.9 Discussion

In summary, IPC provides an exceedingly flexible, efficient, and unconditionally feasible solu-

tion for volumetric, mesh-based nonlinear elasticity simulations with self or external, volumetric

or codimensional contacts. Guaranteeing intersection- and inversion-free output, IPC allows both

computer graphics and engineering applications to run simulations by directly specifying just

physically and geometrically meaningful parameters and tolerances as required per application.

At the same time much more remains to be done. While we have enabled a first of its
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Table 2.2: Simulation statistics. for IPC on a subset of our benchmark examples. Complete benchmark
statistics are summarized in our supplemental documents. For each simulation we report geometry, time
step, materials, accuracies solved to (𝑑 , 𝜖𝑑 and 𝜖𝑣 are generally set w.r.t. to bounding box diagonal length
ℓ), number of contacts processed per time step, machine, memory, as well as average timing and number
of Newton iterations per time step solve. When applicable, for friction we additionally report number
of lagged iterations, with number of iterations set to ∞ indicating lagged iterations are applied until
convergence until Equation (2.17) is satisfied. We apply implicit Euler time stepping and the neo-Hookean
material by default unless specified in example name; i.e., “NM” for implicit Newmark time stepping and
“FCR” for the fixed-corotational material model.

Example nodes, tets, faces ℎ (s) 𝜌 (kg/m3),
𝐸 (Pa), 𝜈 𝑑 (m)

𝜇, 𝜖𝑣 (m/s),
max friction
iterations

𝜖𝑑 (m/s)
contacts

avg. (max.)
(per timestep)

machine memory
(MB)

timing (s),
iterations

(per timestep)

Ball on points 7K, 28K, 10K 0.04
1000,

104 , 0.4 10−3ℓ N/a 10−2ℓ 126 (182) 4-core 2.9 GHz Intel Core i7,
16 GB memory 229 2.8, 6.6

Mat on knives 3.2K, 9.1K, 6.4K 0.04
1000,

2 × 104 , 0.4 10−3ℓ N/a 10−2ℓ 291 (472) 4-core 2.9 GHz Intel Core i7,
16 GB memory 147 1.4, 5.5

100 chains 20K, 49K, 40K 0.04
500,

107 , 0.4 10−3ℓ N/a 10−2ℓ 40K (53K) 4-core 2.9 GHz Intel Core i7,
16 GB memory 450 4.0, 2.4

Dolphin funnel 8K, 36K, 10K 0.04
1000,

104 , 0.4 10−3ℓ N/a 10−2ℓ 7K (31K) 4-core 2.9 GHz Intel Core i7,
16 GB memory 357 27.9, 39.7

Pin-cushion compress 9K, 28K, 10K 0.04
1000,

104 , 0.4 10−3ℓ N/a 10−2ℓ 317 (496) 4-core 2.9 GHz Intel Core i7,
16 GB memory 233 3.7, 9.5

Golf ball (NM) 29K, 118K, 38K 2 × 10−5 1150,
107 , 0.45 10−3ℓ N/a 10−2ℓ 1K (4K) 4-core 2.9 GHz Intel Core i7,

16 GB memory 861 12.1, 9.3

Mat twist (100s) 45K, 133K, 90K 0.04
1000,

2 × 104 , 0.4 10−3ℓ N/a 10−2ℓ 264K (439K) 8-core 3.0 GHz Intel Xeon,
32 GB memory 4,546 776.2, 34.5

Rods twist (100s) 53𝐾, 202𝐾, 80𝐾 0.025
1000,

104 , 0.4 10−3ℓ N/a 10−2ℓ 243K (498 K) 8-core 3.0 GHz Intel Xeon,
32 GB memory 2,638 141.5, 14.1

Trash compactor: ball,
mat, and bunny 15K, 56K, 22K 0.01

1000,
104 , 0.4 10−3ℓ N/a 10−2ℓ 6K (132K) 8-core 3.0 GHz Intel Xeon,

32 GB memory 638 61.9, 29.4

Squeeze out 45K, 181K, 60K 0.01
1000,

5 × 104 , 0.4 10−3ℓ N/a 10−2ℓ 37K (277K) 8-core 3.0 GHz Intel Xeon,
32 GB memory 1,700 252, 42.5

Ball mesh roller 7K, 28K, 11K 0.01
1000,

104 , 0.4 10−3ℓ 0.5, 10−3ℓ, 1 10−2ℓ 2.3K (5.6K) 4-core 2.9 GHz Intel Core i7,
16 GB memory 215 63.3, 58.6

Hit board house 6K, 15K, 11K 0.025
1000,

108 , 0.4 10−4ℓ 1.0, 10−5ℓ, 2 10−2ℓ 7K (13K) 4-core 2.9 GHz Intel Core i7,
16 GB memory 186 10.0, 16.6

Cement Arch 216, 150, 324 0.01
2300,

2 × 1010 , 0.2 10−6 0.5, 10−5ℓ,∞ 10−4ℓ 101 (118)
4-core 3.6 GHz Intel Core i7,

32 GB memory
54 0.05, 5.7

Stick-slip Armadillo roller
(FCR) 67K, 386K, 24K 0.025

1000,
5 × 105 , 0.2 10−3ℓ 0.5, 10−3ℓ, 1 10−2ℓ 8K (33K) 4-core 3.6 GHz Intel Core i7,

32 GB memory 3,651 346, 66.8

Squishy ball (AMGCL) 688K, 2314K, 1064K 10−3 1000,
7 × 104 , 0.4 10−4ℓ N/a 4 × 10−2ℓ 3.6K (105K) 8-core 3.6 GHz Intel Core i9,

64 GB memory 19,463 328.3, 12.2

kind “plug-and-play” contact simulation framework that provides convergent, intersection- and

inversion-free simulation, clearly costs rise as scene complexity (both in contacts enforced and

mesh resolutions) increase. There are thus many promising directions for future improvement

that are exciting directions for exploration including further customized Newton-type methods,

practical speed exact CCD, extensions to higher-order elements and improved convergence for

frictional contact. We emphasize that we have no guarantee for convergence of lagged friction for

𝜆 and 𝑇 (although we do for stiction) and so another meaningful avenue of future development

is better exploration and understanding of its behavior.

Our hope is to enable engineers, designers, and artists to utilize predicative, expressive, and
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differentiable simulation, free fromhaving to perform extra per-scene algorithmic tuning or devia-

tion from real-world physical parameters. We look forward to enabling design, machine learning,

robotics, and other processes reliant on automated and reliable simulation output across parame-

ter sweeps and iterations and hope to better enable artists to use real-world materials and settings

as useful design tools for creative exploration.

65



3 | A Large Scale Benchmark and an

Inclusion-Based Algorithm for

Continuous Collision Detection

3.1 Introduction

Collision detection and response are two separate, yet interconnected, problems in computer

graphics and scientific computing. Collision detection specializes in finding when and if two

objects collide, while collision response uses this information to deform the objects following

physical laws. A large research effort has been invested in the latter problem, assuming that col-
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Figure 3.1: CCD benchmark overview. An overview of the results of our study of different CCD
methods run on 60 million queries (both vertex-face and edge-edge). For each method, we show the
number of false positives (i.e., the method detects a collision where there is none), the number of false
negatives (i.e., the method misses a collision), and the average run time. Each plot reports results in a
logarithmic scale. False positives and negatives are computed with respect to the ground truth computed
using Mathematica [Wolfram Research Inc. 2020]. Acronyms are defined in Section 3.4.2.
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Initial configuration � = 0.8 s � = 1.45 s
Root-Parity Ours Root-Parity Ours

Figure 3.2: CCD failure. Inaccurate collision detection can lead to unnatural "sticking" and eventual
failure when integrated into simulators (shown here using IPC [Li et al. 2020]) because part of the ge-
ometry gets stuck inside. Here we show a false negative reported by the Root-Parity method (orange)
of Brochu et al. [2012] causes the ball to get stuck inside the rollers. Our conservative CCD (blue) never
misses collisions and so the ball can pass through the rollers without problems.

lision detection can be solved reliably and efficiently. In this study we focus on the former, using

an experimental approach based on large-scale testing. We use existing collision response meth-

ods to generate collision detection queries to investigate the pros and cons of existing collision

detection algorithms.

Static collision detection is popular in interactive applications due to its efficiency, but its

inability to detect collisions between fast-moving objects passing through each other (tunneling)

hinders its applicability. To address this limitation, continuous collision detection (CCD) methods

have been introduced: by solving a more computationally intensive problem, usually involving

finding roots of a low-degree polynomial, these algorithms can detect any collision happening in

a time step, often assuming linear trajectories.

The added robustness makes this family of algorithms popular, but they can still fail due to

floating-point rounding errors. Floating point failures are of two types: false negatives (FNs), i.e.,

missed collisions, which lead to interpenetration, and false positives (FPs), i.e., detecting collisions

when there are none.

Most collision response algorithms can tolerate minor imperfections, using heuristics to re-
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cover from physically invalid states (in reality, objects cannot inter-penetrate). However, these

heuristics have parameters that needs to be tuned for every scene to ensure stability and faith-

fulness in the simulation (as shown in Chapter 2). In Chapter 2, the collision response problem

has been reformulated to avoid the use of heuristics, and the corresponding parameter tuning, by

disallowing physically invalid configurations. For instance, in Figure 3.2, the method in Chapter 2

cannot recover from interpenetration after the CCD misses a collision leading to an unnatural

“sticking” and eventual failure of the simulation. This comes with a heavier burden on the CCD

algorithm used, which should never report FNs.

We introduce a large benchmark of CCD queries with ground truth computed using the ex-

act, symbolic solver of Mathematica [Wolfram Research Inc. 2020], and evaluate the correctness

(lack of FNs), conservativeness (FP count), and runtime efficiency of existing state-of-the-art al-

gorithms. The benchmark is composed of both manually designed queries to identify degenerate

cases (building upon [Erleben 2018]) and a large collection of real-world queries extracted from

simulation sequences. On the algorithmic side, we select representative algorithms from the three

main approaches existing in the literature for CCD root-finding: inclusion-based bisection meth-

ods [Redon et al. 2002a; Snyder et al. 1993], numerical methods [Vouga et al. 2011; Wang et al.

2015], and exact methods [Brochu et al. 2012; Tang et al. 2014]. Thanks to our benchmark, we

identified missing cases that were not handled by previous methods, and we did a best effort to

fix the corresponding algorithms and implementations to account for these cases.

The surprising conclusion of this study (Section 3.4.2) is that the majority of the existing CCD

algorithms produce FNs, except three: (1) symbolic solution of the system and evaluation with

exact arithmetic computed using Mathematica [Wolfram Research Inc. 2020], (2) Bernstein sign

classification (BSC) with conservative error analysis [Wang et al. 2015], and (3) inclusion-based

bisection root finding [Redon et al. 2002a; Snyder et al. 1993]. (1) is extremely expensive and, while

it can be used for generating the ground truth, it is impractical in simulation applications. (2) is

efficient but generates many FPs and the number of FPs depends on the geometric configuration
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and velocities involved. (3) is one of the oldest methods proposed for CCD. It is slow compared

to state-of-the-art algorithms, but it is correct and allows precise control of the trade-off between

FPs and computational cost.

This extensive analysis and benchmark inspired us to introduce a specialization of the clas-

sical inclusion-based bisection algorithm proposed in [Snyder 1992] to the specific case of CCD

for triangular meshes (Section 3.5). The major changes are: a novel inclusion function, an effi-

cient strategy to perform bisection, and the ability to find CCD roots with a minimum separation

(Section 3.6). Our novel inclusion function:

1. is tighter leading to smaller boxes on average thus making our method more accurate (i.e.,

less FPs);

2. reduces the root-finding problem into the iterative evaluation of a Boolean function, which

allows replacing explicit interval arithmetic with a more efficient floating point filtering;

3. can be vectorized with Advanced Vector Extensions 2 (AVX2) instructions.

With these modifications, our inclusion-based bisection algorithm is only 3× slower on average

than the fastest inaccurate CCD algorithm. At the same time it is provably conservative, provides

a controllable ratio of FPs (within reasonable numerical limits), supports a minimum separation,

and reports the time of impact (TOI). We also discuss how to integrate a minimum separation

CCD in algorithms employing a line search to ensure the lack of intersections, which are common

in locally injective mesh parametrization and have been as introduced in Chapter 2 for physical

simulation.

Our dataset is available at the NYU Faculty Digital Archive1, while the implementation of all

the algorithms compared in the benchmark, a reference implementation of our novel inclusion-

based bisection algorithm, and scripts to reproduce all results (Section 3.4) are available on our
1NYU Faculty Digital Archive: https://archive.nyu.edu/handle/2451/61518
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project web page2. We believe this dataset will be an important element to support research in

efficient and correct CCD algorithms, while our novel inclusion-based bisection algorithm is a

practical solution that will allow researchers and practitioners to robustly check for collisions

in applications where a 3× slowdown in the CCD (which is usually only one of the expensive

steps of a simulation pipeline) will be preferable over the risk of FNs or the need to tune CCD

parameters.

3.2 Related Work

We present a brief overview of the previous works on continuous collision detection for trian-

gle meshes. Our work focuses only on CCD for deformable triangle meshes and we thus exclude

discussing methods approximating collisions using proxies (e.g., Hubbard [1995]; Mirtich [1996]).

Inclusion-Based Root-Finding. The generic algorithm in the seminal work of Snyder [1992]

on interval arithmetic for computer graphics is a conservative way to find collisions [Redon et al.

2002a; Snyder et al. 1993; VonHerzen et al. 1990]. This approach uses inclusion functions to certify

the existence of roots within a domain, using a bisection partitioning strategy. Surprisingly, this

approach is not used in recent algorithms despite being provably conservative and simple. Our

algorithm is based on this approach, but with two major extensions to improve its efficiency

(Section 3.5).

Numerical Root-Finding. The majority of CCD research focuses on efficient and accurate

ways of computing roots of special cubic polynomials. Among these, a most popular cubic solver

approach is introduced by Provot [1997], in which a cubic equation is solved to check for copla-

narity, and then the overlapping occurrence is validated to determine whether a collision tru-

ely occurs. Refined constructions based on this idea have been introduced for rigid [Kim and
2our project web page: https://continuous-collision-detection.github.io/
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Rossignac 2003; Redon et al. 2002a] and deformable [Hutter and Fuhrmann 2007; Tang et al.

2011b] bodies. However, all of these algorithms are based on floating-point arithmetic, requiring

numerical thresholds to account for the unavoidable rounding errors in the iterative root-finding

procedure. In fact, even if the cubic polynomial is represented exactly, its roots are generally

irrational and thus not representable with floating-point numbers. Unfortunately, the numerical

thresholds make these algorithms robust only for specific scenarios, and they can in general in-

troduce false negatives. Our approach has a moderately higher runtime than these algorithms,

but it is guaranteed to avoid false negatives without parameter tuning. We benchmark Provot

[1997] using the implementation of Vouga et al. [2011] in Section 3.4.

For most applications, false positives are less problematic than false negatives since a false

negative will miss a collision, leading to interpenetration and potentially breaking the simulation.

Tang et al. [2010] propose a simple and effective filter which can reduce both the number of false

positives and the elementary tests between the primitives. Wang [2014] and Wang et al. [2015]

improve its reliability by introducing forward error analysis, in which error bounds for floating-

point computation are used to eliminate false positives. We benchmark the representativemethod

of Wang et al. [2015] in Section 3.4.

Exact Root-Finding. Brochu et al. [2012] and Tang et al. [2014] introduce algorithms relying

on exact arithmetic to provide exact continuous collision detection. However, after experiment-

ing with their implementations and carefully studying their algorithms, we discovered that they

cannot always provide the exact answer (Section 3.4). Brochu et al. [2012] rephrase the collision

problem as counting the number of intersections between a ray and the boundary of a subset ofR3

bounded by bilinear faces. The ray casting and polygonal construction can be done using rational

numbers (or more efficiently with floating point expansions) to avoid floating-point rounding er-

rors. In [Tang et al. 2014] the CCD queries are reduced to the evaluation of the signs of Bernstein

polynomials and algebraic expressions, using a custom root finding algorithm. Our algorithm
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uses the geometric formulation proposed in [Brochu et al. 2012], but uses a bisection strategy

instead of ray casting to find the roots. We benchmark both [Brochu et al. 2012] and [Tang et al.

2014] in Section 3.4.

Minimum Separation. Minimum separation CCD (MSCCD) [Harmon et al. 2011; Lu et al. 2019;

Provot 1997; Stam 2009] reports collisions when two objects are at a (usually small) user-specified

distance. These approaches have two main applications: (1) a minimum separation is useful in

fabrication settings to ensure that the fabrication errors will not lead to penetrations, and (2)

a minimum separation can ensure that, after floating-point rounding, two objects are still not

intersecting, an invariant which must be preserved by certain simulation codes [Harmon et al.

2011; Li et al. 2020]. We benchmark [Harmon et al. 2011] in Section 3.6.2. Our algorithm supports

a novel version of minimum separation, where we use the 𝐿∞ norm instead of 𝐿2 (Section 3.6.1).

Collision Culling. An orthogonal problem is efficient high-level collision culling to quickly

filter out primitive pairs that do not collide in a time step. Since in this case it is tolerable to

have many false positives, it is easy to find conservative approaches that are guaranteed to not

discard potentially intersecting pairs [Curtis et al. 2008; Govindaraju et al. 2005; Mezger et al.

2003; Pabst et al. 2010; Provot 1997; Schvartzman et al. 2010; Tang et al. 2009a, 2008; Volino and

Thalmann 1994; Wong and Baciu 2006; Zhang et al. 2007c; Zheng and James 2012]. Any of these

approaches can be used as a preprocessing step to any of the CCD methods considered in this

study to improve performance.

Generalized Trajectories. The linearization of trajectories commonly used in collision de-

tection is a well-established, practical approximation, ubiquitous in existing codes. There are,

however, methods that can directly detect collisions between objects following polynomial tra-

jectories [Pan et al. 2012] or rigid motions [Canny 1986; Redon et al. 2002a; Tang et al. 2009b;

Zhang et al. 2007c], and avoid the approximation errors due to the linearization. Our algorithm
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currently does not support curved trajectories and we believe this is an important direction for

future work.

3.3 Preliminaries and Notation

Assuming that the objects are represented using triangular meshes and that every vertex

moves in a linear trajectory in each time step, the first collision between moving triangles can

happen either when a vertex hits a triangle, or when an edge hits another edge.

Thus a continuous collision detection algorithm is a procedure that, given a vertex-face or

edge-edge pair, equipped with their linear trajectories, determines if and when they will touch.

Formally, for the vertex-face CCD, given a vertex 𝑝 and a face with vertices 𝑣1, 𝑣2, 𝑣3 at two distinct

time steps 𝑡0 and 𝑡1 (we use the superscript notation to denote the time, i.e., 𝑝0 is the position of

𝑝 at 𝑡0), the goal is to determine if at any point in time between 𝑡0 and 𝑡1 the vertex is contained

in the moving face. Similarly, for the edge-edge CCD, the algorithm aims to find if there exists a

𝑡 ∈ [𝑡0, 𝑡1] where the two moving edges (𝑝𝑡1, 𝑝𝑡2) and (𝑝𝑡3, 𝑝𝑡4) intersect. We will briefly overview

and discuss the pros and cons of the two major formulations present in the literature to address

the CCD problem: multi-variate and univariate.

Multivariate CCD Formulation. The most direct way of solving this problem is to paramet-

rize the trajectories with a parameter 𝑡 ∈ [0, 1] (i.e., 𝑝𝑖 (𝑡) = (1−𝑡)𝑝0
𝑖 +𝑡𝑝1

𝑖 and 𝑣𝑖 (𝑡) = (1−𝑡)𝑣0
𝑖 +𝑡𝑣1

𝑖 )

and write a multivariate polynomial whose roots correspond to intersections. That is finding the

roots of

𝐹vf : Ωvf = [0, 1] × {𝑢, 𝑣 ≥ 0|𝑢 + 𝑣 ≤ 1} → R3

with

𝐹vf(𝑡,𝑢, 𝑣) = 𝑝 (𝑡) −
(
(1 − 𝑢 − 𝑣)𝑣1(𝑡) + 𝑢𝑣2(𝑡) + 𝑣𝑣3(𝑡)

)
, (3.1)
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for the vertex-face case. Similarly, for the edge-edge case, the goal is to find the roots of

𝐹ee : Ωee = [0, 1] × [0, 1]2 → R3

with

𝐹ee(𝑡,𝑢, 𝑣) =
(
(1 − 𝑢)𝑝1(𝑡) + 𝑢𝑝2(𝑡)

)
−

(
(1 − 𝑣)𝑝3(𝑡) + 𝑣𝑝4(𝑡)

)
. (3.2)

In other words, the CCD problem reduces to determining if 𝐹 has a root in Ω (i.e., there is a

combination of valid 𝑡,𝑢, 𝑣 forwhich the vector between the point and the triangle is zero) [Brochu

et al. 2012]. The main advantage of this formulation is that it is direct and purely algebraic: there

are no degenerate or corner cases to handle. The intersection point is parameterized in time and

local coordinates and the CCD problem reduces to multivariate root-finding. However, finding

roots of a system of quadratic polynomials is difficult and expensive, which led to the introduction

of the univariate formulation.

Univariate CCD Formulation. An alternative way of addressing the CCD problem is to rely

on a geometric observation: two primitives intersect if the four points (i.e., one vertex and the

three triangle’s vertices or the two pairs of edge’s endpoints) are coplanar [Provot 1997]. This

observation has the major advantage of only depending on time, thus the problem becomes find-

ing roots in a univariate cubic polynomial:

𝑓 (𝑡) = ⟨𝑛(𝑡), 𝑞(𝑡)⟩ = 0, (3.3)

with

𝑛(𝑡) =
(
𝑣2(𝑡) − 𝑣1(𝑡)

)
×

(
𝑣3(𝑡) − 𝑣1(𝑡)

)
and 𝑞(𝑡) = 𝑝 (𝑡) − 𝑣1(𝑡)
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Figure 3.3: Scenes from Erleben [2018] that are used to generate a large part of the handcrafted dataset.

for the vertex-face case and

�(�) =
(
�2(�) − �1(�)

)
×
(
�4(�) − �3(�)

)
and �(�) = �3(�) − �1(�)

for the edge-edge case. Once the roots �★ of � are identified, they need to be filtered, as not all

roots correspond to actual collisions. While filtering is straightforward when the roots are finite,

special care is needed when there is an infinite number of roots, such as when the two primitives

are moving on the same plane. Handling these cases, especially while accounting for floating

point rounding, is very challenging.

3.4 Benchmark

3.4.1 Dataset

We crafted two datasets to compare the performance and correctness of CCD algorithms: (1)

a handcrafted dataset that contains over 12 thousand point-triangle and 15 thousand edge-edge
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Figure 3.4: The scenes used to generate the simulation dataset of queries. We use two simulation meth-
ods: (top) a SQP method with constraints and active set update from Verschoor and Jalba [2019] and
(bottom) the method proposed in Chapter 2.

queries, and (2) a simulation dataset that contains over 18 million point-triangle and 41 million

edge-edge queries. To foster replicability, we describe the format of the dataset in Appendix E.1.

The handcrafted queries are the union of queries simulated with IPC (Chapter 2) from the

scenes in [Erleben 2018] (Figure 3.3) and a set of handcrafted pairs for degenerate geometric

configurations. These include: point-point degeneracies, near collisions (within a floating-point

epsilon from collision), coplanar vertex-face and edge-edge motion (where the function � (Equa-

tion (3.3)) has infinite roots), degenerated function �vf and �ee, and CCD queries with two or three

roots.

The simulation queries were generated by running four nonlinear elasticity simulations. The

first two simulations (Figure 3.4 top row) use the constraints of [Verschoor and Jalba 2019] to

simulate two cow heads colliding and a chain of rings falling. The second two simulations (Fig-

ure 3.4 bottom row) use the IPC method (Chapter 2) to simulate a coarse mat twisting and the

high speed impact of a golf ball hitting a planar wall.

3.4.2 Comparison

We compare seven state-of-the-art methods: (1) the interval root-finder (IRF) [Snyder 1992],

(2) the univariate interval root-finder (UIRF) (a special case of the rigid-body CCD from [Redon
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Table 3.1: CCD benchmark. Summary of the average runtime in µs (t), number of false positive (FP),
and number of false negative (FN) for the six competing methods.

Handcrafted Dataset (12K) – Vertex-Face CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 14942.40 124242.00 2.18 0.38 1.41 928.08 176.17 12.90 1532.54
FP 87 146 9 903 3 0 11 16 108
FN 0 0 70 0 5 5 13 386 0

Handcrafted Dataset (15K) – Edge-Edge CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 12452.60 18755.80 0.48 0.33 2.33 1271.32 121.80 2.72 3029.83
FP 141 268 5 404 3 0 28 14 214
FN 0 0 147 0 8 8 47 335 0

Simulation Dataset (18M) – Vertex-Face CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 115.89 6191.98 7.53 0.24 0.25 1085.13 34.21 51.07 0.74
FP 2 18 0 95638 0 0 23015 75 2
FN 0 0 5184 0 0 0 0 0 0

Simulation Dataset (41M) – Edge-Edge CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 215.80 846.57 0.23 0.23 0.37 1468.70 12.87 10.39 0.78
FP 71 16781 0 82277 0 0 4593 228 17
FN 0 0 2317 0 7 7 27 1 0

et al. 2002a]), (3) the floating-point time-of-impact root finder (FPRF) [Provot 1997] implemented

in [Vouga et al. 2011], (4) TightCCD (TCCD) [Wang et al. 2015], (5) root parity (RP) [Brochu

et al. 2012], (6) a rational implementation of Root Parity (RRP) with the degenerate cases properly

handled, and (7) Bernstein sign classification (BSC) [Tang et al. 2014]. For each method we collect

the average query time, the number of false positives (i.e., there is no collision but the method

detects one), and the number of false negatives (i.e., there is a collision but the method misses it).

To obtain the ground truth we solve the multivariate CCD formulation (Equations (3.1) and (3.2))

symbolically using Mathematica [Wolfram Research Inc. 2020] which takes multiple seconds per

query. Table 3.1 summarizes the results. Note that “Ours” corresponds to our new method that

will be introduced and discussed in Section 3.5 and minimum separation floating-point time-of-
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impact root finder (MSRF) is a minimum separation CCD discussed in Section 3.6.2.

IRF. The inclusion-based root-finding described in [Snyder 1992] can be applied to both the

multivariate and univariate CCD. For the multivariate case we can simply initialize the parame-

ters of 𝐹 (i.e., 𝑡,𝑢, 𝑣) with the size of the domain Ω, evaluate 𝐹 and check if the origin is contained

in the output interval [Snyder et al. 1993]. If it is, we sequentially subdivide the parameters (thus

shrinking the size of the intervals of 𝐹 ) until a user-tolerance 𝛿 is reached. In our comparison we

use 𝛿 = 10−6. The major advantage of this approach is that it is guaranteed to be conservative:

it is impossible to shrink the interval of 𝐹 to zero. A second advantage is that a user can easily

trade accuracy (number of false positives) for efficiency by simply increasing the tolerance 𝛿 (Ap-

pendix E.4). The main drawback is that bisecting Ω in the three dimensions makes the algorithm

slow, and the use of interval arithmetic further increases the computational cost and prevents the

use of certain compiler optimization techniques (such as instruction reordering). We implement

this approach using the numerical type provided by the Boost interval library [Schling 2011].

UIRF. [Snyder 1992] can also be applied to the univariate function in Equation (3.3) by using

the same subdivision technique on the single variable 𝑡 (as in [Redon et al. 2002a] but for lin-

ear trajectories). The result of this step is an interval containing the earliest root in 𝑡 which is

then plugged inside a geometric predicate to check if the primitives intersect in that interval.

While finding the roots with this approach might, at a first glance, seem easier than in the multi-

variate case and thus more efficient, this is not the case in our experiments. If the polynomial

has infinite roots, this algorithm will have to refine the entire domain to the maximal allowed

resolution, and check the validity of each interval, making it correct but very slow on degenerate

cases (Appendix E.4). This results in a longer average runtime than its multivariate counterpart.

Additionally, it is impossible to control the accuracy of the other two parameters (i.e., 𝑢, 𝑣), thus

introducing more false positives.
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FPRF. Vouga et al. [2011] aim to solve the univariate CCD problem using only floating-point

computation. Tomitigate false negatives, the method uses a numerical tolerance 𝜂 (Appendix E.5)

shows how 𝜂 affects running time, the false positive, and negative). The major limitations are that

the number of false positives cannot be directly controlled as it depends on the relative position of

the input primitives and that false negatives can appear if the parameter is not tuned accordingly

to the objects velocity and scale. Additionally, the reference implementation does not handle the

edge-edge CCD when the two edges are parallel. This method is one of the fastest, which makes

it a very popular choice in many simulation codes.

TCCD. TightCCD is a conservative floating-based implementation of Tang et al. [2014]. It uses

the univariate formulation coupled with three inequality constraints (two for the edge-edge case)

to ensure that the univariate root is a CCD root. The algorithm expresses the cubic polynomial

𝑓 as a product and sum of three low order polynomials in Bernstein form. With this reformula-

tion the CCD problem becomes checking if univariate Bernstein polynomials are positive, which

can be done by checking some specific points. This algorithm is extremely fast but introduces

many false positives which are impossible to control. In our benchmark, this is the only non-

interval method without false negatives. The major limitation of this algorithm is that it always

detects collision if the primitives are moving in the same plane, independently from their relative

position.

RP and RRP. These two methods use the multivariate formulation 𝐹 (Equations (3.1) and (3.2)).

The main idea is that the parity of the roots of 𝐹 can be reduced to a ray casting problem. Let

𝜕Ω be the boundary of Ω, the algorithm shoots a ray from the origin and counts the parity of

the intersection between the ray and 𝐹 (𝜕Ω) which corresponds to the parity of the roots of 𝐹 .

Parity is however insufficient for CCD: these algorithms cannot differentiate between zero roots

(no collision) and two roots (collision), since they have the same parity. We note that this is a rare

case happening onlywith sufficiently large time-steps and/or velocities: we found 13 (handcrafted
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dataset) and 7 (simulation dataset) queries where these methods report a false negative.

We note that the algorithm described in [Brochu et al. 2012] (and its reference implementa-

tion) does not handle some degenerate cases leading to both false negatives and positives. For

instance, in Appendix E.2, we show an example of a “hourglass” configuration where RP misses

the collision, generating a false negative. To overcome this limitations and provide a fair com-

parison to these techniques, we implemented a naïve version of this algorithm that handles all

the degenerate cases using rational numbers to simplify the coding (see the additional materi-

als). We opted for this rational implementation since properly handling the degeneracies using

floating-point requires designing custom higher precision predicates for all cases. The main ad-

vantage of this method is that it is exact (when the degenerate cases are handled) as it does not

contain any tolerance and thus has zero false positives. We note that the runtime of our rational

implementation is extremely high and not representative of the runtime of a proper floating point

implementation of this algorithm.

BSC. This efficient and exact method uses the univariate formulation coupled with inequality

constraints to ensure that the coplanar primitives intersects. The coplanarity problem reduces

to checking if 𝑓 in Bernstein form has a root. Tang et al. [2014] explain how this can be done

exactly by classifying the signs of the four coefficients of the cubic Bernstein polynomial. The

classification holds only if the cubic polynomial has monotone curvature; which can be achieved

by splitting the curve at the inflection point. This splitting, however, cannot be computed exactly

as it requires divisions (Appendix E.3). In our comparison, we modified the reference implemen-

tation to fix a minor typo in the code and to handle 𝑓 with inflection points by conservatively

reporting collision. This change introduces potential false positives, and we refer to the addi-

tional material for more details and for the patch we applied to the code.

Discussion and Conclusions. From our extensive benchmark of CCD algorithms, we observe

that most algorithms using the univariate formulation have false negatives. While the reduction

80



to univariate root findings provides a performance boost, filtering the roots (without introducing

false positives) is a challenging problem for which a robust solution is still elusive.

Surprisingly, only the oldest method, IRF, is at the same time reasonably efficient (e.g., it

does not take multiple seconds per query as Mathematica), correct (i.e., no false negatives), and

returns a small number of false positives (which can be controlled by changing the tolerance 𝛿).

It is however slower than other state-of-the-art methods, which is likely the reason why it is

currently not widely used. In the next section we show that it is possible to change the inclusion

function used by this algorithm to keep its favorable properties, while decreasing its runtime by

∼250×, making its performance competitive with state-of-the-art methods.

3.5 Method

We describe the seminal bisection root-finding algorithm introduced in [Snyder 1992] (Sec-

tion 3.5.1) and then introduce our novel Boolean inclusion function and how to evaluate it exactly

and efficiently using floating point filters (Section 3.5.2).

3.5.1 Solve Algorithm [Snyder 1992]

An interval 𝑖 = [𝑎, 𝑏] is defined as

𝑖 = [𝑎, 𝑏] = {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑥, 𝑎, 𝑏 ∈ R} ,

and, similarly, an 𝑛-dimensional interval is defined as

𝐼 = 𝑖1 × · · · × 𝑖𝑛,
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where 𝑖𝑘 are intervals. We use L(𝑖) and R(𝑖) to refer to the left and right parts of an unidimen-

sional interval 𝑖 . The width of an interval, written as𝑤 (𝑖) = 𝑤 ( [L(𝑖),R(𝑖)]), is defined by

𝑤 (𝑖) = R(𝑖) − L(𝑖)

and similarly, the width of an 𝑛-dimensional interval

𝑤 (𝐼 ) = max
𝑘={1,...,𝑛}

𝑤 (𝑖𝑘).

An interval can be used to define an inclusion function. Formally, given an 𝑚-dimensional

interval 𝐷 and a continuous function 𝑔 : R𝑚 → R𝑛 , an inclusion function for 𝑔, written□𝑔, is a

function such that

∀𝑥 ∈ 𝐷 𝑔(𝑥) ∈□𝑔(𝐷).

In other words,□𝑔(𝐷) is a 𝑛-dimensional interval bounding the range of 𝑔 evaluated over an𝑚-

dimensional interval 𝐷 bounding its domain. We call the inclusion function□𝑔 of a continuous

function 𝑔 convergent if for an interval 𝑋

𝑤 (𝑋 ) → 0 =⇒ 𝑤
(□𝑔(𝑋 )) → 0.

A convergent inclusion function can be used to find a root of a function 𝑔 over a domain

bounded by the interval 𝐼0 = [L(𝑥1),R(𝑥1)] × · · · × [L(𝑥𝑚),R(𝑥𝑚)]. To find the roots of 𝑔,

we sequentially bisect the initial 𝑚-dimensional interval 𝐼0, until it becomes sufficiently small

(Algorithm 3.1). Figure 3.5 shows a 1D example (i.e., 𝑔 : R → R) of a bisection algorithm. The

algorithm starts by initializing a stack 𝑆 of intervals to be checked with 𝐼0 (Line 3). At every level

ℓ (Line 5), the algorithm retrieves an interval 𝐼 from 𝑆 and evaluates the inclusion function to

obtain the interval 𝐼𝑔 (Line 7). Then it checks if the root is included in 𝐼𝑔 (Line 8). If not 𝐼 can
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Figure 3.5: 1D illustration of the first three levels of the inclusion-based root-finder in [Snyder 1992].

Algorithm 3.1 Inclusion-based root-finder
1: function solve(𝐼0, 𝑔, 𝛿)
2: res← ∅
3: 𝑆 ← {𝐼0}
4: ℓ ← 0
5: while 𝑆 ≠ ∅ do
6: 𝐼 ← pop(𝑆)
7: 𝐼𝑔 ← □𝑔(𝐼 ) ⊲ Compute the inclusion function
8: if 0 ∈ 𝐼𝑔 then
9: if 𝑤 (𝐼 ) < 𝛿 then ⊲ 𝐼 is small enough
10: res← res ∪ 𝐼
11: else
12: 𝐼1, 𝐼2 ← split(𝐼 )
13: 𝑆 ← 𝑆 ∪ {𝐼1, 𝐼2}
14: ℓ ← ℓ + 1
15: return res

be safely discarded since 𝐼𝑔 bounds the range of 𝑔 over the domain bounded by 𝐼 . Otherwise

(0 ∈ 𝐼𝑔), it checks if𝑤 (𝐼 ) is smaller than a user-defined threshold 𝛿 . If so it appends 𝐼 to the result

(Line 10). If 𝐼 is too large, the algorithm splits one of its dimensions (e.g., [L(𝑥1),R(𝑥1)] is split

in [L(𝑥1), 𝑥1] and [𝑥1,R(𝑥1)] with 𝑥1 = (L(𝑥1) + R(𝑥1))/2) and appends the two new intervals

𝐼1, 𝐼2 to the stack 𝑆 (Line 13).

Generic Construction of Inclusion Functions. Snyder [1992] proposes the use of interval

arithmetic as a universal and automatic way to build inclusion functions for arbitrary expressions.
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However, interval arithmetic adds a performance overhead to the computation. For example, the

product between two intervals is

[𝑎, 𝑏] · [𝑐, 𝑑] = [min(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑),max(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)],

which requires four multiplications and two min/max instead of one multiplication. In addition,

the compiler cannot optimize composite expressions, since the rounding modes need to be cor-

rectly set up and the operation needs to be executed in order to avoid rounding errors [Schling

2011].

3.5.2 Predicate-Based Bisection Root Finding

Instead of using interval arithmetic to construct the inclusion function □𝐹 for the interval

𝐼Ω = 𝐼𝑡 × 𝐼𝑢 × 𝐼𝑣 = [0, 1] × [0, 1] × [0, 1] around the domain Ω, we propose to define an inclusion

function tailored for 𝐹 (both for Equations (3.1) and (3.2)) as the box

𝐵𝐹 (𝐼Ω) = [𝑚𝑥 , 𝑀𝑥 ] × [𝑚𝑦, 𝑀𝑦] × [𝑚𝑧, 𝑀𝑧] (3.4)

with

𝑚𝑐 = min
𝑖=1,...,8

(𝑣𝑐𝑖 ), 𝑀𝑐 = max
𝑖=1,...,8

(𝑣𝑐𝑖 ), 𝑐 = {𝑥,𝑦, 𝑧}

𝑣𝑖 = 𝐹 (𝑡𝑚, 𝑢𝑛, 𝑣𝑙 ), 𝑡𝑚, 𝑢𝑛, 𝑣𝑙 ∈ {0, 1}, and 𝑚,𝑛, 𝑙 ∈ {1, 2}.

Proposition 3.1. The inclusion function 𝐵𝐹 defined in Equation (3.4) is the tightest axis-aligned

inclusion function of 𝐹 .

Proof. Wenote that for any given 𝑢̃ the function 𝐹 (𝑡, 𝑢̃, 𝑣) is bilinear; we call this function function

𝐹𝑢̃ (𝑡, 𝑣). Thus, 𝐹 can be regarded as a bilinear function whose four control points move along

linear trajectories T (𝑢)𝑖, 𝑖 = 1, 2, 3, 4. The range of 𝐹𝑢̃ is a bilinear surface which is bounded by
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the tetrahedron constructed by the four vertices forming the bilinear surface, which are moving

on T𝑖 . Thus, 𝐹 is bounded by every tetrahedron formed by T (𝑢)𝑖 , implying that 𝐹 is bounded

by the convex hull of the trajectories’ vertices, which are the vertices 𝑣𝑖, 𝑖 = 1, · · · , 8 defining 𝐹 .

Finally, since 𝐵𝐹 is the axis-aligned bounding box of the convex-hull of 𝑣𝑖, 𝑖 = 1, · · · , 8, 𝐵𝐹 is an

inclusion function for 𝐹 .

Since the vertices of the convex hull belong to 𝐹 and the convex hull is the tightest convex

hull, the bounding box 𝐵𝐹 of the convex hull is the tightest inclusion function. □

Theorem 3.2. The inclusion function 𝐵𝐹 defined in Equation (3.4) is convergent.

Proof. We first note that 𝐹 is trivially continuous, second that the standard interval-based inclu-

sion function □𝐹 constructed with intervals is axis-aligned. Therefore, from Proposition 3.1, it

follows that 𝐵𝐹 (𝐼 ) ⊆ □𝐹 (𝐼 ) for any interval 𝐼 . Finally, since □𝐹 is convergent [Snyder 1992],

then also 𝐵𝐹 is. □

The inclusion function 𝐵𝐹 turns out to be ideal for constructing a predicate: to use this inclu-

sion function in the solve algorithm (Algorithm 3.1), we only need to check if, for a given interval

𝐼 , 𝐵𝐹 (𝐼 ) contains the origin (Line 8). Such a Boolean predicate can be conservatively evaluated

using floating point filtering.

Conservative Predicate Evaluation. Checking if the origin is contained in an axis-aligned

box is trivial and it reduces to checking if the zero is contained in the three intervals defining the

sides of the box. In our case, this requires us to evaluate the sign of 𝐹 at the eight box corners.

However, the vertices of the co-domain are computed using floating point arithmetic and can

thus be inaccurate. We use forward error analysis to conservatively account for these errors as

follows.

Without loss of generality, we focus only on the 𝑥-axis. Let {𝑣𝑥𝑖 }, 𝑖 = 1, . . . , 8 be the set of 𝑥-

coordinates of the 8 vertices of the box represented in double precision floating-point numbers.
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The error bound for 𝐹 (on the 𝑥-axis) is

𝜀𝑥ee = 6.217248937900877 × 10−15𝛾3
𝑥

𝜀𝑥vf = 6.661338147750939 × 10−15𝛾3
𝑥

(3.5)

with

𝛾𝑥 = max(𝑥max, 1) and 𝑥max = max
𝑖=1,...,8

( |𝑣𝑥𝑖 |).

That is, the sign of 𝐹𝑥ee computed using floating-point arithmetic is guaranteed to be correct if

|𝐹𝑥ee | > 𝜀𝑥ee, and similarly for the vertex face case. If this condition does not hold, we conservatively

assume that the zero is contained in the interval, thus leading to a possible false positive. The

two constants 𝜀𝑥ee and 𝜀𝑥vf are floating point filters for 𝐹𝑥ee and 𝐹𝑥vf respectively, and were derived

using [Attene 2020].

Efficient Evaluation. The 𝑥,𝑦, 𝑧 predicates defined above depend only on a subset of the

coordinates of the eight corners of 𝐵𝐹 (𝐼 ). We can optimally vectorize the evaluation of the eight

corners using AVX2 instructions (∼4× improvement in performance), since it needs to be evaluated

on eight points and all the computation is standard floating-point arithmetic. Note that we used

AVX2 instructions because newer versions still have spotty support on current processors. After

the eight points are evaluated in parallel, applying the floating-point filter involves only a few

comparisons. To further reduce computation, we check one axis at a time and immediately return

if any of the intervals do not contain the origin.

Algorithm. We describe our complete algorithm in pseudocode in Algorithm 3.2. The input to

our algorithm are the eight points representing two primitives (either vertex-face or edge-edge),

a user-controlled numerical tolerance 𝛿 > 0 (if not specified otherwise, in the experiment we use

the default value 𝛿 = 10−6), and the maximum number of checks𝑚𝐼 > 0 (we use the default value

𝑚𝐼 = 106). These choice are based on our empirical results (Figures 3.8 and 3.9). The output is
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Algorithm 3.2 Complete overview of our CCD algorithm (Part 1 of 2).
1: function solve(𝐹, 𝛿,𝑚𝐼 )
2: 𝑛 ← 0 ⊲ Number of check counter
3: 𝑄 ← {{[0, 1]3, 0}} ⊲ Push first interval and level 0 in 𝑄

4: ℓ𝑝 ← −1 ⊲ Previous checked level is -1
5: while 𝑄 ≠ ∅ do
6: 𝐼 , ℓ ← pop(𝑄) ⊲ Retrieve level and interval
7: 𝐵 ← 𝐵𝐹 (𝐼 ) ⊲ Compute the box inclusion function
8: 𝑛 ← 𝑛 + 1 ⊲ Increase check number
9: if 𝐵 ∩𝐶𝜀 ≠ ∅ then
10: if ℓ ≠ ℓ𝑝 then ⊲ 𝐼 is the first colliding interval of ℓ
11: 𝐼 𝑓 ← 𝐼𝑡 ⊲ Save 𝑡-component of 𝐼
12: if 𝑛 ≥ 𝑚𝐼 then ⊲ Reached max number of checks
13: return L(𝐼 𝑓 ),𝑤 (𝐼𝑡 ) ⊲ Return left side of 𝐼 𝑓
14:
15: if 𝑤 (𝐵) < 𝛿 or 𝐵 ⊆ 𝐶𝜀 then
16: if ℓ ≠ ℓ𝑝 then
17: return L(𝐼 𝑓 ),𝑤 (𝐼𝑡 ) ⊲ Root found
18: else
19: 𝐼1, 𝐼2 ← split(𝐼 )
20: 𝑄 ← 𝑄 ∪ {{𝐼1, ℓ + 1}, {𝐼2, ℓ + 1}}
21: sort(𝑄, order)
22: ℓ𝑝 = ℓ ⊲ Update the previous colliding level
23: return∞, 0 ⊲ 𝑄 is empty and no roots were found

a conservative estimate of the earliest TOI or infinity if the two primitives do not collide in the

time intervals coupled with the reached tolerance.

Our algorithm iteratively checks the box 𝐵 = 𝐵𝐹 (𝐼 ), with 𝐼 = 𝐼𝑡 × 𝐼𝑢 × 𝐼𝑣 = [𝑡1, 𝑡2] × [𝑢1, 𝑢2] ×

[𝑣1, 𝑣2] ⊂ 𝐼Ω (initialized with [0, 1]3). To guarantee a uniform box size while allowing early

termination of the algorithm, we explore the space in a breadth-first manner and record the

current explored level ℓ (Line 6). Since our algorithm is designed to find the earliest TOI, we sort

the visiting queue 𝑄 with respect to time (Line 21).

At every iterationwe check if 𝐵 intersects the cube𝐶𝜀 = [−𝜀𝑥 , 𝜀𝑥 ]×[−𝜀𝑦, 𝜀𝑦]×[−𝜀𝑧, 𝜀𝑧] (Line 9);

if it does not, we can safely ignore 𝐼 since there are no collisions.
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Algorithm 3.3 Complete overview of our CCD algorithm (Part 2 of 2).
24: function split(𝐼 = 𝐼𝑡 × 𝐼𝑢 × 𝐼𝑣 )
25: Compute 𝜅𝑡 , 𝜅𝑢, 𝜅𝑣 according to Equation (3.7)
26: 𝑐𝑡 ← 𝑤 (𝐼𝑡 )𝜅𝑡 , 𝑐𝑢 ← 𝑤 (𝐼𝑢)𝜅𝑢, 𝑐𝑣 ← 𝑤 (𝐼𝑣 )𝜅𝑣
27: 𝑐 ← max(𝑐𝑡 , 𝑐𝑢, 𝑐𝑣 )
28: if 𝑐𝑡 = 𝑐 then ⊲ 𝑐𝑡 is the largest
29: 𝐼1 ← [L(𝐼𝑡 ), (L(𝐼𝑡 ) + R(𝐼𝑡 ))/2] × 𝐼𝑢 × 𝐼𝑣 ,
30: 𝐼2 ← [(L(𝐼𝑡 ) + R(𝐼𝑡 ))/2,R(𝐼𝑡 )] × 𝐼𝑢 × 𝐼𝑣
31: else if 𝑐𝑢 = 𝑐 then ⊲ 𝑐𝑢 is the largest
32: 𝐼1 ← 𝐼𝑡 × [L(𝐼𝑢), (L(𝐼𝑢) + R(𝐼𝑢))/2] × 𝐼𝑣 ,
33: 𝐼2 ← 𝐼𝑡 × [(L(𝐼𝑢) + R(𝐼𝑢))/2,R(𝐼𝑢)] × 𝐼𝑣
34: else ⊲ 𝑐𝑣 is the largest
35: 𝐼1 ← 𝐼𝑡 × 𝐼𝑢 × [L(𝐼𝑣 ), (L(𝐼𝑣 ) + R(𝐼𝑣 ))/2],
36: 𝐼2 ← 𝐼𝑡 × 𝐼𝑢 × [(L(𝐼𝑣 ) + R(𝐼𝑣 ))/2,R(𝐼𝑣 )]
37: return 𝐼1, 𝐼2

38:
39: function order({𝐼1, ℓ1}, {𝐼2, ℓ2})
40: if ℓ1 = ℓ2 then
41: return 𝐼 𝑡1 < 𝐼 𝑡2
42: else
43: return ℓ1 < ℓ2

If 𝐵 ∩ 𝐶𝜀 ≠ ∅, we first check if 𝑤 (𝐵) < 𝛿 or if 𝐵 is contained inside the 𝜀-box (Line 15). In

this case, it is unnecessary to refine the interval 𝐼 more since it is either already small enough (if

𝑤 (𝐵) < 𝛿) or any refinement will lead to collisions (if 𝐵 ⊆ 𝐶𝜀). We return 𝐼 𝑙𝑡 (i.e., the left-hand-side

of the 𝑡 interval of 𝐼 ) only if 𝐼 was the first intersecting interval of this current level (Line 16). If 𝐼

is not the first intersecting in the current level, there is an intersecting box (which is larger than

𝛿) with an earlier time since the queue is sorted according to time (Figure 3.6(a)).

If 𝐵 is too big we split the interval 𝐼 in two sub-intervals and push them to the priority queue

𝑄 (Line 19). Note that, differently from Algorithm 3.1, we use a priority queue 𝑄 instead of the

stack 𝑆 . For the vertex-triangle CCD, the domain Ω is a prism, thus, after spitting the interval

(Line 19), we append 𝐼1, 𝐼2 to 𝑄 only if they intersect with Ω. To ensure that 𝐵 shrinks uniformly

(since the termination criteria, Line 15, is 𝑤 (𝐵) < 𝛿) we conservatively estimate the width of 𝐵

(in the codomain) from the widths of the domain’s (i.e., where the algorithm is acting) intervals
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Figure 3.6: A 2D example of root finding (left) and its corresponding diagram (right).
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(3.7)

Proposition 3.3. Equation (3.6) holds for any positive constant 	 .

Proof. While �� (� ) is an interval, for the purpose of the proof we equivalently define it as an
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axis-aligned bounding box whose eight vertices are 𝑏𝑖 . We will use the super-script notation to

refer to the 𝑥,𝑦, 𝑧 component of a 3D point (e.g., 𝑏𝑥𝑖 is the 𝑥-component of 𝑏𝑖 ) and define the set

I = {1, . . . , 8}. By using the box definition the width of 𝐵𝐹 (𝐼 ) can be written as

𝑤 (𝐵𝐹 (𝐼 )) = ∥𝑏𝑀 − 𝑏𝑚∥∞

with

𝑏𝑘𝑀 = max
𝑖∈I
(𝑏𝑘𝑖 ) and 𝑏𝑘𝑚 = min

𝑖∈I
(𝑏𝑘𝑖 ) .

Since 𝐵𝐹 (𝐼 ) is the tightest axis-aligned inclusion function (Proposition 3.1)

𝑏𝑘𝑀 ≤ max
𝑖∈I

𝑣𝑘𝑖 , 𝑏𝑘𝑚 ≤ min
𝑖∈I

𝑣𝑘𝑖 ,

where 𝑣𝑖 = 𝐹 (𝐼 𝑗𝑡 , 𝐼𝑘𝑢 , 𝐼 𝑙𝑣 ), with 𝑗, 𝑘, 𝑙 ∈ {𝑙, 𝑟 }, thus for any coordinate 𝑘 we bound

𝑏𝑘𝑀 − 𝑏
𝑘
𝑚 = max

𝑖, 𝑗∈I
(𝑣𝑘𝑖 − 𝑣𝑘𝑗 ) ≤ max

𝑖, 𝑗∈I
∥𝑣𝑖 − 𝑣 𝑗 ∥∞.

For any pair of 𝑣𝑖 and 𝑣 𝑗 we have

𝑣𝑖 − 𝑣 𝑗 = 𝑠1𝛼𝑙,𝑚 + 𝑠2𝛽𝑛,𝑝 + 𝑠3𝛾𝑝,𝑞,

for some indices 𝑙,𝑚, 𝑛, 𝑜, 𝑝, 𝑞 ∈ {1, 2} and constant 𝑠1, 𝑠2, 𝑠3 ∈ {−1, 0, 1} with

𝛼𝑖, 𝑗 = 𝑤 (𝐼𝑡 )
(
𝐹 (0, 𝑢𝑖, 𝑣 𝑗 ) − 𝐹 (1, 𝑢𝑖, 𝑣 𝑗 )

)
,

𝛽𝑖, 𝑗 = 𝑤 (𝐼𝑢)
(
𝐹 (𝑡𝑖, 0, 𝑣 𝑗 ) − 𝐹 (𝑡𝑖, 1, 𝑣 𝑗 )

)
,

𝛾𝑖, 𝑗 = 𝑤 (𝐼𝑣 )
(
𝐹 (𝑡𝑖, 𝑢 𝑗 , 0) − 𝐹 (𝑡𝑖, 𝑢 𝑗 , 1)

)
,
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since 𝐹 is linear on the edges. We note that 𝛼𝑖, 𝑗 , 𝛽𝑖, 𝑗 , and 𝛾𝑖, 𝑗 are the 12 edges of the box 𝐵𝐹 . We

now define

𝑒𝑘𝑡 = max
𝑖, 𝑗∈{1,2}

|𝛼𝑘𝑖, 𝑗 |, 𝑒𝑘𝑢 = max
𝑖, 𝑗∈{1,2}

|𝛽𝑘𝑖, 𝑗 |, 𝑒𝑘𝑣 = max
𝑖, 𝑗∈{1,2}

|𝛾𝑘𝑖, 𝑗 |

which allows us to bound

max
𝑖, 𝑗∈I
∥𝑣𝑖 − 𝑣 𝑗 ∥∞ ≤ ∥𝑒𝑡 + 𝑒𝑢 + 𝑒𝑣 ∥∞ ≤ ∥𝑒𝑡 ∥∞ + ∥𝑒𝑢 ∥∞ + ∥𝑒𝑣 ∥∞.

Since

∥𝑒𝑡 ∥∞ ≤ 𝑤 (𝐼𝑡 ) max
𝑖, 𝑗=1,2

∥𝐹 (𝑡1, 𝑢𝑖, 𝑣 𝑗 ) − 𝐹 (𝑡2, 𝑢𝑖, 𝑣 𝑗 )∥∞ = 𝑤 (𝐼𝑡 )𝜅𝑡/3,

and similarly ∥𝑒𝑢 ∥∞ ≤ 𝜅𝑢/3, ∥𝑒𝑣 ∥∞ ≤ 𝜅𝑣/3, we have

∥𝑒𝑡 ∥∞ + ∥𝑒𝑢 ∥∞ + ∥𝑒𝑣 ∥∞ ≤
𝑤 (𝐼𝑡 )𝜅𝑡 +𝑤 (𝐼𝑢)𝜅𝑢 +𝑤 (𝐼𝑣 )𝜅𝑣

3

Finally, from the assumption in Equation (3.6) it follows that

𝑤 (𝐵𝐹 (𝐼 )) ≤ max
𝑖, 𝑗∈I
∥𝑣𝑖 − 𝑣 𝑗 ∥∞ ≤ ∥𝑒𝑡 ∥∞ + ∥𝑒𝑢 ∥∞ + ∥𝑒𝑣 ∥∞ < 𝛼.

□

Using the estimate of the width of 𝐼𝑡 , 𝐼𝑢, 𝐼𝑣 we split the dimension that leads to the largest

estimated dimension in the range of 𝐹 (Line 27).

Fixed Runtime or Fixed Accuracy. To ensure a bounded runtime, which is very useful in

many simulation applications, we stop the algorithm after an user-controlled number of checks

𝑚𝐼 . To ensure that our algorithm always returns a conservative TOI we record the first colliding

interval 𝐼 𝑓 of every level (Line 11). When the maximum number of check is reached we can safely

return the latest recorded interval 𝐼 𝑓 (Line 13) (Figure 3.6(b)). We note that our algorithm will not
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respect the user specified accuracy when it terminates early: if a constant accuracy is required by

applications, this additional termination criteria could be disabled, obtaining an algorithm with

guaranteed accuracy but sacrificing the bound on the maximal running time. Note that without

the termination criteria𝑚𝐼 , it is possible (while rare in our experiments) that the algorithm will

take a long time to terminate, or run out of memory due to storing the potentially large list of

candidate intervals 𝐿.

3.5.3 Results

Our algorithm is implemented in C++ and uses Eigen [Guennebaud et al. 2010a] for the lin-

ear algebra routines (with the -avx2 g++ flag). We run our experiments on a 2.35 GHz AMD

EPYC™ 7452. We attach the reference implementation and the data used for our experiments,

which will be released publicly.

The running time of our method is comparable to the floating-point methods, while being

provably correct, for any choice of parameters. For this comparison we use a default tolerance

𝛿 = 10−6 and default number of iterations𝑚𝐼 = 106. All queries in the simulation dataset terminate

within 106 checks, while for the handcrafted dataset only 0.25 and 0.55 % of the vertex-face and

edge-edge queries required more than 106 checks, reaching an actual maximal tolerance 𝛿 of

2.14 × 10−5 and 6.41 × 10−5 for vertex-face and edge-edge respectively. We note that, despite

the percentages begin small, by removing𝑚𝐼 the handcrafted queries take 0.015774 and 0.042477

seconds on average for vertex-face and edge-edge respectively. This is due to the large number of

degenerate queries, as can be seen from the long tail in the histogram of the run-times (Figure 3.7).

We did not observe any noticeable change of running time for the simulation dataset.

Our algorithm has two user-controlled parameters (𝛿 and 𝑚𝐼 ) to control the accuracy and

running time. The tolerance 𝛿 provides a direct control on the achieved accuracy and provides

an indirect effect on the running time (Figure 3.8). The other parameter,𝑚𝐼 , directly controls the

maximal running time of each query: for small𝑚𝐼 our algorithm will terminate earlier, resulting
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Figure 3.7: Log histograms of the running time of positive queries and negative queries on both datasets.

in a lower accuracy and thus more chances of false positives (Figure 3.9 top). We remark that, in

practice, very few queries require so many subdivisions: by reducing𝑚𝐼 to the very low value of

100, our algorithm early-terminates only on ∼0.07 % of the 60 million queries in the simulation

dataset.

3.6 Minimum Separation CCD

An additional feature of some CCD algorithms is minimum separation, that is, the option

to report collision at a controlled distance from an object, which is used to ensure that objects

are never too close. This is useful to avoid possible inter-penetrations introduced by numerical

rounding after the collision response, or for modeling fabrication tolerances for additive or sub-

tractive manufacturing. A minimum separation CCD (MSCCD) query is similar to a standard
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Figure 3.8: Top, average runtime of our algorithm for different tolerances � for the simulation dataset.
The shaded area shows the range of the distribution (min and max). Bottom, distribution of running times
of our algorithm for three different tolerances � = 10−8, 10−4, and 1 over the simulation dataset.

query: instead of checking if a point and a triangle (or two edges) are exactly overlapping, we

want to ensure that they are always separated by a user-defined distance� during the entire linear

trajectory. Similarly to the standard CCD (Section 3.3) MSCCD can be express using a multivari-

ate or a univariate formulation, usually measuring distances using the Euclidean distance. We

focus on the multivariate formulation since it does not require to filter spurious roots, we refer

to Section 3.4.2 for a more detailed justification of this choice.

Multivariate Formulation. We observed that using the Euclidean distance leads to a chal-

lenging problem, which can be geometrically visualized as follows: the primitives will not be

closer than � if � (Ω) does not intersect a sphere of radius � centered on the origin. This is a hard

problem, since it requires checking conservatively the intersection between a sphere (which is a
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Figure 3.9: The percentage of early-termination and maximum value of the tolerance 𝛿 for different𝑚𝐼

for the simulation dataset.

rational polynomial when explicitly parametrized) and 𝐹 (Ω).

Studying the applications currently using minimum separation, we realized that they are not

affected by a different choice of the distance function. Therefore, we propose to change the dis-

tance definition from Euclidean to Chebyshev distance (i.e., from the 𝐿2 to the 𝐿∞ distance). With

this minor change the problem dramatically simplifies: instead of solving for 𝐹 = 0 (Section 3.5),

we need to solve for |𝐹 | ≤ 𝑑 . The corresponding geometric problem becomes checking if 𝐹 (Ω)

intersects a cube of side 2𝑑 centered on the origin.

Univariate Formulation. The univariate formulation is more complex since it requires to

redefine the notion of co-planarity for minimum separation. We remark that the function 𝑓

in Equation (3.3) measures the length of the projection of 𝑞(𝑡) along the normal, thus to find

point at distance 𝑑 the equation becomes 𝑓 (𝑡) ≤ ⟨𝑛(𝑡), 𝑞(𝑡)⟩ = 𝑑 ∥𝑛(𝑡)∥. To keep the equation

polynomial, remove the inequality, and avoid square roots, the univariate MSCCD root finder
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Table 3.2: MSCCD benchmark. Summary of the average runtime in µs (t), number of FPs, and number
of FNs for MSRF and our method.

Handcrafted Dataset

Vertex-Face MSCCD Edge-Edge MSCCD

MSRF Ours MSRF Ours

𝑑 t FP FN t FP FN t FP FN t FP FN

10−2 12.89 854 114 18.86K 2.6K 0 3.84 774 189 9.64K 4.8K 0
10−8 15.05 216 2 1.60K 159 0 2.89 230 18 3.42K 309 0
10−16 13.90 151 35 1.51K 108 0 2.90 231 21 2.92K 214 0
10−30 13.59 87 141 1.39K 108 0 2.89 118 157 2.79K 214 0
10−100 14.45 16 384 1.43K 108 0 3.05 14 335 2.82K 214 0

Simulation Dataset

Vertex-Face MSCCD Edge-Edge MSCCD

MSRF Ours MSRF Ours

𝑑 t FP FN t FP FN t FP FN t FP FN

10−2 55.47 156.8K 18.3K 12.04 8.1M 0 14.42 354.1K 7.0K 19.12 8.3M 0
10−8 55.26 75 0 0.72 8 0 11.12 228 1 0.73 40 0
10−16 54.83 4 3.8K 0.71 2 0 10.70 10 4 0.72 17 0
10−30 53.73 0 10.2K 0.66 2 0 10.68 0 1.7K 0.67 17 0
10−100 53.53 0 18.6K 0.66 2 0 10.59 0 5.0K 0.68 17 0

becomes

⟨𝑛(𝑡), 𝑞(𝑡)⟩2 − 𝑑2∥𝑛(𝑡)∥2.

We note that this polynomial becomes sextic, and not cubic as in the zero-distance version. To

account for replacing the inequality with an equality, we also need to check for distance between

𝑞 and the edges and vertices of the triangle [Harmon et al. 2011]. In addition to finding the roots

of several high-order polynomials, this formulation, similarly to the standard CCD, suffers from

infinite roots when the two primitives are moving on a plane at distance 𝑑 from each other.

3.6.1 Method

The input to our MSCCD algorithm are the same as the standard CCD (eight coordinates, 𝛿 ,

and 𝑚𝐼 ) and the minimum separation distance 𝑑 ≥ 0. Our algorithm returns the earliest TOI

indicating if two primitives become closer than 𝑑 as measured by the 𝐿∞ norm.

We wish to check whether the box 𝐵𝐹 (Ω) intersects a cube of side 2𝑑 centered on the ori-
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Figure 3.10: 1D illustration of the first three levels of our MSCCD inclusion-based root-finder. Instead
of checking if �� intersects with the origin, we check if it intersects the interval [−�, �] marked in light
green.

gin (Figure 3.10). Equivalently, we can construct another box �′
�
(Ω) by displacing the six faces

of �� (Ω) outward at a distance � , and then check whether this enlarged box contains the ori-

gin. This check can be done as for the standard CCD (Section 3.5), but the floating point filters

must be recalculated to account for the additional sum (indeed, we add/subtract � to/from all the

coordinates). Hence, the filters for � ′ are:

��ee = 7.105427357601002 × 10−15�3
�

��vf = 7.549516567451064 × 10−15�3
�

(3.8)

As before, the filters are calculated as described in [Attene 2020] and they additionally assume

that � < �� .

To account for minimum separations, the only change in our algorithm is at Line 7 where we

need to enlarge � by � and in Lines 9 and 15 since �� needs to be replaced with �� = [−��, �� ] ×

[−��, ��] × [−��, ��].
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3.6.2 Results

To the best of our knowledge, theMSRF [Harmon et al. 2011] implemented in [Lu et al. 2019], is

the only public code supportingminimum separation queries. While not explicitly constructed for

MSCCD, FPRF uses a distance tolerance to limit false negatives, similarly to an explicit minimum

separation. We compare the results and performance in Appendix E.5.

MSRF. uses the univariate formulation, which requires to find the roots of a high-order poly-

nomial, and it is thus unstable when implemented using floating-point arithmetic.

Table 3.2 reports timings, false positive, and false negatives for different separation distances

𝑑 . As𝑑 shrinks (around 10−16) the results of our method withMSCDD coincide with the ones with

𝑑 = 0 since the separation is small. For these small tolerances, MSRF runs into numerical problems

and the number of false negatives increases. Figure 3.11 shows the average query time versus

the separation distance 𝑑 for the simulation dataset, since our method only requires to check

the intersection between boxes, the running time largely depends on the number of detected

collision, and the average is only mildly affected by the choice of 𝑑 .

3.7 Integration in Existing Simulators

In a typical simulation the objects are represented using triangular meshes and the vertices

are moving along a linear trajectory in a timestep. At each timestep, collisions might happen

when a vertex hits a triangle, or when an edge hits another edge. A CCD algorithm is then used to

prevent interpenetration; this can be done in different ways. In an active set construction method

(Section 3.7.1) the CCD is used to compute contact forces to avoid penetration assuming linearized

contact behaviour. For a line-search based method (Section 3.7.2), CCD and TOI are used to

prevent the Newton trajectory from causing penetration by limiting the step length. Note that,

the latter approach requires a conservative CCD, while the former can tolerate false negatives.
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Figure 3.11: Top: average runtime of our algorithm for varying minimum separation � in the simulation
dataset. The shaded area depicts the range of the values. Bottom: distribution of running time for three
different minimum separation distances � = 10−50, 10−8, and 1 over the simulation dataset.

The integration of a CCD algorithm with collision response algorithms is a challenging prob-

lem on its own, which is beyond the scope of this paper. As a preliminary study, to show that our

method can be integrated in existing response algorithm, we examine two use cases in elastody-

namic simulations:

1. constructing an active set of collision constraints [Harmon et al. 2008; Verschoor and Jalba

2019; Wriggers 1995], Section 3.7.1;

2. during a line search to prevent intersections, Section 3.7.2.

We leave as future work amore comprehensive study including how to use our CCD to further

improve the physical fidelity of existing simulators or how to deal with challenging cases such

as sliding contact response.
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To keep consistency across queries, we compute the numerical tolerances (Equations (3.5)

and (3.8)) for the whole scene. That is, 𝑥max, 𝑦max, and 𝑧max are computed as the maximum over

all the vertices in the simulation. In Algorithms 3.4 and 3.5 we utilize a broad phase method (e.g.,

spatial hash) to reduce the number of candidates 𝐶 that need to be evaluated without narrow

phase CCD algorithm.

3.7.1 Active Set Construction

Algorithm 3.4 Active Set Construction Using Exact CCD
1: function ConstructActiveSet(𝑥0, 𝑥1, 𝛿,𝑚𝐼 )
2: 𝐶 ← BroadPhase(𝑥0, 𝑥1)
3: 𝐶𝐴 ← ∅
4: for 𝑐 ∈ 𝐶 do ⊲ Iterate over the collision candidates
5: 𝑡 ← CCD(𝑥0 ∩ 𝑐, 𝑥1 ∩ 𝑐, 𝛿,𝑚𝐼 )
6: if 0 ≤ 𝑡 ≤ 1 then
7: 𝐶𝐴 ← 𝐶𝐴 ∪ {(𝑐, 𝑡)}
8: return 𝐶𝐴

9:
10: function CCD(𝑐0, 𝑐1, 𝛿,𝑚𝐼 )
11: if 𝑐0 and 𝑐1 are edges then
12: 𝐹 ← build 𝐹ee from 𝑐0 and 𝑐1 ⊲ Equation (3.2)
13: else
14: 𝐹 ← build 𝐹vf from 𝑐0 and 𝑐1 ⊲ Equation (3.1)
15: return Solve(𝐹, 𝛿,𝑚𝐼 )

In the traditional constraint based collision handling (such as that of Verschoor and Jalba

[2019]), collision response is handled by performing an implicit timestep as a constrained op-

timization. The goal is to minimize a elastic potential while avoiding interpenetration through

gap constraints. To avoid handling all possible collisions during a simulation, a subset of active

collisions constraints 𝐶𝐴 is usually constructed. This set not only avoids infeasibilities, but also

improves performance by having fewer constraints. There are many activation strategies, but for

the sake of brevity we focus here on the strategies used by Verschoor and Jalba [2019].
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Algorithm 3.4 shows how CCD is used to compute the active set 𝐶𝐴. Given the starting and

ending vertex positions, 𝑥0 and 𝑥1, we compute the TOI for each collision candidate 𝑐 ∈ 𝐶 . We

use the notation 𝑥𝑖 ∩ 𝑐 to indicate selecting the constrained vertices from 𝑥𝑖 . If the candidate 𝑐 is

an actual collision, that is 0 ≤ 𝑡 ≤ 1, then we add this constraint and the TOI, 𝑡 , to the active set,

𝐶𝐴.

From the active constraint set the constraints of Verschoor and Jalba [2019] are computed as

⟨𝑛, 𝑝1
𝑐 − 𝒑2

𝑐 ⟩ ≥ 0,

where 𝑛 is the contact normal (i.e., for a point-triangle the triangle normal at the TOI and for

edge-edge the edge-edge cross product at the TOI), 𝑝1
𝑐 is the point (or the contact point on the

first edge), and 𝑝2
𝑐 is the point of contact on the triangle (or on the second edge) at the end of the

timestep. Note that, this constraint requires to compute the point of contact, which depends on

the the time-of-impact which can be obtained directly from our method.

Because of the difficulty for a simulation solver to maintain and not violate constraints, it is

common to offset the constraints such that

⟨𝑛, 𝑝1
𝑐 − 𝑝2

𝑐 ⟩ ≥ 𝜂 > 0.

In such a way, even if the𝜂 constraint is violated, the real constraint is still satisfied. This common

trick, implies that the constraints need to be activated early (i.e., when the distance between two

objects is smaller than 𝜂) which is exactly what our MSCCD can compute when using 𝑑 = 𝜂.

In Figure 3.12, we use a value of 𝜂 = 0.001 m. When using large values of 𝜂, the constraint

of Verschoor and Jalba [2019] can lead to infeasibilities because all triangles are extended to planes

and edges to lines.

Figure 3.12 shows example of simulations run with different numerical tolerance 𝛿 . Changing

𝛿 has little effect on the simulation in terms of run-time, but for large values of 𝛿 , it can affect
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� = 10−1 � = 10−3 � = 10−6

Figure 3.12: Active-set construction. An elastic simulation using the constraints and active set method
of Verschoor and Jalba [2019]. From an initial configuration (left) we simulate an elastic torus falling on a
fixed cone using three values of � (from left to right: 10−1, 10−3, 10−6). The total runtime of the simulation
is affected little by the change in � (24.7, 25.2, and 26.2 seconds from left to right compared to 32.3 seconds
when using FPRF). For � = 10−1, inaccuracies in the time-of-impact lead to inaccurate contact points in
the constraints and, ultimately, intersections (inset).

accuracy. We observe that for a � ≥ 10−2 the simulation is more likely to contain intersections.

This is most likely due to the inaccuracies in the contact points used in the constraints.

3.7.2 Line Search

A line search is used in a optimization to ensure that every update decreases the energy �.

That is, given an update, Δ� , to the optimization variable � , we want to find a step size 	 such

that � (� + 	Δ�) < � (�). This ensure that we make progress towards a minimum.

When used in a line search algorithm, CCD can be used to prevent intersections and tunneling.

This requires modifying the maximum step length to the TOI. As observed in Chapter 2, the

standard CCD formulation without a minimum separation cannot be used directly in a line search

algorithm. Let �★ the earliest TOI (i.e., � (�★, 
̃, �̃) = 0 for some 
̃, �̃ and there is no collision between

0 and �★) and assume that the energy at � (�0 + �★Δ�) < � (�0) (Algorithm 3.5, Line 22). In this

case the step 	 = �★ is a valid descent step which will be used to update the position � in outer

iteration (e.g., Newton optimization loop). In the next iteration, the line search will be called

with the updated position and the earliest TOI will be zero since we selected �★ in the previous
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Algorithm 3.5 Line Search with Exact CCD
1: function LineSearch(𝐸, 𝑥0,Δ𝑥, 𝑝, 𝛿,𝑚𝐼 )
2: 𝑥1 ← 𝑥0 + Δ𝑥
3: 𝐶 ← BroadPhase(𝑥0, 𝑥1) ⊲ Collision candidates
4: 𝛼 ← 1
5: 𝑑𝑖, 𝜌𝑖 ← Distance(𝐶)
6: Compute 𝜖𝑖 from Equation (3.8)
7: 𝑑 ← max(𝑝𝑑𝑖, 𝛿)
8: while 𝑝 < (𝑑 − 𝛿 − 𝜖𝑖 − 𝜌𝑖)/𝑑 do
9: 𝑝 ← 𝑝/2
10: 𝑑 ← 𝑝𝑑𝑖

11: 𝛿𝑖 ← 𝛿

12: for 𝑐 ∈ 𝐶 do ⊲ 𝛼 is bounded by earliest time-of-impact
13: 𝑡, 𝛿𝑖 ←MSCCD(𝑥0 ∩ 𝑐, 𝑥1 ∩ 𝑐, 𝑑, 𝛼, 𝛿,𝑚𝐼 )
14: 𝛼 ← min(𝑡, 𝛼)
15: 𝛿𝑖 ← max(𝛿𝑖, 𝛿𝑖)
16: if 𝑝 < (𝑑 − 𝛿𝑖 − 𝜖𝑖 − 𝜌𝑖)/𝑑 then
17: 𝛿 ← 𝛿𝑖 ⊲ Repeat with 𝑝 validated from 𝛿𝑖
18: Go to Line 8.
19:
20: while 𝛼 > 𝛼min do ⊲ Backtracking line-search
21: 𝑥1 ← 𝑥0 + 𝛼Δ𝑥
22: if 𝐸 (𝑥1) < 𝐸 (𝑥0) then ⊲ Objective energy decrease
23: break
24: 𝛼 ← 𝛼/2
25: return 𝛼

26:
27: function MSCCD(𝑐0, 𝑐1, 𝑑, 𝑡, 𝛿,𝑚𝐼 )
28: if 𝑐0 and 𝑐1 are edges then
29: 𝐹 ← build 𝐹ee from 𝑐0 and 𝑐1 ⊲ Equation (3.2)
30: else
31: 𝐹 ← build 𝐹vf from 𝑐0 and 𝑐1 ⊲ Equation (3.1)
32: return SolveMSCCD(𝐹, 𝑡, 𝛿,𝑚𝐼 , 𝑑)

iteration. This prevents the optimization from making progress because any direction Δ𝑥 will

lead to a TOI 𝑡 = 0. To avoid this problem we need the line search to find an appropriate step-size

𝛼 along the update direction that leaves “sufficient space” for the next iteration, so that the barrier

in Chapter 2 will be active and steer the optimization away from the contact position. Formally,
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we aim at finding a valid CCD sequence {𝑡𝑖} such that

𝑡𝑖 < 𝑡𝑖+1, lim
𝑖→∞

𝑡𝑖 = 𝑡★, and 𝑡𝑖/𝑡𝑖+1 ≈ 1.

The first requirement ensures that successive CCD checks will report an increasing time, the

second one ensures that we will converge to the true minimum, and the last one aims at having

a “slowly” convergent sequence (necessary for numerical stability). In Chapter 2, we exploit a

feature of FPRF to simulate a minimum separation CCD: in this work we propose to directly use

our MSCCD algorithm (Section 3.6).

Constructing a Seqence.. Let 0 < 𝑝 < 1 be a user-defined tolerance (𝑝 close to 1will produce

a sequence {𝑡𝑖} converging faster) and 𝑑𝑖 be the distance between two primitives. We propose to

set 𝑑 = 𝑝𝑑𝑖 , and ensure that no primitive are closer than 𝑑 . Without loss of generality, we assume

that 𝐹 (𝑥 + Δ𝑥) = 0, that is, taking the full step will lead to contact. By taking successive steps in

the same direction, 𝑑𝑖 will shrink to zero ensuring 𝑡𝑖 to converge to 𝑡★. Similarly we will obtain a

growing sequence 𝑡𝑖 since 𝑑 decreases as we proceed with the iterations. Finally, it is easy to see

that 𝑝 = 𝑡𝑖/𝑡𝑖+1 which can be close to one.

To account for the aforementioned problem, we propose to use our MSCCD algorithm to

return a valid CCD sequence when employed in a line search scenario. For a step 𝑖 , we define 𝛿𝑖

as the tolerance, 𝜖𝑖 the numerical error Equation (3.8), and 𝜌𝑖 as the maximum numerical error

in computing the distances 𝑑𝑖 from the candidates set 𝐶 (Line 5). 𝜌𝑖 should be computed using

forward error analysis on the application-specific distance computation: since the applications

are not the focus of our paper, we used a fixed 𝜌𝑖 = 10−9, and we leave the complete forward

analysis as a future work. (We note that our approximation might thus introduce zero length

steps, this however did not happen in our experiments.) If 𝑑𝑖 − (𝛿𝑖 + 𝜖𝑖 + 𝜌𝑖) > 𝑑 , our MSCCD is

guaranteed to find a TOI larger than zero. Thus if we set 𝑑 = 𝑝𝑑𝑖 (Line 7), we are guaranteed to
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find a positive TOI if

𝑑𝑖 >
𝛿𝑖 + 𝜖𝑖 + 𝜌𝑖

1 − 𝑝 .

To ensure that this inequality holds, we propose to validate 𝑝 before using the MSCCD with 𝛿

(Line 8), find the TOI and the actual 𝛿𝑖 (Line 12), and check if the used 𝑝 is valid (Line 16). In case

𝑝 is too large, we divide it by two until it is small enough. Note that, it might be that

𝑑𝑖 < 𝛿𝑖 + 𝜖𝑖 + 𝜌𝑖,

in this case we can still enforce the inequality by increasing the number of iterations, decreasing

𝛿 , or using multi-precision in the MSCCD to reduce 𝜖𝑖 . However, this was never necessary in any

of our queries, and we thus leave a proper study of these options as future work.

As visible from Table 3.2, our MSCCD slows down as 𝑑 grows. Since the actual minimum dis-

tance is not relevant in the line search algorithm, our experiments suggest to cap it at 𝛿 (Line 7). To

avoid unnecessary computations and speedup the MSCCD computations, our algorithm, as sug-

gested by Redon et al. [2002a], can be easily modified to accept a shorter time interval (Line 13): it

only requires to change the initialization of 𝐼 (Algorithm 3.2 Line 3). These twomodifications lead

to a 8× speedup in our experiments. We refer to this algorithm with MSCCD (i.e., Algorithm 3.2

with MSCDD, Section 3.6.1, and modified initialization of 𝐼 ) as SolveMSCCD.

Figure 3.13 shows a simulation using our MSCCD in line search to keep the bodies from

intersecting for different 𝛿 . As illustrated in the previous section, the effect of 𝛿 is negligible

as long as 𝛿 ≤ 10−3. Timings vary depending on the maximum number of iterations. Because

the distance 𝑑 varies throughout the simulation, some steps take longer than others (as seen

in Figure 3.11). We note that, if we use the standard CCD formulation 𝐹 = 0, the line search

gets stuck in all our experiments, and we were not able to find a solution. Note that for a line

search based method it is crucial to have a conservative CCD/MSCCD algorithm: the videos in

the additional material shows that a false negative leads to an artifact in the simulation.
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Model ©Brian Enigma under CC BY-SA 3.0.

Figure 3.13: Collision-aware line-search. An example of an elastic simulation using our line search
(Section 3.7.2) and the method in Chapter 2 to keep the bodies from intersecting. An octocat is falling
under gravity onto a triangulated plane. From left to right: the initial configuration, the final frame with
� = 10−3, � = 10−4.5, � = 10−6 all with a maximum of 106 iterations. There are no noticeable differences
in the results, and the entire simulations takes 63.3, 67.9, and 67.0 seconds from left to right (a speed up
compared to using FPRF which takes 102 seconds).

3.8 Discussion

We constructed a benchmark of CCD queries and used it to study the properties of existing

CCD algorithms. The study highlighted that the multivariate formulation is more amenable to

robust implementations, as it avoids a challenging filtering of spurious roots. This formulation,

paired with an interval root finder and modern predicate construction techniques leads to a novel

simple, robust, and efficient algorithm, supporting minimum separation queries with runtime

comparable to state-of-the-art, non-conservative, methods.

While we believe that it is practically acceptable, our algorithm still suffers from false posi-

tive and it will be interesting to see if the multivariate root finding could be done exactly with

reasonable performances, for example employing expansion arithmetic in the predicates. Our

definition of minimum separation distance is slightly different from the classical definition, and

it would be interesting to study how to extend our method to directly support Euclidean dis-

tances. Another interesting venue for future work is the extension of our inclusion function to

non-linear trajectories and their efficient evaluation using static filters or exact arithmetic.

Our benchmark focuses only on CPU implementations: reimplementing our algorithm on a

graphics processing unit (GPU) with our current guarantees is a major challenge. It will require
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to control the floating-point rounding on the GPU (and compliant with the Institute of Electrical

and Electronics Engineers (IEEE) floating-point standard), to ensure that the compiler does not

reorder the operations or skip the computation of temporaries. Additionally, it would require to

recompute the ground truth and the numerical constants for single precision arithmetic, as most

GPUs do not yet support double computation. This is an exciting direction for future work to

further improve the performance of our approach.

We release an open-source reference implementation of our technique with an MIT license

to foster the adoption of our technique by existing commercial and academic simulators. We also

release the dataset and the code for all the algorithms in our benchmark to allow researchers

working on CCD to easily compare the performance and correctness of future CCD algorithms.
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4 | Intersection-free Rigid Body

Dynamics

4.1 Introduction

Simulations of rigid objects with contact resolution and friction are ubiquitous in computer

graphics and robotics. Rigid body models do not deform. Equipped with just rotational and

translational degrees of freedom (DOF) they are a critical simplification enabling simulations

with orders of magnitude less DOF when material deformation effects are either not significant

or can be safely ignored.

An ideal rigid body simulator should take a scene description, initial conditions, and a set of

(possibly time-dependent) boundary conditions, and integrate the system through time. This is

unfortunately not the case with existing algorithms, which require extensive parameter tuning

to produce sensible results (Section 4.6). In this work, we revisit the problem with a very differ-

ent focus: automation and robustness. We propose an algorithm that does not require per-scene

parameter tuning and can timestep large scenes with complex geometry, contacts, and friction

interactions. Our algorithm is the first rigid body simulator that guarantees a lack of interpene-

trations for all trajectories (and consequently on each timestep) of a simulation.

Our algorithm extends the IPC formulation (Chapter 2) for large deformation dynamics to

rigid body dynamics. We rely on the same core ideas: model contacts via a set of barrier func-
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Figure 4.1: Expanding Lock Box. An intricate locking mechanism designed for 3D printing can be
directly simulated with our algorithm. As the “key” turns, the central spiral is rotated which in turn pulls
in each of the five locking pins. When all pins have been retracted the bottom is able to freely fall. Our
algorithm’s intersection-free guarantee enables the automatic testing of designs without the need to tune
simulation parameters.

tions, and use an incremental potential formulation to timestep the system while ensuring no

intersection at all intermediate stages of the computation. These ideas are extended to rigid body

dynamics with reduced coordinates, where each body is parametrized by a rigid transformation.

Our formulation supports large time steps, co-dimensional objects, and complex scenes with hun-

dreds of inter-linked rigid bodies in resting or sliding contact. We compare our solution against

the original IPC volumetric formulation (proxying the rigid bodies using a material with high

Young’s modulus) showing that our approach is, as expected, more efficient on large scenes due

to the smaller number of degrees of freedom while being able to exactly model rigid motion.

As part of our algorithm, we need to conservatively detect collisions on a special type of

curved trajectories obtained by linearly interpolating rigid motions in rotation vector represen-

tation.

We propose the first conservative broad and narrow phase solution for triangle-point and

edge-edge collision detection queries for rigid body motion. The narrow phase query is based

on a simple and effective observation: the problem can be reduced to a sequence of linear CCD

queries with a minimum separation. For the broad phase, we propose to use interval arithmetic to

compute conservative bounding boxes that can be used in a standard bounding volume hierarchy

(BVH) data structure.
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The resulting algorithm handles complex scenes that cannot be simulated with existing rigid

body simulators, or that otherwise require laborious fine-tuning and hand-tweaking of simulation

parameters to achieve, opening the doors to new applications in graphics, robotics, and fabrica-

tion. To quantitatively and qualitatively compare our algorithm with competing solutions, we

introduce a benchmark for rigid body simulation, and compare our results against four popular

simulators (Bullet [Coumans and Bai 2019], MuJoCo [Todorov et al. 2012], Chrono [Tasora et al.

2016], and Houdini’s rigid body dynamics (RBD) [SideFX 2023]).

To foster future research and make our results reproducible, we attach a reference implemen-

tation of our algorithm, the benchmark, and scripts to reproduce all results in the paper in the

additional material. This material will be released publicly as an open-source project.

Our main contributions are:

• An IPC formulation for rigid body dynamic;

• An efficient, provably conservative CCD query for curved trajectories;

• A benchmark for rigid body simulation.

4.2 Related Work

4.2.1 Rigid Body Simulation

Dating back to Euler the rigid body model is a fundamental primitive for physical modeling

and simulation [Marsden and Ratiu 2013]. While it offers an exceedingly compact representa-

tion for body dynamics it comes with unique challenges as well. The first being that tracing a

piecewise rigid trajectory is much more challenging than for a piecewise linear one. We cover

the implications this has for integrating collision detection with time stepping in detail in Sec-

tion 4.2.2. The second being that because rigid bodies are infinitely stiff, applied forces and contact
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Figure 4.2: Mechanisms. We demonstrate the robustness of our method on various mechanisms with
tight conforming contact. Top: a piston is attached to a rotating disk and a static cylinder is used to
constrain the motion of the piston. Middle: A wheel with complex geometry rotates smoothly, but results
in intermittent motion on the connected wheel. Bottom: a bike chain is attached to a kinematic sprocket.
Each link is modeled using a realistic joint consisting of a roller, pin, and two plates.

responses are communicated instantaneously across the material domain. This sensitivity has

long challenged the stability, accuracy, and effectiveness of time-stepping methods and friction

models applied to simulate multibody systems [Stewart 2000].

Rigid-body contact simulation has been extensively investigated in mechanics, robotics, and

graphics [Baraff 1989; Bender et al. 2012; Brogliato 1999; Hahn 1988; Mirtich and Canny 1995;

Stewart 2000; Witkin and Baraff 2001]. In graphics, beginning with pioneering work of Baraff

[1991] rigid body contact has especially focused on LCP models [Anitescu and Hart 2004b; An-

itescu and Potra 1997; Baraff 1994; Kaufman et al. 2008; Lötstedt 1982; Stewart and Trinkle 2000;

Trinkle et al. 1995]. Here the semi-implicit models employed enforce contact constraints at the ve-

locity level. This linearized constraint enforcement then results in constraint drift and tunneling.
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In turn, these artifacts can be partially mitigated by constraint stabilization methods [Anitescu

and Hart 2004a; Cline and Pai 2003; Erleben 2007; Moreau 1988] at the cost of physical accuracy.

LCP and related contact models can also equivalently be formulated variationally [Moreau

1966; Redon et al. 2002b] and are amenable to both primal and dual constructions [Macklin et al.

2020]. However, as these rely on velocity level arguments and linearized contact constraints

they can not be employed for IPC-based optimization. Here, to extend IPC to rigid coordinates,

we construct an incremental potential for rigid bodies based directly on positions and rotations

rather than velocities.

Focusing on efficiency and speed awide range of faster, iterativemethods for rigid bodies have

also been developed building off of LCP [Erleben 2007; Guendelman et al. 2003], proximal [Er-

leben 2017], gradient descent [Mazhar et al. 2015], and decomposition [Coevoet et al. 2020; Hsu

and Keyser 2010; Tonge et al. 2012] methods to name just a few. With speed, however, comes

additional accuracy trade-offs [Kaufman et al. 2008]. In turn, this inherent loss of accuracy and

the resultant impact on stability and robustness generally requires compensation in the form of

hand-tuning and often large amounts of non-physical constraint stabilization.

A potential benefit of our work, which we leave as future work, is the easy coupling of the

original IPC formulation for deformable bodies with our new IPC formulation for rigid bodies.

Similar joint formulations have been introduced, for example, Müller et al. [2020] simulate rigid

bodies through extended position-based dynamics allowing them to easily couple soft and rigid

bodies.

There is also a rich history of simulating rigid bodies with guarantees. Time integrationmeth-

ods, starting with Moser and Veselov’s [1991] celebrated work, focus on preserving geometric in-

variants of free rigid bodies [Hairer et al. 2006]. Recent complementary work [Smith et al. 2012;

Vouga et al. 2017] focuses on designing methods for preserving geometric invariants (energy and

momentum) as well desirable collision properties for contacting rigid bodies. For maintaining

intersection-free rigid-body trajectories Mirtich [2000, 1996] and Snyder et al. [1993] construct
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Figure 4.3: Trajectories of interpolating rotation vectors can be wildly different form the traditional screw
motion used by others.

conservative, explicit time-stepping methods. Mirtich [1996] explicitly forward steps rigid bodies

with conservative advancement to the time of contact and later extends intersection-free reso-

lution with efficient roll-backs [Mirtich 2000]. Snyder et al. [1993] applies interval analysis to

detect collision between bodies. Further discussion and comparisons to our CCD are provided in

Section 4.2.2 and Appendix D.2. The use of an explicit time-stepping scheme can extremely limit

step size (and so progress) as each collision must be detected and resolved before the simulation

can proceed. In comparison, our method is fully implicit enabling large time-steps and global

analysis of all collisions in a time step simultaneously.

4.2.2 Collision Detection

We restrict our overview to CCD algorithms for curved trajectories, as we are interested in

rigid motions, and to CCD algorithms for linear trajectories with a minimum separation, as our

algorithm needs to tackle this subproblem. We refer toWang et al. [2021] for an overview of CCD

methods for linear trajectories without a minimum separation.

Curved. There has been extensive research on curved CCD algorithms, both in graphics and

in robotics. The trajectories considered are interpolation of rotation matrices, screw motions,
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and spline curves. We are not aware of any method designed to handle the trajectories obtained

interpolating rotation vectors that we consider in this paper.

There are two major approaches: interval-based root-finding on a system on non-linear equa-

tions and conservative advancement.

Interval-Based Root-Finding. One of the first approaches was introduced in [Snyder 1992;

Snyder et al. 1993], where they propose to use an interval-based root finder to conservatively de-

tect if there are collisions and at which time. The approach is robust but slow, as it heavily relies

on interval arithmetic. To reduce the dimensions in the domain, and correspondingly improve

performances, Redon et al. [2002a] proposes to use a similar strategy to only a part of the problem

and rewriting the CCD problem as a univariate system. However, this approach leads to an infi-

nite number of roots in degenerate cases, which dramatically slow down certain queries [Wang

et al. 2021]. A similar formulation, but for trajectories obtained by interpolating quaternions is

introduced in [Canny 1986]. We provide an explicit comparison against these approaches for

both the multivariate and univariate formulations in Appendix D.2.

Conservative Advancement. The most popular family of methods is conservative advance-

ment, which iteratively builds conservative convex proxies for a substep of the trajectory [Mirtich

2000, 1996]. These methods have been proposed for spline trajectories [Pan et al. 2012], trajecto-

ries with constant rotational and linear velocities [Tang et al. 2009b], screw motion [Tang et al.

2011a]. Different primitives are used such as bounding boxes or spheres [Schwarzer et al. 2005].

While most methods can be applied only to convex primitives, there are extensions for noncon-

vex polyhedra [Zhang et al. 2006]. In Zhang et al. [2007c], conservative advancement is extended

to articulated bodies, with a novel technique based on Taylor expansion to compute tight approx-

imations even for long body chains. A useful tool for computing the conservative proxies is the

computation of distances between polyhedra. Specialized methods for rigid body motions are

introduced in [Zhang et al. 2007a,b] and used within a conservative advancement framework to
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design a CCD algorithm.

None of these techniques can directly handle the trajectories that we consider in our work,

obtained by interpolating rotation vectors.

Other Methods. In addition to the above classifications, van Waveren [2005] introduces a

unique method for handling rotational contacts between polyhedral features. By using Plücker

coordinates and accounting for errors in floating-point rounding, van Waveren [2005] is able to

robustly detect and respond to collision in real-time applications. Unfortunately, this method is

limited to screw motions and is not immediately applicable to our current framework (interpola-

tion of rotation vectors).

Numerical Accuracy. Snyder [1992] and Snyder et al. [1993] consider the problem of floating-

point rounding, and can thus ensure a correct result when a floating-point implementation is

used. Other methods are non-conservative when implemented using floating-point arithmetic.

Since any missed collision would be fatal in our setting as it will break our interpenetration-free

invariance, the only method that we can use is [Snyder 1992; Snyder et al. 1993] both on the

original multivariate formulation, or on the one-dimensional formulation proposed in [Redon

et al. 2002a] (and adapted to rotation vector interpolation trajectories). We provide a discussion of

these twomethods in Section 4.4.3 and provide a comparisonwith our technique in Appendix D.2.

Minimum Separation Linear CCD. Linear CCD with minimum separation [Harmon et al.

2011; Lu et al. 2019; Provot 1997; Stam 2009; Wang et al. 2021] detects collisions when two prim-

itives are at a small user-specified distance. In our work, we reduce the curved CCD problem to

a sequence of linear CCD with minimum separation. While any of the methods above could be

used, we opt for [Wang et al. 2021], as it is the only one that is guaranteed to be correct when

implemented using floating-point arithmetic, and it also has a public implementation available on

GitHub. Our curved CCD algorithm can also be extended to support conservative minimum sep-
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aration (Section 4.5), a feature that, to the best of our knowledge, no other curved CCD method

considered before and that is useful in fabrication applications to ensure the satisfaction of clear-

ance constraints.

4.3 IPC Overview

We briefly overview the IPC solver introduced in Chapter 2 to make this chapter self-contain-

ed.

Chapter 2 proposes a novel way to handle large deformation dynamics with frictional contact,

reducing a single time step to the minimization of a unconstrained non-linear energy:

𝑥𝑡+1 = argmin
𝑥

𝐸𝑑 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) + 𝐵(𝑥, 𝑑) + 𝐷 (𝑥, 𝑑), (4.1)

where 𝑥𝑡 is the set of nodal position, 𝑣𝑡 the velocities, 𝐸𝑑 (𝑥, 𝑥𝑡 , 𝑣𝑡 ) is an IP for numerical time

stepping [Kane et al. 2000], 𝐷 is the friction potential, and 𝐵 is the barrier potential. The later

vanisheswhen primitives are further than a user-defined geometric accuracy𝑑 and divergeswhen

two objects are in contact. Here we first review the barrier potential, as we will need to extend it

in this work. In the next section we cover the necessary work to extend the incremental potential

for rigid bodies and so enable the IPC formulation. For further details on the friction model and

solving we refer to Chapter 2.

Solver and Line Search CCD. IPC requires an initial state that is free of self-intersections and

uses a custom Projected Newton solver to time step the system by minimizing Equation (4.1) to

a user-controlled accuracy. The solver ensures that the trajectories of all surface primitive pairs

are intersection-free during the optimization. The guarantee comes from explicitly validating the

linear trajectory in every line search using a conservative linear CCD query: if the CCD query

returns a collision, the step length is reduced until a step is possible. The solver requires the
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energy to be 𝐶2 (as the Newton method requires the computation of the second derivatives) and

thus a careful definition for all terms of the energy is necessary.

Barrier Functions and Distances. Let C be a set containing all non-incident point-triangle

and all non-adjacent edge-edge pairs in surface meshes. The barrier potential is then defined as:

𝐵(𝑥, 𝑑) = 𝜅
∑︁
𝑘∈C

𝑏
(
𝑑𝑘 (𝑥), 𝑑

)
, (4.2)

where 𝜅 is the barrier stiffness, 𝑑𝑘 is the mollified unsigned distance between the 𝑘 pair of primi-

tives (we refer to Chapter 2 for the detail on the computation of the mollified distances𝑑𝑘 between

the primitive pairs), and 𝑏 is a logarithmic barrier function defined as

𝑏 (𝑑,𝑑) =


−(𝑑 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑 < 𝑑

0 𝑑 ≥ 𝑑.

(4.3)

We note that while C contains a number of pairs that is quadratic with respect to the number of

primitives, most of the pairs will result in a zero contribution to Equation (4.3) as the support of

the barrier is local.

4.4 Method

Input. The input for our algorithm is a desired time step size ℎ, a computational distance accu-

racy target, 𝑑 , and a set of 𝑛 rigid bodies. Each rigid body 𝑖 has a set of 𝑘𝑖 vertices in axis-aligned,

body-frame local coordinates 𝑋𝑖 , a set of triangular faces 𝐹𝑖 , a mass𝑚𝑖 , and an inertial frame 𝐼𝑖 .

For each symbol, we use the subscript 𝑖 to identify per-body quantities, and the same symbol

without the subscript denotes a stacked vector (or matrix, as appropriate) of that quantity con-

catenated across the set of all simulated objects (e.g., 𝑋𝑖 give the coordinates of the 𝑖-th body,
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while 𝑋 is the stacked coordinates of all bodies). The position of each rigid body is then given

by a parametrization with a rotation vector1 𝜽𝑖 ∈ R3 and a translation 𝑞𝑖 ∈ R3 that together map

each body from its local frame to world coordinates with

𝜙𝑖 (𝜽𝑖, 𝑞𝑖) = R(𝜽𝑖)𝑋𝑖 + 𝑞𝑖, (4.4)

Here, the function 𝜙𝑖 : R3 × R3 → R3×𝑘𝑖 maps the 𝑘𝑖 vertices (in local coordinates) of the 𝑖-th

body into world coordinates with Rodrigues’s rotation formula R (see Equation (4.14)) mapping

from a rotation vector to a rotation matrix [Grassia 1998; Rodrigues 1840].

We initialize each simulation with a starting configuration of rotations 𝜽 0 and translations 𝑞0

for all bodies. We require a non-interpenetrating starting configuration and call any intersection

free configuration valid.

Output. Simulation output is a final valid configuration (𝜽 𝑡end, 𝑞𝑡end) obtained by time integrat-

ing the rigid body system, and the corresponding trajectory from (𝜽 0, 𝑞0) to (𝜽 𝑡end, 𝑞𝑡end) guaran-

teed free of intersections. The generated trajectory is piecewise linear in generalized coordinates,

(𝜽 , 𝑞), and is a curved trajectory in world coordinates.

Overview. Our approach follows the same high-level ideas as Chapter 2. Our first step requires

us to formulate rigid body system time integrators as IP – these are not previously available. With

rigid body IP in hand, we then can follow Chapter 2 by augmenting it with both a barrier and

friction potential (remapped via 𝜙) to resolve contact and friction forces, respectively. Below we

first construct our incremental potential formulation (Section 4.4.1) and then describe how we

adapt line search, constraint set generation, and a Newton-type solver to the rigid body time step

problem. As a key part of this solution, during line search, we must process a special type of

curved trajectories for continuous collision detection. For this, we develop a conservative CCD
1This parameterization, also often called an “Euler vector”, gives a rotation around the vector’s direction pre-

scribed by an angle equal to the vector’s magnitude.
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query in Section 4.4.3. We provide an extensive comparison of our rigid body formulation and

the original formulation of Chapter 2 in Section 4.6.1.

4.4.1 Rigid Body Incremental Potential

Following Chapter 2, we construct a discrete energy whose stationary points give an uncon-

strained time step method’s configurational update. The Newton-Euler rigid body equations of

motion are naturally defined at the acceleration level, however, they don’t (due to parameteri-

zation) naturally integrate up to an obvious variational formulation whose extremizers give an

updated rotation for a rigid body time step.

We then construct an IP formulation directly on rotation matrices𝑄𝑖 that map points on rigid

bodies 𝑖 from their local frames to a frame axis aligned with the world. At any time 𝑡 we then

have 𝑄𝑡
𝑖 = R(𝜽 𝑡

𝑖 ). Our first step is to recall that we can define angular kinetic energy directly on

rotation matrix velocities [Hairer et al. 2006] as 1
2 tr( ¤𝑄𝑖 𝐽𝑖 ¤𝑄⊤𝑖 ) where

𝐽𝑖 =
1
2
diag(−𝐼𝑥𝑖 + 𝐼

𝑦

𝑖
+ 𝐼𝑧𝑖 , 𝐼𝑥𝑖 − 𝐼

𝑦

𝑖
+ 𝐼𝑧𝑖 , 𝐼𝑥𝑖 + 𝐼

𝑦

𝑖
− 𝐼𝑧𝑖 ) = diag(−𝐼𝑥𝑖 + 𝐼

𝑦

𝑖
+ 𝐼𝑧𝑖 , 𝐼𝑥𝑖 − 𝐼

𝑦

𝑖
+ 𝐼𝑧𝑖 , 𝐼𝑥𝑖 + 𝐼

𝑦

𝑖
− 𝐼𝑧𝑖 )

is the inertial matrix, and 𝐼𝑥𝑖 , 𝐼
𝑦

𝑖
, and 𝐼𝑧

𝑖
are components of the inertial frame 𝐼𝑖 .

With the inertial matrix defined we now target flat equations of motion that will allow us to

compose IPs for arbitrary numerical time integrators on𝑄𝑖 . To do so we simply apply constrained

Lagrangian dynamics with orthogonality 𝑄⊤
𝑖
𝑄𝑖 − 𝑰 = 0 as a constraint. We then can directly ap-

ply standard form, constrained time integrators with flat coordinates [Ascher and Petzold 1998].

With our construction, we derive here the IP formulation for a rigid body system integrated with
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implicit Euler. For our formulation, the constrained implicit Euler time stepper is then

𝑄𝑡+1
𝑖 = 𝑄𝑡

𝑖 + ℎ ¤𝑄𝑡
𝑖 − ℎ2∇𝑉 (𝑄𝑡+1

𝑖 ) 𝐽−1
𝑖 +𝑄𝑡+1

𝑖 Λ𝐽−1
𝑖 + ℎ2 [𝜏𝑖] 𝐽−1

𝑖 , (4.5)

𝑄𝑡+1
𝑖

⊤
𝑄𝑡+1
𝑖 − 𝑰 = 0, (4.6)

¤𝑄𝑡
𝑖 =

𝑄𝑡
𝑖 −𝑄𝑡−1

𝑖

ℎ
, (4.7)

where Λ is the symmetric Lagrange-multiplier matrix for our constraint, 𝜏𝑖 are any external,

applied torques to body 𝑖 at time 𝑡 and 𝑉 are any potential energies defined on 𝑄𝑖 . We use the

notation [.] to indicate the construction of the skew-symmetric (cross-product) matrix2.

In turn, to create an implicit Euler rigid body IP we can next convert this to a corresponding

variational form

𝑄̃𝑖
𝑡
= 𝑄𝑡

𝑖 + ℎ ¤𝑄𝑡
𝑖 + ℎ2 [𝜏𝑖] 𝐽−1

𝑖

𝑄𝑡+1
𝑖 = argmin

𝑄

1
2 tr

(
𝑄𝐽𝑖𝑄

⊤) + tr
(
𝑄𝐽𝑖 (𝑄̃𝑡

𝑖 )⊤) + ℎ2𝑉 (𝑄),

s.t.𝑄⊤𝑄 − 𝑰 = 0. (4.8)

Then, for our entire rigid body system (presuming w.l.o.g. for now no potentials) the implicit

Euler IP for rotational coordinates is

𝐸𝑄 (𝑄) =
𝑛∑︁
𝑖=1

( 1
2 tr(𝑄𝑖 𝐽𝑖𝑄

⊤
𝑖
) − tr(𝑄𝑖 𝐽𝑖 (𝑄̃𝑖

𝑡 )⊤)
)
, (4.9)

2

[𝑣] =


0 −𝑣𝑧 𝑣𝑦
𝑣𝑧 0 −𝑣𝑥
−𝑣𝑦 𝑣𝑥 0


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and correspondingly for translational coordinates (directly from standard implicit Euler) we have

𝑞𝑖
𝑡 = 𝑞𝑡𝑖 + ℎ ¤𝑞𝑡𝑖 + ℎ2(𝑔 +𝑚−1𝑓𝑖)

𝐸𝑞 (𝑞) =
𝑛∑︁
𝑖=1

( 1
2𝑚𝑖𝑞

⊤
𝑖
𝑞𝑖 −𝑚𝑖𝑞

⊤
𝑖
𝑞𝑡𝑖

)
, (4.10)

where 𝑔 is the acceleration due to gravity, 𝑓𝑖 are any external, applied forces to body i’s center of

mass at time t, and velocities are updated by

¤𝑄𝑡 =
𝑄𝑡 −𝑄𝑡−1

ℎ
and ¤𝑞𝑡 = 𝑞𝑡 − 𝑞𝑡−1

ℎ
.

Finally, the complete implicit Euler rigid body IP is

𝐸 (𝑄,𝑞) = 𝐸𝑄 (𝑄) + 𝐸𝑞 (𝑞),

Now that it is defined entirely in terms of 𝑄 and 𝑞 it can be, as per our strategy, directly applied

to swap for 𝐸𝑑 in Equation (4.1), when we wish to apply rigid body coordinates. This gives us the

following constrained optimization problem to solve

(𝑄𝑡+1, 𝑞𝑡+1) = argmin
𝑄,𝑞

𝐸 (𝑄,𝑞) + 𝐵(𝜙 (𝑄,𝑞), 𝑑) + 𝐷 (𝜙 (𝑄,𝑞)) (4.11)

s.t. 𝑄⊤
𝑖
𝑄𝑖 = 𝑰 , 𝑖 = {1, . . . , 𝑛}, (4.12)

where the constraint is necessary to ensure that minimizer 𝑄𝑡+1 gives rotation matrices.

Rotation Vector Parametrization. Our goal remains to use unconstrained optimization in

order to apply as Newton-type solver with line-search filtering and so robustly minimize the

IP with guarantees. To do so parameterizing rotations with the rotation vector, 𝜽𝑖 , allows us to

then directly apply Rodrigues’ rotation formula to drop equality constraints from Equation (4.12).
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This finally leads us to an unconstrained optimization problem, and so gives us our rigid body

incremental potential for frictional contact

(𝜽 𝑡+1, 𝑞𝑡+1) = argmin
𝜽 ,𝑞

𝐸 (R(𝜽 ), 𝑞) + 𝐵(𝜙 (R(𝜽 ), 𝑞)) + 𝐷 (𝜙 (R(𝜽 ), 𝑞)) .

In turn, as we discuss next it can now be solved with a filtered projected Newton solver.

Our rotation vector parametrization is then critical to obtaining our unconstrained minimiza-

tion form of the IP, as it avoids additional constraints and enables us to solve the optimization

with an unconstrained projected Newton solver. While alternatives exist to minimize energies

like our IP in the space of SO(3) [Owren and Welfert 2000], it is not immediately obvious how to

integrate our barrier in these methods as they do not offer filtered line-search.

Adding differently scaled rotation vectors can require an increased number of updates to

change the axis of rotation. However, do to warm-starting each solve from the last time step, this

problem never arises in practice even in scenes with large time step sizes. We discuss a synthetic

example of this more and provide a solution (if ever needed) in Appendix D.5.

4.4.2 Projected Newton Solver

Now that we have constructed an unconstrained barrier IP for rigid bodies we apply the

Newton-type solver proposed in Chapter 2, with a fewmodifications that are necessary to address

numerical challenges specific to the rigid body IP formulation.

Rodrigues’ Rotation Formula and its Derivatives. Rodrigues’ rotation formula provides

a way of computing a rotation matrix from a rotation vector. Rodrigues’ rotation formula is

commonly written as

R(𝜽 ) = 𝑰 + sin (∥𝜽 ∥)
[
𝜽

∥𝜽 ∥

]
+ (1 − cos(∥𝜽 ∥))

[
𝜽

∥𝜽 ∥

]2
, (4.13)
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where R(0) = 𝑰 . For numerical stability (around 𝜽 = 0), we rewrite R as

R(𝜽 ) = 𝑰 + sinc(∥𝜽 ∥) [𝜽 ] + 2 sinc2
(
∥𝜽 ∥

2

)
[𝜽 ]2, (4.14)

where

sinc(𝑥) =


1 𝑥 = 0

sin(𝑥)
𝑥

otherwise
.

Note, we compute values close to zero computed using a Taylor series expansion (see Appendix

D.1.1) [Grassia 1998].

While sinc is 𝐶∞, special care is needed to compute its gradient and Hessian to avoid divi-

sions by 0 (or small numbers). A full derivation of the derivatives of sinc(∥𝜽 ∥) is provided in

Appendix D.1.2.

Additionally, when computing sinc(𝑥) with interval arithmetic a naïve implementation using

interval division can result in intervals far outside the range of sinc(𝑥) (due to divisions of small

numbers). We instead utilize the monotonic domain near zero by computing the real values (or a

small interval to account for rounding errors) of the interval’s endpoints. We discuss this strategy

further in Appendix D.1.3.

Stabilization. Because of our transformation from axis-angle to rotation matrix, the Hessian

∇2(𝐸𝑄 (𝑄)) may not be PSD. Unlike in the elastodynamic case, a projection to PSD is not balanced

by the addition of a mass matrix and so can result in a singular matrix. Instead, we first apply

the unprojected Hessian (inexpensive when compared to the finite element formulation in the

original IPC) and if the linear solve fails or the computed direction is not a descent direction we

apply standard offsetting by adding an identity scaled by 𝜉 and solving. We continue the process,

increasing 𝜉 by a factor of two until either the 𝜉 > 𝜉max = 1𝑒12 or the solve is successful. In

practice, this offset is rarely needed, and we never reach 𝜉max in any of our experiments.
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Evaluation of the Barrier Term 𝐵. The set C contains all possible collision pairs. However,

due to the local support of the barrier functions, it is unnecessary to consider pairs whose distance

is larger than 𝑑 , as they do not contribute to the barrier potential 𝐵 (Equation (4.2)). In Chapter 2,

the pairs of primitives closer than 𝑑 are quickly detected using a spatial hashing data structure.

For the rigid case, we can exploit the rigidity of the objects to avoid the construction of a hash

grid for every evaluation of the barrier potential.

We explicitly consider the relative position of a pair of rigid bodies 𝑎 and 𝑏. In the reference

system of 𝑏, the relative position of the vertices of 𝑎 are:

𝑠𝑏𝑎 = R(𝜽𝑏)⊤(R(𝜽𝑎)𝑋𝑎 + 𝑞𝑎 − 𝑞𝑏). (4.15)

We can thus build a BVH for every rigid body independently made by one bounding box for

every primitive, only once when a model is loaded. We can then build a bounding box for each

primitive in 𝑎, enlarge it by 𝑑 , map it to the reference system of 𝑏 using Equation (4.15), and then

query the BVH of 𝑏 to find candidate pairs for the set C. To ensure that the check is conservative,

we evaluate Equation (4.15) using interval arithmetic [Tucker 2011] (note that an axis-aligned

bounding box is simply a triplet of one-dimensional intervals). Additionally, we also use a scene

BVH containing one bounding box for every body to discard any pair of rigid bodies that do not

contain potential pairs.

4.4.3 Curved CCD

To ensure that there are no intersections at any time during the simulation, we explicitly

check for collisions during every line search. Following the common approach used in linear

CCD, we proceed in two phases: a broad phase to quickly identify pairs of primitives that are

likely to be in contact, and the narrow phase, to certify every candidate pair. We first introduce

the special type of curved trajectories that we consider in this work and then propose a broad
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phase algorithm that takes advantage of the rigidity of the bodies.

Curved Trajectories. The trajectory of the vertices of a primitive (i.e., a vertex, edge, or tri-

angle) 𝑎𝑖 in a body 𝑋𝑖 are mapped from a configuration (𝜽 0
𝑖 , 𝑞

0
𝑖 ) to a configuration (𝜽 1

𝑖 , 𝑞
1
𝑖 ), by

𝜙𝑎𝑖 (𝑡) = R(𝜽𝑖 (𝑡))𝑎𝑖 + 𝑞𝑖 (𝑡), 𝑡 ∈ [0, 1] . (4.16)

where

𝜽𝑖 (𝑡) = (1 − 𝑡)𝜽 0
𝑖 + 𝑡𝜽 1

𝑖 and 𝑞𝑖 (𝑡) = (1 − 𝑡)𝑞0
𝑖 + 𝑡𝑞1

𝑖 .

Note that 𝜙𝑎𝑖 (𝑡) is non-linear in 𝑡 due to the presence of Rodrigues’ formula R.

Broad-Phase. To reduce the computational cost, we express the trajectory in the reference

system of one body extending Equation (4.15) to the time dependent case,

𝑠𝑏𝑎 (𝑡) = R(𝜽𝑏 (𝑡))⊤(R(𝜽𝑎 (𝑡))𝑋𝑎 + 𝑞𝑎 (𝑡) − 𝑞𝑏 (𝑡)) . (4.17)

We propose to use interval arithmetic [Tucker 2011] to automatically compute a bound. That

is, we evaluate 𝑠𝑏𝑎 (𝑡) over the interval [0, 1] to obtain a bounding box for every point in 𝑋𝑎

representing a conservative estimation of the trajectory with respect to 𝑏. The bounding boxes

can then be used in a standard spatial acceleration data structure where we reuse the same BVH

we built for evaluating the barrier potential.

Narrow Phase Curved CCD. After identifying potential pairs of primitives colliding, the goal

of the narrow phase is to find the earliest time 𝑡 (if any) for which a pair of primitives (either

triangle-point or edge-edge) intersects.

Consider the trajectory of a point 𝒑(𝑡) and the trajectories of the three vertices of a triangle

𝒑1(𝑡),𝒑2(𝑡),𝒑3(𝑡). The most direct formulation of continuous collision detection is to explicitly
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look for the earliest root of the following non-linear system of equations

𝐹vf(𝑡, 𝛼, 𝛽) = 𝒑(𝑡) −
(
(1 − 𝛼 − 𝛽)𝒑1(𝑡) + 𝛼𝒑2(𝑡) + 𝛽𝒑3(𝑡)

)
, (4.18)

for 𝑡, 𝛼, 𝛽 ∈ [0, 1], and 𝛼 + 𝛽 ≤ 1. If no root exists the two primitives do not intersect. Similarly,

consider the trajectory of two edges whose vertices are 𝒑1,𝒑2 and 𝒑3,𝒑4

𝐹ee(𝑡, 𝛼, 𝛽) =
(
(1 − 𝛼)𝒑1(𝑡) + 𝛼𝒑2(𝑡)

)
−

(
(1 − 𝛽)𝒑3(𝑡) + 𝛽𝒑4(𝑡)

)
(4.19)

for 𝑡, 𝛼, 𝛽 ∈ [0, 1].

Baseline Solutions. To the best of our knowledge, there are no existing algorithms devel-

oped specifically for our problem, that is the particular formulation of 𝜙𝑎𝑖 (𝑡). However, there are

two approaches that can be easily adapted. The first is the generic interval root finder proposed

by Snyder [1992], which can directly be used to find roots of the non-linear system of Equa-

tions (4.18) or (4.19). The second is an adaptation for our problem of the screw CCD proposed

by Redon et al. [2002a], which uses a univariate formulation to improve performances. Unfor-

tunately, after experimenting with both approaches, we conclude that they cannot be used for

our purposes. The former has a very long runtime due to the expensive interval computation

and a large number of dimensions of the domain to subdivide, while the latter cannot handle

degenerate cases linked to the univariate formulation (see [Wang et al. 2021] for a more detailed

explanation of the intrinsic limitation of univariate formulations for linear CCD). We provide a

comparison between our algorithm and the two baselines in Appendix D.2.

Linearization Error. We propose a novel algorithm based on the following idea: if we can

compute an upper bound 𝑏 of the maximal error between a curved trajectory and its piecewise

linear approximation, then we can conservatively check for collisions using a linear CCD with
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a minimum separation of 𝑏. Let us consider the curved trajectory 𝜙𝑎𝑖 (𝑡) (Equation (4.16)) of a

single vertex 𝑎𝑖 ∈ 𝑋𝑖 . The time-dependent distance between the curved trajectory and the linear

approximation is:

𝑒𝑎𝑖 (𝑡) = ∥𝜙𝑎𝑖 (𝑡) − ((1 − 𝑡)𝒑0 + 𝑡𝒑1)∥, 𝑡 ∈ [0, 1] . (4.20)

with 𝒑0 = 𝜙𝑎𝑖 (0) and 𝒑1 = 𝜙𝑎𝑖 (1). By evaluating 𝑒𝑎𝑖 over the interval [0, 1] using interval arith-

metic, we obtain our desired bound 𝑏. This construction can be extended to find a distance bound

for all points between two convex primitives by evaluating 𝑒𝑎𝑖 for every vertex in both primitives

and taking the maximum. Given the pair of primitives and the bound 𝑏 we conservatively check

for intersections using the linear minimum separation CCD proposed byWang et al. [2021], using

the 𝐿∞ metric for minimum separation. This idea is used in Algorithm 4.1 to adaptively refine

the linear approximation depending on the error bound.

Algorithm Description. The algorithm keeps track of the earliest time guaranteed to be

collision-free in a variable 𝑡0 (initially equal to 0), which is incremented whenever the linear

CCD is able to validate a section of the trajectory (Line 21). The algorithm iteratively subdivides

the linear approximation, keeping track of the endpoint of every segment in a stack 𝑡𝑠 . After a

segment is retrieved from the stack (Line 6), we compute the initial distance between the two

objects (Line 7) and an upper bound on the error of the linear approximation of the trajectory

(Line 8). If the bound is larger than the initial distance (Line 9) the linear CCD will find a col-

lision at the beginning of the time since the linear approximation is poor. We thus refine the

linear approximation. The parameter 𝛿 ∈ (0, 1) (Line 9) allows us to trade off the cost between

the CCD and the refinement. A value close to 1 will lead to minimal refinement, but potentially

more challenging queries for the linear CCD, while a smaller value will preemptively refine the

linear approximation, making the CCD queries easier. We experimentally found that a value of

0.5 is a good tradeoff (see the parameter study in Appendix D.3). To bound the cost of the linear

CCD and prevent overrefinement, we set an upper bound 𝑁max on the maximal number of sub-
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Algorithm 4.1 Determine if and when the earliest impact occurs along a curved trajectory.
1: procedure CurvedCCD(𝑎𝑖, 𝑏 𝑗 , 𝛿, 𝑁max)
2: 𝑡0 ← 0
3: 𝑡𝑠 ← {1}
4: 𝑁 ← 1
5: while 𝑡𝑠 ≠ ∅ do
6: 𝑡1 ← top(𝑡𝑠)
7: 𝑑𝑡0 ← 𝑑 (𝑡0, 𝑎𝑖, 𝑏 𝑗 ) ⊲ Equations (2.18) and (2.19)
8: 𝑏 ← 𝑒𝑎𝑖 ( [𝑡0, 𝑡1]) + 𝑒𝑏 𝑗 ( [𝑡0, 𝑡1])
9: if 𝑏 ≥ 𝛿𝑑𝑡0 and (𝑁 < 𝑁max or 𝑡0 = 0) then
10: 𝑡𝑠 ← 𝑡𝑠 ∪ {(𝑡1 + 𝑡0)/2)}
11: 𝑁 ← 𝑁 + 1
12: continue
13: impact, toi← LinearCCD(𝜙𝑎𝑖 (𝑡0), 𝜙𝑎𝑖 (𝑡1), 𝜙𝑏 𝑗 (𝑡0), 𝜙𝑏 𝑗 (𝑡1), 𝑏)
14: if 𝑡0 = 0 and toi = 0 then
15: 𝑡𝑠 ← 𝑡𝑠 ∪ {𝑡1/2}
16: 𝑁 ← 𝑁 + 1
17: continue
18: if impact then
19: return true, 𝑡0 + toi(𝑡1 − 𝑡0)
20: pop(𝑡𝑠)
21: 𝑡0 ← 𝑡1

22: return false,∞

divisions (we use 1000 in our experiments). The bound is however disabled when 𝑡0 = 0, as we

need to have a strictly positive TOI to make progress in the Newton optimization and we know

that a non-zero 𝑡 always exists due to our barrier formulation. If the interval passes the distance

check, we apply linear CCD (Line 13), and we further refine in case the linear CCD returns a ToI

of 0 and if 𝑡0 = 0 as this must be due to the poor approximation of 𝑏 since a non-zero 𝑡 always

exist. If the linear CCD finds a collision we report it and return, otherwise we continue with the

next segment in the stack. If we reach the end of the trajectory without finding a collision, the

algorithm terminates and reports that the trajectory is collision-free.

For linear CCDwith minimum separation, we use [Wang et al. 2021] with default parameters.
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Model ©YSoft be3D under CC BY-SA 3.0.

Figure 4.4: Bolt. A bolt spins inside a static nut under gravity. Without friction, the bolt is quickly able
to follow the threading and begins to rotate.

Shared Earliest Time of Impact. As in Chapter 2, we compute an upper bound on the step

size using the earliest time-of-impact for a given step. To speed up this process, we follow the

advice of Redon et al. [2002a] who suggests reusing the earliest time-of-impact from the previous

CCD queries for the same step. This reduces the number of queries and is achieved by replacing

Line 3 with 𝑡𝑠 ← 𝑡earliest, where 𝑡earliest is the earliest time-of-impact for the current step (initially

1).

Minimum Separation. To extend our algorithm to guarantee a minimum separation we make

three minor modifications to our formulation. First, we shift the input to our distance barrier

(Equation (4.2)) by subtracting the minimum separation distance from the primitive pair’s dis-

tance. Second, we inflate all bounding boxes used in the broad-phase to account for the added

minimum separation. Last, we take advantage of the linear minimum separation CCD to add an

additional offset to the minimum separation (before Line 13 perform 𝑏 ← 𝑏 + 𝑑min).
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4.4.4 Boundary Conditions

A kinematic rigid body moves under its own velocity but does not respond to collision forces.

We implement kinematic bodies using an augmented Lagrangian (AL) based on the method in

Appendix A.5 to enforce Dirichlet boundary conditions. For each kinematic rigid body 𝑘 , we

construct the AL from the two terms,

𝐸A,q(𝑞) =
𝜅A,𝑞

2
𝑚𝑘



𝑞𝑘 − 𝑞𝑡+1𝑘



2 − √𝑚𝑘𝜆
𝑇
A,𝑘 (𝑞𝑘 − 𝑞

𝑡+1
𝑘
)

𝐸A,Q(𝑄) =
𝜅A,𝑄

2
tr(𝑄𝑘 − 𝑄̂𝑡+1

𝑘
) 𝐽𝑘 (𝑄𝑘 − 𝑄̂𝑡+1

𝑘
)⊤) − tr(Λ⊤A,𝑘 (𝑄𝑘 − 𝑄̂𝑡+1

𝑘
) 𝐽

1
2
𝑘
)

where (𝑞𝑡+1
𝑘

, 𝑄̂𝑡+1
𝑘
) is the prescribed configuration at time 𝑡 + 1.

Following the algorithm in Appendix A.5, we initialize the Lagrange multipliers to 𝜆A,𝑘 = 0

and ΛA,𝑘 = 0 and penalty stiffnesses to 𝜅A,𝑞 = 103 and 𝜅A,𝑄 = 103. These potentials are then added

to Equation (4.12).

The convergence criteria of each time step optimization is then modified to account for the

satisfaction of the kinematic bodies’ motion. Concretely, we compute

𝜂𝑞 = 1 −

√√∑
𝑘 ∥𝑞𝑡+1𝑘

− 𝑞𝑘 ∥2∑
𝑘 ∥𝑞𝑡+1𝑘

− 𝑞𝑡
𝑘
∥2

and

𝜂𝑄 = 1 −

√√√∑
𝑘 ∥𝑄̂𝑡+1

𝑘
−𝑄𝑘 ∥2𝐹∑

𝑘 ∥𝑄̂𝑡+1
𝑘
−𝑄𝑡

𝑘
∥2
𝐹

and converge iff the optimization’s stationarity criteria is satisfied with 𝜂𝑞 > 0.999, and 𝜂𝑄 >

0.999.

If only stationarity is satisfied, we update the AL parameters. For brevity we only describe
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the update scheme for 𝜅A,𝑞 , 𝜆A as the others follow closely. If 𝜂A,𝑞 < 0.99 and 𝜅A < 108, then

𝜅A,𝑞 ← 2𝜅A,𝑞 .

Otherwise, for each kinematic body 𝑘 ,

𝜆A,𝑘 ← 𝜆A,𝑘 − 𝜅A
√
𝑚𝑘 (𝑞𝑖𝑘 − 𝑞

𝑡+1
𝑘
).

Additionally, whenever the AL convergence criteria are satisfied, we fix all prescribed DOF

and remove the AL from Equation (4.12) for the remainder of the optimization. This helps by

removing unnecessary stiffness in our objective function.

4.5 Results

Our algorithm is implemented in C++ and uses Eigen [Guennebaud et al. 2010a] for the linear

algebra routines, libigl [Jacobson et al. 2018] for basic geometry processing routines, and filib for

interval arithmetic [Lerch et al. 2006]. We run our experiments on a workstation with two AMD

EPYC™ 7452 Processors. The reference implementation used to generate the results is attached

to the submission and will be released as an open-source project. We provide a video for every

simulation shown in the paper as part of our additional material.

We first present our results and postpone a comparison against existing rigid body simulators

to Section 4.6 and to a volumetric IPC formulation in Section 4.6.1.

Rigid BodyMechanismswithComplexGeometry. The first example is a bolt that spins under

gravity inside a nut. This is a challenging scene for many rigid body simulators (although others

have shown success [Wang et al. 2012; Xu et al. 2014]) due to the tight sliding contacts on an

extended curved area (Figure 4.4).
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Figure 4.5: Punching Press. We designed two variations of a punching press mechanism: one with loose
joints (top row) and one with tight (bottom row). By applying a force to raise the punch, our use of full
rigid DOF instead of articulated bodies allows us to model and test varying tolerance in joints.

We show a collection of more complexmechanisms in Figure 4.2, including a piston, a rotating

wheel that generates intermittent motion, and a bike chain. In all cases, we do not use any

constraint on the reduced coordinates.

Note that the contacts are reliably handled by our approach, enabling us to experiment with

variations in the mechanisms, for example by adding additional tolerance in the holes of a punch-

ing press (Figure 4.5). Note that explicit collision modeling is necessary to capture this effect.

Simulation for Fabrication. Our method can be used to design and simulate complex mech-

anisms before real-world fabrication. To mock-up this use case, we purchased the 3D model of

a 3D printed locking box from Maker’s Muse3, and directly use the STL files in our simulator

(Figure 4.1). The mechanisms can be studied in our simulation, where it is easy to modify the
3Maker’s Muse: https://www.makersmuse.com/expanding-lock-box
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Figure 4.6: Codimensional card house. We design a codimensional variant of the standard frictional
benchmark of Kaufman et al. [2008], where each card is composed of only two triangles. The cards are
briefly allowed to stably come to rest (𝜇 = 0.9), before being impacted by two cubes. The top two levels
collapse, but the final floor is able to catch the cubes demonstrating our ability to quickly handle transi-
tions between static and dynamic friction.

design and test it in a virtual environment.

Codimensional Rigid Bodies. Our algorithm supports simulating codimensional bodies. We

show a card house composed of 2D codimensional, rigid cards in Figure 4.6. 1D co-dimensional

objects are also supported and can be used, for example, to efficiently simulate a large chain net

(Figure 4.7 Top). As a stress test, we drop a heavy ball on top of the chain net. We can even

simulate 0D codimensional point-clouds. As a demonstration, we roll a point cloud ball (with

friction) towards another ball composed of planar slices (Figure 4.7 Bottom).

Large Angular Velocity. We can simulate objects moving at high angular velocities to cap-

ture interesting real-world effects involving rigid body objects, such as a spolling coin (Figure 4.8),

with a timestep of 10−4 s.

Large Numbers of Bodies. Our algorithm can stably simulate large collections of rigid bodies,

as demonstrated by a stack of boxes displaced by a wrecking ball (Figure 4.9).

We can also stably simulate long chains of interlinked bodies. We show an example in Fig-

133



Figure 4.7: Codimensional bodies. The IPC formulation allows us to easily simulate codimensional
objects. Top: A ball is dropped onto a chain net composed of 1D codimensional edges. Bottom: A sphere of
disconnected codimensional planes and a point cloud ball roll into each other. Upon contact, the geometry
locks, and both spheres rock back and forth before coming to rest.

Figure 4.8: Spolling coin. A coin spolls (spins while rolling) on a surface with friction (𝜇 = 0.2). As the
coin falls it continues to rotate while only a single point touches the ground. To accurately capture these
high-speed dynamics, we use a small timestep of ℎ = 10−4 s.

ure 4.10, where a heavy anchor is lifted by rolling up a chain composed of 21 individual links.
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Figure 4.9: Wrecking ball. A stack of 560 boxes is hit by a wrecking ball made from a chain of interlinked
bodies.

Friction. We repeat the arch scene experiment used to benchmark the friction model in Chap-

ter 2, replacing the deformable yet stiff blocks with rigid objects (Figure 4.11). The results are

indistinguishable (see also Figure 4.19).

The Lewis is an interesting mechanism used to lift heavy bodies, relying on static friction

(Figure 4.12). As a final friction experiment, we place a box on a spinning disk with four different

coefficients of friction. As the rotational velocity of the disk increases, the box loses contact and

flies away (Figure 4.13) for 𝜇 ≠ 1.

Packing for 3D Printing with a Minimum Separation. The stability of our algorithm over

large time steps and the possibility to add controlled minimum separation makes it ideal for

packing multiple objects within the bed of a 3D printer. A common way to solve this problem is

inflating the objects by the printer clearance and then use bin packing [Fogleman 2017].

Our algorithm can be used as a simple alternative to packing for 3D printing (Figure 4.14): we
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Model ©Animation Anchor Line (anchor) under TurboSquid 3D Model License.

Figure 4.10: Anchor. A heavy anchor attached to a chain briefly falls under gravity before being lifted
by rolling the chain around an axle. Natural bunching and kinking behaviors are visible.

can compute a packing of a collection of objects by dropping them in a box and extending our

algorithm to ensure that the printer clearance is respected.

This is just a prototype, and more research will be necessary to evaluate the effectiveness

of this approach in practical applications and compare it with bin packing, especially since the

runtime of Wang et al. [2021] (and consequently of our curved CCD) increases considerably for

large minimum separation distances.

Scalability. Our reference implementation exploits parallelization in the following algorith-

mic stages: energy gradients and Hessians are constructed in parallel, all body pairs in the barrier

and CCD broad phase are evaluated in parallel, and the narrow phase CCD is performed in par-

allel to compute the earliest time-of-impact. Overall, this allows our algorithm to take advantage
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Figure 4.11: Arch. An arch composed of 101 rigid blocks is in equilibrium under gravity due to friction
forces.

Figure 4.12: Lewis lifting mechanism. Utilizing friction and geometry the Lewis is able to lift large
weights. A pyramid-shaped piece is placed between wedge-shaped pieces. When the center piece is
pulled up the surrounding pieces are pressed into the outer block. The center is moved kinematically at
0.5 m/s with 𝜇 = 0.3 and is able to lift a block 10× its mass.

of modern multi-core processors. We test the weak (i.e., we increase the complexity of the scene

as we increase the number of threads) and strong (i.e., we keep the scene the same as we increase

the number of threads) scaling of our method by simulating a chain of densely meshed links

(Figure 4.15).
4Shapeway’s PA11 material: https://www.shapeways.com/materials/pa11
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Figure 4.13: Turntable. A block is dropped on an accelerating turntable with four different coefficients
of friction (𝜇 = 0, 0.1, 0.5, 1.0). With 𝜇 = 0, the block rests on top of the table, slowly drifting. With 𝜇 = 0.1,
the block quickly catches and is flung away by the table. With 𝜇 = 0.5, the block is able to hang on longer
but eventually slides to the edge and falls off. With 𝜇 = 1, the block sticks to the table and remains in the
same relative position throughout the simulation.

4.6 Benchmark

We perform an extensive benchmark comparison on some of the most popular rigid body sim-

ulators (Bullet, MuJoCo, Chrono, andHoudini’s RBD), focusing on evaluating themethods’ ability

on: (1) maintaining stability, (2) avoiding interpenetration, and (3) producing accurate dynamics.

Our benchmark includes unit tests composed of simple primitive geometries like tetrahedron and

cubes (Figure 4.16), degenerate test cases proposed by Erleben [2018] (Figure 4.17), and some of

our more complex, large scale examples. In general, existing methods are orders of magnitude

faster than our method, but fail severely even on simple scenes, depending on the parameters.

Additionally, we show that, even with extensive parameter tuning, these methods cannot simu-
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Models ©tjhowse (cog), blecheimer (shovel), Kacie Hultgren (stool), Creative Tools (3DBenchy), Dustin Sallings (Wire Holder), Brad Pitcher
(OpenSCAD), Andy Lesniak (PolyCup), and Tony Buser (Hilbert Cube) under CC BY.

Figure 4.14: 3D packing. Based on the tolerance of Shapeway’s PA11 material4, we pack eight models
into the bed of a 3D printer of size 290×290×600 mm, with a clearance of 1mm enforced by our minimum
separation. (Inset) We plot the minimum distance throughout the simulation showing that we always
maintain the desired minimum distance between objects.
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Figure 4.15: Scalability. We test both the weak (left) and strong (right) scalability on a chain of densely
meshed links (bottom). For weak scaling, we set the number of free links equal to the number of threads
and plot the runtime divided by the single link time. For strong scaling, we use a chain of 64 links and
plot the speed-up over the single-core time. In each case, we plot the ideal value in grey. While our
method greatly benefits from parallelization we see diminishing returns after 16 cores and observe little
improvement when testing up to 64 cores.

late certain scenes. All scripts with simulation parameters tested will be publicly released as part

of our open-source project.
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Bullet. The primary method for modeling contacts between moving concave geometries in

Bullet is via convex collision resolution employing convex decomposition proxies for input mesh

geometries. Bullet provides automated construction of approximate convex decompositions for

meshes via V-HACD [Mammou 2020]. Hand-crafted custom decompositions are often employed

instead which can provide better approximation of the geometry and so improved collision prox-

ies. In the following experiments we use input meshes for convex geometries (all of the unit test

and Erleben’s tests) or else, for concave geometries, an expert-constructed manual decomposi-

tion.

Bullet performs well on the unit tests and tests of Erleben [2018], but generates interpene-

trations at larger time steps (0.01 s). Bullet performs best when the timestep is not too large (the

default is 1/240 s and “several parameters are tuned with this value in mind” [Coumans and Bai

2019]). We find that ℎ = 10−3 s works for most scenes, but some scenes (e.g., five-cube stack

and spikes) require time steps as small as (10−4 s) to completely avoid interpenetrations. In the

volumetric chain-net, one of our more complex benchmark scenes, large time steps generate in-

tersections and constraint drift that eventually lead to tunneling. A smaller time step (0.001 s)

helps avoids tunneling artifacts, but small intersections still occur.

We also test Bullet’s experimental collision handling between arbitrary input triangle meshes

directly (without convex decomposition proxies) and find it fails on almost all unit tests and the

tests of Erleben [2018] using default parameters. We observe large amounts of energy injected

into the system as an effect of position stabilization: once an intersection appears, the simulator

quickly pulls the objects which produces large velocities.

Additionally, we note that Bullet successfully manages to prevent interpenetration in exam-

ples at larger dimensions. However, for smaller scenes we see severe interpenetrations even at

small time steps. For example, we tested Bullet on a 0.1×-scale chain net scene, and observed

severe interpenetration and instabilities even with ℎ = 10−4 s. This could certainly be related to

Bullet’s design, as stated in Bullet’s documentation, being tuned to work on scenes with larger
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Figure 4.16: Unit tests. A set of unit test scenes used to benchmark the accuracy and robustness of each
method. We show the initial configuration and the resulting simulation using our method.

Figure 4.17: Erleben’s degenerate test cases. Our method can easily handle the challenging degener-
ate cases proposed by Erleben [2018].

dimensions. Interestingly, we also note that Bullet simulates the 0.1×-scale chain net example

roughly 8× slower than at the original scale, reflecting Bullet’s parameters controlling collision

detection and activation distance with respect to scale.

MuJoCo. MuJoCo works well on almost all unit tests and Erleben’s test cases, without severe

explosion or interpenetrations. Note that, for this method, we do not report small intersections

that exist in almost all MuJoCo results as a failure since this is the expected behavior for the con-
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tact resolution used in MuJoCo. For the tet-corner example, even with frame-rate time step size

ℎ = 0.01 s, MuJoCo successfully simulates the tetrahedron falling down into the tight space. How-

ever, we found that MuJoCo fails on all our large-scale examples independently from time step

size. Nearly half of the examples crash the program, either because huge velocity or bounding

boxes are detected (suggesting explosion), or the contact buffer is full and the slow progressive

memory reallocation does not help. Similar to Bullet, we find that MuJoCo runs the 0.1×-scale

much slower (more than 3×) comparing to the larger dimension counterpart. Compared to Bullet,

MuJoCo is generally several times faster for the same time step sizes. We tried to avoid interpen-

etrations on the 4 × 4 chain example by (1) swapping integrators from Implicit Euler to RK4, (2)

changing solver from Newton to PCG, and (3) increasing solver iteration from 100 to 1000. None

of these changes avoided interpenetrations.

Chrono. Chrono provides two methods for rigid body contacts: smooth contacts (SMC) and

non-smooth contacts (NSC). SMC uses a penalty-based formulation, so it is known to have in-

tersections with large time steps or velocities. NSC uses a complementarity-based approach and

is, therefore, more robust. We focus our benchmark on the NSC model. Chrono also provides

several solver and time-stepper methods. We benchmark the Barzilai-Borwein solver and pro-

jected implicit Euler time-stepper as we found they are the most robust for a wide range of scenes

and the documentation recommends them for “fast dynamics with hard (NSC) contacts and low

inter-penetration” [Tasora et al. 2016].

Similar to Bullet, Chrono performs well on the unit tests and Erleben’s test cases, but we find

noticeable interpenetrations at large time steps (ℎ = 0.01 s). In particular, sharp features and

parallel edge-edge contacts (e.g., five-cube stack or parallel-edge tetrahedrons) are more prone

to interpenetrations. Overall we find that Chrono is robust at smaller time steps, and only the

five-cube stack requires a time step smaller than 0.001 s to avoid interpenetrations.

However, Chrono struggles in some of our more complex scenes. For example, the bolt scene
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initially works as the bolt turns in the nut, but after a short time they intersect and the bolt stops

moving. Testing with different time steps (ℎ = 10−2, 10−3, and 10−4 s), we get the same results.

In an effort to get the bolt to work we tested various parameters and discovered adjusting the

scale of the scene resolves the problems. When we scale the scene by 10× (and so change the

overall physical system), we find Chrono performs remarkably well and is able to simulate the

bolt at a time step of 0.01 s without interpenetration. Avoiding this kind of unintuitive parameter

tuning that is necessary to prevent intersections and produce plausible results is a motivation of

our work.

Houdini RBD. Since Houdini RBD (not the binding to Bullet) is harder to script than the two

former methods, we modeled only three scenes: five cubes, bolt, and wrecking ball. For the five

cubes scene, the simulation quickly stabilizes without artifacts, but it fails on resting contacts

after a few seconds, and the stack starts to collapse (even using a small time step of ℎ = 10−4 s).

Improving over Bullet and MuJoCo, Houdini successfully simulates the bolt scene, in real phys-

ical dimensions (i.e., small since all units are in meters) without explosion. However, the bolt

intersects with the nut even when the time step is set to ℎ = 10−4 s. Finally, for the wrecking

ball scene, Houdini does not support a plane geometry composed of 2 triangles holding the large

cube matrix, therefore wemake the problem easier by using a built-in ground plane. Still, just like

in the five cubes scene, the cube matrix collapses after becoming static (before being hit by the

wrecking ball). For this scene, we further tested with a higher resolution for the signed distance

field used in RBD for collision detection: However, the cube matrix still collapses.

Friction Tests. We compare the different friction models by placing a block on a slope at

26.565◦, which has a critical value for the coefficient of friction at 0.5 (Figure 4.18). In our results,

the block does not move for 𝜇 = 0.5 and starts to slide at 𝜇 = 0.49. Bullet is able to closely match

the expected behavior: The block does not move for a value of 𝜇 ≥ 0.505. MuJoCo requires a

value of 𝜇 = 0.9 to prevent the block from sliding. Chrono perfectly matches the expected results
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Figure 4.18: High school physics friction test. We perform a simple test of high school physics by
placing a block on an inclined plane with a slope of 26.565◦. For a value of 𝜇 ≥ tan(26.565◦) ≈ 0.5, the
friction force will counter the acceleration due to gravity. We accurately replicate this by showing for
𝜇 = 0.49 the block slides and for 𝜇 = 0.5 the block does not slide.

with a critical value of 𝜇 = 0.5. Houdini’s RBD requires a value of 𝜇 = 0.7 to prevent the block

from sliding.

For our arch test (Figure 4.11), Bullet’s convex collision handling is able to reach a stable

equilibrium, but for large time steps (0.01 s) the blocks intersect. Bullet’s concave triangle mesh

collision handling, experiences large “ghost” forces that cause it to collapse even for varying time

step sizes (10−2, 10−3, and 10−4 s). With MuJoCo, Chrono, and Houdini the arch is unable to

support itself as large intersections occur between the bottom blocks (tested with ℎ = 10−2, 10−3,

and 10−4 s).

4.6.1 IPC

While not designed for rigid body simulations, the IPC algorithm in Chapter 2 can handle

very stiff materials, and it is thus possible to use it to approximate dynamic systems of rigid

bodies. While the bodies are not exactly rigid when simulated with IPC, the major advantage is

that restitution effects are directly simulated (while we do not account for them in our current

rigid body formulation). The disadvantage is that the interior of the objects needs to be filled
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Figure 4.19: IPC comparison. Comparison of the original volumetric, deformable IPC formulation (us-
ing material parameters for steel: Young’s modulus � = 200 GPa and Poisson ratio Poisson’s ratio � = 0.3)
and our rigid body formulation.

with tetrahedra, increasing the solve time, especially for complex geometries. We show three

representative scenes in Figure 4.19: in the arch, there is no need to insert any internal vertices

and IPC is faster than the rigid version (2× slower), due to the cheaper linear CCD. On the bolt and

chain-net scenes, the geometry is more complex, and the reduced set of coordinates of the rigid

body formulation makes our algorithm faster (2.8 and 7.0×). In all scenes, the overall dynamic

is very similar between the two formulations. We provide a more detailed comparison over a

selection of nine scenes in Appendix D.4.

4.7 Discussion

We revisited the rigid body simulation problem focusing on robustness and automation. By

introducing a new IP formulation for rigid body dynamics and a new conservative curved CCD

formulation, we designed a system that can reliably simulate complex scenes, with large time

steps, and without parameter tuning.

145



Table 4.1: Simulation statistics. for all scenes presented in Section 4.5. We report the number of bodies,
number of primitives, simulation parameters, and the average timings andNewton iterations per timestep.
All timings are generated on a machine with a 2x32-core 2.35 GHz AMD EPYC™ 7452 32-Core Processor
with 1 TB of memory. Each simulation is limited to a maximum of 16 cores (* indicates up to 64 cores).
The suffix ℓ indicates the value is relative to the world diagonal. We also report friction parameters and
the Newton convergence tolerance. Please refer to Chapter 2 for full definition of these parameters.

Example bodies vertices edges faces ℎ (s) 𝑑 (m) 𝜇 𝜖𝑣 (m/s) max friction
iterations

newton tol.
(𝜖𝑑 (m/s))

contacts avg.
(per timestep)

contacts max.
(per timestep)

memory
(MB)

iterations
(per timestep)

timing (s)
(per timestep)

Expanding lock box 11 66K 66K 22K 0.01 10−5 N/a 10−2ℓ 5K 9K 811 24.9 9.0

Bolt 2 3K 8K 5K 0.01 10−4 N/a 10−2ℓ 332 759 86 8.3 3.5

Piston 4 6K 6K 2K 0.01 10−3 N/a 10−2ℓ 370 1K 1323 9.9 1.5

Intermitten motion 5 2K 6 K 4K 0.01 10−4 N/a 10−2ℓ 21 498 875 5.7 0.2

Bike chain* 138 48K 143K 96K 0.01 10−5 N/a 10−2ℓ 6K 11K 12403 42.0 21.6

Punch 6 2K 7K 5K 0.01 10−4 N/a 10−2ℓ 57 136 591 9.2 1.3

Punch (loose) 6 2K 7K 5K 0.01 10−4 N/a 10−2ℓ 47 78 903 12.5 1.3

Codim. house of cards 18 80 116 56 0.01 10−3 0.9 10−5 1 10−3ℓ 78 204 1045 161.9 3.2

Codm. chain net 673 23K 25K 1K 0.01 10−3 N/a 10−2ℓ 2K 2K 3234 130.5 20.5

Disconnected components 3 5K 2K 850 0.01 10−3 0.1 10−3 1 10−2ℓ 7 10 41 1.9 0.1

Spolling coin 2 134 389 258 10−4 10−4 0.2 10−5 ∞ 10−4ℓ 12 84 229 3.8 0.01

Wrecking ball 575 8K 20K 13K 0.01 10−3 N/a 10−2ℓ 4K 14K 1959 17.1 4.8

Anchor 23 9K 27K 18K 0.01 10−3 N/a 10−2ℓ 267 1K 1178 21.4 3.0

Arch 102 812 2K 1K 0.01 10−3 0.5 10−3 1 10−3ℓ 649 695 1590 2.1 0.21

Lewis 7 64 149 98 0.01 10−3 0.3 10−3 1 10−2ℓ 50 55 26 2.7 0.02

Turntable (𝜇 = 0.0) 2 138 402 268 0.025 10−3 0 10−5 ∞ 10−4ℓ 9 15 178 2.3 0.004

Turntable (𝜇 = 0.1) 2 138 402 268 0.025 10−3 0.1 10−5 ∞ 10−4ℓ 2 13 284 2.9 0.003

Turntable (𝜇 = 0.5) 2 138 402 268 0.025 10−3 0.5 10−5 ∞ 10−4ℓ 7 14 255 5.9 0.01

Turntable (𝜇 = 1.0) 2 138 402 268 0.025 10−3 1 10−5 ∞ 10−4ℓ 10 10 246 9.1 0.01

3D packing* 10 7K 20K 13K 0.01 10−3 N/a 10−2ℓ 184 456 8860 91.3 33.5

Limitations. Our method has three major limitations. (1) The robustness of the algorithm

comes at a computational cost, our algorithm is (two to three orders of magnitude) slower than

other rigid body simulators. (2) The current formulation does not preserve energy. (3) Our current

formulation does not provide direct control for restitution.

While (1) is an intrinsic limitation, which could be ameliorated with more code optimizations

or the use of GPU accelerators, (2) and (3) are very interesting venues for future work.

FutureWork. Our work opens the door to robust rigid body simulation, over a wider range of

geometries and contact scenarios. While our algorithm is slower than competing methods, our

method requires no parameter tuning to generate feasible results, and therefore can be potentially

used to generate simulation data in one shot for reinforcement learning in robotics. In that setting,

it would be interesting to add support for articulated bodies, add support for accurate actuators,
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and merge the deformable and rigid body formulation to allow robots to interact with deformable

objects. For applications in graphics, it would be interesting to add additional collision primitives,

such as spheres, capsules, and boxes, to lower the runtime in cases where geometrical accuracy

is less important.

Concluding Remarks. To conclude, we believe our formulation will foster the development of

a new family of robust rigid body simulations while supporting exciting simulation applications

in graphics, robotics, and digital fabrication.
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5 | High-Order Incremental Potential

Contact for Elastodynamic

Simulation on Curved Meshes

5.1 Introduction

Elastodynamic simulation of deformable and rigid objects is used in countless algorithms

and applications in graphics, robotics, mechanical engineering, scientific computing, and biome-

chanics. While the elastodynamic formulations used in these fields are similar, the accuracy

requirements differ: while graphics and robotics applications usually favor high efficiency to fit

within strict time budgets, other fields require higher accuracy. In both regimes, FE approaches

based on a conforming mesh to explicitly partition the object volume are a popular choice due to

their maturity, flexibility in handling non-linear material models and contact/friction forces, and

convergence guarantees under refinement.

In a FE simulation, a set of elements is used to represent the computational domain and a set

of basis functions are used within each element to represent the physical quantities of interest

(e.g., the displacement in an elastodynamic simulation). Many options exist for both elements and

bases. Due to the simplicity of their creation, linear tetrahedral elements are a common choice

for the element shape. Similarly, linear Lagrangian functions (often called the hat functions) are
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Figure 5.1: High-order armadillo-rollers. A simulation of an armadillo squished by rollers. We use a
high-order volumetric mesh (top row) and deform it with quadratic displacement. To solve collision and
compute contact forces, we use a dense linear surface mesh (bottom row) and transfer the deformation
and contact forces between the two meshes.

often used to represent the displacement field. The linearity in both shape and basis leads to a

major and crucial benefit for dynamic simulations: after the displacement is applied to the rest

shape, the resulting mesh remains a piece-wise linear mesh. This is an essential property in order

to robustly and efficiently detect and resolve collisions [Wang et al. 2021]. Collisions between

arbitrary curved meshes or between linear meshes over curved trajectories are computationally

expensive, especially if done in a conservative way [Ferguson et al. 2021].

However, these two choices are restrictive: meshes with curved edges represent shapes, at

a given accuracy, with a lower number of elements than linear meshes, especially if tight geo-

metric tolerances are required. Curved meshes are often favored over linear meshes in mechani-

cal engineering [Hughes et al. 2005]. The use of linear bases, especially on simplicial meshes, is

problematic as it introduces arbitrary stiffness (a phenomenon known as locking [Schneider et al.

2018]). Additionally, high-order bases are more efficient, in the sense that they provide the same
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accuracy (compared to a reference solution) as linear bases for a lower running time [Babuška

and Guo 1992; Schneider et al. 2022]. Elasto-static problems in computational fabrication (e.g.,

[Panetta et al. 2015]), mechanics, and biomechanics [Maas et al. 2012] often use high-order bases,

but their use for dynamic problems with contact is very limited or the high-order displacements

are ignored for contact purposes.

Contribution. We propose a novel elastodynamic formulation supporting both high-order

geometry and high-order bases (Figure 5.1). Our key observation is that a linear transformation of

the displacements degrees of freedom leads to linear trajectories of a carefully designed collision

proxy. We use this observation to extend the recently proposed IPC formulation, enabling us

to use both high-order geometry and high-order bases. Additionally, we can now use arbitrary

collision proxies in lieu of the boundary of the FE mesh, a feature that is useful, for example, for

the simulation of nearly rigid materials. To evaluate the effectiveness of our approach, we explore

its use in graphics applications, where we use the additional flexibility to efficiently simulate

complex scenes with a low error tolerance, and we show that our approach can be used to capture

complex buckling behaviors with a fraction of the computational cost of traditional approaches.

Note that in this work we focus on tetrahedral meshes, but there are no theoretical limitations to

applying our method to hexahedral or other polyhedral elements.

Reproducibility. To foster further adoption of our method we release an open-source imple-

mentation based on PolyFEM [Schneider et al. 2019b] which can be found at polyfem.github.io.

5.2 Related Work

High-Order Contacts. Contact between curved geometries has been investigated in multiple

communities, as the benefits of 𝑝-refinement (i.e., refinement of the basis order) for elasticity

have been shown to transfer to problems with contact in cases where an analytic solution is
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known, such as Hertzian contact [Aldakheel et al. 2020; Franke et al. 2010, 2008; Konyukhov and

Schweizerhof 2009].

One of the simplest forms of handling contact, penalty methods [Moore and Wilhelms 1988;

Terzopoulos et al. 1987] apply penalty force when objects contact and intersect. However, despite

their simplicity and computational advantages, it is well known that the behavior of penalty

methods strongly depends on the choice of penalty stiffness (and a global and constant in-time

choice ensuring stability may not be possible). Li et al. [2020] propose IPC to address these issues,

and we choose to use their formulation and benefit from their strong robustness guarantees.

Mortar methods [Belgacem et al. 1998; Hüeber and Wohlmuth 2006; Puso and Laursen 2004]

are also a popular choice for contact handling, especially in engineering [Krause and Zulian

2016] and biomechanics [Maas et al. 2012]. Extensions to high-order non-uniform rational B-

spline (NURBS) surfaces have also been proposed [Seitz et al. 2016]. Mortar methods require to (a

priori) mark the contacting surfaces. A clear limitation of this method is that they cannot handle

collisions in regions with more than two contacting surfaces or self-collisions. Li et al. [2020] pro-

vide a didactic comparison of the IPC method and one such mortar method ([Krause and Zulian

2016]). They show such methods enforce contact constraints weakly and therefore allow inter-

sections (especially at large timesteps and/or velocities). Nitsche’s method is a method for soft

Dirichlet boundary conditions (eliminating the need to tune the penalty stiffness) [Nitsche 1971].

Stenberg [1998] and recent work [Chouly et al. 2022; Gustafsson et al. 2020] extend Nitsche’s

method to handle contacts through a penalty or mortaring method. While this eliminates the

need to tune penalty stiffnesses, these methods still suffer from the same limitations as mortar-

ing methods.

Another way to overcome the challenges with high-order contact is the use of a third medium

mesh to fill the empty space between objects [Wriggers et al. 2013]. This mesh is handled as a

deformable material with carefully specified material properties and internal forces which act in

lieu of the contact forces. In this setting, high-order formulations using 𝑝-refinement have been
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shown to be very effective [Bog et al. 2015]. Similar methods have been used in graphics (referred

to as an “air mesh”), as a replacement for traditional collision detection and response methods

[Jiang et al. 2017; Müller et al. 2015]. The challenge for these approaches is the maintenance of a

high-quality tetrahedral mesh in the thin contact regions, a problem that is solved in 2D, but still

open for tetrahedral meshes.

The detection and response to collisions between spline surfaces are major open problems in

isogeometric analysis, where over a hundred papers have been published on this topic (we refer

to Temizer et al. [2011] and Cardoso and Adetoro [2017] for an overview). However, automatic

mesh generation for isogeometric analysis (IGA) is still an open issue [Schneider et al. 2021],

limiting the applicability of these methods to simple geometries manually modeled, and often to

surface-only problems.

In comparison, we introduce the first technique using the IPC formulation to solve elastody-

namic problems with contact and friction forces on curved meshes using high-order elements.

We also show that an automatic high-order meshing and simulation pipeline is possible when

our algorithm is paired with [Jiang et al. 2021].

High-Order Collision Detection. IPC utilizes CCD to ensure that every step taken is inter-

section-free. The numerical exactness of CCD can make or break the guarantees provided by the

IPC algorithm [Wang et al. 2021]. While several authors have proposed methods for collision

detection between curved surfaces and nonlinear trajectories [Ferguson et al. 2021; Kry and Pai

2003; Nelson and Cohen 1998; Nelson et al. 2005; Snyder et al. 1993; Von Herzen et al. 1990], there

still does not exist a method that is computationally efficient while being conservative (i.e. never

misses collisions). Therefore, we are unable to utilize existing methods and instead, propose a

method of coupling linear surface representations with curved volumetric geometry.

High-Order Bases. Linear FE bases are overwhelmingly used in graphics applications, as they

have the smallest number of DOF per element and are simpler to implement. High-order bases
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have been shown to be beneficial to animate deformable bodies [Bargteil and Cohen 2014], to

accelerate approximate elastic deformations [Mezger et al. 2009], and to compute displacements

for embedded deformations [Longva et al. 2020]. Higher-order bases have also been used in

meshless methods for improved accuracy and faster convergence [Faure et al. 2011; Martin et al.

2010]. High-order bases are routinely used in engineering analysis [Jameson et al. 2002] where

𝑝-refinement is often favored over ℎ-refinement (i.e., refinement of the number of elements) as

it reduces the geometric discretization error faster and using fewer degrees of freedom [Babuska

and Guo 1988; Babuška and Guo 1992; Bassi and Rebay 1997; Luo et al. 2001; Oden 1994].

We propose a method that allows using high-order bases within the IPC framework, thus

enabling us to resolve the IPC contact model at a higher efficiency for elastodynamic problems

with complex geometry, i.e. we can obtain similar accuracy as with linear bases with a lower

computation budget. Additionally, our method allows us to explicitly control the accuracy of the

collision approximation by changing the collision mesh sampling (Section 5.4).

High-order bases can be used as a reduced representation and the high-order displacements

can be transferred to higher resolution meshes for visualization purposes [Suwelack et al. 2013].

We use this approach to extend our method to support arbitrary collision proxies, which enables

us to utilize our method to accelerate elastodynamic simulations by sacrificing accuracy in the

elastic forces.

Physically-Based Simulation. There is a large literature on the simulation of deformable and

rigid bodies in graphics [Bargteil and Shinar 2018; Kim and Eberle 2022], mechanics, and robotics

[Choi et al. 2021]. In particular, a large emphasis is on the modeling of contact and friction forces

[Brogliato 1999; Kikuchi and Oden 1988; Stewart 2001; Wriggers 1995].

Longva et al. [2020] propose a method for embedding geometries in coarser FE meshes. By

doing so they can reduce the complexity while utilizing higher-order elements to generate ac-

curate elastic deformations. To apply Dirichlet boundary conditions they design the spaces such
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that they share a common boundary. This scheme, however, cannot capture self-contacts without

resorting to using the full mesh. As such they do not consider the handling of contacts. They

do, however, suggest a variant of the Mortar method could be future work, but this has known

limitations as outlined above. We do not provide a comparison against this method as it does not

support contact, and adding contact to it is a major research project on its own, as discussed by

the authors.

In our work, we build upon the recently introduced IPC [Li et al. 2020] approach, as it offers

higher robustness and automation compared to traditional formulations allowing interpenetra-

tions between objects. We review only papers using the IPC formulation in this section, and we

refer to [Li et al. 2020] for a detailed overview of the state of the art.

Li et al. [2020] proposes to use a linear FE method to model the elastic potential, and an

interior point formulation to ensure that the entire trajectory is free of collisions. While the

approach leads to accurate results when dense meshes are used, the computational cost is high,

thus stemming a series of works proposing to use reduced models to accelerate the computation.

Li et al. [2021] propose Codimensional Incremental Potential Contact (C-IPC), a new formulation

for codimensional objects is introduced that optionally avoids using volumetric elements tomodel

thin sheets and rod-like objects. An acceleration of multiple orders of magnitude is possible for

specific scenes where the majority of objects are codimensional. Ferguson et al. [2021] propose a

formulation of IPC for rigid body dynamics, dramatically reducing the number of DOF but adding

a major cost and complexity to the collision detection stage, as the trajectories spanned by rigid

objects are curved.

Longva et al. [2020] demonstrate their ability to approximately model a rigid body using a

single stiff element. This idea is further expanded upon by Lan et al. [2022a] who propose to

relax the rigidity assumption: they use an affine transformation to approximate the rigid ones,

thus reducing the problem of collision detection to a much more tractable linear CCD. Massive

speedups are possible for rigid scenes, up to three orders of magnitude compared to the original
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formulation. While these methods provide major acceleration for specific types of scenes, they

are not directly usable for scenes with deformable objects.

Lan et al. [2021] proposes to use medial elastics [Lan et al. 2020], a family of reduced models

tailored for real-time graphics applications. In their work, the shape is approximated by a medial

skeleton which is used to model both the elastic behavior and as a proxy for collision detection.

The approach can simulate deformable objects, however, it cannot reproduce a given polyhedral

mesh and it is also specialized for medial elasticity simulations.

In our work, we enable the use of high-order meshes and high-order elements in a standard

FE framework. Our approach decouples the mesh used to model the elastic potential from the

mesh used for the contact and friction potentials, thus providing finer-grained control between

efficiency and accuracy.

Convergence and use of 𝐶0 Lagrangian Elements. Studies compare 𝐶0 (p-FEM) and IGA

bases’ convergence under p-refinement [Sevilla et al. 2011], in the presence of contact [Seitz et al.

2016; Temizer et al. 2011] and in other settings such as electromechanics [Poya et al. 2018]. IGA

bases have been shown, in specific problems with simple geometries, to have slightly higher ac-

curacy compared to Lagrangian 𝐶0 elements. In this work, we favor Lagrangian 𝐶0 elements as

IGA meshes are hard to generate for complex geometries and, additionally, some of their benefits

are lost when non-regular grid meshes are required to represent complex geometry [Schneider

et al. 2019a, 2022]. Our paper does not study the convergence of the method, we leave a con-

vergence (h and p) study as future work jointly with a convergence study for the IPC contact

model. Our goal is restricted to show that elastodynamic simulations with high-order geome-

try and bases are possible on complex geometry and provide a practical speedup over the linear

geometry representation and linear bases that are commonly used in graphics applications.
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5.3 IPC Overview

Our approach builds upon the IPC solver introduced in Chapter 2. In this section, we review

the original formulation and introduce the notation.

Li et al. [2020] computes the updated displacements 𝑢𝑡+1 of the objects at the next time step

by solving an unconstrained non-linear energy minimization:

𝑢𝑡+1 = argmin
𝑢

𝐸 (𝑢,𝑢𝑡 , 𝑣𝑡 ) + 𝐵(𝑥 + 𝑢,𝑑) + 𝐷 (𝑥 + 𝑢, 𝜖𝑣 ), (5.1)

where 𝑥 is the vertex coordinates of the rest position,𝑢𝑡 is the displacement at the current step, 𝑣𝑡

the velocities, 𝐸 (𝑢,𝑢𝑡 , 𝑣𝑡 ) is a time-stepping IP [Kane et al. 2000], 𝐵 is the barrier potential, and 𝐷

is the lagged dissipative potential for friction [Li et al. 2020]. The user-defined geometric accuracy

𝑑 controls the maximal distance at which the barrier potential will have an effect. Similarly, the

smooth friction parameter 𝜖𝑣 controls the smooth transition between static and dynamic friction.

We refer to Li et al. [2020] for a complete description of the potentials, as for our purposes we

will not need to modify them.

Solver and Line Search CCD. The advantage of the IPC formulation is that it is possible to

prevent intersections from happening by using a custom Newton solver with a line-search that

explicitly checks for collisions using a continuous collision detection algorithm [Provot 1997;

Wang et al. 2021], while keeping the overall simulation cost comparable to the more established

LCP based contact solvers [Li et al. 2020].

5.4 Method

We introduce an extension of IPC for a curved meshM = (𝑉M,𝑇M) where𝑉M and𝑇M are the

nodes and volumetric elements ofM, respectivly. The formulation reduces to standard IPC when
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(
𝑛∑︁
𝑖=1

𝑢𝑡+1𝑖 𝜑 𝑖

)
−

(
𝑛∑︁
𝑖=1

𝑢𝑡𝑖𝜑 𝑖

)
=

𝑛∑︁
𝑖=1
(𝑢𝑡+1𝑖 − 𝑢𝑡𝑖 )𝜑 𝑖 =

𝑛∑︁
𝑖=1

Δ𝑢𝑖𝜑 𝑖

Figure 5.2: Linearity of displacement update. Even with nonlinear bases 𝜑 𝑖 , the update to displace-
ment still constitutes a linear combination of nodal displacements. Therefore from a starting position (in
red), the update to displacements of any point on the surface (in blue) is linear, and as such we need not
use expensive nonlinear CCD.

Figure 5.3: Geometric mapping. The geometric map 𝑔𝑖 maps from the reference element 𝑡 to the global
positions of an element 𝑡𝑖M = 𝑔𝑖 (𝑡). Additionally, 𝑔𝑖 is bijective and it is easy to invert for linear meshes
(barycentric coordinates), but requires a small nonlinear optimization for higher-order elements.

linear meshes and linear bases are used, but other combinations are also possible: for example, it

is possible to use high-order bases on standard piece-wise linear meshes, as we demonstrate in

Section 5.5.

We first introduce explicit definitions for functions defined on the volume and the contact

surface corresponding to its boundary. Let 𝑓M : M → R3 be a volumetric function (in our case

the volumetric displacement 𝑢) defined as

𝑓M =

𝑛∑︁
𝑖=1

𝑓 𝑖M𝜑
𝑖
M, (5.2)
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where 𝜑 𝑖
M are the 𝑛 FE bases defined onM and 𝑓 𝑖M their coefficient.

Similarly on the surface S = (𝑉S,𝑇S) used for collision, with vertices 𝑉S and triangular faces

𝑇S , we define 𝑓S : S → R3 (in our case the displacement 𝑢 restricted to the surface) as

𝑓S =

𝑚∑︁
𝑗=1

𝑓
𝑗
S𝜑

𝑗
S, (5.3)

where 𝜑 𝑗
S are the𝑚 FE bases defined on S and 𝑓

𝑗
S their coefficient. We can now rewrite Equa-

tion (5.1) to make explicit that the potential 𝐸 depends on M, while 𝐵 and 𝐷 only depend on

S:

𝑢𝑡+1 = argmin
𝑢

𝐸M (𝑢,𝑢𝑡 , 𝑣𝑡 ) + 𝐵S (𝑉S + Φ(𝑢), 𝑑)

+ 𝐷S (𝑉S + Φ(𝑢), 𝜖𝑣 ), (5.4)

where Φ : ΘM → ΘS is an operator where ΘM = span{𝜑 𝑖
M} and ΘS = span{𝜑 𝑗

S} that transfers

volumetric functions on M to S. In the context of [Li et al. 2020] (i.e., Equation (5.1)), Φ is

a restriction of the volumetric function to its surface. While in general, Φ could be an arbitrary

operator, IPC takes advantage of its linearity: ifΦ is linear, then the trajectories of surface vertices

in one optimization step of Equation (5.4) will be linear (Figure 5.2), and it is thus possible to

use standard continuous collision detection methods [Provot 1997; Wang et al. 2021]. If Φ is

nonlinear, for example in the rigid-body formulation introduced by Ferguson et al. [2021], the

collision detection becomes considerably more expensive [Lan et al. 2022a].

We observe that arbitrary linear operators can be used for Φ, and note that increasing the

order of the bases used to represent 𝑓M and 𝑓S does not affect the linearity of the operator. An

additional advantage of this reformulation is that the space ΘS does not have to be a subspace

of ΘM . For example, the collision mesh can be at a much higher resolution than the volumetric

mesh used to resolve the elastic forces (Section 5.5).

158



We first discuss how to build a linear operator Φ for high-order meshes, high-order elements,

and arbitrary collision proxies, andwe postpone the discussion on how to adapt the IPC algorithm

to work with arbitrary Φ to Section 5.4.2.

5.4.1 Construction of Φ

We present two methods for constructing Φ: upsampling the surface ofM to obtain a dense

piecewise linear approximation of its boundary, which we use as S (Section 5.4.1.1), or using an

arbitrary surface triangle mesh as S and determining closest point correspondences used to eval-

uate bases (Section 5.4.1.2). Our results in Section 5.5 show a mix of both approaches: Figures 5.4,

5.5, and 5.7 to 5.9 use an upsampling while Figures 5.1, 5.5, 5.6, and 5.9 to 5.12 use an arbitrary

triangle mesh proxy.

SinceΦ is a linear operator, a discrete function 𝑓M ∈ ΘM with coefficients 𝑓 𝑖M can be transferred

to 𝑓S ∈ ΘS using its𝑚 coefficients 𝑓 𝑗S as

fS =𝑊 fM,

where fM and fS are the stacked coefficients 𝑓 𝑖M and 𝑓
𝑗
S , respectively. The tetrahedron 𝑡 𝑖M ∈ 𝑇M

of a high-order meshM is defined as the image of the geometric mapping 𝑔𝑖 applied to reference

right-angle tetrahedron 𝑡 ; that is

𝑡 𝑖M = 𝑔𝑖 (𝑡).

On S, the geometric map is a vectorial function and has the same form as Equation (5.3).

5.4.1.1 Upsampled linear boundary

To construct S we need to use the geometric map to find the initial vertex positions, while

to define the operator to transfer functions from the volumetric mesh to S we will use the basis

functions ofM.
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Vertex Positions. Every vertex of the piece-wise linear approximation 𝑣 𝑗S ∈ 𝑉S has coordinates

𝑣 𝑗 in the reference tetrahedron of 𝑡 𝑖M , so its global coordinates can be computed as

𝑣
𝑗
S = 𝑔𝑖 (𝑣 𝑗 ),

and stacked into the vector 𝑉S used in Equation (5.4).

Transfer. To construct the linear operator Φ encoded with the matrix𝑊 transferring from a

higher-order polynomial basis on the boundary ofM to the piecewise linear approximation S,

we observe that, since S is an upsampling ofM, we can use 𝑣 𝑗 to directly evaluate the bases of

M (for all non-zero bases) and use them as a weight to transfer the function fromM to S and

define

𝑊𝑗𝑖 = 𝜑
𝑖
M (𝑣

𝑗 ),

which is a linear operator, independent of the degree of the basis functions.

5.4.1.2 Arbitrary Triangle Mesh Proxy

The same construction applies to arbitrary mesh proxies (e.g., Figure 5.1), but we need to

compute 𝑣 𝑗 for every vertex. When M is linear we can simply compute 𝑣 𝑗 as the barycentric

coordinates of the closest tetrahedron inM, but whenM is nonlinear we use an optimization

to invert 𝑔𝑖 [Suwelack et al. 2013]. However, unlike Suwelack et al. [2013], we found that us-

ing a normal field to define correspondences is fragile when the surfaces have a very different

geometric shape, so we opt for a simpler formulation based on distances.

Algorithm 5.1 outlines our method for computing Φ for an arbitrary triangle proxy. Namely,

given a volumetric meshM and an arbitrary triangle meshS we do not have the pre-image under

the geometric mapping of the vertices 𝑣 𝑗S ∈ 𝑉S , so we compute one by determining the closest

element inM to 𝑣 𝑗S and use an optimization to compute the inverse geometric mapping to obtain
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Algorithm 5.1 Construct Φ =𝑊 fM for arbitrary triangle mesh
1: procedure ConstructW(M, S)
2: 𝑊 ← 0 ⊲𝑊 ∈ R𝑚×𝑛
3: M̃ ← linearize(M, 4) ⊲ 4 linear tetrahedra per curved tet
4: for 𝑣 𝑗S ∈ 𝑉S do
5: �← inflate(AABB(𝑣 𝑗S), 10−3)
6: while [ do𝑛 = 3 in our examples]| � ∩M̃| < 𝑛

7: �← inflate(�, 10%)
8: for 𝑡 𝑖M ∈ (� ∩M) do
9: 𝑏𝑖 ← BC(𝑣 𝑗S, linearize(𝑡 𝑖M)) ⊲ barycentric coords.
10: 𝑣

𝑗

𝑖
← argmin𝑣 ∥𝑔𝑖 (𝑣) − 𝑣

𝑗
S∥22 ⊲ limited-memory BFGS (L-BFGS) with 𝑣0 = 𝑏𝑖

11: 𝑖∗ ← argmin𝑖 ∥𝑣
𝑗

𝑖
∥1 ⊲ Closest to the interior

12: 𝑣 𝑗 = 𝑣
𝑗

𝑖∗ ⊲ pre-image of 𝑣 𝑗S
13: 𝑊𝑗𝑖 = 𝜑 𝑖

M (𝑣 𝑗 )
14: return𝑊

the coordinates 𝑣 𝑗 . This procedure only needs to be performed once because𝑊 depends only on

the rest geometry.

5.4.2 Gradient and Hessian of Surface Terms

Adapting IPC to work with arbitrary linear Φ mapping requires only changing the assembly

phase, which requires gradients and Hessian of the surface potentials. Similar to IPC, we use

Newton’s method to minimize the newly formulated potential in Equation (5.4), and we thus

need its gradient and Hessian.

For a surface potential 𝐵S (𝑉S + Φ(𝑢), 𝑑) and transfer

Φ(𝑢) = Φ

(
𝑛∑︁
𝑖=1

𝑢𝑖𝜑
𝑖
M

)
=

𝑚∑︁
𝑗=1
(𝑊 u) 𝑗𝜑 𝑗

S,

where u is the vector containing all the coefficients 𝑢𝑖 ; we use the definition of𝑊 to express the
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gradient of the barrier (or the friction) potential as

∇𝑢𝐵S (𝑉S + Φ(𝑢), 𝑑) = ∇𝑢 (𝑉S + Φ(𝑢)))⊤∇S𝑢𝐵S (S𝑢, 𝑑)

= ∇𝑢 (𝑉S + (𝑊 u))⊤∇S𝑢𝐵S (S𝑢, 𝑑) =𝑊 ⊤∇S𝑢𝐵S (S𝑢, 𝑑),

where S𝑢 = 𝑉S + Φ(𝑢). The Hessian is computed similarly

∇2
𝑢𝐵S (𝑉S + Φ(𝑢), 𝑑) =𝑊 ⊤ [∇2

S𝑢𝐵S (S𝑢, 𝑑)]𝑊 .

The formulas for ∇S𝑢𝐵S (S𝑢, 𝑑), ∇S𝑢𝐷S (S𝑢, 𝜖𝑣 ), and their Hessians are the same as in [Li et al.

2020], thus requiring minimal modifications to an existing implementation. As in [Li et al. 2020],

we mollify the edge-edge distance computation to avoid numerical issues with nearly parallel

edges.

5.5 Results

All experiments are run on individual nodes of an HPC cluster each using two Intel Xeon

Platinum 8268 24C 205W 2.9 GHz Processors and 16 threads. All results are generated using the

PolyFEM library [Schneider et al. 2019b] coupled with the IPC Toolkit [Ferguson et al. 2020], and

use the direct linear solver Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020]. We use the

notation 𝑃𝑛 to define the FE bases order (e.g., 𝑃2 indicates quadratic Lagrange bases) and all our

curved meshes are quartic. All simulation parameters and a summary of the results can be found

in Table 5.1 and 5.2, respectively.

5.5.1 Test Cases

Bending beam. We first showcase the advantages of high-order bases and meshes. Figure 5.4

shows that linear bases on a coarse mesh introduce artificial stiffness and the result is far from
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�1 coarse �1 reference �2 �3 �1 time budgeted
(15 s) (7m 43s) (32 s) (58 s) (57 s)

Figure 5.4: Bending beam. Squared-section coarse beam pressed by two planes. Linear elements exhibit
artificial stiffness as they cannot bend. The reference �1 solution and �3 are rendered in isolation on the
right. The results are indistinguishable, but �3 is an order of magnitude faster.

the reference (a dense �1 mesh). As we increase the order, the beam bends more. Using �3 on

such a coarse mesh leads to results indistinguishable from the reference at a fraction of the cost.

We also compare the results of a higher resolution �1 mesh with a limited time budget. That

is, the number of elements is chosen to produce a similar running time as the �3 results (1,124

tetrahedra compared to 52 in the coarse version). Even in this case, the differences are obvious

and far from the expected results.

Bouncing ball. Figure 5.5 shows the movement of the barycenter of a coarse bouncing sphere

on a plane. When using linear bases on the coarse mesh, the ball tips over and starts rolling as

the geometry is poorly approximated (yellow line). Replacing the coarse collision mesh using

our method (blue line) improves the results for a small cost (125 frames/s versus 83.3 frames/s);

however, since the sphere boundary is poorly approximated and the bases are linear, the results

are still far from the accurate trajectory (green line). Finally, replacingM with a curved mesh and

using �2 bases leads almost to the correct dynamics (red line) while maintaining a real-time sim-

ulation (38.4 frames/s). As a reference, the dense �1 linear mesh (green line) runs at 3.9 frames/s.
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Figure 5.5: Bouncing ball. Simulation of a bouncing sphere on a plane. The yellow image and line are
the baseline, a coarse linear mesh with linear displacement. The results can be improved using our method
and replacing S with a dense sphere in blue. When using a high-order mesh with �2 displacement, red,
the results are similar to the dense linear simulation in green.

Rolling ball. Figure 5.6 shows our method is able to maintain purely tangential friction forces

on the FE mesh while rolling a ball down a slope. The baseline spherical FE mesh (8.8K �1 tetra-

hedra) and our method using a cube FE mesh (26 �1 tetrahedra), both using the same collision

geometry, produce very similar dynamics, but our method is 7.5× faster. However, while the
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Figure 5.6: Rolling-ball. We demonstrate a ball rolling down a slope, while maintaining non-slip rolling
contact, produces purely tangential friction forces on the FEM mesh. Our method uses a symmetric cube
mesh (black wireframe) as the FE mesh and a high-resolution sphere (green) as the collision mesh. The
friction forces on the FE mesh are shown as pink arrows. We plot the out-of-plane friction force (� · �̂)
and norm of the in-plane friction force (‖� − (� · �̂)�̂‖). Compared to a high-resolution baseline, the out-
of-plane error shows negligible differences but the in-plane force is around 2× greater. This is due to the
increased numerical stiffness of our course mesh leading to less localized deformation, smaller distances,
and, ultimately, a larger normal force.

ball’s material is stiff (� = 109 Pa), it is not rigid, so the baseline model deforms slightly at the

point of contact. Our model exhibits extra numerical stiffness from the large linear elements

and so deforms less. This results in a 5% difference on average in the minimum distance which

translates to a normal force (and ultimately friction force) that is 2× greater. This inaccuracy is a

limitation of using such a course FE mesh within our framework.

5.5.2 Examples

Mat twist. We reproduce the mat twist example in [Li et al. 2020] using a thin linear mesh

M with 2K tetrahedra and simulate the self-collisions arising from rotating the two sides using a

collision mesh S with 65K vertices (Figure 5.7). Simulating this result using standard IPC on the

coarse (left) is fast but leads to visible artifacts; by using �2 bases for displacements the results are
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�1 coarse
(2m 47s)

�1 time budgeted
(6h 7m 12s)

�2
(6h 19m 52s)

�1
(2d 14h 13m 0s)

Figure 5.7: Mat-twist. Simulation of twisting for different bases’ order and mesh resolutions. The cross-
section (bottom row) shows that the coarse linear mesh (left) has huge artifacts. The coarse �2 bases
(middle-right) produce smooth results similar to a dense mesh (right) for a tenth of the time. A “time-
budgeted” version shows similar results but exhibits checker patterns around the folds.

smooth and the simulation is faster (91 s/frame). For reference, a finer linear solution with more

elements, to get a result similar to ours but only using linear elements, requires 230K elements

and a runtime 10× higher.

We find a �1 mesh with 51K tetrahedra (25× the number used in the �2 variant) that produces

a similar running time. The �2 collision mesh uses 3.5× more triangles leading to 3.1× slower

collision detection while the linear solver for the �1 mesh is only 2.2× slower. This results in

similar dynamics and final state (see Figure 5.7) with some notable differences around the folds

of the mat.

Microstructure. In Figure 5.8, we simulate the compression of an extremely coarse (6K �4

tetrahedra) curved microstructure mesh from [Jiang et al. 2021]. We upsample its surface to

generate a collision mesh with 143K triangles. We demonstrate our method’s ability to simulate

anisoparametric scenarios (i.e., the shape and basis functions differ) by using �1 and �2 bases. In

this case, both simulations take a similar amount of time (6h 34m 9s versus 6h 4m 48s).
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Figure 5.8: Microstructure. Compression of a curved microstructure using linear and quadratic bases.
While the choice of bases only leads to marginal running time savings, it demonstrates our method’s
ability to simulate anisoparametric scenarios where the �4 shape functions differ from the �1/�2 bases.

Armadillo on a Roller. In Figure 5.9, we replicate the armadillo roller from [Verschoor and

Jalba 2019] and use fTetWild [Hu et al. 2020] to generateM with 1.8K tetrahedra (original mesh

has 386K). With our method, we combineM with the original surface with 21K faces with linear

element and obtain a speedup of 60× (row★). We used [Jiang et al. 2021] to generate a coarse

curved mesh (with only 4.7K tetrahedra) and use an optimization to invert the geometric map-

ping and simulate the result using �2, this leads to a simulation 30× faster (row†). Finally, we

upsampled the surface of the curved mesh to generate a new collision mesh S with 20K faces,

this simulation is only 8× faster (row‡).

Trash-compactor. We reproduce the trash compactor from [Li et al. 2020] using a coarse mesh

M with 21K tetrahedra and compress it with five planes. Since the input mesh is already coarse

and the models have thin features in the tentacles, we use fTetWild to generate a coarser mesh

with 3.5K tetrahedra. Using this mesh with �1 displacements while using the same surface mesh

for collisions provides a 2.5× speedup. Since both coarse and input meshes have similar resolu-

tion, using �2 leads to a more accurate but much slower (around 10×) result as the number of

DOF for �2 is similar to the denser mesh but with 5× the number of surface triangles.
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Figure 5.9: Armadillo-rollers. Armadillo roller simulation for the different variants of our method.
Ours★ uses a coarse linear mesh with linear displacement and the original geometry for the collision.
Ours† uses a curved mesh with �2 displacement and an upsampled geometry for the collision. Ours‡ uses
a curved mesh with �2 displacement and the original geometry for the collision.

5.5.3 Extreme Coarsening

Nut and Bolt. As mentioned in Section 5.4, our method can be used with linear meshes and

linear bases. This is best suited to stiff objects where the deformation is minimal. Figure 5.11
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Figure 5.10: Trash compactor. The Octocat model is compressed by five planes. Using the original
input mesh (top) is two times slower than using our method with linear elements (middle). Since we
cannot coarsen the input too much without losing the tentacles, using �2 leads to longer running times
and similar results (bottom).
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Figure 5.11: Nut-and-bolt. Simulation of a bolt rotating into a bolt under gravity. Directly meshing the
input mesh (top) generate similar results as using our method with a coarse simulation mesh (right).

shows an example of a nut sliding inside a bolt, since both materials are stiff (� = 200 GPa), we

coarsen M using fTetWild [Hu et al. 2020] from 6K tetrahedra and 1.7K vertices to 492 and 186,

respectively. This change allows our method to be twice as fast without visible differences.

Balancing Armadillo. When generating a coarse mesh M the center of mass and mass of

the object might change dramatically. Figure 5.12 shows that the coarse mesh cannot balance

anymore as the center of mass is outside the contact area. To prevent this artifact, similarly
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Initial config. Fine (17s) Coarse (19s) Optimized (9s)

Figure 5.12: Balancing armadillo. We simulate the dancing armadillo from [Prévost et al. 2013] falling
on a plane (left). The coarse model (middle) tips over because the center of mass falls outside the foot.
We optimize the density (shown in red) to match the input center of mass and the armadillo is balanced
(right). Differences in running time can be attributed to the different dynamics (i.e., the coarse model
experiences more contacts when it falls over).

to [Prévost et al. 2013], we modify the density (in red in the third figure) of the material to move

the center of mass.

5.6 Discussion

We introduce a robust and efficient simulator for deformable objects with contact supporting

high-order meshes and high-order bases to simulate geometrically complex scenes. We show that

there are major computational advantages in increasing the order of the geometric map and bases

and that they can be used in the IPC formulation with modest code changes.

Limitations. At a high level, we are proposing to use �-refinement for elasticity, coupled with

ℎ-refinement approach for contacts, to sidestep the high computational cost of curved continuous

collision detection. The downside of our approach is that our contact surface is still an approx-

imation of the curved geometry, and while we can reduce the error by further refinement, we

cannot reduce it to zero. While for graphics applications this is an acceptable compromise, as

the scene we use for collision is guaranteed to be collision-free and we inherit the robustness

properties of the original IPC formulation, there could be engineering applications where it is
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important to model a high-order surface exactly. In this case, our approach could not be used as

we might miss the collisions of the curved FE mesh.

A second limitation of our approach is that the definition of a robust, guaranteed positivity

check for high-order elements is still an open research problem [Johnen et al. 2013]. In our imple-

mentation, we check positivity only at the quadrature points, which is a reasonable approxima-

tion but might still lead to unphysical results as the element might have a negative determinant

in other interior points.

While our method for mapping between an arbitrary triangle mesh proxy and the curved

tetrahedral mesh works well enough for the examples shown in this paper, it is not a robust

implementation, as the closest point query can lead to wrong correspondences. In the future, it

will be interesting to explore the use of bijective maps between the two geometries to avoid this

issue (for example by using the work of Jiang et al. [2020]).

Our choice ofΦ is not unique as there are a large number of basis functions to choose from. We

explored other options such asmean value coordinates and linearized L2-projection, but we found

their global mappings produce dense weight matrices. This results in slower running times with

only minor quality improvements. A future direction might be the exploration of more localized

operators such as bounded bi-harmonic weights [Jacobson et al. 2011].

Future Work. Beyond these limitations, we see three major avenues for future work: (1) ex-

isting curved mesh generators are still not as reliable in producing high-quality meshes as their

linear counterparts: more work is needed in this direction, and our approach can be used as a

testbed for evaluating the benefits curved mesh provides in the context of elastodynamic simu-

lations, (2) our approach could be modified to work with hexahedral elements, spline bases, and

isogeometric analysis simulation frameworks, and (3) we speculate that integrating our approach

with high-order time integrators could provide additional benefits for further reducing numerical

damping and we believe this is a promising direction for a future study.
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Table 5.1: Simulation parameters used in the results. For each example, we report the time step size
(ℎ), density (𝜌 with ★ indicating multi-density), Young’s modulus (𝐸), Poisson ratio (𝜈), barrier activation
distance (𝑑), coefficient of friction (𝜇), friction smoothing parameter (𝜖𝑣), maximum friction iterations, and
Newton tolerance. For all examples, we use implicit Euler time integration and the Neo-Hookean material
model.

Scene ℎ (s) 𝜌 (kg/m3), 𝐸 (Pa), 𝜈 𝑑 (m) 𝜇, 𝜖𝑣 (m/s),
friction iters. Newton tol. (m)

Armadillo-rollers (Figures 5.1 and 5.9) 0.025 1e3, 5e5, 0.2 1e-3 0.5, 1e-3, 1 1e-3
Bending beam (Figure 5.4) 0.1 1e3, 1e7, 0.4 1e-3 0.5, 1e-3, 10 1e-5
Bouncing ball (Figure 5.5) 0.001 700, 5.91e5, 0.45 1e-3 0.2, 1e-3, 1 1e-12
Mat-twist (Figure 5.7) 0.04 1e3, 2e4, 0.4 1e-3 - 1e-5
Microstructure (Figure 5.8) 0.01 1030, 6e5, 0.48 1e-5 0.3, 1e-3, 1 1e-4
Trash-compactor (Figure 5.10) 0.01 1e3, 1e4, 0.4 1e-3 - 1e-5
Nut-and-bolt (Figure 5.11) 0.01 8050, 2e11, 0.28 1e-4 - 1e-5
Balancing armadillo (Figure 5.12) 0.1 1𝑒3★, 1e11, 0.2 1e-5 0.1, 1e-3, 20 1e-5
Rolling ball (Figure 5.6) 0.025 1e3, 1e9, 0.4 1e-3 1.0, 1e-3,∞ 1e-5

Our approach is a first step toward the introduction of high-order meshes and high-order

FEM in elastodynamic simulation with the IPC contact model, and we believe that our reference

implementation will reduce the entry barrier for the use of these approaches in industry and

academia.
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Table 5.2: Summary of results shown in Section 5.5. For each example, we report the number of tetrahedra
(#T) used for elasticity, the number of surface triangles (#F) used for collision processing, and the total
running time of the simulation. Names correspond to the same given in each figure.

Scene #T #F Running Time

Armadillo-rollers
(Figure 5.9)

Baseline 386K 24K 2d 13h 19m 00s
Ours★, 𝑃1 1.8K 24K 57m 36s
Ours†, 𝑃2 4.7K 23K 3h 58m 00s
Ours‡, 𝑃2 4.7K 24K 7h 14m 32s

Bending beam
(Figure 5.4)

𝑃1 coarse 48 72 15s
𝑃1 reference 25K 4.4K 7m 43s
𝑃2 1.1K 2.8K 32s
𝑃3 48 5.5K 58s
𝑃1 time budgeted 48 5.5K 57s

Bouncing ball
(Figure 5.5)

Dense 𝑃1 8.8K 5.1K 4m 16s
Coarse 𝑃1 30 32 8s
Dense Surface 30 2.4K 12s
𝑃4 30 2.4K 26s

Mat-twist
(Figure 5.7)

𝑃1 coarse 2.2K 1.6K 2m 47s
𝑃1 time budgeted 54K 37K 6h 7m 12s
𝑃2 2.2K 129K 6h 19m 52s
𝑃1 230K 141K 2d 14h 13m 00s

Microstructure
(Figure 5.8)

𝑃1 6.4K 143K 6h 34m 09s
𝑃2 6.4K 143K 6h 04m 48s

Trash-compactor
(Figure 5.10)

Baseline 21K 8.6K 5h 08m 25s
Ours 3.5K 8.5K 2h 20m 16s
Ours, 𝑃2 3.5K 41K 24h 23m 00s

Nut and bolt
(Figure 5.11)

Baseline 6.1K 5.2K 22m 04s
Ours 492 5.2K 9m 40s

Balancing armadillo
(Figure 5.12)

Fine 5.9K 3.7K 17s
Coarse 585 486 19s
Optimized 585 486 9s

Rolling ball
(Figure 5.6)

Baseline 8.8K 5.1K 5m 52s
Ours 26 5.1K 47s
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6 | In-Timestep Remeshing for

Contacting Elastodynamics

6.1 Introduction

We propose, In-Timestep Remeshing (ITR), a new algorithm for simulating frictionally con-

tacting elastodynamics where remeshing criteria, remeshing operations, and variable mappings

are all tightly coupled implicitly, within the timestep solve. Our algorithm automatically adapts

meshing in-timestep to account for time-local conditions of both the internal forces and frictional

contacts of a trajectory. At the same time, by careful construction, non-intersection and non-

inversion are respected as invariants over each operation within the remeshing, and so across

each timestep. This provides consistent improvement across extreme variations in materials, se-

vere boundary conditions, fine surface contact details, large friction, and even under the extreme

compressions and tensions regularly imposed by contacting and impacting domains.

Large-deformation elastodynamic simulations often require exceedingly dense spatial dis-

cretizations to capture critical and often transient features like shockwaves and indentations. At

the same time, meshes dense enough to capture these behaviors can be prohibitively expensive

in both runtime and memory for practical applications with real-world examples – especially in

3D. These challenges motivate the application of AM methods that seek to locally introduce and

remove simulation DOF on the fly, in order to concentrate them where they are most needed.
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Figure 6.1: Ball on spikes. In-Timestep Remeshing (ITR) enables physics-aware adaptive refinement
and coarsening to robustly capture detailed contact-driven deformations in simulated trajectories. Here
we drop a soft (neo-Hookean material, � = 105 Pa) ball at large timesteps (ℎ = 0.01 s) onto very stiff
(� = 108 Pa) sharp spikes. Starting with coarse, unstructured finite-element meshes for all geometries
(see Figure 6.2(a)) we show here two later steps in the trajectory as the ball initially collides with and then
comes to rest on the spikes (top and bottom left respectively). Views from below (middle and middle inset)
for each of these steps highlight how our physics-aware remeshing automatically and locally adapts the
tetrahedral mesh in time to capture the changing detailed deformations within thematerial and at contact
regions. In a cutaway view (right), we remove the tetrahedral interior elements from the ball, leaving just
its bottom surface mesh faces to highlight how ITR tightly conforms, per timestep, without intersection,
to the sharp and challenging contacts without over-refining (please compare to the sizing field method in
Figure 6.2(b)). Correspondingly we cut the ball geometry from the view altogether (right inset) and zoom
in on the tightly wound spike geometries that form the severe indentation on the ball, evidencing the
accurate solution of the challenging timestep problem resolving forces between highly disparate material
stiffnesses.

Generally, AM for simulating dynamics is currently applied in-between simulation timesteps.

This often fits well within optimized physics pipelines in graphics but keeps mesh changes, and

the resultant necessary remapping of physical quantities, decoupled from the actual timestep

simulation solves. In turn, this decoupling introduces a number of fundamental challenges that

we address in this work.

Meshing Criteria. First, the measures evaluated on-mesh that decide where and how to ch-

ange discretization, can not directly evaluate how remeshing options will impact the solution

of the physical problem when decoupled in this way. Applied post-solve, these criteria instead
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provide approximations, based on the current generated state, at the current, fixed discretization.

Indirect proxies are then generally applied, using geometric criteria and/or snapshots of physical

quantities to guide the refinement and coarsening, which, in turn, then need to be re-tuned as

the specific physical system simulated (e.g., materials, speeds, boundary conditions) change.

Invariants. Second, necessary invariants for accurate, large-deformation contact simulation

are often broken in remeshing pipelines, with element inversions and intersections regularly gen-

erated. A range of fail safes and stabilizations have been applied to fix these issues post hoc [Narain

et al. 2013; Spillmann and Teschner 2008]. However, these fixes all have trade-offs: they gener-

ally introduce errors, can inject energy (potentially creating instabilities) [Narain et al. 2013], and

require per-example tuning even as they work to remove intersections and/or fix elements.

Mapping. Third, physical quantities, e.g., displacements, velocities, and accelerations, must be

mapped to new discretizations. Inherently, all such mappings, aside from happy nesting cases,

introduce errors. However, the process of alternating timestep solves, meshing, and mapping,

additionally introduces inconsistencies between the physical state and the mesh discretization,

while mapping operations themselves can also generate intersections and inversions. As we

cover in the next sections, this leads to unacceptable artifacts, additional instabilities, and even

simulation failures. Prior work in simulating dynamics with adaptive-meshing, in dealing with

these issues, often seeks to minimize refinement operations to reduce error [Wicke et al. 2010].

However, this often opposes the original goal of adapting where needed.

Contact. Contact-driven dynamics particularly pose both significant challenges to, and high

demand for AM, where large and highly singular contact forces generate significant and localized

deformations in simulation meshes. In such cases, the above-covered issues are especially critical

to consider as the separation of meshing steps and solves breaks temporal coherence, introduces

infeasible states and unnecessarily perturbs system energies (with attendant numerical artifacts
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and jittering), and so often undoes much of the immediate benefit of improved accuracy and qual-

ity targeted by AM operations in the first place. Likewise, existing contact-aware AM methods,

applying solely geometric criteria significantly over-refine boundaries (see Figure 6.5), in many

cases again directly opposing the original intent of AM.

In-Timestep AM. We address the above challenges with, to our knowledge, a first fully cou-

pled AM method for contacting elastodynamics with meshing criteria, operations, and map-

pings, tightly coupled within each timestep solve. To do so we apply the recently proposed,

IPC model [Li et al. 2020] which provides a convergent [Li et al. 2023] and smooth model for fric-

tionally contacting solids Applying the IPC model, we construct In-Timestep Remeshing where

meshing criteria have access to the current, ongoing, nonlinear timestep solve’s merit function.

With this framework, we can apply efficient “micro” simulations per mesh operation, and somake

physics-informed and invariant-safe decisions on how to update the discretization.

Contributions. ITR thus refines and coarsens by measuring the change in improvement with-

in each ongoing timestep solve and so avoids recourse to geometric meshing criteria that are

physics-oblivious and require per-example tuning.

To build ITR our technical contributions include:

• a “safe” constrained 𝐿2-projection method for variable mapping that minimizes mapping

error while preserving invariants by ensuring a globally injective mapping;

• a consistent, smooth remeshing criteria function for frictionally contacting elastodynamics

built upon the IPC model; and

• a refinement and coarsening algorithm with provably safe operations, operation filtering

heuristics for limiting per-step cost while ensuring solution improvement, and local non-

linear analysis leading to a final, convergent timestep solution on each step’s new mesh.

178



Runtime Efficiency. When compared to uniform mesh refinement, ITR judiciously adds and

removes DOF, reducing linear solve times in the inner loop of the nonlinear timestepping al-

gorithm with a DOF improvement ranging from 2.6 to 185× less DOF per example with cor-

responding 2.7 to 1,444× linear solve speedups. However, additional computation is applied to

select where and when the spatial discretization is modified. The interplay between resultant

time-savings in linear solves and this overhead varies significantly depending on the scene (and

how suitable a naive refinement is). Scenes requiring localized refinement (e.g., Figure 6.1) are

up to 3.3× faster with our implementation of ITR, while others (e.g., Figure 6.6) can be up to 9.6×

slower. We provide a detailed analysis of this trade-off and discuss its long-term implications for

this technology in Section 6.4.3.

We demonstrate the effectiveness of our approach across a wide range of challenging 3D (and

2D) examples, where we highlight the benefits of physics-aware AM. While simple methods are

desirable, remeshing necessarily comes with the cost of complex implementation: we release a

modular, open-source implementation of our methods at polyfem.github.io to enable replicability

and future application.

6.2 Related Work

Meshes are ubiquitous in graphics and there are a wide range of algorithms and applications

that create and/or modify them. We focus here specifically on related work on unstructured

meshes and the application of mesh modifications for elastodynamic simulation, both with and

without frictional contact. For a broad overview of adaptive methods in graphics covering a wide

range of physical problems, models, and structured discretizations, please refer to Manteaux et al.

[2017]. Hu et al. [2018] similarly review dedicated meshing algorithms, andMitchell andMcClain

[2014] covermethods combiningmeshmodifications with basis refinement (p and hp-refinement),

which we do not consider in this work.
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Adaptive remeshing also plays a critical role in modeling fracture and cutting [Chentanez

et al. 2009; Hahn and Wojtan 2015; Koschier et al. 2015; Manteaux et al. 2015; O’Brien et al.

2002; O’Brien and Hodgins 1999; Pfaff et al. 2014] as well as in surface tracking methods which

employ complex and robust remeshing operations to explicitly track the movement of colliding

and merging boundaries [Brochu and Bridson 2009; Da et al. 2014; Jiang et al. 2017; Klingner

et al. 2006; Menon et al. 2015; Misztal et al. 2014; Misztal and Bærentzen 2012; Müller et al. 2015;

Stein et al. 2004; Wojtan et al. 2009]. Here we focus solely on elastodynamic simulation without

fracture and look to extensions in these areas as exciting potential future directions.

Changing a physical model’s spatial discretization during elastodynamic simulation requires

four high-level algorithmic components:

1. Criteria: where to change the discretization and, when doing so, where to increase or de-

crease the number of DOF;

2. Operations: which operations are applied to change the discretization;

3. Mapping: once a discretization is changed, how physical quantities are mapped from the

prior discretization to the new one; and

4. Solution Schedule: how and when these mapped quantities are applied to update the phys-

ical model’s solution.

In the following, we next categorize and consider relatedworkswith respect to their treatment

of these four core components.

6.2.1 Criteria

Geometry. Starting from the seminal work of Hutchinson et al. [1996] for mass-spring systems,

a popular way of guiding simulation mesh adaptation is to rely on the geometry of the discretiza-

tion, either in rest configuration [Bargteil et al. 2007], deformed configuration [Dunyach et al.
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Initial mesh

(a)

Sizing field Ours

(b)

Figure 6.2: Sizing field comparison. (a) The initial conditions and mesh used for the “ball on spikes”
simulations in Figures 6.1 and 6.2(b). (b) A comparison of our algorithm (right) and results of applying a
contact-aware sizing field-based adaptive meshing criteria [Li et al. 2018a; Narain et al. 2012; Wicke et al.
2010] (left) for in-timestep simulation. We show a cutaway view (bottom row) where we have clipped
the geometry to see the inside of the sphere’s surface. While the sizing field result refines around the
contacts, it severely over-refines right away (circled in red) and so fails to capture intricate interactions.
In comparison, our method adaptively updates while tracking both contact and internal forces and so
locally refines to capture the spikes pushing into the ball (see Figure 6.1 for a closer view of our results).

2013], or both, enabling the use of a snapshot of strains or stresses [Bargteil et al. 2007; Debunne

et al. 2001; Spillmann and Teschner 2008; Wicke et al. 2010]. Similar criteria have been proposed

for shells [Li and Volkov 2005; Narain et al. 2013, 2012; Simnett et al. 2009; Villard and Borouchaki

2005], where additional considerations for the complex in-plane and bending behaviors of thin

materials play an important role. Additionally, and interestingly, user-dependent geometric cri-

teria such as camera view [Koh et al. 2015] can be considered for refinement. These measures are

then primarily proxies for the variations in physical energy in the system, and for the quality of

the underlying discretization to represent it. They are, however, approximations based solely on

the current rest and deformed configurations at the current, fixed discretization.
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Contact. Contacts pose both significant challenges to, and high demand for, adaptive remesh-

ing. Contact forces generate large, yet localized, deformations in many simulation meshes and

regularly introduce highly singular strains on boundaries forwhich it is often desirable to improve

resolution. Geometric proximity criteria are often applied to help select regions for remeshing

on simulation mesh boundaries where two or more surfaces are geometrically close [Bender and

Deul 2013; Erhart et al. 2006; Simnett et al. 2009]. Proximity alone is often insufficient and so is

sometimes augmented by temporal continuity conditions of the detected collisions [Spillmann

and Teschner 2008], and even higher-order approximations that consider a contact region’s cur-

vature via contact tangents across mesh faces [Li et al. 2018a; Narain et al. 2013, 2012; Pfaff et al.

2014]. While often effective, these measures do not account for the actual contacting geome-

try, force balance between contacts and the elastic materials (e.g., considering whether materi-

als involved are equally stiff and so less likely to deform and require adaptation), contact force

magnitudes, nor the frictional forces involved. With purely geometric analysis these underly-

ing material and configurational aspects are unaccounted for and so opportunities for necessary

refinement and useful coarsening on the contact regions are missed – leading to significant over-

refinement or under-refinement in many cases; see Section 6.4.1 and Figures 6.2(b) and 6.5 for

examples and evaluation.

Elastic Energy. Rather than apply geometric proxies, a number of recent works focus on ap-

plying criteria that measure a model’s elastic energy as a criterion in assessing the effective-

ness of remeshing [Demkowicz 2006; Mitchell and McClain 2014]. Most closely related to our

approach Mosler and Ortiz [2007] propose elastic- and incremental-plastic energy decrease as

criteria for small remeshing problems in elastostatics and plasticity, but are limited to solely re-

finement operations, and do not address contact, friction, nor dynamics.
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6.2.2 Operations

Global. Global methods [Jiang et al. 2017; Klingner et al. 2006; Skouras et al. 2014; Stein et al.

2004], create a newmesh for every timestep. Often this is applied via an external meshing tool and

so gives the advantage of reducing the implementation effort that would otherwise be required

for tighter integration. However, in building a newmesh from scratch, opportunities for problem-

aware and ideally smaller updates are lost while such large global changes in the simulationmesh,

necessarily incur larger errors in mapping; see Section 6.2.3 below.

Local. Local methods applied in simulation [Li et al. 2018a; Narain et al. 2013, 2012; Spillmann

and Teschner 2008] utilize a sequence of local remeshing operations (splits, collapses, swaps/flips)

to modify the mesh according to the criteria applied (Section 6.2.1). While applied locally these

operations can still cause trouble by creating intersections that must be prevented [Brochu and

Bridson 2009] and inversions [Wicke et al. 2010], while also potentially injecting error by in-

troducing instabilities if not resolved carefully (Section 6.2.4). We apply local mesh operations

in concert with invariant checks and post-operation energy evaluations to guarantee effective

(error-decreasing) and safe (invariant-preserving) mesh adaptations.

Basis and r-Refinement. An alternative to explicit changes in the mesh is to adaptively re-

fine the basis, either via h-refinement within-element [Grinspun et al. 2002] or via p-refinement

[Mitchell and McClain 2014]. While adaptive, these methods are not designed to deal with large

deformations as they cannot change the shape of the elements (the mesh is fixed). Complemen-

tary adaptivity is also provided by r-adaptive or “moving-mesh” methods [Budd et al. 2009] which

update the nodal locations in the deforming model’s rest mesh but not the topology. While ef-

fective in capturing localized dynamics behavior [Zielonka et al. 2008], on its own r-adaptivity

is not suited for dynamic contact problems, which generally require concentrated refinement in

highly local and often rapidly changing regions.
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6.2.3 Mapping

Closest Point. An efficient approach to transfer vertex-based quantities between two meshes

in close spatial proximity is to transfer the attributes from a vertex/quadrature point of one mesh

to its closest neighbor on the other [Molinari and Ortiz 2002]. This approach introduces large

errors when the meshes have elements of different sizes, and usually requires post-stabilization

techniques (Section 6.2.4) to avoid simulation artifacts, especially in the presence of stiff materials

and contact.

Interpolation. A more accurate method with a bit larger computational overhead is to in-

terpolate via the finite element basis – when linear elements are applied, this is equivalent to

the barycentric coordinate interpolation commonly applied in graphics [Spillmann and Teschner

2008; Wicke et al. 2010]. Despite higher accuracy, significant errors still accumulate and post-

stabilization techniques remain necessary [Narain et al. 2013; Spillmann and Teschner 2008].

𝐿2 Projection. Given the above issues, a natural strategy is to compute a mapping that mini-

mizes error [Léger et al. 2014; Vavourakis et al. 2013]. The 𝐿2 projection finds the representation

of the function in the finite element space of the target mesh that is a least-squares fit of the

function in the finite element space of the source mesh [Léger et al. 2014], and so minimizes the

residual of the mapping. Considerably more expensive and challenging to implement than the

above alternatives, this projection is commonly applied in scientific computing and mechanical

engineering.

We advocate, to our knowledge, for the first time in the graphics community, the 𝐿2 projec-

tion for adaptive mesh refinement, as it is robust to both varying mesh densities and low-quality

elements. However, despite these important properties, the 𝐿2 projection, on its own, remains

insufficient for large-deformation dynamics as it can not ensure necessary invariants in elasto-

dynamics are preserved. In particular, the projection can create intersections and element inver-
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sions. In Section 6.3.5, we provide a brief overview of the 𝐿2 projection and then propose our

extension to obtain an invariant-preserving, error-minimizing mapping.

6.2.4 Solution Schedule

For elastodynamic simulation, a fundamental question is how to integrate remeshing and

mapping variables into each timestep’s solution of the physical model.

Interleaving. The standard strategy is to decouple timestepping from remeshing, generally

by interleaving timestep solve, remeshing, and mapping. This leaves the remeshing criteria to

the mercy of post hoc quantities, while after remeshing, the newly mapped variables are final-

ized as the updated state for the timestep [Narain et al. 2012; Wicke et al. 2010]. Except for local

remeshing operations that create nested spaces, the above-covered mappings (Section 6.2.3) all

necessarily introduce errors in the projected quantities – meaning the newly mapped solution is

inaccurate and inconsistent with the underlying mesh it is defined on and so introduces artifacts

including instabilities and jittering [Narain et al. 2013]. Moreover, the updated solution can in-

troduce intersections and inversions, generated by the prior mapping. Earlier works, recognizing

these issues, do apply geometric corrections for intersections [Narain et al. 2012] but, at the same

time, generally strive to minimize the overall number of remeshing operations to reduce total

error [Narain et al. 2012; Wicke et al. 2010].

Post-Stabilization. Post-stabilization methods, recognizing the instability and jittering intro-

duced by direct mapping of timestepped variables to the new mesh, introduce an additional step,

after mapping, to improve stability (although not accuracy). Narain et al. [2013], apply a non-

linear least-squares solve to perturb mapped positions to find a more stable configuration, while

Spillmann and Teschner [2008] apply a similar strategy with additional collision response phases

to also correct for intersections. These methods, with proper parameter tuning, can be effec-
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tive at removing visual artifacts, such as jittering, but they also introduce significant errors in

the physical model, as they can apply arbitrary perturbations to a solution that already contains

errors.

6.2.5 IPC and In-Timestep Remeshing

The above analysis leads us to the conclusion that for simulating elastodynamics, the remesh-

ing criteria, remeshing operations, and variable mappings, should all be tightly coupled, and

so integrated together within each timestep solve. The next question is how. Mosler and Or-

tiz’s [2007] work on simulating elastostatics using the elasticity potential is our starting point

for contacting elastodynamics. We begin by applying the recently proposed, IPC model [Li et al.

2023, 2020] which provides a convergent and smooth model for frictionally contacting solids. In

turn, because IPC contact forces are smooth and the IPC timestep update is variational, this al-

lows us to formulate, per timestep, a spatially smooth merit function as our meshing criteria.

This merit function includes elasticity, contact, and friction, and its decrease guarantees solution

improvement. We then carefully design our solver to refine, coarsen and safely 𝐿2-project, within

each timestep solve, to maintain consistent updates, while ensuring that the final output of each

timestep is an accurate, intersection-free, and inversion-free solution progressing the simulation

dynamics forward in time.

Hierarchical Methods. Hierarchical methods provide solver strategies, complementary to

AM methods, that can be applied to improve timestep solves. These methods (e.g., [Hormann

et al. 1998; Zhang et al. 2022]) apply a hierarchy of pre-determined resolutions to better compute

a solution for a final (pre-specified) and generally uniform, high-resolution target mesh.

In contrast, AMmethods (including ITR) locally adapt solution meshes to apply detailed reso-

lutionwhere it can be better used. In future work, it should be an interesting extension to consider

the application of hierarchical methods within ITR to obtain faster nonlinear solves. For this, the
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Figure 6.3: Masticator. A challenging 3D compression example, simulated without refinement (top) and
with (bottom) our algorithm, starting from the same initial mesh. The insets highlight how our method is
able to capture the sharp contact features and buckling under compression by increasing mesh resolution.
Without remeshing, these details are lost, resulting in a different deformation.

most closely related approach to ITR in the hierarchical literature, is the recent work of Zhang

et al. [2022] who build a hierarchical solver for IPC. They propose a Euclidean projection to

find non-intersecting geometries nearest to possibly-intersecting, Loop-subdivision-upsampled

targets, by applying barrier-enforced, CCD-filtering to the direct path from a “safe”, midpoint-

upsampled triangle mesh, to a target. Here we construct a complementary, error-minimizing,

L2-projection, for tetrahedral meshes, constructed by constrained quadratic energy minimiza-

tion, supplemented with CCD-filtered collision barriers, suitable for refinement and coarsening

operations.
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6.3 In-Timestep Remeshing

6.3.1 Spatially Continuous Setting

We consider the solution of simplicial simulation meshes (triangles in 2D, tetrahedra in 3D)

undergoing large-deformation elastodynamics with frictional contact. Before discretizing to a

spatial mesh, we first begin by discretizing in time: we construct the solution of each timestep’s

problem in semi-discrete optimization form,

𝑥𝑡+1 = argmin
𝑥

𝐸𝑡 (𝑥) (6.1)

with a spatially continuous Incremental Potential,

𝐸𝑡 (𝑥) =
∫
Ω

𝜌

2


𝑥 (𝑋 ) − 𝑥𝑡 (𝑋 )

2 d𝑉

+ 𝛼ℎ2
∫
Ω
Ψ

(
𝑥 (𝑋 )

)
− 𝑥 (𝑋 )⊤𝑓 (𝑋 ) d𝑉

+ 𝛼ℎ2
∫
𝜕Ω

𝐵
(
𝑥 (𝑋 )

)
+ 𝐷

(
𝑥 (𝑋 )

)
d𝐴. (6.2)

Here Ψ is a hyperelastic deformation-energy density (e.g. neo-Hookean), 𝑓 encodes the sum

of body forces and (when ranging over boundary regions) any applied reactions, and 𝐵 and 𝐷

are the spatially-continuous analogs of the IPC energies [Li et al. 2023] for, respectively, contact

barrier and friction pseudo-potential. In turn, the choice of predictor position, 𝑥𝑡 (an explicit

function of prior deformation, velocity, and possibly acceleration fields: 𝑥𝑡 , 𝑥𝑡−1, . . . , 𝑣𝑡 , 𝑣𝑡−1, . . . ,

𝑎𝑡 , 𝑎𝑡−1, . . .), scaling term 𝛼 ∈ R+, and an explicit update equation for velocity (and accelera-

tion as needed) from optimal solution 𝑥𝑡+1, jointly define the specific choice of numerical time-

integration method. Here, in the main text, for simplicity, we will keep in mind implicit Euler
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with

𝑥𝑡 = 𝑥𝑡 + ℎ𝑣𝑡 , 𝑣𝑡+1 = 1
ℎ
(𝑥𝑡+1 − 𝑥𝑡 ), 𝛼 = 1, (6.3)

while similarly, a wide range of additional time integration methods are directly covered1.

6.3.2 Solution Quality per Timestep

In this continuum form, the optimization timestep solve in Equation (6.2) highlights an im-

portant deciding feature: when we are allowed to range over the space of all valid deformations 𝑥 ,

a deformation giving the (locally) smaller value of 𝐸𝑡 is the better solution to the timestep. Look-

ing ahead to our next step of spatial discretization, this provides a simple, physics-focused metric

for ranking finite-element meshes in a solution space, that is custom-suited to each timestep. Of

course, a corollary is that this energy decrease is always “easily” obtained via uniform refinement

to finer and finer meshes but this also comes with the associated cost of more, and generally too

much, computation. Instead, here we focus on applying this metric to locally adapt our mesh in

regions of high value. To do so we focus our adaptivity on this actual, temporally local, measured

change in the timestep’s solution quality itself, rather than on intermediate proxies via mesh

qualities or physical properties.
1For example, other time-integration methods we applied are Implicit Newmark, with

𝛼 = 1/4, 𝑥𝑡 = 𝑥𝑡 + ℎ𝑣 + ℎ2/4𝑎𝑡 , 𝑣𝑡+1 = 2/ℎ
(
𝑥𝑡+1 − 𝑥𝑡

)
− 𝑣𝑡 , and

𝑎𝑡+1 = 2/ℎ
(
𝑣𝑡+1 − 𝑣𝑡

)
− 𝑎𝑡 ,

and second-order backward differentiation formula (BDF2), with

𝛼 = 4/9, 𝑥𝑡 = 1
3 (4𝑥

𝑡 − 𝑥𝑡−1) + 2ℎ
9 (4𝑣

𝑡 − 𝑣𝑡−1), 𝑎𝑡+1 = 4ℎ2

9 (𝑥
𝑡+1 − 𝑥𝑡 ), and

𝑣𝑡+1 = 1
3 (4𝑣

𝑡 − 𝑣𝑡−1) + 2ℎ
3 𝑎

𝑡+1.

Small changes by additional terms in the arguments of the energy functions extend the range of our application even
further to a yet wider range of numerical time integration methods without loss of generality [Li et al. 2023].
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6.3.3 Spatial Discretization

We apply piecewise-linear discretization of Equation (6.2) on meshes T with discrete fields

defined, per triangulation/tetrahedralization, at the 𝑛 vertices of the mesh in 3D (respectively 2D)

space and stored in vectors 𝑥, 𝑣, 𝑎 ∈ R3𝑛 (respectively R2𝑛).

Each of the spatially discrete energy terms in our incremental potential are now expressed

as weighted sums of energy functions over mesh element stencils, 𝑠 (tetrahedral, triangle, edge,

point or pairings thereof depending on energy and dimension) in T ,

∑︁
𝑠∈T

𝑤𝑠𝑊𝑠 (𝑥) ,

where𝑤𝑠 > 0 is the volume, area or length-weighted scaling of the rest shape element 𝑠 , and𝑊𝑠

is the respective energy density function of each potential restricted to this element’s stencil.

For a fixed mesh T , the timestep solution is then a local minimizer of a fully discrete Incre-

mental Potential, per timestep

𝐸𝑡 (𝑥,T) =𝐸 (𝑥,T , 𝑥𝑡 )

=
1
2
(𝑥 − 𝑥𝑡 )⊤𝑀T (𝑥 − 𝑥𝑡 )

+ 𝛼ℎ2 (ΨT (𝑥) + 𝐵T (𝑥) + 𝐷T (𝑥) − 𝑥⊤𝑓 𝑡 ), (6.4)

where𝑀T is the mesh’s consistent mass matrix, and ΨT, 𝐵T, and 𝐷T are the total resultant energy

potentials generated, respectively, by the aforementioned discretizations of the corresponding

deformation, contact barrier, and friction energies on T [Li et al. 2023].
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6.3.4 Timestepping Framework and Invariants

We advance our simulation domain through time using an incrementally updating triangula-

tion of the domain, T (𝑡), with deformations 𝑥 (𝑡), velocities 𝑣 (𝑡), and rest positions, 𝑥 (𝑡) defined

at T (𝑡)’s vertices. Input for the solve of each timestep optimization is then: 𝑥𝑡 , 𝑥𝑡 , 𝑣𝑡 , and cur-

rent applied forces (body and external), 𝑓 𝑡 , defined on mesh T 𝑡 with the deformed mesh (𝑥𝑡 ,T 𝑡 )

giving a penetration- and inversion-free configuration.

In turn output for each of our timestep solves is then a new mesh T 𝑡+1 and updated fields,

𝑥𝑡+1, 𝑥𝑡+1, 𝑣𝑡+1 that maintain the invariants of non-intersection and non-inversion at end state,

while accurately satisfying the numerical time-integration model by minimizing the incremental

potential with


∇𝑥𝐸𝑡 (𝑥,T 𝑡+1)



 ≤ 𝜖𝑑 .

At the same time, as we cover in detail below, to better resolve dynamics, each of our timestep

solves also incrementally updates the simulation mesh T , as a “configurational” degree of free-

domwith mesh-refinement to lower the total value of the incremental potential solution in Equa-

tion (6.2) measured by

𝑚𝑡 (T ) = min
𝑥

𝐸𝑡 (𝑥,T), (6.5)

and similarly coarsening where this does not significantly increase this same value.

Maintaining Invariants. We apply Newton iterations to minimize 𝐸𝑡 (𝑥,T) when holding

the mesh fixed. Preserving invariants for these steps we follow the IPC method’s filtered line-

search step [Li et al. 2020] which applies CCD and inversion-checking to descent steps. This

ensures that all applied displacements for position updates to 𝑥 ensure both safety and energy

decrease towards convergence. In our setting with remeshing, this is not enough – all operations

during each timestep computation, including remeshing, must maintain non-intersection and

non-inversion at every update.
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6.3.5 Safe Projections Between Spaces

Each remeshing operation, 𝑖 , applied during a timestep solve changes the mesh, T 𝑖 → T 𝑖+1.

This means that all quantities, (𝑥𝑡 , 𝑣𝑡 , 𝑓 𝑡 , 𝑥, . . .) defined in the prior mesh must, of course, be

mapped, or projected, to the new one.

When simulating dynamics these quantities are generally transferred in-between timestep

solves (see Section 6.2.3); that is given 𝑥, 𝑥𝑡 , 𝑣𝑡 , and T 1 we would first solve for a new timestep

solution, 𝑥𝑡+1, 𝑣𝑡+1, then update the mesh to a new one T 2. Then, only after remeshing, 𝑥𝑡+1, 𝑣𝑡+1,

are projected to the new mesh. Unfortunately, this staggered process means that

𝑥𝑡+1 ≠ argmin
𝑥

𝐸𝑡 (𝑥,T 2)

and so is not a solution to the timestep problem on the current mesh. This inconsistency between

solution space and deformation then commonly generates instabilities and jittering artifacts, es-

pecially when dealing with stiffer materials and collisions (see e.g., Narain et al. [2013] and their

supplemental video).

Another fundamental challenge for remapping variables is the actual definition of the projec-

tion operator itself. As alluded to above, changing the mesh also changes the underlying function

space of the model. This is why inconsistencies from staggering the timestep solves and projec-

tions can generate such significant errors when timestepping.

A cheap, popular, and perhaps simplest projection strategy is closest-point sampling where

we assign new nodal values from the closest node in the prior mesh. While tempting, this “pro-

jection” introduces large artifacts and instabilities when elements’ sizes differ [Vavourakis et al.

2013], e.g., under refinement, where many new nodes’ values are often assigned from the same

source node in the prior mesh. A popular alternative is to apply interpolation from the finite-

element basis – barycentric interpolation in our linear-element setting. This generally gives bet-

ter results than closest-point sampling, but still introduces large projection errors, again leading
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to artifacts [Léger et al. 2014; Vavourakis et al. 2013; Wicke et al. 2010].

We instead begin with the 𝐿2 projection that minimizes the two-norm error residual when

we map from starting to target finite-element space [Léger et al. 2014]. Consider again updating

from T 1 with function space 𝑉 1 and basis {𝜑1
𝑖 | 1 ≤ 𝑖 ≤ 𝑛} to T 2 with corresponding function

space 𝑉 2 and basis {𝜑2
𝑖 | 1 ≤ 𝑖 ≤ 𝑚}. We now define a least-squares projection operator

P : 𝑉 1 → 𝑉 2, (6.6)

so that for functions 𝑓 1 ∈ 𝑉 1 their projection 𝑓 2 = P(𝑓 1) ∈ 𝑉 2 minimizes the 𝐿2 residual
1
2



𝑓 1 − 𝑓 2


2. Optimality conditions minimizing this residual [Léger et al. 2014] give the pro-

jection of a quantity 𝑢, defined on the vertices of T 1 (e.g., the coefficient vector of 𝑓 1), to the

vertices of T 2 as

𝑀−1
T2 𝐴

T1

T2𝑢, (6.7)

where 𝑀T2 ∈ R𝑚×𝑚 is the density-normalized mass matrix on T 2 and 𝐴T
1

T2 ∈ R𝑚×𝑛 is a transfer

matrix between bases so that 𝑎𝑖 𝑗 =
∫
Ω
𝜑2
𝑖𝜑

1
𝑗 𝑑𝑉 . The two bases are then defined on two different

meshes and so we use arrangement via PolyClipper [Powell 2021] to compute the quadrature

points necessary for the integral [Krause and Zulian 2016].

Although not, to our knowledge, previously applied in graphics, this 𝐿2-projection has long

been appreciated in mechanics applications for its better preservation of quantities [Léger et al.

2014] due to minimized error. However, while well-projecting unconstrained quantities the 𝐿2

projection (and all others) are oblivious to our invariants. Projections can and will create both

element inversions and intersections, meaning we can not apply the 𝐿2 projection operator as-is.

To make the 𝐿2 projection safe we return to the variational picture and now rebuild a con-

strained least-squares residual minimization, subject to non-intersection and non-inversion con-
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straints, that safely projects quantities from an old mesh T old to a new one, T ,

𝑃T (𝑢) = argmin
𝑣

1
2𝑣
⊤𝑀T𝑣 − 𝑣⊤𝐴Told

T 𝑢 + 𝐵T (𝑥) + 𝐼T (𝑥). (6.8)

The first two terms form the least squares condition, 𝐵T is our discretized IPC contact barrier

defined on the new mesh, and 𝐼T discretizes a new barrier we propose to enforce non-inversion

during projection without biasing the solution with elastic material behavior,

𝐼T (𝑥) =
∑︁
𝑡∈T

𝑤𝑡𝑐𝑡 (𝑥, 𝑣), (6.9)

where, the function 𝑐𝑡 returns a log barrier on the volumes 𝑣𝑡 (𝑥) of tetrahedra 𝑡 , that is smoothly

activated when volume falls below 𝑣 ,

𝑐𝑡 (𝑥, 𝑣) =


−𝜅𝑣

(
𝑣𝑡 (𝑥)
𝑣
− 1

)2
ln

(
𝑣𝑡 (𝑥)
𝑣

)
, 0 < 𝑣𝑡 (𝑥) < 𝑣

0 𝑣𝑡 (𝑥) ≥ 𝑣 .

(6.10)

We use 𝑣 = 10−12 m3 and 𝜅𝑣 = 0.1𝐸 (same as contact barrier stiffness) throughout where 𝐸 is the

material’s Young’s modulus. To apply each constrained projection we first safely initialize our

displacement variables on the newmesh via linear interpolation and then directly reuse our same

line-search-filtered Newton method to solve Equation (6.8) and so minimize the 𝐿2-residual while

ensuring safe new variables on the updated mesh.

For all of our ITR phases, detailed in the next two sections, all prior timestep quantities (·𝑡 )

must be projected to ensure consistency. However, in our setting, we are able to take advantage

of a simple optimization: during refinement (only), barycentric interpolation is equivalent to our

𝐿2 projection and so can be safely and cheaply applied rather than Equation (6.8) for all our edge-

split operations.

194



OursUR 1
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Figure 6.4: Gorilla rollers. a very soft gorilla model (� = 2× 104 Pa) is dropped on a pair of stiff rotating
elastic rollers (� = 2 × 108 Pa) with softer spikes (� = 2 × 107 Pa). As the gorilla impacts the spikes, the
mesh is refined to account both for the large elastic forces in thin features and for the rapidly changing
contact forces. Our method adapts to the different material stiffness, by refining the softer gorilla in the
necessary regions of contact, much less for the stiffer spikes, and leaves the even stiffer roller unadapted.
The dynamics for the single-level uniformly-refined (UR) solution (UR 1) is comparable up to � = 2 s where
the spike is (unlike the adapted mesh solution) is unable to push into the gorilla’s left shoulder.

6.3.6 Remeshing with Local Operations

Changing the geometry (i.e., vertex rest-positions in our setting) of a mesh is attractive for

mesh adaptation as it leads to continuous changes in the underlying finite element space, and

so is amenable to gradient-based optimization of functionals depending on them. However, such

r-adaptive-type updates are insufficient to capture the large, often transient, and highly localized

deformations we capture in accurate elastodynamic modeling. Instead, we often require increas-

ing (and decreasing) the number of DOF and so the number of vertices in ourmeshes. However, in

changing the connectivity of a mesh we obtain discontinuous changes in our finite-element space.

In turn, this will drive nonsmooth changes in our meshing criteria functional in Equation (6.2)

and so here we will apply a discrete optimization strategy.

We consider two types of operations that are applicable to both triangle and tetrahedral

meshes: 1) an edge split, which splits every triangle/tetrahedra touching an edge into two while

inserting a vertex, and 2) its inverse, an edge collapse. These operations are discrete in nature,
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but depend on both discrete and continuous parameters: a split operation is applied to a dis-

crete edge, but the position of the newly inserted vertex is controlled by two or three continuous

coordinates.

Due to the discrete nature of the problem, it is not practical to seek an optimal sequence

of operations minimizing Equation (6.5) (presuming a fixed sequence length or a targeted given

tolerance). We instead apply a greedy block-coordinate descent strategy: we test a set of potential

operations and pick those that provide maximal local improvement in the energy for the inserted

DOF. We first discuss how we evaluate the effect of a single operation, and then how to greedily

select a sequence of operations reducing Equation (6.5).

Effect of an individual operation. To evaluate the effect of an operation on Equation (6.5) a

naive approach would be to perform the mesh modification, project quantities (Section 6.2.3), en-

sure that the invariants are still valid, and minimize Equation (6.5) globally. However, this is com-

putationally prohibitive: inspired by approaches used for a posteriori error estimators [Mitchell

1991; Schmidt and Siebert 2000], we perform local solves in the neighborhood of the mesh mod-

ification. This enables a sound approximation of each operation’s impact, under the assumption

that this effect decays as we move from the operation’s stencil. By changing the neighborhood’s

size, we trade accuracy of our estimator with computational cost.

Scheduling. While we can not tractably obtain globally optimal sequences for meshes, we

could potentially find locally optimal solutions by always continually selecting splits that satisfy

a sufficient amount of energy decrease (i.e., a minimal necessary reduction) of our energy until no

more remain. However, as we scale to larger (and 3D) meshes, this approach is no longer practical

either. Detailed below we thus introduce a culling method that preemptively discards candidate

split operations that are not likely to lead to large energy reductions (and correspondingly dis-

cards candidate edge collapses that are likely to lead to energy increases). We do this by filtering

based on the elastic and contact energies per mesh element, with greater local energy concen-
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tration indicating a higher likelihood (although not guaranteed) of energy reduction benefit by

splitting. Note that our filtering heuristic is applied solely to cull likely ineffective operations –

our criteria for acceptance remains unchanged by it. We detail our filtering method in the next

section.

Implementation. Implementing this discrete optimization algorithm is challenging, especially

for tetrahedral meshes, as we need a mechanism to preview each connectivity change, extract

its patch, and minimize Equation (6.5). If the operation is invalid, or else does not satisfy our

criteria, changes to the connectivity and to its associated fields defined on our mesh need to be

rolled back. This is significantly challenging to implement via low-level libraries, e.g., CGAL,

libigl, or OpenMesh. We opt to implement our remeshing with declarative specification in Jiang

et al. [2022], which allows us to explicitly work on the mesh before and after the operation, and

directly supports invariant checks and rollbacks.

6.3.7 In-Timestep Remeshing Algorithm

We provide a high-level overview of our method in Algorithm 6.1.

Initial Timestep Solution. Give a current solution state 𝑥𝑡 , 𝑣𝑡 from the last timestep solve2 at

time 𝑡 , our ITR first computes a new predictor timestep solution 𝑥′ by minimizing Equation (6.4)

on the current mesh T 𝑡 (Line 3).

Refinement. Using the new solution 𝑥′, we sort every edge 𝑒𝑖 according to its elastic energy

ΨT𝑡 (𝑒𝑖) (area-weighting all adjacent cells) to form list 𝐸Ψ, and create list 𝐸𝐵 by sorting 𝑒𝑖 according

to its contact energy 𝐵T𝑡 (𝑒𝑖) (averaged over two adjacent faces in 3D) (Line 6). We then select
2For clarity in pseudocode and discussion we do not track the update of 𝑎𝑡 , 𝑎𝑡+1 nor 𝑥𝑡−1 here. Treatment for ac-

celeration terms, when time-integration methods are applied that use them, follow identically to 𝑣𝑡 , 𝑣𝑡+1 throughout,
similarly treatment of 𝑥𝑡−1 follows identically to 𝑥𝑡 .
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Algorithm 6.1 Overview of our in-timestep remeshing algorithm (Part 1 of 2).
1: procedure InTimestepRemeshing(𝑥𝑡 , 𝑣𝑡 ,T 𝑡 )
2: // Initial Timestep
3: 𝑥′← argmin𝑥 𝐸𝑡 (𝑥,T𝑡 )
4:
5: // Refinement
6: 𝐸Ψ ← Sort({ΨT𝑡 (𝑒𝑖)}), 𝐸𝐵 ← Sort({𝐵T𝑡 (𝑒𝑖)})
7: 𝑆 ← 𝐸Ψ > 𝜖𝑆 ∪ 𝐸𝐵 > 𝜖𝑆 ,
8: T ′𝑡 , 𝑥′𝑡+1, 𝑥′𝑡 , 𝑣′𝑡 ← Split(𝑆,T 𝑡 , 𝑥

′, 𝑥𝑡 , 𝑣𝑡 )
9: 𝑥𝑡 , 𝑣𝑡 ← 𝑥′𝑡 , 𝑣

′
𝑡

10:
11: // Coarsening
12: 𝐶 ← 𝐸Ψ < 𝜖𝐶 ∩ 𝐸𝐵 < 𝜖𝐶 ,
13: T 𝑡+1, 𝑥′𝑡+1, 𝑥

′
𝑡 , 𝑣
′
𝑡 ← Collapse(𝐶,T ′𝑡 , 𝑥′𝑡+1, 𝑥′𝑡 , 𝑣′𝑡 )

14: 𝑥𝑡 , 𝑣𝑡 ← SafeProject(T𝑡 ,T𝑡+1, 𝑥𝑡 , 𝑣𝑡 )
15:
16: // Global Solve
17: 𝑥𝑡+1 ← argmin𝑥 𝐸𝑡 (𝑥,T𝑡+1)
18: return T 𝑡+1, 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡

the top 𝜖𝑆% of both lists to form the filtered set 𝑆 of edges as candidates for splitting operations

(Line 7).

We then proceed to the Split procedure (Line 8). The Split procedure takes the set of candidate

operations 𝑆 , and for each operation performs the split (Line 23), obtaining a new mesh T ′𝑡 ,

updates the variable on the mesh by linear interpolation along the split edge3 (Line 24), which

for each split is equivalent to a zero-error 𝐿2 projection, and then performs a small local solve

(Line 25). See the next section below for details on the Local Solve. The split operation is accepted

if we obtain sufficient decrease, 𝛿𝐸 = 𝐸𝑡+1(𝑥𝑖,T𝑖) − 𝐸𝑡+1(𝑥𝑝,T𝑝) > 𝛿𝑠 , and the newly created edges

are applied to update the queue (Line 29). Otherwise, if the operation is rejected for providing

insufficient improvement, we undo the split.

Local Solve. Local solves applied in both the Split procedure above and the Collapse procedure

below follow the same procedure. A timestep re-solve is performed in a local patch byminimizing
3In practice, we use a simple averaging of endpoint values.
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Algorithm 6.2 Overview of our in-timestep remeshing algorithm (Part 2 of 2).
19: procedure Split(𝑆,T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡 )
20: 𝑄 ←BuildPriority(𝑆)
21: while 𝑄 ≠ ∅ do
22: 𝑒 ← Pop(𝑄)
23: T ′← SplitEdge(𝑒,T )
24: 𝑥′𝑡+1, 𝑥

′
𝑡 , 𝑣
′
𝑡 ← Interpolate(𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡 ,T ,T ′)

25: 𝑥′𝑡+1 ← LocalSolve(𝑥′𝑡+1,T ′)
26: if 𝐸𝑡 (𝑥𝑡+1,T) − 𝐸𝑡 (𝑥′𝑡+1,T ′) > 𝛿𝑠 then
27: T ← T ′
28: 𝑥𝑡+1 ← 𝑥′𝑡+1, 𝑥𝑡 ← 𝑥′𝑡 , 𝑣𝑡 ← 𝑣′𝑡
29: 𝑄 ← UpdateQueue(𝑄,T )
30: return T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡
31:
32: procedure Collapse(𝐶,T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡 )
33: 𝑄 ←BuildPriority(𝐶)
34: while 𝑄 ≠ ∅ do
35: 𝑒 ← Pop(𝑄)
36: T ′← CollapseEdge(𝑒,T )
37: 𝑥′𝑡+1, 𝑥

′
𝑡 , 𝑣
′
𝑡 ← Interpolate(𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡 ,T ,T ′)

38: if InvariantCheck(𝑥′𝑡 , 𝑥′𝑡+1,T ′) then
39: 𝑥′𝑡+1 ← LocalSolve(𝑥′𝑡+1,T ′)
40: if 𝐸𝑡 (𝑥𝑡+1,T) − 𝐸𝑡 (𝑥′𝑡+1,T ′) > 𝛿𝑐 then
41: T ← T ′
42: 𝑥𝑡+1 ← 𝑥′𝑡+1, 𝑥𝑡 ← 𝑥′𝑡 , 𝑣𝑡 ← 𝑣′𝑡
43: 𝑄 ← UpdateQueue(𝑄,T 𝑡 )
44: return T , 𝑥𝑡+1, 𝑥𝑡 , 𝑣𝑡

Equation (6.4) on the currentmesh, but now fixing all nodes in the system except for DOF in a local

patch with a size that is the maximum between the 2-ring of the edge and 1% of the domain’s

volume, and using 𝑥′ as a safe and “near-to-solution” warm start. A first 𝑖 iterations are run

(𝑖 = 4 for contacting patches and 1 otherwise) and then checked to see if it reaches respectively,

sufficient decrease for a split (see above) or small (by |𝛿𝑐 |) acceptable increase for a collapse (see

below). If the remeshing criteria is not reached the operation is abandoned (as covered) as the

Newton decrement shows no progress. Otherwise, if the criteria are met and we will be accepting

the operation we continue the local-patch solve to convergence (same termination tolerance as
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the global solve) ensuring that downstream operations (and the final solve) all start from well-

resolved regions.

Coarsening. Next, we then select the bottom 𝜖𝐶% from 𝐸Ψ and 𝐸𝐵 to form the set𝐶 of candidate

edges for potential collapse operations (Line 12) and attempt to collapse them (Line 13).

As in Split, theCollapse procedure takes a set of candidate operations𝐶 , and for each operation

performs the collapse (Line 36), obtaining a new mesh T ′𝑡 . However, differently from Split, the

collapse operation does not create a nested space, and so interpolation will introduce mapping-

errors. In turn, these errors can occasionally break our invariants. To avoid this problem, we

locally perform an interpolation, and then explicitly check if the invariants are violated (Line 38).

If they are violated, we reject the operation, otherwise we proceed similarly to check that the

Split operation does not increase system energy by more than a small, prescribed tolerance via a

𝛿𝑐 ≤ 0 and otherwise follow as in the Collapse procedure.

As in the interpolation applied in our Split operations, we interpolate the endpoints of the

collapsed edge to determine each new vertex’s attributes. We collapse boundary edges if and only

if neighboring faces are coplanar in order to preserve the mesh’s rest shape. For the same reason,

when an edge has a single vertex on the boundary, we collapse it to the boundary endpoint. For

all other edges, we average the endpoints.

After all collapse operations are complete, unlike after splits, we now require a 𝐿2-projection

of prior displacements and velocities on T 𝑡+1 by means of the safe 𝐿2 projection (Line 14) de-

scribed in Section 6.3.5, using our interpolated quantities as safe initialization.

Global Solve. Finally, warm-starting with the latest solution estimate 𝑥′𝑡+1, we perform a final

re-solve of Equation (6.4) on the full domain using the finalized newmesh T 𝑡+1 and then explicitly

update velocity to 𝑣𝑡+1. As we have been incrementally updating (effectively relaxing) the solution

throughout this process this final solve is efficient (the number of iterations for convergence is

low) as the majority of the effort has been performed in both the initial and intermediary solves
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during remeshing.

6.4 Evaluation

Our algorithm is implemented in C++, using Eigen [Guennebaud et al. 2010b] for basic linear-

algebra, PolyFEM [Schneider et al. 2019b] for FE system construction, IPC Toolkit [Ferguson et al.

2020] for evaluating IPC potentials and collision detection,Wildmeshing-toolkit [Jiang et al. 2022]

for mesh data structures and editing, Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020] for

the large linear systems in our global Newton solves, and Eigen’s dense Cholesky decomposition

(𝐿𝐿⊤) for the small linear systems in our local Newton solves. All experiments are run on a cluster

node with an Intel Cascade Lake Platinum 8268 processor limited to 16 threads. Our reference

implementation, used to generate all results, will be released as an open-source project. Please

see our supplemental video for result animations and Table 6.3 for parameters used.

6.4.1 Comparisons

To our knowledge, our ITR algorithm is the only AMmethod that can ensure the preservation

of IPC invariants and so can be combined with the IPC contact model. This is because mappings

and contact failsafes applied in previous works can and will fail with intersections and down-

stream failures in challenging contacting scenarios like those we test here (Section 6.2). In order

to compare with prior methods on these challenging scenarios we focus on comparing mesh-

ing criteria in a comparable side-by-side setting allowing all methods to utilize within-timestep

simulation and IPC solves.

To robustly process contacts and implicitly solve dynamics with IPC we replace our physics-

awaremeshing criteria within ITRwithWicke et al.’s [2010] sizing field, based on the deformation

gradient [Wicke et al. 2010, Equation (7)], for internal deformation criteria, and on the most

recent, state-of-the-art contact sizing criteria proposed by Li et al. [2018a]. We compare our
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No Remeshing Sizing Field Ours

Figure 6.5: 2D Masticator. Simulation of the deformation of a 2D bar deformed by a set of squares.
the same mesh is used for the simulation without remeshing (left column), remeshed using a sizing field
based on [Li et al. 2018a; Narain et al. 2012; Wicke et al. 2010] within our in-timestep framework (middle
column), and with ITR (Ours, right column). ITR produces a more detailed simulation compared to the
run without remeshing, adding DOF to accurately capture the sharp contact with the cubes and the large
deformation of the bar. The method based on the sizing field overrefines the contact regions (and does
not refine elsewhere) and leads to a different “snagged” final configuration.

energy-based acceptance criteria with this sizing field4. To do so we replace our criteria in our

implementation with the above sizing field and accept edge-split and edge-collapses following

the scheduling of Narain et al. [2012] (same as Li et al. [2018a]).

We instrument two side-by-side comparison examples: one in 2D (Masticator) and the other

in 3D (Ball-on-Spikes). Initially, we observe that the contact-based sizing field leads to runaway

endless refinement on contacting surfaces – rapidly leading to intractable simulations. On closer

inspection, we see that division by contact distance in the denominator of Li et al.’s [2018a]

sizing tensors is the source: here accurate IPC contact-processing allows for exceedingly close
4Note that we do not apply the additional deformation sizing field criteria from [Li et al. 2018a; Narain et al.

2012] as those are customized for shell models – for this, we take our deformation sizing component instead from
the volumetric work of Wicke et al. [2010].
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compliance between surfaces. To enable the contact sizing field strategy to progress we add a

limit to the method restricting edge lengths to 0.01.

For our 2D example, we see in Figure 6.5 that both our algorithm and the sizing field method

improve on the simulation of the original unrefined mesh (left column). However, the sizing field

greedily refines in contact regions with large numbers of unnecessary faces that can significantly

slow simulation and lead to overly compliant surfaces locally, that “snag” on boundaries. Please

see our supplemental video for detailed trajectories of all three simulations.

Similar results bear out for our 3D test in Figure 6.2(b). Here we again see that our remeshing

criterion automatically adapts to both the contact geometries, the relative material stiffnesses of

the domains, and the force balance between the coiled spikes and the dropped ball – leading to

the resolution and local mesh adaptation necessary to capture all these details. In contrast, we

again see that the sizing field rapidly over-refines for the first initial contacts, leading to highly

meshed, but minor, side indentations for the first initial collisions with the spikes, but entirely

misses the later spike protrusions and compressed coiling as it does not account for the physical

solution and relative forces (compare with Figure 6.1). Please also see our supplemental video for

more details and a comparison with the simulation of the unrefined starting mesh.

6.4.2 Results

Sharp Contact. In Figure 6.3, we reproduce the Masticator example of Wicke et al. [2010]

with a large timestep (ℎ = 0.05 s) to stress-test a deformable bar compressed by a set of rigid

boxes. Our algorithm quickly captures the sharp contact interfaces upon collision, followed by

more refinement to allow compliance along the block, curvature on top, and initially symmetric

bulging of the bar out-of-plane, followed by the start of buckling. In contrast, without refinement,

the simulated bar’s initial mesh does not have sufficient DOF to capture contact and compliance

– these behaviors are missed and instead we obtain a jagged and twisted deformation.
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Figure 6.6: Bar-twist. Starting from the same coarse geometry (shown in grey) the resulting deformed
mesh is very different without (top) and with (middle) ITR. Our algorithm adaptively adds (and removes)
DOF in the mesh to better resolve elastodynamics. As our adaptive simulation progresses we move from
regular twisting to buckling. Bottom inset: during buckling our physics-aware remeshing allows the face
to collapse (see the center red face) and fold in on itself with tightly resolved contact.

Large Deformation with Self-Contact. In Figure 6.6, a stiff bar (� = 107 Pa) is anchored

on both sides and twisted by rotating its top. In the close-ups we see how prior to contact our

algorithm progressively refines the tetrahedral domain as more winding introduces greater cur-

vature and more stress. As winding continues, the simulation adapts to provide even twisting

along bar faces and edges until buckling. Upon buckling, we observe in the zoom-in of Figure 6.6

how our simulation of the bar adapts the mesh to capture the collapse, fold-in, and exceedingly

tight frictional contact of its faces (e.g., the middle red face). In contrast, simulating directly (un-

refined) with the initial bar misses these details and leads to large deformation errors even before
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the onset of buckling.

Complex geometry and material-awareness. Varying surface complexity and material stiff-

ness across domains are likewise simultaneously resolved by our algorithm. Here a stiff roller is

scripted to rotate, with slightly softer spikes and much softer dropped gorilla geometry in Fig-

ure 6.4. On contact, we see the gorilla geometry increasingly refines around the impact site with

the bar (which refines less due to a stiffer reaction) and then coarsens as it rebounds.

High-Speed Impact. While above we stress-test ITR with a number of large timestep examples,

for many phenomena we may wish to capture detailed deformation occurring at much finer time

scales. In Figure 6.8, we model the high-speed impact test from Li et al. [2020] with ITR. A soft

(𝐸 = 106 Pa) ball is fired at a wall obstacle with high velocity (𝑣0 = 67 m/s) with a timestep of

ℎ = 2 × 10−5 s. Here ITR begins with a much coarser (17× fewer tetrahedra) initial mesh. Then,

on impact, ITR automatically begins refining the mesh to capture both the rapidly changing con-

tact interface on the surface and the internal propagation of shock waves across the material. It

then coarsens the mesh as the shockwave passes through, with light, secondary refinement and

coarsening applications capturing the subsequent oscillations in free-flight. Please see our sup-

plemental video for the resulting dynamics of the simulation and the changing mesh supporting

it.

DynamicWave Propagation. Inmany cases, emergent behavior in a system’s dynamics would

best define a suitable mesh choice – but this is hard to predict without a higher-resolution simula-

tion result to guide us in the first place. In Figure 6.7, we fix the left side of a coarsely triangulated

beam and then drive its other end with periodic vertical oscillations. Appropriately modeled, this

driven system should lead to a steady state of attenuating waves damping as they traverse the bar

from right to left. Over multiple timesteps, we see that ITR progressively adapts the simulation

mesh with increasing corresponding resolution left to right and local adaptations in appropriate
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Figure 6.7: Elasticwave. Simulation of a driven periodicwavemotion. Starting from a coarse rectangular
mesh (top), ITR progressively adapts the simulation mesh with increasing corresponding resolution from
left to right and local adaptations in appropriate regions to capture the steady wave dynamics (bottom).

regions to smoothly capture the steady wave dynamics.

Energy Effectiveness of Remeshing. We instrument the above ball-impact example to study

the effectiveness of our ITR (Figure 6.9). Across the entire simulation, we compute the energy

decrease per timestep of the total incremental potential energy obtained by remeshing from the

beginning of the timestep solve (prior to our algorithm initializing the remeshing operation: Al-

gorithm 6.1 Line 3) to the final solution output (Algorithm 6.1 Line 17) on the timestep’s adapted

mesh: Δ� = � (��+1,T �+1) − � (�′,T � ). In Figure 6.9 we see that as we refine the mesh (noticeably

just around the first contact, marker (a)) our method dramatically improves the energy, while

during coarsening (e.g., after complete separation in (d)) the energy does not increase, despite

the removal of DOF. Looking more closely at the trends we also see proportionately more energy

decrease when more refinement operations are performed demonstrating the effectiveness of our

criteria’s selection and timing of operations.
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Figure 6.8: Impacting ball. We replicate the high-speed impact test from [Li et al. 2020] where a soft
(� = 106 Pa) ball is fired at a static wall with a high velocity (�0 = 67 m/s). Beginning with a much coarser
initial mesh, ITR’s adaptive remeshing determines that refinement only begins during initial collision
(left column). As the ball bounces away from the wall, ITR then begins removing DOF, which were earlier
added to capture the contact dynamics and are now unnecessary. The bottom row shows the velocity
magnitude throughout this process.

Stability. As covered in Section 6.2, a fundamental challenge in AM methods for dynamics,

especially during coarsening, is stability. Each ITR timestep solve in all the above examples is

solved to convergence on the timestep’s final output mesh with the prior state safely L2-projected

to it. We observe that qualitatively (see our supplemental video), all the trajectories generated by

ITR remain stable, and so free of jittering and instability artifacts, e.g. as demonstrated in prior

methods by Narain et al. [2013].
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Figure 6.9: For each timestep of the impacting ball simulation (Figure 6.8), we plot the number of splits
(green bars), the number of collapses (orange bars), and the change in energy (blue line) from the initial
solve of the timestep (prior to remeshing operations) via minimization of � to the final solution of the
timestep on the final updated mesh. Key times in the simulation are indicated by virtual lines: (a) first
contact, (b) maximal compression, (c) rebound of the material as peels away, and (d) complete separation.
The plot shows significant improvements (decrease) in the energy as we apply splitting operations, and at
the same time, the coarsening operations do not negatively affect the energy, while increasing efficiency.

6.4.3 Performance and Resolution

For non-adapted (fixed mesh) timestep solves of IPC there are three primary sources of com-

putational cost per Newton iterate: (1) evaluation of the energy potential gradients and Hessians,

and their assembly to a global linear system, (2) the linear solve of each such system to compute a

descent direction, and (3) line search along this direction. Both (1) and (3) involve the evaluation

of potential-energy stencils and collision detection. As such, they generally dominate costs only

for exceedingly small systems since, with modern acceleration strategies and easy parallelization,

they generally scale close to linear in the number of elements. On the other hand, the large, ill-

scaled, sparse linear system solves per Newton iteration in (2) dominate the costs for all practical

examples as they require direct solvers [Li et al. 2020] with poor parallel scaling of a memory
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bound problem [Lipton et al. 1979].

By adapting the mesh ITR significantly lowers DOF count for high-quality simulation output

(see Table 6.1) and so reduces the size of the largest (super-linear cost) solver bottleneck: linear

system sizes. At the same time, ITR introduces a new potentially large (albeit linear and currently

unoptimized) overhead cost per timestep to evaluate the suitability of each mesh-adaptation pro-

posal.

To evaluate the current runtime performance of ITRwith respect to these computational costs,

we compare ITR with successive uniform refinements [Ong 1994] (splitting along the first diago-

nal) in two inter-related analyses. In the first, we measure thewall-clock time used by each imple-

mentation, including current (unoptimized) costs for ITR’s remeshing overhead. Here we report

both running time and memory consumption, noting that there is only one value for memory as

linear solves are the bottleneck for memory usage. In the second, we consider an ideal analysis;

we keep in mind that linear solver technology is an advanced, exceptionally well-studied domain

with little expectation of significant improvement, while costs for ITR mesh adaptivity are cur-

rently linear and not yet addressed in our ITR implementation with significant optimization nor

even low-hanging opportunities for parallelization. For the latter, we focus on the DOF difference

(for comparable quality output) and the corresponding difference in global system linear solve

times for the IPC timestep solver.

Statistics for these comparisons are reported in Tables 6.1 and 6.2. We begin by visually iden-

tifying, per benchmark example, the artifact-free baseline UR simulation with qualitatively com-

parable results to our ITR simulation. As a concrete example, consider the ball on-spike scene,

where we observe that simulations with both one and two levels of refinement exhibit signifi-

cant snagging and severe element distortion; please see Figure 6.10 for examples. On the other

hand, for the gorilla roller scene, two-levels of uniform refinement are sufficient to remove most

artifacts and obtain qualitatively similar deformation and contact compliance to our ITR result,

please see Figure 6.11.
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Table 6.1: In-Timestep Remeshing performance comparison. The average running time per
timestep, peak memory, and the number of DOF for an unrefined mesh (UR 0), three levels of uniform
refinement (UR 1–3), and our method. We bold the values corresponding to the lowest resolution showing
comparable and artifact-free results to ITR.

Scene Average running time per step (s) Peak memory (GiB) Number of DOF

UR 0 UR 1 UR 2 UR 3 Ours UR 0 UR 1 UR 2 UR 3 Ours UR 0 UR 1 UR 2 UR 3 Ours
avg (max)

Ball on spikes
(Figure 6.1) 20.1 418.1 8,371.6 40,648.1 12,316.6 0.9 3.7 24.3 151.5 2.0 27k 144k 900k 6M 43k (55k)

Masticator
(Figure 6.3) 70.8 480.7 9,781.7 16,775.8 8,230.8 0.9 0.5 2.7 16.2 4.1 1k 9k 63k 476k 16k (57k)

Gorilla rollers
(Figure 6.4) 15.2 162.0 3,317.3 23,372.5 1,077.8 1.0 3.8 24.7 182.6 7.7 18k 115k 800k 5M 22k (27k)

Bar-twist
(Figure 6.6) 0.2 1.5 232.5 2,733.6 2,234.9 0.1 0.4 3.1 21.1 3.7 1k 9k 63k 476k 24k (78k)

Impacting ball
(Figure 6.8) 0.3 5.9 115.8 8,564.0 960.8 0.2 1.1 8.3 71.8 2.9 5k 34k 248k 1M 50k (61k)

Table 6.2: Average linear solver running time.

Scene UR 0 UR 1 UR 2 UR 3 Ours
Ball on spikes (Figure 6.1) 0.08 0.81 9.88 201.77 0.25
Masticator (Figure 6.3) 0.01 0.06 0.78 9.39 0.22
Gorilla rollers (Figure 6.4) 0.12 1.23 16.82 245.44 0.17
Bar-twist (Figure 6.6) 0.00 0.05 0.57 8.77 0.21
Impacting ball (Figure 6.8) 0.02 0.28 3.60 126.68 0.37

In summary, we see ITR’s DOF improvement ranging from 2.6 to 185× less DOF per exam-

ple with corresponding 2.7 to 1,444× linear solve speedups. At the same time, the impact of our

initial, unoptimized implementation of our remeshing procedures on wall-clock time varies sig-

nificantly across examples, ranging from 3.3× speedup for the complex ball on spikes scene to

9.6× slowdown for the much simpler bar-twist scene.

Opportunities for wall-clock performance improvement. We identify four high-impact

and immediate directions for future extensions that we believe will likely provide significant

improvement in remeshing costs (and so runtimes) for ITR: (1) the most immediate and low-

hanging opportunity is the development of parallel and distributed versions of ITR; (2) similarly

low-hanging is the application of custom collision-detection that is spatially localized to leverage

the small local support that our individual mesh operations evaluate in our local-solve updates

(currently this is still applied globally), (3) exploiting both temporal- and spatial-coherence during
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OursUR 2

(t = 0.6 s)

Figure 6.10: Ball on spikes uniform comparison. Here we plot a detailed view of the performance of
the ball on spikes simulation (Figure 6.1). We compare an unrefined mesh (UR 0), three levels of uniform
refinement (UR 1–3), and our method. Circled in the rendering on the right, it is clear that UR 2 was
insufficient in capturing the local deformations and stretching caused by the spike tips.

OursUR 2 Ours

Figure 6.11: Gorilla rollers uniform comparison demonstrates results of the gorilla roller simulation
with two levels of uniform refinement (UR 2) and ITR (“Ours”) at the halfway point of the simulation.

collision-detection and culling, and (4) exploration of higher-order bases and geometry to further

reduce DOF count.

6.5 Discussion

We have proposed ITR, a first fully-coupled adaptive-remeshing algorithm for implicit time-

stepping elastodynamics with frictional contact via a spatially continuous incremental potential
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Table 6.3: IPC simulation and ITR parameters. For each example, we report the timestep size (ℎ),
density (𝜌), Young’s modulus (𝐸), Poisson ratio (𝜈), barrier activation distance (𝑑), barrier stiffness (𝜅),
coefficient of friction (𝜇), friction accuracy parameter (𝜖𝑣), and max friction iteration setting. We also
report the split and collapse acceptance tolerances (𝛿𝑆,𝐶 ) and the culling thresholds (𝜖𝑆,𝐶 ). For all examples,
we use a Newton convergence criteria of ∥Δ𝑥 ∥/ℎ ≤ 10−3 m/s, implicit Euler time integration, and a neo-
Hookean material.

Scene ℎ (s) 𝜌 (kg/m3), 𝐸 (Pa), 𝜈 𝑑 (m), 𝜅 (Pa) 𝜇, 𝜖𝑣 (m/s),
friction iters. 𝛿𝑠 (J), 𝛿𝑐 (J) 𝜖𝑆 , 𝜖𝐶

Ball on spikes
(Figure 6.1) 0.01 2000/1100, 1e5/1e8, 0.4 1e-3, 6e4 0.1, 1e-3, 1 1e-5, -1e-8 0.95, 0.01

2D Masticator
(Figure 6.5) 0.05 1e3, 1e4, 0.4 1e-3, 1e3 0.1, 1e-3, 1e3 1e-3, -1e-8 0.95, 0.01

3D Masticator
(Figure 6.3) 0.05 1e3, 1e4, 0.4 1e-3, 1e3 0.1, 1e-3, 1e3 1e-5, -1e-8 0.95, 0.01

Gorilla rollers
(Figure 6.4) 0.01 1e3, 5e4/2e7/2e8, 0.3 1e-3, 3e5 0.5, 4e-3, 1 1e-5, -1e-8 0.95, 0.01

Bar-twist
(Figure 6.6) 0.01 1e3, 1e7, 0.4 1e-3, 1e6 - 1e-3, -1e-8 0.95, 0.01

Elastic wave
(Figure 6.7) 0.025 1340, 1e4, 0.495 1e-3, 1e3 - 5e-5, -1e-8 0.85, 0.01

Impacting ball
(Figure 6.8) 2e-5 1150, 1e6, 0.45 6.9e-5, 1e5 - 1e-14, -1e-16 0.95, 0.01

Cantilever
(Figure 6.12) 0.1 1e6, 1.1e9, 0.3 1e-3, 1.1e8 - *,-1e-13 0.6, 0.4

merit function. To do so ITR ensures non-penetration and non-inversion throughout all oper-

ations in both remeshing and solving. In turn, it applies robust physics-aware remeshing to

generate stable and accurate trajectories with low DOF counts. Simulated geometries conform

well to necessary contacting interfaces and deformations with parsimonious refinement where

new DOF are needed to improve the solution, and effective coarsening where they are not.

6.5.1 Limitations and Future Work

Alongwith the opportunities for improved remeshing operation performance discussed above

in Section 6.4.3 we see a number of additional avenues for fruitful improvements and extensions.

Currently, we empirically demonstrate improved solution behavior on a wide range of chal-

lenging examples. However, an important next step, which we do not address here is a formal

convergence study of our refinement. We provide a preview of such a study in Figure 6.12, where
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Figure 6.12: Cantilever convergence. Using a cantilever example (see e.g., Pelteret [2016]), we exam-
ine the convergence behavior of ITR with varying refinement acceptance tolerances �� from 1 �J to 10 pJ.
We observe that the accuracy of our method is largely dependent on the initial discretization: Ours (1–3)
start from 1 to 3 levels of initial refinement, respectively. As a proof-of-concept, we also test a preliminary
extension of ITR that additionally utilizes edge-swapping and vertex smoothing, starting from the same
mesh as Ours (1). Here we see that these operations are important to “breakaway” from the initial dis-
cretization.
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we consider a cantilever convergence test (see e.g., Pelteret [2016]). As can be seen, ITR’s conver-

gence is currently highly dependent on the initial discretization. At least in part, this dependence

appears closely related to controlling for mesh quality.

We observe that while split and collapse operations are effective for adaptive updates, they

are insufficient to preserve mesh quality and so limit the convergence and range of refinement

that ITR can currently apply. The inclusion of edge/face flips/swaps will be a simple and direct

improvement that naturally fits within the ITR framework, as will be explicit optimization for

mesh quality [Wicke et al. 2010]. As a proof-of-concept investigation, in the above cantilever

experiment, we have updated ITR operations to additionally include a preliminary version of

edge flips and vertex smoothing. As we see in Figure 6.12 this improves ITR’s convergence.

Additional extensions of ITR’s adaptivity to also include r-refinement should also be valuable.

Likewise, while we focus here solely on volumetric elastodynamics, ITR should usefully extend

to codimensional models for shell and rod simulations and even alternative contact models.

We hope that this work and its reference implementation will encourage further research on

the application of adaptive unstructured remeshing. As simulationmethods advance and problem

complexities grow, it becomes all the more important to judiciously apply computation where it

can be most effective.
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7 | Conclusion

To summarize the contributions of this thesis, we have developed a new method for the sim-

ulation of contacts that is provably intersection- and inversion-free. This method, IPC, is able

to simulate elastodynamics and rigid body dynamics with complex scenes while exhibiting high

accuracy and robustness. We additionally, introduce a systematic way of testing CCD methods

and have proposed an efficient floating-point-based method that is provably correct. Finally, we

have shown that IPC can be used to simulate scenarios with high accuracy through the use of

high-order elements and adaptive meshing. All of this is without the need to tune parameters.

This opens the door to many future research opportunities both within computer graphics

and across disciplines. It is astonishing to see how quickly these methods have been adopted and

adapted [Fang et al. 2021; Gholamalizadeh et al. 2022; Kim et al. 2022; Lan et al. 2022a,b, 2021; Li

et al. 2021; Moshfeghifar et al. 2022], yet there is still a large amount of work that can be done in

the near to distant future.

7.1 Ongoing and Future Work

Real-time simulation. A large area of computer graphics research is dedicated to devising

methods for real-time simulation. The methods proposed here, however, are far from real-time

for complex scenes. To address this limitation, Lan et al. [2022a] revisit the problem of rigid body

dynamics (Chapter 4) and show that by relaxing the rigidity constraints they can get up to three
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Figure 7.1: GPU CCD. By utilizing the massively parallel nature of GPU’s we are able to get up to a
two-orders-of-magnitude improvement in CCD performance [Belgrod et al. 2022]. Here we show one such
result where we take a scene from the UNCDynamic Scene Benchmarks [Curtis et al. 2012] of several rigid
spheres floating through space. On the right, we plot the performance for both the broad-phase (BP) and
narrow-phase (NP). Compared to existing BP methods, we are able to get around an orders-of-magnitude
speed-up, and compared to Tight Inclusion (TI) (Chapter 3) we are able to get two orders-of-magnitude
faster performance. This is all while maintaining the same provable guarantees provided by our original
method (Chapter 3).

orders-of-magnitude speed-up. This so-called Affine Body Dynamics (ABD), is able to completely

avoid the need for expense nonlinear CCD. Simultaneously, Lan et al. [2022b] show that by

using an approximate model of elasticity known as Projective Dynamics (PD) [Bouaziz et al.

2014] in conjunction with IPC, they are able to get qualitatively reasonable animations in real-

time while maintaining the same penetration-free guarantees of IPC. Further investigating these

approaches for their quantitative accuracy and exploring other avenues of real-time performance

(e.g., PBD [Müller et al. 2007]) is exciting future work.

CCD for parallel architectures. A large opportunity for potential performance improve-

ments of our method is the utilization of massively parallel architectures such as the GPU. As a

first effort in creating a full GPU implementation, we investigate how to best utilize GPU archi-
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𝑡 = 0 s 𝑡 = 0.15 s 𝑡 = 1.5 s

Figure 7.2: Differentiable simulation: bunny pool. The direction and magnitude of the initial velocity
of the yellow bunny are optimized to push, after contact, the blue bunny into the white circle marker.
The top row shows the initial configuration, and the bottom row shows our optimized result. This scene
involves an elastodynamic simulation with a non-linear material model with contact and friction forces.

tecture for collision detection [Belgrod et al. 2022].

Differentiable simulation. Because we model contact and friction via a smooth potential,

the entire model is fully differentiable. This allows us to utilize IPC within inverse design ap-

plications such as shape optimization [Huang et al. 2022] or topology optimization[Zong et al.

2022]. We can also use IPC for control problems such as in Figure 7.2 or material and coefficient

of friction estimation [Huang et al. 2022]. Unlike prior methods which utilize penalty-based con-

tact handling [Du et al. 2021; Geilinger et al. 2020], we finally are able to utilize IPC in complex

scenarios such as Figure 1.1 with guarantees of feasible results over designs.

Robotics. Simulation tools are widely used in robotics for reinforcement learning [Zhao et al.

2020]. However, they often rely on simulation frameworks designed for efficiency and not robust-

ness or accuracy (e.g., Bullet [Coumans and Bai 2019], MuJoCo [Todorov et al. 2012], or NVIDIA

PhysX [Nvidia Corporation 2021]). Recently several papers have shown the applicability of our

work to robotics [Chen et al. 2022; Kim et al. 2022]. In particular, Kim et al. [2022] utilize our
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Figure 7.3: Biomechanics: hip geometry and simulation. Simulations in biomechanics pose a chal-
lenge for prior methods because they commonly feature large ratios of stiffness (e.g., on the right is a soft
tissue compressed between stiff bones), thin geometries (see the sliced view on the center-right), and a
need for high accuracy. On the right, we show IPC is able to seamlessly simulate even these challenging
scenarios [Moshfeghifar et al. 2022].

open-source implementation to show that with IPC they are able to more accurately predict if a

robotic arm will successfully grasp and pick up an object. Chen et al. [2022] propose an entire

multi-joint robotics simulator based on IPC and the work of [Lan et al. 2022a].

An interesting future direction that has yet to be fully explored is the use of IPC for soft

robotics. Soft robotics focuses on the manipulation of the world through the use of compliance.

There is a lot of potential in directly applying our accurate FE methods to compliant mechanisms,

pneumatics, and more.

Biomechanics. Simulations in biomechanics feature a lot of traditionally challenging parts:

larger material stiffness ratios (e.g., muscle and bone), thin materials (e.g., ligaments between

bones), high demand for realism (e.g., pre-simulation of fabricated prostheses), etc. Figure 7.3

provides one such case when calculating the stresses exerted under gravity on a hip and femur.

The state-of-the-art for simulation in biomechanics is FEBio [Maas et al. 2012], but it commonly

suffers from intersections and inversions. This is not only unphysical but can lead to an outright

inability to simulate certain scenarios. Working with these methods requires tuning simulation

parameters (e.g., timestep size) and material parameters (e.g., stiffness). However, it can be chal-

lenging to find a good set of parameters, and comparing results with differing parameters is
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Figure 7.4: Physical validation. We compress a 3D-printed lattice (Schwarz) structure and measure the
force exerted onto a sensor plate at the bottom. Replicating this setup virtually, we are able to analyze the
physical accuracy of IPC. On the right, we show the strain vs. load curves match well up to ∼ 60% strain
where the simulation starts to lag behind the measured values. This shows great potential in the ability
of our work to predict the physical behavior of new designs before fabrication.

challenging as they lead to differing dynamics.

In contrast, our work on IPC guarantees intersection and inversion-free dynamics indepen-

dent of parameters. As part of an ongoing effort to fully utilize IPC in biomechanics, we have

tested our method on various scenarios and find it can match and even exceed the accuracy

of FEBio especially on complex scenes where FEBio often crashes [Gholamalizadeh et al. 2022;

Moshfeghifar et al. 2022]. The robustness provided by our work opens a new door to the large-

scale utilization of simulation tools in biomechanics.

Physical validation and accuracy. A wider question when utilizing simulation tools is how

accurate are they to the physical world. To answer this, we collaborate with industry partners

at Carbon. In particular, Carbon works with several companies to release replacements for tra-

ditional foam parts using 3D-printed lattice structures (see Figure 7.4). To aid in the design of

these parts, simulation can be used to predict the mechanical behaviors of lattices and perform a

search of material properties based on simulated predictions.

Simulation of lattices is particularly challenging due to their thin parts, nonlinear buckling, a

large number of contacts when in compression, and the high degree of compression these parts

undergo. Existing commercial methods struggle to simulate these scenarios, so we explore the

219

https://www.carbon3d.com/


applicability of IPC to high-accuracy settings. As a first step in this effort, we compare the forces

exhibited by various 3D-printed lattices under compression (Figure 7.4). Early, results show our

method can match the expected behavior of the real-world lattices and robustly handle scenarios

for which commercial solutions fail (e.g., large buckling and large compression). These results

show great promise in the ability of our research to improve traditional design andmanufacturing

pipelines.
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A | Incremental Potential Contact:

Technical Details

A.1 Smoothing

Let 𝑓 (𝑥) be a function we wish to smooth. It is 𝐶1 continuous everywhere except at 𝑥 = 𝑎

where it is only𝐶0 continuous. Applying a function 𝑔(𝑥) that is𝐶1 continuous everywhere with

𝑔(𝑎) = 0, we have a smoothed function 𝑓 (𝑥)𝑔(𝑥) that is𝐶1 continuous everywhere. For 𝑥 ≠ 𝑎 we

have (𝑓 (𝑥)𝑔(𝑥))′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥) is 𝐶0 continuous everywhere. At 𝑥 = 𝑎, the left and

right derivatives of 𝑓 (𝑥)𝑔(𝑥) are then

lim
𝑥→𝑎−
(𝑓 (𝑥)𝑔(𝑥))′ = lim

𝑥→𝑎−
𝑓 ′(𝑥)𝑔(𝑎) + 𝑓 (𝑎)𝑔′(𝑎),

lim
𝑥→𝑎+
(𝑓 (𝑥)𝑔(𝑥))′ = lim

𝑥→𝑎+
𝑓 ′(𝑥)𝑔(𝑎) + 𝑓 (𝑎)𝑔′(𝑎) .

(A.1)

As 𝑓 (𝑥) is𝐶0 continuous at 𝑥 = 𝑎, lim𝑥→𝑎− 𝑓
′(𝑥) and lim𝑥→𝑎+ 𝑓

′(𝑥) are both bounded. Then with

𝑔(𝑎) = 0 we then have left and right derivatives of 𝑓 (𝑥)𝑔(𝑥) both equal 𝑓 (𝑎)𝑔′(𝑎) at 𝑥 = 𝑎,

lim
𝑥→𝑎−
(𝑓 (𝑥)𝑔(𝑥))′ = lim

𝑥→𝑎+
(𝑓 (𝑥)𝑔(𝑥))′ = 𝑓 (𝑎)𝑔′(𝑎) (A.2)

Thus (𝑓 (𝑥)𝑔(𝑥))′ is likewise 𝐶0 continuous at 𝑥 = 𝑎 and 𝑓 (𝑥)𝑔(𝑥) is correspondingly 𝐶1 contin-

uous.
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Table A.1: Ablation study on barrier functions with different continuity. NCmeans not converging
after 10000 PN iterations when solving a certain time step.

Examples CO
# iters, t (s) / time

C1
# iters, 𝑡 (s) / time

C2 (IPC)
# iters, 𝑡 (s) / time

Mat on knives 5.34, 1.66 5.59, 1.43 5.47, 1.40
2 mats 40 × 40 fall NC 26.83, 10.64 26.17, 10.48
Octocat on knives NC 9.29, 4.21 7.73, 3.76
Sphere (1K) roller NC 47.64, 9.41 45.22, 9.02
Mat 40 × 40 twist (10 s) 7.74, 1.93 8.04, 2.07 7.56, 1.89
Sphere (1K) pin-cushion 12.82, 1.27 9.22, 0.75 8.93, 0.69
Rods (630) twist (10 s) 6.65, 1.05 3.05, 0.38 3.07, 0.40

A.2 Barrier Continuity and Testing

The continuity of our𝐶2 barrier function is confirmedwhen𝑑 < 𝑑 , as 𝜕𝑏
𝜕𝑑

= (𝑑−𝑑) (2 ln 𝑑

𝑑
−𝑑
𝑑
+1)

and 𝜕2𝑏
𝜕𝑑2 = −2 ln 𝑑

𝑑
+ (𝑑 − 𝑑) 𝑑+3𝑑

𝑑2 both vanish as 𝑑 → 𝑑 . Thus the left and right derivatives of 𝑏 at

𝑑 = 𝑑 are both equal at zero up to 2nd order.

Ourmotivation for applying a𝐶2 clamped barrier rather than a less nonlinear, but still smooth,

𝐶1 barrier is to provide 2nd-order derivatives suitable for our Newton-type solver. Thus it is

genralluy better to have a continuous Hessian for improved convergence [Nocedal and Wright

2006]. Nevertheless, here we also provide an ablation study applying all both 𝐶0 (𝑏 = − ln(𝑑/𝑑))

and𝐶1 (𝑏 = (𝑑 −𝑑) ln(𝑑/𝑑)), along with our final choice of our𝐶2 (𝑏 = −(𝑑 −𝑑)2 ln(𝑑/𝑑)) barrier

in IPC on a set of examples in Table A.1.

From the results we see that for the 𝐶0 barrier, optimization can be non-convergent. Here

this can be a result if the local minima is right inside the clamped region of the barrier, where

the gradient does not change smoothly – here intermediate values may not be found to balance

terms so decrease the total gradient. While, in comparison to 𝐶1, our 𝐶2 barrier is generally 5 %

to 10 % faster due to the continuity of the Hessian – this is reflected in less iteration counts.
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A.3 CFL-inspired Culling of CCD

As IPC requires performing CCD for every Newton iteration, CCD clearly becomes a bottle-

neck. Therefore we propose a novel CFL-inspired culling strategy to accelerate CCD.

Recall that our culled constraint set contains all surface primitive pairs with distances smaller

than 𝑑 . Thus all remaining primitives outside the culled constraint set have farther distances

lower-bounded by 𝑑 . We place all vertices participating in these primitives in a set F . At each

iteration 𝑖 with a search direction 𝑝𝑖 , we find the index ℓ of the simulation node with the largest

component in 𝑝 (i.e., its effective search-direction “velocity”) among all remaining node pairs,

ℓ = argmax𝜅∈F ∥𝑝𝑖𝑘 ∥. We then compute a conservative bound on the largest-feasible step size for

surface primitives not in Ĉ as

𝛼F =
𝑑

2∥𝑝𝑖
ℓ
∥
. (A.3)

We then apply conservative CCD (see below) to the remaining primitive pairs in Ĉ(𝑥𝑖), obtaining

a large feasible step size, 𝛼Ĉ , for that set. Then 𝛼0 = min(𝛼F , 𝛼Ĉ) is our maximum feasible step

size for iteration 𝑖 . We then apply 𝛼0 as starting step size to bootstrap backtracking for Newton

iteration 𝑖 and so ensure decrease with feasibility.

Computing large, feasible step sizes in this way effectively reduces CCD cost by two-orders of

magnitude. However, for scenes that contain high speed motions, 𝛼F can be overly conservative

(smaller than needed) which then would increase iteration counts and so cause energy related

computations to increase overall cost unnecessarily.

Thus we adapt by balancing between applying full CCD for all candidate pairs provided by

spatial hash and applying our CFL-like strategy. Here we will designate the exact feasible bound

computed from applying CCD to all primitive pairs in the spatial hash as 𝛼S .

In each step we first compute 𝛼F and 𝛼Ĉ – they are both efficient and inexpensive to find. Next

we observe that the culled bound 𝛼Ĉ is often very close to the exact bound 𝛼S , while computing
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Table A.2: CCD strategies ablation.

Examples Full CCD
# iters, 𝑡 (s)/time step

CFL combined (IPC)
# iters, 𝑡 (s)/time step

Full CCD
CCD related timing (s)

CFL combined (IPC)
CCD related timing (s)

Mat on knives 5.34, 1.66 5.47, 1.40 97.50 47.25
2 mats 40 × 40 fall 23.22, 10.21 26.17, 10.48 273.38 162.10
Octocat on knives 6.99, 3.92 7.73, 3.76 206.61 129.93
Sphere (1K) roller 49.38, 9.89 45.22, 9.02 482.13 394.01
Mat 40 × 40 twist (10 s) 7.37, 2.13 7.56, 1.89 147.60 62.91
Sphere (1K) pin-cushion 8.35, 0.77 8.93, 0.69 37.25 19.61
Rods (630) twist (10 s) 3.04, 0.47 3.07, 0.40 23.89 9.13

this exact bound is generally one-third of the total timing cost in a single iteration. We thus

proceed by computing 𝛼S if 𝛼F < 1
2𝛼Ĉ . Otherwise we apply our CFL-type bound and apply

𝛼0 = min(𝛼F , 𝛼Ĉ) .

We thus avoid overly restrictive step sizes when 𝛼F and 𝛼Ĉ are already quite close – meaning

their minimum should also be quite close to 𝛼S . In practice we observe that our CFL-like assisted

CCD culling strategy provides a 50 % speed-up for all CCD related costs with nearly the same

iteration counts. Ovxerall this results in an average 10 % speedup for IPC; see Table A.2.

A.4 Conservative CCD

CCD is generally applied to compute a TOI corresponding to a step size that would bring

distances between primitives to 0. In our barrier setting this "largest feasible step size" needs to

be made conservative by backing away from an exact zero distance. A simple strategy would be

a conservative rescaling with a factor 𝑐 ∈ (0, 1); e.g., by starting the line search at 0.5 or 0.9 of the

total step along the descent direction. However, for the CCD computations rounding error can

be severe for the tiny contacting distances we allow and so even small naive scaling factors (e.g.,

0.1) can allow unacceptable intersections in such cases while in others is a much too conservative

bound unnecessarily slowing convergence.

Rather than directly finding and then conservatively rescaling a CCD-computed step length

that takes us to intersection we directly compute via CCD a step size along 𝑝𝑖 that will bring
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primitives to a distance of (1 − 𝑐)𝑑c > 0. Here 𝑑c is the current distance between the primitives.

Standard CCD libraries 1 directly provide this option, e.g., exposed as an 𝜂 parameter. In turn this

modifies coefficients of the polynomial equations solved during CCD, and effectively reduces

numerical rounding errors that cause issues for direct scaling. In our implementation we apply

𝑐 = 0.8 between mesh primitives, 𝑐 = 0.9 for mesh-to-plane, and similarly 𝑐 = 0.8 for computing

the large feasible step size to avoid element inversion when barrier elasticity energies, e.g., neo-

Hookean, are applied.

Finally, to ensure we remain intersection- and inversion- free at each step. We apply a post-

step check whenever nodal positions are displaced (e.g. line search and initial movements of

boundary conditions and collision objects. These include the edge-triangle intersection check

filtered by our spatial hash and a volume check for every tetrahedral element. In exceedingly

rare cases when an edge-triangle intersection or negative volume are detected, we half the final

step size bound.

A.5 Eqality Constraints for Moving Collision Objects

and Time-Varying Boundary Conditions

In many scenarios, e.g., scripting animations, kinematic objects, and engineering tasks, script-

ed kinematic collision objects (CO) and/or moving positional (Dirichlet-like) boundary condi-

tion (BC) are required. Contact algorithms generally handle these functionalities by either di-

rectly prescribing and updating nodal positions of CO/BC nodes at start of each time step, or

interpolating them in substeps across a step. Remainder of simulation DOF are then solved w.r.t.

the prescribed nodes being fixed at “current” positions. However, such strategies are extremely

limiting, with simulations generally restricted to small time step sizes, speeds, and/or deforma-

tions as the BC and/or CO become faster and more challenging. For example, directly prescribing
1we use https://github.com/evouga/collisiondetection
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CO or BC nodes can often generate tunneling artifacts, and for moving BC, simulations can often

fail simply by inverting elements when barrier energies like neo-Hookean energy are applied. To

address these issues we formulate scripted dynamic BC and CO as equality constraints in IPC.

This simultaneously ensures that intersections (and inversions) are avoided even while scripted

motions are applied at large time step.

We start by computing the prescribed nodal positions at the beginning of each time step, and

then apply CCD and element inversion detection to find a large feasible step size towards the

prescribed position from the current one (see above).

If it is safe to apply them fully without causing intersection or inversion, we simply update

prescribed nodal positions, solve the remainder of simulation DOF and are done. However, if our

feasible step size is smaller than taking a full step (we use a criterion of 0.999), we first move the

prescribed nodes as far as we can conservatively (see Appendix A.4) and then add new equality

constraints for each of these prescribed nodes provided by either CO or BC scripting.

As in our treatment of intersection-free inequality constraints, we build an unconstrained

form for each by applying an augmented Lagrangian. For every such prescribed node, we add a

Lagrangian and a penalty potential. We initialize each Lagrange multiplier to 0 and each penalty

stiffness to 106. Concretely, we add an energy

−√𝑚𝑘𝜆
⊤
A,𝑘 (𝑥𝑘 − 𝑥𝑘) +

𝜅A

2
𝑚𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2 (A.4)

to our barrier-form incremental potential for each prescribed node 𝑘 with corresponding desti-

nation 𝑥𝑘 in the current time step, if any of the prescribed nodes could not reach its destination

during our start-of-time-step test.

We measure satisfaction of BC/CO node constraints at each Newton iteration 𝑖 by calculating
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Algorithm A.1 Augmented Lagrangian Update Rule
1: for each PN iteration 𝑖 do
2: ...
3: if 1

ℎ
∥𝑝𝑖 ∥∞ < max(10−2𝑙, 𝜖𝑑) and 𝜂AL < 0.999 then

4: if 𝜂AL < 0.99 and 𝜅AL < 108 then
5: 𝜅AL ← 2𝜅AL
6: else
7: for each constrained node 𝑘 do
8: 𝜆AL,𝑘 ← 𝜆AL,𝑘 − 𝜅AL

√
𝑚𝑘 (𝑥𝑖𝑘 − 𝑥

𝑡+1
𝑘
)

their total in-time-step progress as

𝜂A = 1 −

√√∑
𝑘 ∥𝑥𝑡+1𝑘

− 𝑥𝑖
𝑘
∥2∑

𝑘 ∥𝑥𝑡+1𝑘
− 𝑥𝑡

𝑘
∥2
, (A.5)

where 𝑥𝑡+1 is the prescribed BC/CO positions for time step 𝑡 +1. Then, whenever a current iterate

is both close to satisfying stationarity, via the stopping criteria, and progress, with 𝜂A < 0.999,

we either increase the BC/CO penalty stiffness or else update the Lagrange multipliers, via the

first-order update rule, see Algorithm A.1. Finally, whenever 𝜂A ≥ 0.999, we fix all prescribed

nodes at current position and solve for remaining DOF in order to avoid unnecessary slow down

of convergence due to added stiffness.

For codimensional surface and segment collision objects their nodal mass is computed by

estimating their nodal volume as the half sphere with diameter being the average length of the

incident edges. For point collision objects we set their mass to be the average nodal mass of the

simulated objects. Alternatively, simply setting all codimensional nodal masses to be the average

of the simulated objects should also be fine. These estimated masses are only used for moving

codimensional collision objects and they do not affect any physical accuracy.
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A.6 Adaptive Barrier Stiffness

Stiffness, and so difficulty in solution of the barrier comes from two sources: 𝑑 and likewise

𝜅. As we can improve accuracy by directly decreasing 𝑑 , this frees 𝜅 to adaptively condition our

solves for improved convergence.

A feature of our barrier framework is that the estimation of Lagrangemultipliers are efficiently

self-adjusted by the constraint values, in our case, the 𝑑𝑘 ’s. However, if 𝜅 is not set appropriately,

the contact primitives would either need to get extremely close to get enough repulsion (barrier

gradient) when 𝜅 is too small, or need to get a distance right below 𝑑 for a small repulsion if 𝜅 is

set too large, both resulting in slow convergence because of ill-conditioning and nonsmoothness.

Thus adaptively setting and/or adjusting 𝜅 is essential.

Intuitively, the smaller 𝑑𝑘 is, the better the complementarity condition is satisfied. This is

certainly true from optimization theory but is troublesome in numerical computation. In numer-

ical optimization, since double precision floating point numbers are used, when 𝑑𝑘 gets tiny, the

rounding errors will significantly slow down convergence and even result in incorrect interme-

diate computations. Therefore, we must also prevent 𝑑𝑘 from being too tiny.

If we view 𝑑 as a control on the upper bound acting distance of our contact forces, 𝜅 can be

seen as an indirect control on the lower bound of the acting distance as larger 𝜅 can provide the

same amount of “repulsion” at a larger distance, avoiding the need to push distances to become

too tiny. Tiny distances not only make CCD less robust andmake the optimization less efficient in

our numerical simulation, but also are not physically reasonable in science. Generally speaking,

the space between the nucleus of two bonded atoms is around 10−10 meters. There is no way for

two macroscopic touching objects to get to that close. On the other hand, recall that the energy

gradient of our optimization is

𝑔(𝑥, 𝜅, 𝑑) = ∇𝐸 (𝑥) + 𝜅
∑︁
𝑘

𝜕𝑏

𝜕𝑑𝑘
∇𝑑𝑘 (𝑥, 𝑑), (A.6)
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where at subproblem convergence, the IP gradient ∇𝐸 (𝑥) balances with the barrier gradient

𝜅
∑

𝑘
𝜕𝑏
𝜕𝑑𝑘
∇𝑑𝑘 (𝑥, 𝑑). In addition, the barrier stiffness 𝜅 also influences the condition of the en-

ergy Hessian. Thus we adapt barrier stiffness strategy based on balancing the two gradients,

iteratively increasing 𝜅 when needed, and applying lower and upper bounds obtained from con-

ditioning analysis on the Hessian. Here 𝑑𝑘 can then avoid being too small or too close to 𝑑 to

provide improved convergence regardless of 𝑑 , material, ℎ, and our other input settings change.

The idea of balancing gradients can be traced back in optimization literature [Nocedal and

Wright 2006] for estimating appropriate initial stiffnesses of barriers. In our case, we solve

argmin𝜅 ∥𝑔(𝑥 𝑗 , 𝜅, 𝑑)∥2 which gives us −𝑔𝑐 · ∇𝐸 (𝑥)/∥𝑔𝑐 ∥2 (where 𝑔𝑐 =
∑

𝑘
𝜕𝑏
𝜕𝑑𝑘
∇𝑑𝑘 (𝑥, 𝑑)) at start of

each time step to obtain an estimate of 𝜅 that seeks to balance the two gradients at 𝑥 𝑗 . However,

we observe that the effectiveness of this balancing term is highly dependent on the 𝑥 𝑗 applied. It

can be quote far from the configuration at solution and so potentially can leads to poorly scaled

or even negative values for 𝜅. Thus, we extend our analysis from the balancing gradients to

additionally include conditioning of the Hessian. This, in turn, obtains an effective estimate to

provide a lower bound of 𝜅 in support of the gradient balancing strategy.

Our analysis seeks to keep the scaling of the diagonal entries of theHessian, at small distances,

close to the mass. Specifically, a scaling characterization of the Hessian diagonal in ∇2𝑏 at 𝑑 =

10−8𝑙 is easily estimated by taking its first term ∇𝑑⊤ 𝜕2𝑏
𝜕𝑑2∇𝑑 in point-point formula as

𝑐∇2𝑏 =

(


∇𝑑⊤


2 𝜕2𝑏

𝜕𝑑2

) �����
𝑑=10−8𝑙

= 4 × 10−16𝑙2 𝜕
2𝑏

𝜕𝑑2 (10−8𝑙).

We then set the lower bound of 𝜅 to provide at least 1011 times the average lumped nodal mass

𝑚̄ on the diagonal entries when 𝑑 = 10−8𝑙 and so enabling production of sufficient repulsion at

larger distances, that is

𝜅min = 1011𝑚̄/𝑐∇2𝑏

Note that our 𝜅 lower bound will be different for different 𝑑 , effectively capturing the curvature
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change of the barrier. With this lower bound, we now can safely use the gradient scheme with

bounded 𝜅 value.

Distance can still become small if resultant stress or applied compression (e.g, BCs) in the

scene are extreme. We thus add an additional, final 𝜅 adjustment that doubles 𝜅, when needed,

in between Newton iterations. After every Newton iteration, if we detect that there are contact

pairs having a characteristic distance smaller than minimum 𝑑𝜖 = 10−9𝑙 both before and after

this iteration, and the distance is decreasing in this Newton iteration, we double the 𝜅 value.

Although we do not observe divergence of the adapted 𝜅 values we apply a fixed upper bound of

𝜅max = 100𝜅min.

To summarize, our adaptive barrier stiffness strategy is:

1. At start of each time step, compute 𝜅𝑔 giving smallest gradient, and set

𝜅 ← min(𝜅max,max(𝜅min, 𝜅𝑔)).

2. After each Newton iteration, if any contact pair has distance smaller than 𝑑𝜖 both before

and after this iteration, and the distance is decreasing, set 𝜅 ← min(𝜅max, 2𝜅).

A.7 Distance Computation Implementation

A.7.1 Point-point and point-edge constraint duplications

As we discuss in Chapter 2 many point-triangle and edge-edge distances can and will reduce

to point-point or point-edge distance in computation. Thus there can be multiples of exactly the

same point-point and/or point-edge stencils in our constraint set. While it is tempting to simply

either ignore or remove these duplicates, neither strategy is effective. Ignoring duplication in

code can lead to significant redundant computation of the same force and Hessian. On the other

hand removing them introduces inconsistency into our objective energy, leading to poor conver-

gence or even divergence over iterations. Instead, we track duplicate stencils, computing their
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Figure A.1: Parallel-edge degeneracy handling. Left: Due to numerical rounding errors for distances
of edge-edge pairs decreases to 0 when the edges get more and more parallel (see Figure 2.7 for an ex-
ample); Middle: a zoom-in view show clearly that the distance really starts decreasing when their angle’s
sine value is at around 10−9; Right: we here set a threshold to force the use of point-point or point-edge
formulas to compute the distance of edge-edge pairs when their angle’s sine value is below 10−10, which
introduces a negligible (for optimization) nonsmoothness.

energy, gradient, and Hessian evaluations only once for each distinct stencil and then multiply

their entries appropriately so that all terms are correctly applied but still avoiding redundant and

expensive computation.

A.7.2 Nearly parallel edge-edge distance

When computing distances between two nearly parallel edges using the edge-edge plane dis-

tance formula (Equation (2.23)), numerical rounding errors will generate huge gradient and Hes-

sian values, and even results in wrong distances (Figure A.1) because of the ill-defined normal,

making our optimization intractable with double precision floating point numbers. Therefore, we

check the angle between edges, forcing each case to reduce to the most appropriate point-point

or point-edge constraints if the sine value is smaller than 10−10. This clearly makes the distance

function𝐶0 continuous again at the threshold. However, the nonsmoothness is nearly negligible

(Figure A.1), while our multiplying energy smoother 𝑒𝑘,𝑙 (𝑥) is also extremely small when edges

are nearly parallel. In practice we find this robustly avoids numerical issues and converges well

for all benchmark tests; see Section 2.7.
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A.8 Tangent and Sliding Modes

After reducing the general point-triangle, and edge-edge distances to one of the closed form

formulas, see Section 2.6, we can directly compute the sliding basis operators for each of the four

types of contact pairs required for computing friction.

We start by defining the basis, 𝑃𝑘 (𝑥) ∈ 𝑅3×2, formed by the two orthogonal 3D unit-length

column vectors spanning the tangent space of the contact pair 𝑘 , and a selectionmatrix Γ𝑘 ∈ 𝑅3×3𝑛

which computes relative velocity 𝑣𝑘 = Γ𝑘𝑣 of each contact pair 𝑘 . Then we can define the sliding

basis 𝑇𝑘 (𝑥) = Γ⊤
𝑘
𝑃𝑘 (𝑥) that maps tangent space relative velocity or displacement to the stacked

global vector. Here we then list the construction for 𝑃 and Γ for each contact distance type:

Point (𝑥0) – Triangle (𝑥1𝑥2𝑥3).

𝑃𝑘 (𝑥) =
[

𝑥2−𝑥1
∥𝑥2−𝑥1∥ , 𝑛 ×

𝑥2−𝑥1
∥𝑥2−𝑥1∥

]
(A.7)

where 𝑛 =
(𝑥2−𝑥1)×(𝑥3−𝑥1)
∥(𝑥2−𝑥1)×(𝑥3−𝑥1)∥ . Each row of Γ𝑘 is

[..., 1, ..., (−1 + 𝛽1 + 𝛽2), ...,−𝛽1, ...,−𝛽2, ...] (A.8)

where 𝛽’s are those defined in D𝑃−𝑇 (17, main paper).

Edge (𝑥0𝑥1) – Edge (𝑥2𝑥3).

𝑃𝑘 (𝑥) =
[

𝑥1−𝑥0
∥𝑥1−𝑥0∥ , 𝑛 ×

𝑥1−𝑥0
∥𝑥1−𝑥0∥

]
(A.9)

where 𝑛 =
(𝑥1−𝑥0)×(𝑥3−𝑥2)
∥(𝑥1−𝑥0)×(𝑥3−𝑥2)∥ . Each row of Γ𝑘 is

[..., 1 − 𝛾1, ..., 𝛾1, ..., 𝛾2 − 1, ...,−𝛾2, ...] (A.10)
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where 𝛾 ’s are those defined in D𝐸−𝐸 (18, main paper).

Point (𝑥0) – Edge (𝑥1𝑥2).

𝑃𝑘 (𝑥) =
[

𝑥2−𝑥1
∥𝑥2−𝑥1∥ ,

(𝑥2−𝑥1)×(𝑥0−𝑥1)
∥(𝑥2−𝑥1)×(𝑥0−𝑥1)∥

]
(A.11)

Each row of Γ𝑘 is

[..., 1, ..., 𝜂 − 1, ...,−𝜂, ...] (A.12)

where (1 − 𝜂)𝑥1 + 𝜂𝑥2 is the closest point to 𝑥0 on edge 𝑥1𝑥2.

Point 𝑥0 – Point 𝑥1.

𝑃𝑘 (𝑥) =
[
𝑡,

𝑥1−𝑥0
∥𝑥1−𝑥0∥ × 𝑡

]
(A.13)

where 𝑡 = 𝑒×(𝑥1−𝑥0)
∥𝑒×(𝑥1−𝑥0)∥ and 𝑒 is (1, 0, 0) if (𝑥1 −𝑥0) is not colinear with (1, 0, 0), or 𝑒 is (0, 1, 0). Each

row of Γ𝑘 is [..., 1, ...,−1, ...].

A.9 Friction Implementation

Since we lag the sliding basis in friction computations to 𝑇𝑛 = 𝑇 (𝑥𝑛) and normal forces to 𝜆𝑛

in (see Section 2.5) from either the last time step or the last friction update iteration 𝑛, all other

terms are integrable. The lagged friction is then

𝐹𝑘 (𝑥, 𝜆𝑛,𝑇𝑛, 𝜇) = −𝜇𝜆𝑛𝑇𝑛
𝑘
𝑓1(∥𝑢𝑘 ∥)

𝑢𝑘

∥𝑢𝑘 ∥
(A.14)

and gives us a simple and compact friction potential

𝐷𝑘 (𝑥) = 𝜇𝜆𝑛
𝑘
𝑓0(∥𝑢𝑘 ∥) . (A.15)
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Here 𝑓0 is given by 𝑓 ′0 = 𝑓1 and 𝑓0(𝜖𝑣ℎ) = 𝜖𝑣ℎ so that 𝐹𝑘 (𝑥) = −∇𝐷𝑘 (𝑥). In turn this likewise

provides a simple-to-compute Hessian contribution

∇2𝐷𝑘 (𝑥) = 𝜇𝜆𝑛
𝑘
𝑇𝑛
𝑘

(
𝑓 ′1 (∥𝑢𝑘 ∥)∥𝑢𝑘 ∥ − 𝑓1(∥𝑢𝑘 ∥)

∥𝑢𝑘 ∥3
𝑢𝑘𝑢
⊤
𝑘
+ 𝑓1(∥𝑢𝑘 ∥)
∥𝑢𝑘 ∥

𝐼2

)
𝑇𝑛
𝑘
⊤
. (A.16)

where 𝐼2 =
[ 1 0

0 1
]
. Projecting this Hessian to PSD then simply requires projecting the 2× 2 matrix

𝑓 ′1 (∥𝑢𝑘 ∥)∥𝑢𝑘 ∥ − 𝑓1(∥𝑢𝑘 ∥)
∥𝑢𝑘 ∥3

𝑢𝑘𝑢
⊤
𝑘
+ 𝑓1(∥𝑢𝑘 ∥)
∥𝑢𝑘 ∥

𝐼2 (A.17)

to SPD as 𝑇𝑛
𝑘
is symmetrically multiplied on both of its two sides.

The above model is general so that 𝑓0 and 𝑓 ′1 are both easy to define for a range of 𝑓1 choices:

1. 𝐶0 𝐹 𝑓 : 𝑓0(𝑥) = 𝑥2

2𝜖𝑣ℎ +
𝜖𝑣ℎ
2 , 𝑓1(𝑥) = 𝑥

𝜖𝑣ℎ
, and 𝑓 ′1 (𝑥) = 1

𝜖𝑣ℎ
;

2. 𝐶1 𝐹 𝑓 : 𝑓0(𝑥) = − 𝑥3

3𝜖2
𝑣ℎ

2 + 𝑥2

𝜖𝑣ℎ
+ 𝜖𝑣ℎ

3 , 𝑓1(𝑥) = − 𝑥2

𝜖2
𝑣ℎ

2 + 2𝑥
𝜖𝑣ℎ

, and 𝑓 ′1 (𝑥) = − 2𝑥
𝜖2
𝑣ℎ

2 + 2
𝜖𝑣ℎ

;

3. 𝐶2 𝐹 𝑓 : 𝑓0(𝑥) = 𝑥4

4𝜖3
𝑣ℎ

3 − 𝑥3

𝜖2
𝑣ℎ

2 + 3𝑥2

2𝜖𝑣ℎ +
𝜖𝑣ℎ
4 , 𝑓1(𝑥) = 𝑥3

𝜖3
𝑣ℎ

3 − 3𝑥2

𝜖2
𝑣ℎ

2 + 3𝑥
𝜖𝑣ℎ

, and 𝑓 ′1 (𝑥) = 3𝑥2

𝜖3
𝑣ℎ

3 − 6𝑥
𝜖2
𝑣ℎ

2 + 3
𝜖𝑣ℎ

.

Importantly this also emphasizes that there are never any divisions by ∥𝑢𝑘 ∥ in all of our energy,

gradient, and Hessian computations for friction as they are always cancelled out. This ensures

that so that the implemented computation can be robust and accurate.

Our friction model applies our 𝐶1 – (2) in the above.. This design choice again provides a

continuous Hessian for better convergence in our Newton-type method. Here we also provide a

comparison of behavior of the 𝐶1 model w.r.t. to the different orders of smoothed friction model

on our arch and ball roller example (Table A.3).

We observe that 𝐶1 friction model provides a “sweet-spot”: improvement over 𝐶0 due to the

𝐶1 model’s continuous hessian, while it also improves over the 𝐶2 model with less additional

nonlinearity.
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Table A.3: Ablation study on smoothed static friction.

Examples C0
# iters, t(s) / time step

C1 (IPC)
# iters, t(s) / time step

C2
# iters, t(s) / time step

Sphere (1K) roller 1.37, 0.01 1.24, 0.01 1.26, 0.02
1 m-high arch (static) 53.60, 12.21 45.22, 9.79 52.83, 11.42

A.10 Sqared Terms

In our implementation, we apply squared distances in our evaluations to avoid numerical

errors and inefficiencies that can be introduced by taking squared roots – especially in gradient

and Hessian computations. Concretely, our barrier terms are applied as 𝑏 (𝑑2, 𝑑2) throughout

our implementation. This manipulation leaves our problem formulation with unsigned distances

unchanged as have 𝑑 > 0⇔ 𝑑2 > 0. However, we must be careful with units in order to preserve

appropriate scaling of dimensions – especially in terms of frictio. Fortunately, we can sort this

out directly via the chain rule.

To ensure that units of normal force remain correct we now observe that directly plugging

in 𝑑2 and 𝑑2 into Equation (2.9) no longer computes the contact force magnitudes 𝜆𝑘 defined

Chapter 2. Here we now have − 𝜅
ℎ2

𝜕𝑏

𝜕(𝑑2
𝑘
) (𝑑

2
𝑘
, 𝑑2

𝑘
). Applying the squared formulation we rewrite the

stationarity of the barrier as

𝑀 (𝑥 − 𝑥
ℎ2 ) = −∇Ψ(𝑥) −

𝜅

ℎ2

∑︁
𝑘∈C

𝜕𝑏

𝜕(𝑑2
𝑘
)
𝜕(𝑑2

𝑘
)

𝜕(𝑑𝑘)
∇𝑑𝑘 (𝑥) (A.18)

which is𝑀 ( 𝑥−𝑥
ℎ2 ) = −∇Ψ(𝑥)− 𝜅

ℎ2
∑

𝑘∈C
𝜕𝑏

𝜕(𝑑2
𝑘
)2𝑑𝑘∇𝑑𝑘 (𝑥). In turn this allows us to extract the correct

contact force magnitudes (when using squared distances) as 𝜆𝑘 = − 𝜅
ℎ2

𝜕𝑏

𝜕(𝑑2
𝑘
)2𝑑𝑘 .
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B | Incremental Potential Contact:

Comparison Details

B.1 COMSOL

Scene Setup. We set up a simple scene to illustrate issues we encounter for contact modeling

in COMSOL. See Figure B.1 top and middle, for our initial positions where we have, from left to

right, a fixed rectangle (0.2 m × 0.7 m), two free squares (0.5 m × 0.5 m), and a moving rectangle

(0.2 m× 0.7 m) with symmetric boundary conditions in the 𝑦-direction. We impose displacement

boundary conditions on the right-most rectangle of −0.6 m, use densities of 1000 kg/m3 and a

linear material model with 𝐸 = 1000 Pa and 𝜈 = 0.4. We experimented with different discretiza-

tions and applications of the boundary conditions. With a quad model we apply the boundary

conditions incrementally (−0.6𝑠) with 𝑠 going from zero to one, and steps of size 0.01, while with a

triangle mesh we applied steps of 0.005. The first four figures in Figure B.1 show respectively the

initial configurations and the solutions for these two experiments, the last figure shows increased

failure if we simply apply the boundary conditions directly without incremental loading.

Discussion. In COMSOL, we initially attempted to simulate dynamic contacts. However, the

contact formulation is documented as being strictly valid only for stationary problems [COMSOL

Inc. 2019, Time-Dependent Contact Analysis, Page 199]. We then attempted to solve a simpler
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Figure B.1: COMSOL comparison. Experiment setup (first and third figure) and results (second and
fourth figure) of our COMSOL experiment. Disabling the incremental application of the boundary condi-
tions leads to massive penetrations (last figure).

stationary problem. We take two cubes compressed by two rectangle, again, as above, one fixed,

and one displaced. After an extensive correspondence with COMSOL technical support (see Ad-

ditional Material), we were told to apply a few necessary “tricks”: (i) since the problem is sym-

metric, it is better to cut it in half and impose symmetry boundary conditions; (ii) the mesh on

the destination object should be twice as fine as the mesh on the source object along all contact

interface boundaries; (iii) the scene should be designed so that there are no initial gaps between
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the objects that are in contact (no changing contact sets); (iv) the system should be solved apply-

ing an auxiliary sweep with small parametric steps, and so apply the displacement incrementally.

Applying all of these additional customized tricks we were able to solve the simulation with both

COMSOL’s penalty and augmented Lagrangian options. Our experiments, agreeing with COM-

SOL technical support, show that the number of parametric steps that must be applied depend on

the mesh size, with different values (larger or smaller) leading to reasonable solutions or not that

must be discovered per example. For both simulations penetration is expected, more, we observe

for the penalty method, as intersection is how contact pressure develops in the solver. Addition-

ally, we learned that it is never a good idea to have corners being a part of a contact boundaries, as

the corners will be numerically singular and cause penetration between the contact boundaries.

Thus, according to COMSOL guidelines1 corners should be filleted.

B.2 Ansys

Scene Setup. We again set up two simple problems to test contact modeling in Ansys. For

the first example we generate a “C”-shaped mesh (formed from five 10 mm × 10 mm × 10 mm

cubes) supported on the bottom and a dropped cube (10 mm× 10 mm× 10 mm) subject to gravity

981 mm/s2. For the second example we placed a large cube (14 mm× 14 mm× 14 mm) with fixed

support on the bottom and placed a smaller cube on top (10 mm×10 mm×10 mm cubes), beveled

at 1 mm; both were subject to gravity of 100 mm/s2. Both setups apply densities of 10−6 kg/mm3

and neo-Hookean material with 𝐸 = 0.01 MPa and 𝜈 = 0.4. Figure B.2 shows the two set ups and

the resulting simulation failures. Note for the second experiment the spacing between the two

objects is 1mm, from the plot on the bottom we see that the top, falling cube has a maximum

displacement of more than 1.4mm for an implicit time step, and 1.02mm for an explicit time step.
1https://www.comsol.com/support/knowledgebase/1102
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Figure B.2: Ansys comparison. First and second Ansys experiment (first and third image). All exper-
iments all have inter-penetration. The second-to-last image applies implicit time-stepping, and the last
one explicit time-stepping.

Discussion. Ansys provides explicit (through its explicit dynamics modules) and implicit (th-

rough its transient structural module) numerical time-integration options. The two models are

fundamentally different in the way they handle collisions, but they both allow for small inter-

penetrations. The explicit module ismostly automatic both in how it detects possible contact pairs

and then resolves them. The results of the simulations are reasonable, although they do contain

some small penetrations. The implicit module, is more complex, requires identifying contact pairs
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and much hand- tweaking of many exposed parameters in order to gain a successful simulation.

This is true even for a simple scenario where two cubes are colliding. Here the default parameters

do not produce a reasonable solution. For such simple scenarios Ansys technical support advised

us to apply explicit dynamics and did not provide us with a reasonable set of parameters to fix

the implicit simulation.

B.3 Utopia [Krause and Zulian 2016]

Figure B.3: Utopia comparison. Utopia setup coarse and fine mesh (first two image). Closeup on the
two failures (third image has self-penetration because of large time step and fourth image has oscillations
that prevent the solver the continue) for the coarse mesh.

Scene Setup. To investigate Utopia we set up a simulation with a large 10 mm×10 mm×10 mm

block with fixed displacement on the bottom and a small cube 1 mm × 1 mm × 1 mm with a half-

sphere on the bottom and prescribed −1.5 N force on the top flat face. See Figure B.3. Both objects

have the same neo-Hookean material parameters: density 1 kg/m3, 𝜆 = 10 Pa, 𝜇 = 10 Pa. in

Figure B.3 we show the initial set up and the resulting penetration and oscillations for the coarse

mesh version. Note that oscillations disappear for the fine mesh and penetrations decrease as we

go to smaller time steps. We tested time steps of 0.5, 0.05, 0.01, and 0.001 s.

Discussion. Utopia applies a parallel mortar algorithm for FE contact modeling. Like several

other engineering FEM codes, Utopia requires a priori manual marking of all possible pairedmesh
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Figure B.4: SOFA comparison (varying chain-length). Left: SOFA is able to simulate a five link even
with large timesteps. Right: As we add more links, decreasing time steps down to 10−4s, we are unable to
find a time step that will not break the chain.

Table B.1: SOFA FEM parameter values.

Elasticity Model linear
Young’s Modulus 1000
Poisson’s Ratio 0.3
Mass 5.0

boundary regions that can be treated for contact resolution. Such marking could be automated,

see e.g, Yang and Laursen [2008]). Note that even with automated pairing the mortar approach

does not yet extend for more general collisions in regions that would involve more than two

distinct surface regions. We tested the Utopia implementation [Zulian et al. 2016] with a simple

didactic experiment in which we drop an elastic sphere under gravity upon an elastic cube with

its bottom DOF fixed. At larger time steps, we observe large scale volume intersections. These

contact errors then reduce but do not disappear as time step decreases. These issues are not sur-

prising as mortar methods enforce contact constraints in a weak sense and so allow intersections.

B.4 SOFA

We modify the the chain example provided with SOFA by replacing the ring mesh with a

low-resolution torus (∼500 tetrahedra). Table B.1 shows the material settings used. Changing

any of these parameters can result in different levels of failure (see Figure B.5 for an example of

changing material stiffness).
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Figure B.5: SOFA comparison (varying stiffness). We test SOFA on a five link chain with three varying
stiffnesses, all with a fixed timestep of 10−3 s. Left: Young’sModulus of 100 fails, Middle: Young’sModulus
of 1000 works, Right: Young’s Modulus of 10000 fails.

Table B.2: Houdini FEM parameter values.

Damping Ratio 0.5
Shape Stiffness 387
Volume Stiffness 384
Repulsion 1e11
Friction 0.1
Substeps 14
Collision Passes 16

B.5 Houdini

We test Houdini with the simple chain example. Each link is a torus with outer radius 1.25 and

inner radius 0.28. The links are duplicated with a transform downwards of 1.62 and a rotation of

90◦. One ring at the top is added as a static surface collider. Parameter values that were changed

from default Houdini parameters for the FEM solver are shown in Table B.2 and values for the

vellum solver are shown in Table B.3. The scene was set to 24 FPS.

Table B.3: Houdini Vellum parameter values that were changed from default.

Cloth Node Struts Node Solver Node
Mass Calculate Varying Direction Jitter 2 Substeps 40
Thickness Calculate Uniform Constraints Per Point 80
Stretch Stiffness 1000000 Stretch Stiffness 1e-9
Bend Stiffness 1e-4 Compression Stiffness 10000
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B.6 SQP Benchmark

Figure B.8 summarizes the results of our benchmark comparison of different SQP-type contact

handling methods. For each scene we vary the time step size, constraint offset, constraint type,

and solve the problem as both a fully nonlinear problem at each time step and a quadratic ap-

proximation (Linearized elasticity) of the energy with nonlinear constraints. See our main paper

for details.

Additionally, we also initially tested two active-set update strategies: the first being to clear

the active set and rebuild it upon every iteration and the second, applied successfully in recent

methods [Otaduy et al. 2009; Verschoor and Jalba 2019] incrementally adds newly detected colli-

sions to the active set. We found that the latter performed significantly better across our bench-

mark so we restrict our results here to the latter.

In the table we document results of each simulation as either: 1) intersecting: the simulation

fails with some amount of intersection (see Figure B.6 for examples of minor and major intersec-

tions); 2) blow-up: the simulation blows up due to rapid growth in energy and/or displacement

during the optimization (see Figure B.7 for examples); 3) incomplete: the simulation is unable

to complete in the given time limit of four hours, or 4) successful: the simulation successfully

completes with none of the aforementioned failures. Note that IPC is the only method to succeed

across all simulations.

B.6.1 Intersections

SQP-type optimizations can result in intersection for a variety of reasons, but they are com-

monly generated in cases where the time step is too large (leading to poor linearization of con-

straints) or the constraint offset is too small (allowing slight solver inaccuracies to generate drift

and intersections). While possible in lucky cases, recovering from intersections is generally rare

on it sown and of course challenging to fix algorithmically.
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Figure B.6: SQP intersections. Severity of intersections affect usability of simulation results. Left:
Examining a chain drop the results look correct until we look inside the top ring. It is clear the fixed
ring has started to intersect the top FEM ring. These small intersections can build in to larger constraint
drift and eventually pass-through of the rings. Middle: At first glance the results of this mat twist appear
fine, but when we look closely there are several small intersections hidden in the folds of the mat (22 in
total). Right: An extreme case of intersections where the two tetrahedron meshes have almost completely
overlapped.

Not all intersections are alike, however. Minor intersections while not physical are commonly

ignored as they do not affect visual quality. Figure B.6 shows examples of both minor and egre-

gious intersections.

B.6.2 Optimization blow-up

Optimization “blow-up” occurs when the objective energy or search direction of the optimiza-

tion increases at alarming rates due to numerical difficulties. Studying the results of our sweep,

we find that blow-ups more often occur with large time steps where a large number of constraints

may be activated at once. This can create a difficult, if not numerically infeasible, optimization

problems and likewise instability due to lack of line search.

We also note the large amount of blow-ups when applying the single quadratic approximation

per time step. While faster to optimize, this method is a poor approximation of the nonlinear

elasticity energy and leads to increased energy values. Again, the problem is worsened in all

cases by the lack of line-search to find a step length that sufficiently decreases the energy.
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Figure B.7: SQP numerical explosions. Top: Two different examples (left and right) with their time
steps right before the SQP optimization starts to fail with increasingly large displacements. Bottom: An
intermediate state for each example during the SQP optimization “blow-up”.

B.6.3 Poor convergence and subseqent timeout

In our benchmark, SQP-type methods struggle to handle moderately large scenes. We at-

tribute this poor performance to 1) large numbers of constraints when the constraint offsets are

enabled – this, in turn, can lead to infeasibility in the QP solve and so subsequent solve fails;

and 2) oscillating optimization iterations largely resulting from lack of line-search. When the

underlying QP solver fails, we choose to clear and build a new active set. While this helps in

some cases, it often results in more QP fails and a stagnant optimization. Convergence could be

improved with a line-search along the constrained search directions, but suitable merit-functions

for line search here remain an open and ongoing area of research.
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Figure B.8: SQP benchmark (part 1 of 3).
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Figure B.8: SQP benchmark (part 2 of 3).
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Figure B.8: SQP benchmark (part 3 of 3).
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C | Incremental Potential Contact:

Statistics

Table C.1: CPU names

Name CPU Memory
C1 4-core 2.9 GHz Intel Core i7 16 GB
C2 4-core 3.0 GHz Intel Xeon E-2690v2 32 GB
C3 4-core 3.6 GHz Intel Core i7 32 GB
C4 8-core 3.0 GHz Intel Xeon 32 GB
C5 8-core 3.6 GHz Intel Core i9 64 GB
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Table C.2: IPC scene statistics: Tet & cube unit tests

Example
# nodes,
# tets,
# faces

ℎ (s) 𝜌 (kg/m3)
𝐸 (Pa), 𝜈 𝑑 (m) Newton

tol (m/s)
# contact
avg (max) CPU memory

(MB)
per timestep
t (s), # iters

C-box 285, 812, 510 0.04 1e3, 1e5, 0.4 10−5ℓ 10−2ℓ 41 (381) C1 80 0.2, 12.8
Tet-tet 8, 2, 8 0.025 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (6) C1 70 1.4e-3, 2.3
Cube stack 40, 30, 60 0.025 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 8 (69) C1 76 6e-3, 3.25
Tet corner 28, 19, 40 0.025 1e3, 1e5, 0.4 10−6ℓ 10−2ℓ 5 (21) C1 70 2e-3, 3.9
Spikes1 5, 2, 6 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (4) C2 11 9.4e-4, 2.05
Spike and Wedge1 5, 2, 6 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (3) C2 11 1.0e-3, 2.01
Wedges1 6, 3, 8 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (19) C2 11 8.1e-4, 2.06
Spike in a Hole1 5, 2, 6 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (5) C2 11 1.0e-3, 2.10
Spike in a Crack1 5, 2, 6 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (2) C2 11 7.7e-4, 2.01
Wedge in a Crack1 6, 3, 8 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (3) C2 11 3.0e-3, 2.01
Sliding Spike1 5, 2, 6 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (1) C2 11 9.5e-4, 2.01
Sliding Wedge1 6, 3, 8 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 0 (1) C2 11 9.6e-4, 2.00
Cliff Edges1 8, 6, 12 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 7 (28) C2 11 1.7e-3, 1.97
Internal Edges1 8, 6, 2 0.01 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 18 (28) C2 11 1.3e-3, 2.03

1These scenes where created based on the benchmark proposed by Erleben [2018].

Table C.3: IPC scene statistics: Co-dimensional obstacles unit tests

Example
# nodes,
# tets,
# faces

ℎ (s) 𝜌 (kg/m3)
𝐸 (Pa), 𝜈 𝑑 (m) Newton

tol (m/s)
# contact
avg (max) CPU memory

(MB)
per timestep
t (s), # iters

Ball on points 7K, 28K, 10K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 126 (182) C1 229 2.8, 6.6
Ball on segments 7K, 28K, 10K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 439 (706) C1 196 4.4, 11.3
Ball on squares 7K, 28K, 10K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 908 (1K) C1 239 5.5, 13.4
Octocat on points 7K, 21K, 9K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 193 (846) C1 272 5.0, 11.1
Octocat on segments 7K, 21K, 9K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 354 (1K) C1 231 4.5, 10.4
Octocat on squares 7K, 21K, 9K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 808 (1.2K) C1 241 5.0, 11.4
Mat on points 3K, 9K, 6K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 112 (250) C1 159 0.64, 2.9
Mat on segments 3K, 9K, 6K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 326 (419) C1 163 0.5, 2.5
Mat on squares 3K, 9K, 6K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 468 (780) C1 141 1.5, 5.0
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Table C.4: IPC scene statistics: Stress tests and general examples

Example
# nodes,
# tets,
# faces

ℎ (s) 𝜌 (kg/m3)
𝐸 (Pa), 𝜈 𝑑 (m) Newton

tol (m/s)
# contact
avg (max) CPU memory

(MB)
per timestep
t (s), # iters

Mat on knives 3.2K, 9.1K, 6.4K 0.04 1e3, 2e4, 0.4 10−3ℓ 10−2ℓ 291 (472) C1 147 1.4, 5.5
5 chains 1K, 2.5K, 2K 0.04 1e3, 1e5, 0.4 10−3ℓ 10−2ℓ 185 (260) C1 97 0.2, 4.3
35 chains 7K, 17K, 14K 0.04 1e3, 1e7, 0.4 10−3ℓ 10−2ℓ 1.7K (2.5K) C1 191 1.1, 2.6
100 chains 20K, 49K, 40K 0.04 500, 1e7, 0.4 10−3ℓ 10−2ℓ 40K (53K) C1 450 4.0, 2.4

Ball on mat 5K, 16K, 9K 0.01 2e3, 1e8, 0.4
1e3, 1e6, 0.4 10−3ℓ 10−2ℓ 327 (687) C1 173 2.0 6.9

Cube on
small cube 16, 12, 24 0.025 1e4, 1e8, 0.4

1e3, 1e6, 0.4 10−3ℓ 10−2ℓ 14 (18) C1 57 2e-3, 4.2

Dolphin funnel 8K, 36K, 10K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 7K (31K) C1 357 27.9, 39.7
Dolphin funnel
(FCR) 8K, 36K, 10K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 7K (35K) C1 283 81.3, 129.7

Pin-cushion
compress 9K, 28K, 10K 0.04 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 317 (496) C1 233 3.7, 9.5

Golf ball (NM) 29K, 118K, 38K 2E-5 1150, 1e7, 0.45 10−3ℓ 10−2ℓ 1K (4K) C1 861 12.1, 9.3
Bunny matrix 57K, 196K, 92K 0.04 1e3, 5e6, 0.4 10−3ℓ 10−2ℓ 5.7K (7.0K) C3 1338 123.0, 77.1
Tunneling test
(10 m/s) 2.6K, 6.9K, 4K 0.02 1e3, 1e6, 0.4 10−3ℓ 10−2ℓ 1 (62) C1 201 4.7, 12.1

Tunneling test
(100 m/s) 2.6K, 6.9K, 4K 0.02 1e3, 1e6, 0.4 10−3ℓ 10−2ℓ 4 (297) C1 235 6.2, 14.4

Tunneling test
(1000 m/s) 2.6K, 6.9K, 4K 0.02 1e6, 0.4 10−3ℓ 10−2ℓ 10 (876) C1 306 8.2, 19.5

Mat twist (100s) 45K, 133K, 90K 0.04 1e3, 2e4, 0.4 10−3ℓ 10−2ℓ 264K (439K) C4 4546 776.2, 34.5
Rods twist (100s) 53K, 202K, 80K 0.025 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 243K (498K) C4 2638 141.5 ,14.1
Trash compactor
(octocat) 6K, 21K, 9K 0.01 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 793 (34K) C4 447 12.8, 16.9

Trash compactor
(ball, mat,
& bunny)

15K, 56K, 22K 0.01 1e3, 1e4, 0.4 10−3ℓ 10−2ℓ 6K (132K) C4 638 61.9, 29.4

Squeeze out 45K, 181K, 60K 0.01 1e3, 5e4, 0.4 10−3ℓ 10−2ℓ 37K (277K) C4 1700 252, 42.5
Heavy ball hit 47K, 187K, 62K 0.01 1e3, 5e4, 0.4 10−3ℓ 10−2ℓ 13K (59K) C4 1498 263.9, 44.2

Table C.5: IPC scene statistics: Scalability Tests

Example
# nodes,
# tets,
# faces

ℎ (s) 𝜌 (kg/m3)
𝐸 (Pa), 𝜈 𝑑 (m) Newton

tol (m/s)
# contact
avg (max) CPU memory

(MB)
per timestep
t (s), # iters

Armadillo twist
13K 13K, 55K, 17K 0.025 1e3, 5e3, 0.4 10−3ℓ 10−2ℓ 832 (2.7K) C3 453 4.3, 10.6

Armadillo twist
28K 28K, 121K, 35K 0.025 1e3, 5e3, 0.4 10−3ℓ 10−2ℓ 2.5K (72K) C3 890 11.8, 10.2

Armadillo twist
54K 54K, 227K, 69K 0.025 1e3, 5e3, 0.4 10−3ℓ 10−2ℓ 5.5K (17K) C3 1632 23.7, 10.0

Armadillo twist
122K 122K, 548K, 140K 0.025 1e3, 5e3, 0.4 10−3ℓ 10−2ℓ 22K (54K) C3 3744 64.0, 9.8

Armadillo twist
219K 219K, 928K, 277K 0.025 1e3, 5e3, 0.4 10−3ℓ 10−2ℓ 60.6K (133K) C3 6547 126.2, 10.0

Mat twist (10s)
40x40 3K, 9K, 6K 0.04 1e3, 2e4 0.4 10−3ℓ 10−2ℓ 2K (4.6K) C3 196 1.3, 7.6

Mat twist (10s)
100x100 20K, 59K, 40K 0.04 1e3, 2e4 0.4 10−3ℓ 10−2ℓ 31K (60K) C3 792 9.6, 7.5

Mat twist (10s)
150x150 45K, 133K, 90K 0.04 1e3, 2e4 0.4 10−3ℓ 10−2ℓ 87K (162K) C3 1815 33.1, 10.9

Mat twist (10s)
225x225 101K, 301K, 202K 0.04 1e3, 2e4 0.4 10−3ℓ 10−2ℓ 222K (408K) C3 3895 107.2, 15.3

Squishy ball
(w/ AMGCL) 688K, 2314K, 1064K 1E-3 1e3, 7e4, 0.4 10−4ℓ 4 × 10−2ℓ 3.6K (105K) C5 19463 328.3, 12.2
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Table C.6: IPC scene statistics: Examples with friction

Example
# nodes,
# tets,
# faces

ℎ (s) 𝜌 (kg/m3)
𝐸 (Pa), 𝜈 𝑑 (m) 𝜇, 𝜖𝑣 (m/s),

# friction iters
Newton
tol (m/s)

# contact
avg (max) CPU mem.

(MB)
per timestep
t (s), # iters

Ball mesh
roller

7K, 28K,
11K 0.01 1e3, 1e4, 0.4 10−3ℓ

0.5, 10−3ℓ ,
1 10−2ℓ 2.3K (5.6K) C1 215 63.3, 58.6

Ball segment
roller

7K, 28K,
11K 0.01 1e3, 1e4, 0.4 10−3ℓ

0.5, 10−3ℓ ,
1 10−2ℓ 1.4K (4K) C1 210 35.6, 51.8

Ball points
roller

7K, 28K,
11K 0.01 1e3, 1e4, 0.4 10−3ℓ

1e-3, 10−3ℓ ,
1 10−2ℓ 305 (1.2K) C1 210 9.5, 26.9

Hit
board house

6K, 15K,
11K 0.025 1e3, 1e8, 0.4 10−4ℓ

1.0, 10−5ℓ ,
2 10−2ℓ 7K (13K) C1 186 10.0, 16.6

Stable
board house

5K, 15K,
11K 0.025 1e3, 1e8, 0.4 10−3ℓ

0.2, 10−5ℓ ,
∞ 10−2ℓ

1.3K
(1.4K) C1 205 0.4, 1.2

Unstable
board house

5K, 15K,
11K 0.025 1e3, 1e8, 0.4 10−3ℓ

0.1, 10−5ℓ ,
∞ 10−2ℓ 7K (10K) C1 299 2.4, 8.9

Stick-slip
pen (NM)

630, 2K,
1K 1e-3 1e3, 1e5, 0.4 10−3ℓ

0.35, 10−6ℓ ,
1 10−4ℓ 0 (16) C1 71 0.5, 30.8

Mat on board 6K, 18K,
12K 0.025 1e3, 1e4, 0.4 10−3ℓ

0.1, 10−3ℓ ,
1 10−2ℓ

1.7K
(8,2K) C1 243 7.7, 15.24

Cement Arch 216, 150,
324 0.01 2300, 2e10, 0.2 10−6 0.5, 10−5ℓ ,

∞ 10−4ℓ 101 (118) C3 54 0.05, 5.7

Toy arch fall 216, 150,
324 0.01 1e3, 1e6, 0.4 10−3ℓ

0.2, 10−5ℓ ,
∞ 10−2ℓ 66 (272) C3 55 0.15, 17.3

Block on
slope 1

8, 6,
24 0.025 1e3, 1e9, 0.4 10−3ℓ

0.5, 10−5ℓ ,
∞ 10−4ℓ 4 (4) C3 50 9e-4, 1.27

Block on
slope 2

8, 6,
24 0.025 1e3, 1e9, 0.4 10−3ℓ

0.49, 10−5ℓ ,
∞ 10−4ℓ 4 (4) C3 51 3e-3, 6.9

Stick-slip
Armadillo
roller

67K,
386K,
24K

0.025 1e3, 5e5, 0.2 10−3ℓ
0.5, 10−3ℓ ,

2 10−2ℓ
7.8K

(16.2K) C4 3542 1281.4, 113.9

Stick-slip
Armadillo
roller (FCR)

67K,
386K,
24K

0.025 1e3, 5e5, 0.2 10−3ℓ
0.5, 10−3ℓ ,

1 10−2ℓ 8K (33K) C3 3651 346, 66.8

Softer
Armadillo
roller (FCR)

67K,
386K,
24K

0.025 1e3, 1e5, 0.2 10−3ℓ
0.5, 10−3ℓ ,

1 10−2ℓ
11K
(27K) C4 3646 664,8, 60.3
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D | Rigid IPC Technical Details

D.1 Robustly Computing Rodrigues’ Rotation Formula

D.1.1 Talyor Series Expansion of sinc

To avoid numerical issues when computing sinc(𝑥) we instead use

sinc(𝑥) =


𝑥4/120 − 𝑥2/6 + 1 |𝑥 | ≤ 𝜖

sin(𝑥)
𝑥

otherwise

where sinc( |𝑥 | ≤ 𝜖) is computed using a fifth-order Taylor series expansion around zero.

D.1.2 Rodrigues’ Rotation Formula Derivatives

To avoid numerical issues in derivatives of Rodrigues’ rotation formula (Equation (4.14)) we

use a Taylor series expansion around 0. The gradient of sinc(∥𝜽 ∥) is computed as

∇ sinc(∥𝜽 ∥) = 𝑔(∥𝜽 ∥)𝜽
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with

𝑔(𝑥) =


𝑥4/840 + 𝑥2/30 − 1/3 |𝑥 | ≤ 𝜖∇

(𝑥 cos(𝑥) − sin(𝑥))/𝑥3 otherwise

where 𝜖∇ = 10−4. The Hessian of sinc(∥𝜽 ∥) is computed as

∇2 sinc(∥𝜽 ∥) = ℎ(∥𝜽 ∥)𝜽𝜽⊤ + 𝑔(∥𝜽 ∥)𝑰

with

ℎ(𝑥) =


𝑥4/7560 − 𝑥2/210 + 1/15 |𝑥 | ≤ 𝜖∇2

(−𝑥2 sin(𝑥) − 3𝑥 cos(𝑥) + 3 sin(𝑥))/𝑥5 otherwise

where 𝜖∇2 = 0.1.

D.1.3 Interval Computation of sinc

Given an interval 𝑥 = [𝑎, 𝑏] we want to compute sinc(𝑥) while avoiding exponentially large

intervals around 0. We first start by exploiting the evenness of sinc to compute

𝑦neg = sinc(𝑥 ∩ [−∞, 0]) = sinc(−(𝑥 ∩ (−∞, 0])).

Now that our domain is from [0,∞), we utilize the monotonicity of sinc to decompose 𝑥 into

𝑥 ∩ [0,𝑚] and 𝑥 ∩ [𝑚,∞) where𝑚 = 4.4934094579 is a conservative value lower value for the

upper bound of the monotonic sub-domain. The latter case can be computed as normal using

interval division because the values are not too small. For sinc(𝑥 ∩ [0,𝑚]), we compute sinc as

𝑦monotonic = [ lower(sinc( [upper(𝑥 ∩ [0,𝑚])])),

upper(sinc( [lower(𝑥 ∩ [0,𝑚])]))]
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Figure D.1: Rigid CCD comparison. We compare our narrow-phase curved CCD with the methods
of Snyder [1992] and [Redon et al. 2002a]. We extracted 43K point-triangle and 240K edge-edge queries
from the first ten steps of our bolt simulation (Figure 4.4) which has a good mix of linear and rotating
contacts between close conforming geometry. Our method is several orders of magnitude faster than
prior methods (x-axis is logarithmic).

where [.] indicates computing an interval containing a single value to account for floating-point

rounding. Finally, we combine all sub-domain results using the hull of all ranges.

D.2 Comparison for Curved CCD

We compared our curved narrow-phase CCDwith the interval-based root-finding methods of

Snyder [1992] and Redon et al. [2002a]. FigureD.1 contains a histogram of query timings, illustrat-

ing the orders of magnitude improvement of our method over previous works. This performance

is due in part to the expensive nature of interval arithmetic but also the use of multivariate root-

finder of in the case of Snyder [1992] and degeneracies in the univariate formulation of Redon

et al. [2002a]. This results in queries that can take several seconds to process (our maximum time

for point-triangle queries is 0.02s and for edge-edge is 0.3s).
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D.3 Effect of 𝛿

The parameter 𝛿 in our curved CCD controls the adaptive subdivision of our trajectories and

in turn the accuracy and runtime of CCD. To demonstrate these effects we simulate the Piston

(Figure 4.2) with three different values of 𝛿 : 0.1, 0.5, and 0.9. We do not consider a value outside

of (0, 1) because our distances are all unsigned and a value 𝛿 > 1 could result in the immediate

termination of the linear CCD (the initial distance is less than the minimum distance 𝑏).

For 𝛿 = 0.1, the CCD is forced to do unnecessary refinement leading to a high runtime (611.6s

with 227 Newton iterations).

For 𝛿 = 0.9, the CCD requires less refinement and is, therefore, faster, but it is less accurate as

the error 𝑏 is not tightly bound. This inaccuracy results in a large number of Newton iterations

(1162 iterations) which ultimately shifts the bottleneck and results in a large runtime (742.6s).

We, therefore, choose to use the Goldilocks value of 𝛿 = 0.5 because it provides the best

trade-off between runtime (130.6s) and iterations (211 iterations).

D.4 Comparison with IPC

We compared against IPC on a set of nine scenes with varying geometric complexity and

numbers of bodies. Table D.1 provides a detailed summary of the total runtime and number

of newton iterations. For scenes with simple geometry (Arch (25 and 101 stones) and Wrecking

ball), our rigid formulation has little to no performance advantage over IPC because of its cheaper

linear CCD. For more complex geometries (the chain net (4 × 4 and 8 × 8) and rolling cone) IPC

suffers due to the large number of DOF.
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Table D.1: IPC comparison. We compare our method with the volumetric IPC (Chapter 2) on a variety
of scenes with varying geometric complexity and number of bodies. IPC performs well (in some cases
better) than our method when the geometry is easily represented by only surface elements. When the
geometry is complex, however, our reduced DOF allows us to get a performance gain.

Example Runtime (s)
(IPC)

Runtime (s)
(Rigid) Speed-up Iterations

(IPC)
Iterations
(Rigid)

Pendulum 339.7 133.1 2.6× 10K 3K
Double pendulum 914.0 1559.9 0.6× 12K 4K
Arch (25 stones) 26.5 55.8 0.5× 2K 2K
Arch (101 stones) 238.3 487.8 0.5× 4K 5K
Wrecking ball 7179.8 5748.1 1.2× 9K 18K
Bolt 4031.0 1436.9 2.8× 24K 4K
Rolling cone 1184.2 150.9 7.8× 21K 16K
Chain net (4 × 4) 1369.9 99.8 13.7× 4K 3K
Chain net (8 × 8) 9950.5 1420.9 7.0× 5K 5K

D.5 Interpolating Large Rotation Vectors

Although rotation vectors are invariant to multiples of 2𝜋 , adding rotation vectors whose

axes are not aligned is not. In fact, adding a small rotation update to a large rotation vector will

result in a rotation axis close to the large rotation’s axis. For example, [0, 0, 0] + [0, 1, 0] = [0, 1, 0]

results in a rotation of 1 radian around the y-axis, but [2𝜋, 0, 0] + [0, 1, 0] = [2𝜋, 1, 0] results in a

rotation of
√

4𝜋2 + 1 radians around an axis ≈ [0.988, 0.157, 0].

In our experiments, we find this property has little to no effect on the quality of simulation. In

synthetic tests, however, this can lead to an increased number of Newton iterations (more updates

necessary to move the axis of rotation) or small displacements that can trigger early convergence

in our Newton optimization (using the same displacement-based convergence as in Chapter 2).

An easy fix to this problem, should the need ever arise, is to substitute the resulting rotation

vector 𝜽 = 𝜃𝒂 with (𝜃 mod 2𝜋)𝒂 at the end of the timestep. It is important to only do this at the

end of the timestep to avoid discontinuities in our potential during the optimization.
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E | CCD Technical Details

E.1 Dataset Format

To avoid any loss of precision we convert every input floating-point coordinate in rationals

using GNU Multiple Precision Arithmetic Library (GMP) [Granlund and the GMP Development

Team 2012]. This conversion is exact since every floating point can be converted in a rational

number, as long as the numerator and denominator are arbitrarily large integers. We then store

the numerator and denominator as a string since the numerator and denominator can be larger

than a long number. To retrieve the floating point number we allocate a GMP rational number

with the two strings and convert it to double.

In summary, one CCD query is represented by a 8 × 7 matrix where every row is one of

the 8 CCD input points, and the columns are the interleaved 𝑥,𝑦, 𝑧 coordinates of the point,

represented as numerator and denominator. For convenience, we appended several such matrices

in a common comma-separated values (CSV) file. The last column represents the result of the
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ground truth. For instance a CC query between 𝑝0
1, 𝑝

0
2, 𝑝

0
3, 𝑝

0
4 and 𝑝

1
1, 𝑝

1
2, 𝑝

1
3, 𝑝

1
4 is represented as

𝑝0
1𝑥𝑛

𝑝0
1𝑥
𝑑

𝑝0
1𝑦𝑛

𝑝0
1𝑦
𝑑

𝑝0
1𝑧𝑛

𝑝0
1𝑧
𝑑

𝑇

𝑝0
2𝑥𝑛

𝑝0
2𝑥
𝑑

𝑝0
2𝑦𝑛

𝑝0
2𝑦
𝑑

𝑝0
2𝑧𝑛

𝑝0
2𝑧
𝑑

𝑇

𝑝0
3𝑥𝑛

𝑝0
3𝑥
𝑑

𝑝0
3𝑦𝑛

𝑝0
3𝑦
𝑑

𝑝0
3𝑧𝑛

𝑝0
3𝑧
𝑑

𝑇

𝑝0
4𝑥𝑛

𝑝0
4𝑥
𝑑

𝑝0
4𝑦𝑛

𝑝0
4𝑦
𝑑

𝑝0
4𝑧𝑛

𝑝0
4𝑧
𝑑

𝑇

𝑝1
1𝑥𝑛

𝑝1
1𝑥
𝑑

𝑝1
1𝑦𝑛

𝑝1
1𝑦
𝑑

𝑝1
1𝑧𝑛

𝑝1
1𝑧
𝑑

𝑇

𝑝1
2𝑥𝑛

𝑝1
2𝑥
𝑑

𝑝1
2𝑦𝑛

𝑝1
2𝑦
𝑑

𝑝1
2𝑧𝑛

𝑝1
2𝑧
𝑑

𝑇

𝑝1
3𝑥𝑛

𝑝1
3𝑥
𝑑

𝑝1
3𝑦𝑛

𝑝1
3𝑦
𝑑

𝑝1
3𝑧𝑛

𝑝1
3𝑧
𝑑

𝑇

𝑝1
4𝑥𝑛

𝑝1
4𝑥
𝑑

𝑝1
4𝑦𝑛

𝑝1
4𝑦
𝑑

𝑝1
4𝑧𝑛

𝑝1
4𝑧
𝑑

𝑇,

where 𝑝𝑡
𝑖𝑥𝑛
and 𝑝𝑡

𝑖𝑥
𝑑

are respectively the numerator and denominator of the 𝑥-coordinate of 𝑝 , and

𝑇 is the same ground truth. The dataset and a query viewer can be downloaded from the NYU

Faculty Digital Archive1.

E.2 Example of Degenerate Case not Properly Handled

by Brochu et al. [2012]

Let
𝑝0 = [0.1, 0.1, 0.1], 𝑣0

1 = [0, 0, 1], 𝑣0
2 = [1, 0, 1], 𝑣0

3 = [0, 1, 1],

𝑝1 = [0.1, 0.1, 0.1], 𝑣1
1 = [0, 0, 0], 𝑣1

2 = [0, 1, 0], 𝑣1
3 = [1, 0, 0]

(E.1)

be the input point and triangle. Checking if the point intersects the triangle is equivalent to check

if the prism shown in Figure E.1 contains the origin. However, the prism contains a bilinear face

that is degenerate (it looks like a “hourglass”). The algorithm proposed in [Brochu et al. 2012]

does not consider this degenerate case and erroneously reports no collision.
1NYU Faculty Digital Archive: https://archive.nyu.edu/handle/2451/61518
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Figure E.1: Prism resulting from the input points and triangle in Equation (E.1). The origin is marked by
the red dot.

E.3 Example of Inflection Point not Properly Handled

by Tang et al. [2014]

Let

�0 = [1, 1, 0], �0
1 = [0, 0, 5], �0

2 = [2, 0, 2], �0
3 = [0, 1, 0],

�1 = [1, 1, 0], �1
1 = [0, 0,−1], �1

2 = [0, 0,−2], �1
3 = [0, 7, 0]

be the input point and triangle. Checking if they intersect at time � is equivalent to finding the

roots of

−72�3 + 120�2 − 44� + 3.

To apply the method in [Tang et al. 2014] we need to rewrite the polynomial in form of Tang et al.

[2014, Equation (1)]:

1�3
0 (�) −

35
3
�3

1 (�) +
82
3
�3

2 (�) + 14�3
3 (�).

Their algorithm assumes no inflection points in the Bezier curve. Thus it proposes to split the

curve at the eventual inflection point (as in the case above). The formula proposed in [Tang et al.
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2014, Section 4.1] contains a typo, by fixing it we obtain the inflection point at:

𝑡 =
6𝑘0 − 4𝑘1 + 𝑘2

6𝑘0 − 6𝑘1 + 3𝑘2 − 𝑘3
=

5
9
.

By using the incorrect formula we obtain 𝑡 = 155/312, which is not an inflection point. In both

cases, 𝑡 cannot be computed exactly since it contains a division, and computing it approximately

breaks the assumption of not having inflection points in the Bezier form. In the reference code,

the authors detect the presence of an inflection point using predicates, but do not split the curve

(the case is not handled). We modified the code (patch attached in the additional material) to

conservatively return a collision in these cases.

Independently from this problem, their reference implementation returns false negative (i.e.

misses collisions) for certain configurations, such as the following degenerate configuration:

𝑝0 = [1, 0.5, 1], 𝑣0
1 = [0, 0.57, 1], 𝑣0

2 = [1, 0.57, 1], 𝑣0
3 = [1, 1.57, 1],

𝑝1 = [1, 0.5, 1], 𝑣1
1 = [0, 0.28, 1], 𝑣1

2 = [1, 0.28, 1], 𝑣1
3 = [1, 1.28, 1] .

We could not find out why this is happening, and we do not know if this is a theoretical or

numerical problem, or a bug in the implementation.

E.4 Effect of 𝛿 on the interval-based methods

UIRF, IRF, and our method have a single parameter 𝛿 to control the size of the interval. In-

creasing 𝛿 will introduce more false positive, while making the algorithms faster (Figure E.2).

Note that we limit the total running time to 24 h, thus UIRF does not have result for 𝛿 > 10−6 (for

𝛿 = 10−6 it takes 1 ms per query in average). 𝛿 has a similar effect on the number of false positives

for the three interval based methods, while it has a more significant impact on the running time
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Figure E.2: Log plot of the effect of the tolerance 𝛿 on the running time (top) and false positives (bottom)
for the three (Ours, UIRF, and IRF) interval based methods on the simulation dataset.

for UIRF and IRF.

E.5 Minimum separation with FPRF

In Table E.1, we compare our method with FPRF by changing the parameter 𝜂 that mimics

minimum separation.
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Table E.1: FPRF MSCCD benchmark. Summary of the average runtime in µs (t), number of FP, and
number of FN for FPRF and our method.

Handcrafted Dataset
Vertex-Face MSCCD Edge-Edge MSCCD

FPRF Ours FPRF Ours

𝑑 t FP FN t FP FN t FP FN t FP FN

10−2 2.41 1.8K 4 18.86K 2.6K 0 1.16 3.3K 19 9.64K 4.8K 0
10−8 4.53 83 3 1.60K 159 0 0.60 160 28 3.42K 309 0
10−16 2.23 29 69 1.51K 108 0 0.55 45 145 2.92K 214 0
10−30 2.24 9 70 1.39K 108 0 0.58 5 147 2.79K 214 0
10−100 2.31 9 70 1.43K 108 0 0.80 5 147 2.82K 214 0

Simulation Dataset
Vertex-Face MSCCD Edge-Edge MSCCD

FPRF Ours FPRF Ours

𝑑 t FP FN t FP FN t FP FN t FP FN

10−2 8.04 869.1K 1 12.04 8.1M 0 8.01 1.1M 0 19.12 8.3M 0
10−8 8.00 4 2 0.72 8 0 0.77 16 0 0.73 40 0
10−16 7.78 0 5.2K 0.71 2 0 0.25 0 2.3K 0.72 17 0
10−30 7.77 0 5.2K 0.66 2 0 0.25 0 2.3K 0.67 17 0
10−100 7.75 0 5.2K 0.66 2 0 0.25 0 2.3K 0.68 17 0
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