
Destructive E�ect Analysis And Finite

Di�erencing For Strict Functional Languages

by

Chung Yung

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 1999

Approved:

Benjamin Goldberg

c
 Chung Yung

All Rights Reserved, 1999

To the memory of my grandfather, HaiLing Yung (1918-1995)

iii

Acknowledgements

I am most grateful to my advisor, Professor Benjamin Goldberg, not only for his

guiding me through the doctoral study but also for his continued support in various

aspects. His deep involvement have been invaluable during the preparation of this

thesis.

I would like to thank Professor Edmond Schonberg and Professor Anindya

Banerjee for being on my thesis committee. Their comments are precious and very

helpful for this thesis.

I appreciate Professor Robert Paige for showing me some important work in

this area.

I would like to thank Professor Malcolm Harrison of NYU GriÆn Project, and

Professor Ajit Kambil of NYU EDGAR Project. Their leadership of the research

projects made it very pleasant to work with them. Much of the motivation of this

dissertation came from the experience of working in both projects.

I would like to thank my oÆcemate Madhu Nayakkankuppam. The talks and

v

discussions in our oÆce have been an important part of my doctoral study. Es-

pecially, I appreciate his kindness of letting me use his C code for measuring

benchmarks.

I am grateful to Allan Leung for his comments to the design of the experimental

language. I would like to thank Nick Afshartous and Dao-I Lin for sharing their

experiences.

I would like to thank my parents, Chiahsien Yung and Yuchu K. Yung, and my

grandmother Rueyti W. Yung for their unconditional support over the years.

vi

Preface

Destructive update optimization is critical to the performance of functional pro-

grams. Pure functional languages do not allow mutations, destructive updates, or

selective updates so that the straightforward implementations of functional lan-

guages induce large amounts of copying to preserve the program semantics. The

unnecessary copying of data can increase both the execution time and the mem-

ory requirements of an application. Destructive update optimization makes an

essential improvement to the implementation of functional programs with com-

pound data structures, such as arrays, sets, and aggregates. Moreover, for many

of the compiler optimization techniques that depend on the side-e�ects, destruc-

tive update analysis provide the input for applying such optimization techniques

to functional programs.

Among other compiler optimization techniques, �nite di�erencing captures

common yet distinctive program constructions of costly repeated calculations and

transforms them into more eÆcient incremental program constructions. Finite dif-

vii

ferencing generalizes the classical method of reduction in operator strength. When

applied to set-theoretic expressions, this technique can transform algorithms from

a high-level concise but ineÆcient version into a more complex but eÆcient version.

Since �nite di�erencing relies on side-e�ects to improve the performance of pro-

grams, when we apply �nite di�erencing together with the destruction update op-

timization to functional programs we may substantially improve the performance.

In this dissertation, we develop a new approach to destructive update analysis,

called destructive e�ect analysis. We present the semantic model and the abstract

interpretation of destructive e�ect analysis. We design EAS, an experimental ap-

plicative language with set expressions. The implementation of the destructive

e�ect analysis is integrated with the optimization phase of our experimental com-

piler of EAS. We apply �nite di�erencing to optimize pure functional programs,

and we show the performance improvement that results from applying the �nite

di�erencing transformations together with the destructive update optimization.

This dissertation is organized in �ve chapters. We give a motivating exam-

ple and the background of the dissertation in Chapter 1. Chapter 2 presents the

semantic model of dynamic destructive e�ect analysis and the abstract interpreta-

tion framework. Chapter 3 describes the implementation work of the dissertation,

which includes: the extension of typed �-calculus to sets, the design of EAS, the

implementation of the EAS dynamic optimizer and the EAS static analyzer. In

viii

Chapter 4, we present the application of destructive e�ect analysis to the �nite

di�erencing optimization for functional programs. We present the concluding com-

ments and the future directions in the last chapter.

ix

Contents

Dedication iii

Acknowledgements v

Preface vii

List of Figures xv

1 Introduction 1

1.1 A Motivating Example . 3

1.2 Related Work . 7

1.3 Dissertation Overview . 9

1.4 Set Functional Languages . 12

1.5 Destructive Update Analysis . 14

1.5.1 Abstract Interpretation Framework 14

1.5.2 Enriched Type System . 15

xi

1.6 Finite Di�erencing . 16

1.7 Summary . 17

2 Destructive E�ect Analysis For Strict Functional Languages 21

2.1 Introduction . 22

2.2 Source Language . 26

2.3 Preliminaries . 29

2.3.1 Liveness Analysis with Time Stamps 30

2.3.2 Variable Last-Use Analysis 32

2.3.3 Destructibility . 35

2.4 Formal Semantics of Destructive E�ect Analysis 37

2.5 Abstract Interpretation of Destructive E�ect Analysis 48

2.6 Safety And Complexity . 51

2.7 Example . 56

2.7.1 Dynamic Destructive E�ect Analysis 58

2.7.2 Destructive E�ect Abstraction Interpretation 59

2.8 Comparison . 61

2.8.1 Destructive Update Analysis For Lazy Languages 62

2.8.2 Destructive Update Analysis For Imperative Languages . . . 64

2.8.3 Analysis For Globalization 66

2.8.4 Analysis For Parallel Languages 67

xii

2.9 Conclusion . 69

3 Implementation 75

3.1 Set-Enriched Typed �-Calculus . 76

3.1.1 SET �-Calculus Syntax . 78

3.1.2 Well-Formedness . 79

3.1.3 Type Analysis . 82

3.1.4 Soundness and Completeness 90

3.2 EAS . 95

3.2.1 The EAS Syntax . 98

3.2.2 The EAS Static Semantics 102

3.2.3 The EAS Dynamic Semantics 108

3.3 EAS Dynamic Optimizer . 112

3.3.1 Enriched Type System . 113

3.3.2 Optimizing Code Generator 114

3.4 EAS Static Analyzer . 115

3.4.1 Two-Level Intermediate Representation 116

3.4.2 Static Destructive Update Optimization 117

3.5 Benchmarks . 118

4 Finite Di�erencing Functional Programs 121

xiii

4.1 Finite Di�erencing of Computable Expressions 124

4.2 Finite Di�erencing Functional Set-Theoretic Programs 134

4.2.1 Induction Variable . 136

4.2.2 Unary Di�erentiable Expressions 138

4.2.3 Binary Di�erentiable Expressions 140

4.2.4 Implicit Binary Di�erentiable Expressions 142

4.2.5 Example . 144

4.3 Finite Di�erencing General Functional Programs 146

4.4 Benchmarks . 147

5 Conclusion and Future Directions 151

5.1 Destructive E�ect Analysis for a Fist-Order Language 151

5.2 Destructive E�ect Analysis for a Higher-Order Language 152

Bibliography 157

xiv

List of Figures

1.1 An ML-like functional program of topological sort 4

1.2 The result of �nite di�erencing on the program in Figure 1.1. 6

1.3 list operations and set operations 13

2.1 The variable last-use analysis . 33

2.2 Semantic functions of dynamic destructive e�ect analysis 40

2.3 The destructive e�ects of a value 44

2.4 Semantic Functions of destructive e�ect abstract interpretation . . . 50

2.5 A functional bubble sort program 57

3.1 The syntax of the Set-Enriched Typed �-calculus 79

3.2 Well-formedness of the SET �-calculus 81

3.3 Type analysis of set-enriched typed �-expressions (part 1) 87

3.4 Type analysis of set-enriched typed �-expressions (part 2) 88

3.5 Type analysis of set-enriched typed �-expressions (part 3) 89

xv

3.6 The EAS syntax . 98

3.7 The EAS grammar . 101

3.8 EAS Compound Static Semantic Objects 103

3.9 Types of the EAS primitives . 104

3.10 Benchmarks for the unoptimized and optimized programs 120

4.1 Program segments with set-theoretic expressions 122

4.2 Example of �nite di�erencing of set-theoretic expressions 123

4.3 Algorithm detecting reduction candidate expressions 133

4.4 Algorithm for �nite di�erencing optimization 135

4.5 Automatic �nite di�erencing algorithm 136

4.6 Example of identifying induction variables in a functional program . 137

4.7 A unary di�erentiable expression 139

4.8 A binary di�erentiable expression 141

4.9 An implicit binary di�erentiable expression 143

4.10 A topological sort program in EAS 144

4.11 A �nite di�erencing optimized topological sort program 145

4.12 A unary di�erentiable list expression 148

4.13 Execution time of the programs . 149

5.1 A simple higher-order program . 153

5.2 The destructibility of higher-order functions 155

xvi

Chapter 1

Introduction

Destructive update optimization is critical for writing scienti�c codes in functional

languages [WC98]. Pure functional languages do not allow mutations, destruc-

tive updates, or selective updates so that the straightforward implementations of

functional languages induce large amounts of copying to preserve the program se-

mantics. The unnecessary copying of data can increase both the execution time

and the memory requirements of an application. Destructive update optimization

makes an essential improvement to the implementation of functional programs with

compound data structures, such as arrays, sets, and aggregates.

Moreover, for many of the compiler optimization techniques that depend on

the side-e�ects, destructive update analysis provide the input for applying such

optimization techniques. Among other compiler optimization techniques, �nite

1

di�erencing captures common yet distinctive program constructions of costly re-

peated calculations and transforms them into more eÆcient incremental program

constructions [Pai81, PK82]. Since �nite di�erencing relies on side-e�ects to im-

prove the performance of programs, when we apply �nite di�erencing together with

the destruction update optimization to functional programs we may substantially

improve the performance.

Functional languages, which originated with Lisp, owe much of their spirit to

�-calculus. Lisp was the �rst signi�cant programming language to allow the com-

putation of all partial recursive functions by purely applicative, or functional, pro-

grams. One feature of functional languages that goes beyond the applicative realm

is the inclusion of primitives for what is variously referred to as \mutations," \de-

structive updates," or \selective updates." We shall refer to a functional language

with or without mutation primitives as impure or pure, respectively [Pip97].

Without mutation primitives, binding compound values to objects in pure func-

tional languages raises an important issue of eÆciency. A naive implementation

that strictly adheres to the applicative model must copy whenever data values are

modi�ed. However, the cost associated with copying large data aggregates such

as arrays and sets can become prohibitive [FO95]. This leads to our investiga-

tion in analysis techniques for optimizing pure functional programs with aggregate

updates.

2

According the de�nition given by Draghicescu and Purushothaman [DP93], we

may describe the destructive update problem as follows.

Given the expression update(e1; e2; e3), determine at compile time, if

possible, that the object denoted by e1 will not be referred after the update

is performed; in such a case a compiler can generate code to update the

object destructively.

The goal of this dissertation is to investigate the extent to which compiler

optimization techniques add something essential to functional languages with sets

and other aggregates, and the extent to which they can make compilers for pure

functional languages generate object code that manipulates sets as eÆciently as

the compilers for impure functional languages do.

1.1 A Motivating Example

We shall start with an example. Consider the functional program in Figure 1.1

that does topological sort. For a graph with a set of nodes f1; 2; 3g and a set of

edges f(1; 2); (1; 3); (2:3)g, the program will have a set S = f1; 2; 3g, and a set

sp = f(1; f2; 3g); (2; f3g)g. Note that the algorithm implemented by the program

is not eÆcient, and we will demonstrate how �nite di�erencing may improve its

eÆciency. Also, note that the loops in the algorithm are implemented as recursive

functions in the ML-like program.

3

/* fnext computes {a in S1 | sp{a} * S1 = {} } */

1. fun fnext {} S1 = {};

2. | fnext (S2 with a) S1 =

3. if sp{a} * S1 == {}

4. then (fnext S2 S1) with a;

5. else fnext S2 S1;

/* TSort: the loop in TopSort */

6. fun TSort {} S L = L;

7. | TSort (T with a) S L =

8. let S1 = S less a;

9. T1 = fnext S1 S1;

10. in TSort T1 S1 (a :: L);

/* TopSort is the main function for topological sort */

11. fun TopSort S =

12. let T = fnext S S;

13. in TSort T S [];

Figure 1.1: An ML-like functional program of topological sort

4

We assume that all the updating expressions are implemented in a naive and

straightforward way. Since in each iteration it takes O(nm) time to construct the

set T1 in line 9, the complexity of this version of topological sort is O(n2m), where

n is the number of nodes and m is the number of edges.

To improve the eÆciency of the program in Figure 1.1, we may use Paige's �nite

di�erencing technique to optimize the program. When optimizing the program

using �nite di�erencing, we replace the code for constructing T1 in each iteration

by the code for maintaining Zr from the value of Zr in previous iteration. The

�nite di�erencing transformations use two auxiliary sets, prec and count, for this

purpose. The program that results from the �nite di�erencing transformations is

show in Figure 1.2.

Intuitively, since the program in Figure 1.2 replaces the expressions that con-

struct new sets by the expressions that insert an element to a set, we expect the

program in Figure 1.2 will be implemented with a better eÆciency than the pro-

gram in Figure 1.1. However, in pure functional languages, once an object is bound

to a variable, the object cannot be changed. It is not clear how the compilers of

pure functional language could generate eÆcient code for line 16

let count with <u, c> = C;

and for line 18

chkZ S <(Zr with u),(count with <u, 0>)>;

5

/* initTS: initialize prec and count set */

1. fun initTS {} <S,C> = <S,C>;

2. | initTS (sp with <x, y>) <S,C> =

3. if y in DOM S

4. then let prec with <y, z> = S;

5. count with <y, c> = C;

6. in initTS sp

(<prec with <y, z with x>, count with <y,c+1>>);

7. else initTS sp (<S with <y,{x}>, C with <y,1>>);

/* initZ: initialize Zrset */

8. fun initZ {} C Zr = Zr;

9. | initZ (S with a) C Zr =

10. let c = map C a;

11. in if c == 0

12. then initZ S C (Zr with a);

13. else initZ S C Zr;

/* chkZ: the loop in TSort */

14. fun chkZ {} <Zr, C> = <Zr, C>;

15. | chkZ (u with S) <Zr, C> =

16. let count with <u, c> = C;

17. in if c == 1

18. then chkZ S <Zr with u, count with <u, 0>>;

19. else chkZ S <Zr, count with <u, c-1>>;

/* TSort: the loop in TopSort */

20. fun TSort {} S C L = L;

21. | TSort (Zr with a) S C L =

22. let <Z1, C1> = chkZ S{a} <Zr, C>;

23. in TSort Z1 S C1 (a :: L);

/* TopSort */

24. fun TopSort S =

25. let <prec, count> = initTS sp <{},{}>;

26. Zrset = initZ S count {};

27. in TSort Zrset prec count [];

Figure 1.2: The result of �nite di�erencing on the program in Figure 1.1.

6

if the compilers could not destructively update the sets C, Zr, and count. Hence,

it is not clear whether the implementation of the �nite di�erencing optimized

program in Figure 1.2 will take less time than that of the original program in

Figure 1.1.

This motivates our investigation in how we may improve the eÆciency of pure

functional programs with �nite di�erencing. Our approach is that we introduce de-

structive update analysis to the compilers of pure functional languages so that the

implementation of functional programs actually destructively updates the com-

pound values while preserving the pure functional semantics. We will describe

more of this in Section 1.6.

1.2 Related Work

The SETL programming language, developed at New York University [SDD86,

Sny90], is the �rst programming language with a general purpose set data struc-

ture. The optimization of programs with set operations is discussed in Schwartz

[Scw75a, Scw75b], and in Freudenberger et al. [FSS83]. Manens [Ber82] and S3L

[Lac92] implemented �-calculi with sets. Goubault [Gou94] described HimML, an

extension of Standard ML [MTH90] with eÆcient polymorphic set-theoretic data

structures.

The analysis for destructive update optimization has been studied in the lit-

7

erature before. One of the early works is that of Mycroft [Myc81]. In Hudak

and Bloss [HB85], the problem is discussed in an operational model based on the

graph reduction. An applicative-order language is treated in Hudak [Hud87] using

an abstraction of reference counting. A related analysis is presented by Schmidt

[Scm85, Scm88], also in an applicative-order setting. The problem is also dis-

cussed in Bloss [Blo89a, Blo89b] as an application of path analysis. A variation of

path analysis is also used in Gopinath and Hennessy [GH89] for a language with

call-by-value semantics. Draghicescu and Purushothaman [DP93] o�er a solution

to object sharing and evaluation order problems for lazy functional languages.

Fitzgerald and Oldehoeft explore the destructive update analysis for true multi-

dimensional arrays with a graph-based language as an intermediate form [FO95].

Odersky proposes e�ect analysis for a safe embedding of mutable data structure

in functional languages [Ode91]. Wand and Clinger present the set constraints for

an interprocedural destructive update analysis with time stamps [WC98].

Finite di�erencing was �rst developed by Paige [Pai81] as a high-level global

program optimization method that captures a commonly occurring yet distinc-

tive mechanism of program construction in which repeated costly calculations are

replaced by inexpensive incremental counterparts. When �nite di�erencing trans-

formations are applied to the algorithms that are expressed as high-level, lucid but

ineÆcient program versions, the transformed algorithms are materialized as more

8

complex but eÆcient program versions. This method generalizes John Cocke's

method of strength reduction, and provides a convenient framework to implement

a host of program transformations, including Earley's iteration inversion [PK82].

The �nite di�erencing technique has been successfully applied to program transfor-

mation systems from imperative source languages to imperative target languages

[CP93, Pai94]. The recent work catches the spirit of �nite di�erencing and applies

it to incremental computation systems [Liu96], and to semi-automatic program

development systems [Smi90].

1.3 Dissertation Overview

This dissertation explores the use of destructive update analysis for set functional

languages in order to apply �nite di�erencing at the optimization phase of func-

tional language compilers. This dissertation also explores the cooperation between

�nite di�erencing and the compilation of functional programs from the viewpoints

of both the abstract level and the implementation level.

One of the bene�ts of functional programming is that its clean semantics makes

programs amenable to very powerful transformations, resulting in signi�cant opti-

mizations. In this dissertation, we investigate �nite di�erencing in its application

to functional language compilation and functional program transformations. Our

goal is to improve the eÆciency of functional programs in the same way that �nite

9

di�erencing improves the eÆciency of imperative programs.

The traditional destructive update analyses on functional languages have con-

centrated on array constructs. Bloss extends the standard semantics using path

information and analyzes for destructive updates based on the path information

[Blo89a, Blo89b, Blo94]. Draghicescu and Purushothaman [DP93] o�er a uniform

solution to object sharing and evaluation order problems for lazy functional lan-

guages [DP93]. Odersky presents e�ect analysis for a safe embedding of mutable

data structure in functional languages [Ode91]. They all apply, in di�erent ways,

abstract interpretation frameworks for a destructive update analysis. In this dis-

sertation, we also apply an abstract interpretation framework for the destructive

update analysis of strict functional languages with set expressions.

Turner, Wadler, and Mossin [TWM95] proposed a new idea of a destructive

update analysis with their used-once analysis, which integrates the analysis with

the type system. However, they did not include the details of how to make this idea

practical. Wand and Clinger presented the idea of a destructive update analysis

using time stamps [WC98]. But, they did not include the precise algorithms of the

destructive update analysis. In this dissertation, we collect the information for our

destructive analysis in the type system, when possible. In this way we keep the

analysis phase of our approach simple. We analyze the expressions in a program

with the time stamps attached to the expressions.

10

Finite di�erencing is a high-level compiler optimization technique. The �nite

di�erencing technique is, from a theoretical point of view, language independent

and may be applied to imperative languages, functional languages, logic languages,

and so on. The �nite di�erencing technique has been successfully applied to imper-

ative programming language transformations [CP93, Pai94]. However, the evidence

is still missing that the �nite di�erencing technique can be applied to functional

languages. In this dissertation, we investigate the analysis needed for �nite di�er-

encing to improve the performance, and apply the �nite di�erencing transforma-

tions to functional programs for improving the performance.

In order to explore destructive update analysis for optimizing set functional

programs and to apply �nite di�erencing to functional languages, we divide the

work of this dissertation into three major components:

1. Compiling functional programs with sets:

A few techniques have been successfully applied to the analysis of functional

programs for optimizations. In this dissertation, we are especially interested

in their relation to the optimization of functional programs with sets.

2. Destructive update analysis for set functional languages:

We are interested in a new approach that combines the following two tech-

niques:

� applying an abstract interpretation framework for a static destructive

11

update analysis, and

� collecting the information needed in the type system.

3. Applying �nite di�erencing:

We are interested in applying �nite di�erencing together with the destructive

update analysis to optimize functional programs with sets.

1.4 Set Functional Languages

The �rst step of this dissertation is designing a functional language with set expres-

sions. We designed and implemented an experimental language, which is called

EAS (meaning Experimental Applicative language with Sets). We describe the

design of EAS in this section and more details can be found in [Yun97].

The Design of EAS

We designed EAS, an experimental functional language with set notations. We

start by enriching the typed �-calculus with set notations. Since all functional

programming languages can be viewed as syntactic variations of �-calculus, the set-

enriched �-calculus eventually shows that all functional languages can be enriched

with set notations [Yun97].

In a sense of implementation, a set is an unordered list whose elements appear

only once [FSS83, SDD86]. It allows us to extend the typed �-calculus to sets in

12

list operation set operation

nil[t] emp[t]

e1 :: e2 e1 with e2
hd e rep e

tl e e1less e2
isnil e isemp e

Figure 1.3: list operations and set operations

a way similar to how �-calculus handles lists. Analogous to the list operations, we

have a few set operations. Figure 1.3 shows our proposed set operations.

For the with and less operations, the implementation performs a membership

test before adding and deleting an element, respectively. In other word, e1 with e2

does nothing if e2 2 e1. In a similar way, e1 less e2 does nothing if e2 62 e1.

Note that the rep operation is di�erent from the arb operation in SETL. The

rep operation returns the representative of a set, while the arb operation in SETL

returns an arbitrary member in a set. Hereby, the rep operation is a deterministic

(and possibly implementation dependent) operation. In addition, we include the

membership test operator, 2, whose syntax is e1 in e2.

The next step of this dissertation is to build the compiler for a functional

language that implements the set-enriched typed �-calculus. We will describe the

implementation of the EAS compiler in Section 3.2. Some early implementation

results have been presented in [Yun98].

13

1.5 Destructive Update Analysis

The goal of a destructive update analysis is to eliminate unnecessary copying in

an implementation while preserving the semantics. The conventional study on

destructive update analysis has concentrated on the manipulations of the data

structures like arrays. Most of the approaches apply the abstract interpretation

framework for a static analysis. We will apply the technique of abstract interpre-

tation to the destructive update analysis for functional languages with sets.

The used once analysis by Turner, Wadler and Mossin extends the Hindley-

Milner type system with uses, yielding a type-inference based program analysis

which determines when values are accessed at most once [TWM95]. We will de-

scribe the idea of integrating part of destructive update analysis into the type

system.

1.5.1 Abstract Interpretation Framework

A few methods use abstract interpretation frameworks for a static destructive up-

date analysis. We start with a brief description of three well-known methods of de-

structive update analysis: Bloss' path analysis, Draghicescu and Purushothaman's

order of evaluation analysis, and Odersky's e�ect analysis.

Bloss presents an exact non-standard semantics, called path semantics, that

models the order of evaluation in a non-strict sequential functional language, and

14

its computable abstraction path analysis [Blo89a, Blo89b]. It was shown that the

information inferred by path analysis can be used to implement the destructive ag-

gregate update optimization, in which the updates on aggregates that are provably

not live are implemented destructively [Blo94].

Draghicescu and Purushothaman give a destructive update algorithm by ap-

plying their reduction to variables analysis [DP93], which is a method of detecting

the variables that denote locations where the result of expressions might be stored.

Odersky proposed e�ect analysis to show the safety of embedding mutable data

structures in functional languages [Ode91]. He developed a static criterion-based

abstract interpretation which checks that any side-e�ect which a function may

exert via a destructive update remains invisible.

It is interesting to note that all the three approaches apply the abstract inter-

pretation frameworks. By viewing set as a �rst-order construct, we may apply a

similar approach for the destructive update analysis of set programs.

1.5.2 Enriched Type System

Turner, Wadler and Mossin presented a method for determining when a value is

used at most once [TWM95]. Their method is based on a modi�cation of the

Hindley-Milner type system. Each type is labeled to indicate whether the corre-

sponding value is used at most once or may possibly be used many times. They

15

conjecture that their used-once analysis can be applied to the destructive update

analysis of data structures. However, they do not include, in [TWM95], the details

how this can be done.

We are interested in extending their idea of enriching the type system for a

destructive update analysis. More speci�cally, we want to integrate the phase of

information collection in our analysis into the type system in a way that Turner,

Wadler and Mossin did the used-once type system.

In order to keep our type system simple, we analyze the liveness of values in the

optimization phase of a compiler instead of in the type system. Therefore, in con-

trast to the used-once type system which does all the analysis in the type system,

our enriched type system collects information and the destructive update analysis

is performed in an analysis phase of the compiler, working with the information

collected from the enriched type system.

1.6 Finite Di�erencing

When compared with some other program transformation techniques, �nite di�er-

encing shows its advantages in several ways [PK82]:

1. Finite di�erencing may be applied over a large spectrum of language levels

from high-level speci�cations to low-level program representations;

2. Finite di�erencing can converge swiftly from a very high-level ineÆcient form

16

of an algorithm to a much lower-level version of a more eÆcient implementa-

tion;

3. Finite di�erencing can be implemented systematically; and,

4. Finite di�erencing can be shown to yield asymptotic speedup.

Finite di�erencing has been applied to a few di�erent areas, including pro-

gram transformations between imperative programming languages [CP93, Pai94],

semantic transformations on Lisp programs [Liu96], and semi-automatic program

development systems [Smi90].

In the example of topological sort shown in Figure 1.1, it is not clear if applying

�nite di�erencing to the functional program may produce asymptotic speedup or

not since the purely functional semantics may induces copying for the update

operations. Our approach is to apply the �nite di�erencing optimization together

with the destructive update optimization. With destructive update optimization,

we guarantee that copying is introduced only if it is necessary so that the result

program of �nite di�erencing transformation, shown in Figure 1.2, will produce

asymptotic speedup.

1.7 Summary

The overall project of this dissertation is divided into the following tasks:

17

1. Implementation of a compiler for functional programs with set operations,

2. De�nition of the semantics for the set functional language,

3. Development of a dynamic destructive update optimizer for the set functional

language,

4. Development of a static destructive update analyzer for the set functional

language,

5. Development and implementation of the �nite di�erencing algorithms for

functional programs, and

6. Experimentation on the e�ectiveness of a few large functional programs with

sets using the �nite di�erencing optimization and the destructive update

optimization.

In this chapter, we described the motivation, the background, and the project

plan of this dissertation. This dissertation contributes in the following aspects:

� We enrich the typed �-calculus with set notations. Thus, we validate the

enriching of all functional languages with set notations since all functional

languages can be viewed as variations of �-calculus [Yun97].

� We propose a new approach to destructive update analysis for the optimiza-

tion of aggregates. We develop the semantic model of dynamic destructive

18

update analysis and the abstract interpretation of static destructive update

analysis.

� We develop a framework for applying �nite di�erencing together with the

destructive update analysis to the optimization of functional programs with

sets.

19

Chapter 2

Destructive E�ect Analysis For

Strict Functional Languages

In functional languages, the update operation typically requires copying the ag-

gregate. The unnecessary copying of data can increase both the execution time

and the memory requirements of an application [Blo89b, Hud87]. Therefore, a

destructive update optimization for functional languages can make substantial im-

provement on the performance of the implementation of functional programs.

The cost of analyzing programs in order to allow destructive updates is recog-

nized to be high. The classic static methods of compile-time destructive update

analysis for lazy languages applying abstract interpretation frameworks over the

abstract domains of O(22
N

) size, where N is the length of the program [Blo94,

21

DP93, GH89, Hud87, Ode91]. The dynamic methods of run-time destructive op-

timization applied three-phase O(N4) algorithms for strict imperative languages

with pointers [CBC93]. The high cost of both the compile-time analysis and the

run-time optimization is due to the expensive maintenance of the equivalent re-

lations or evaluation orders for the variables that share the same values when

analyzing the execution of programs.

We propose a new approach, destructive e�ect analysis, to destructive update

optimization for strict functional languages. In stead of maintaining the equivalent

relations or evaluation orders, our analysis allows that the variables sharing the

same value in a function in the standard semantics share a copy of same destructive

e�ect. The dynamic version of our method takes O(N3) time to analyze a program.

The static version of destructive update analysis applies an abstract interpretation

framework over an abstract domain of size O(2N).

2.1 Introduction

Most implementations of functional languages employ at some level the notion

of sharing, whether manifested indirectly through an environment or directly via

pointers. Sharing is essential to an eÆcient implementation of a functional lan-

guage in two aspects: saving time by avoiding value re-computation and saving

space by keeping only one copy of each value [Hud87]. Although sharing is perva-

22

sive at the implementation level, it is rarely explicitly expressed in formal context.

This causes a problem in performing a variety of useful optimizations at compile

time with the information of sharing properties. Perhaps the most important of

these arises in destructive update optimization for the languages supporting ag-

gregate data structures.

Destructive update optimization can be described as follows:

De�nition (Destructive Update Optimization): The destructive update

optimization produces the following results:

1. The expression that binds a compound value V to a variable x is

implemented by making x a pointer to V .

2. An updating expression is analyzed so that it will be implemented

by a destructive update to the value if none of the variables pointing

to the value will be referenced later in the program. Otherwise, the

updating expression will be implemented by making a fresh copy

of the value. 2

Destructive update analysis reduces the implicit copies in the implementation

of programs. It is also known as copy elimination optimization. The determination

of whether destructive updates can be performed rely on the analysis whether all

the variables bound to the value are dead. Therefore, destructive update analysis is

closely related to alias analysis and liveness analysis. Moreover, since the variables

23

in di�erent functions may bind to the same value, usually it involves interproce-

dural
ow analysis as well. In the example of the following program segment, in

the execution of function call f Y b, the variable S will be analyzed together with

the variables pointing to the same value outside function f , namely X and Y .

1) fun f S a = S less a;

2) let Y = X;

3) in f Y b;

The destructive update problem has been studied by two major groups of people

that gave the solutions in two di�erent ways. The group of people in imperative

languages applied polynomial-time algorithms of a dynamic destructive update

analysis. The dynamic solutions analyze programs at compile time and leave the

�nal determination to run time according to the run-time information. The best

known algorithm takes O(N4) time overall [CBC93]. Goyal and Paige propose a

new algorithm of O(N3) in their recent paper [GP98]. The other group of people in

lazy functional languages apply abstract interpretation frameworks over abstract

domains of size O(22
N

) or larger [Blo89a, Blo89b, Blo94, DP93, Ode91]. The

static solutions examine all the possible control paths and all the possible values

of function calls at compile time. A static analysis with an abstract interpreta-

tion framework requires a computation of the sets of all possible values over the

powerdomains.

24

In this paper we present a precise semantic model of destructive e�ect analysis

for the destructive update optimization of �rst-order functional languages. The

algorithm of our dynamic destructive e�ect analysis takes O(N3) time to analyze

a program. We also present an abstract interpretation framework of destructive

e�ect analysis over a �nite domain. The abstract interpretation framework has an

abstract domain of size O(2N). We show how our method analyzes some nontrivial

programs in an e�ective way.

The methodology that we use to model the destructive e�ect analysis is inter-

esting in its own right. Instead of maintaining the equivalent relations or evaluation

orders as the conventional approaches did, our approach analyzes on the same copy

of the destructive e�ect for the variables sharing the same value in a function in

the standard semantics. Also, our method combines a few ideas from di�erent ap-

proaches of a destructive update optimization. Our analysis models the destructive

e�ect of values in a way similar to the way that Hudak models reference counting

of values [Hud87]. The time stamps that our analysis uses for analyzing the de-

structive e�ects is similar to the de�nition of the time stamps described in Wand

and Clinger's model of the set constraints for a destructive update optimization of

arrays [WC98].

This chapter is organized as follows. We present a time-stamped �rst-order

functional language in the following section. In Section 2.3, we include the prelim-

25

inary ideas behind the destructive e�ect analysis. Section 2.4 presents the semantic

model of the dynamic destructive e�ect analysis. Section 2.5 describes the abstract

interpretation framework of destructive e�ect analysis. We discuss the issues of

safety and complexity in Section 2.6. Section 2.7 is a demonstration of both the

dynamic version and the abstract interpretation of destructive e�ect analysis on

a practical bubble sort example. We discuss the related work in Section 2.8. We

conclude this chapter by a brief conclusion and an appendix of the semantic model

of time stamps.

2.2 Source Language

Our source language takes the form of mutually recursive �rst-order recursion

equations with constants. The expressions in a program are time stamped with a

lexicographical order. A semantic model for time stamping programs is included

in the appendix of this chapter. In the source language, we model all objects,

including compound objects and integers, in a uniform way.

Note that we assume that all nested lambda abstractions have been lifted to the

top level [Joh85], and that we model the destructive e�ects through these top-level

functions.

The abstract syntax of the source language is given as follows.

26

Abstract Syntax

c 2 Con constants

x 2 Bv bound variables

up 2 Upf primitive functions that update arguments

np 2 Npf primitive functions that do not update arguments

f 2 Fv function variable

� 2 � lexicographically ordered time stamps

e 2 Exp expressions, where

e = c j x j up x j np x j f e1 : : : en j if e0 then e1 else e2 j let x = e0 in e1

pr 2 Pr programs, where pr = ffi(x1; : : : ; xn) = eig

In our abstract syntax, we distinguish the updating primitive functions Upf

from the non-updating primitive functions Npf . For examples, sel(S; i) 2 Npf

and upd(S; i; x) 2 Upf .

Semantic Domains

27

Int the standard domain of integers

Bool the standard domain of boolean values

D = Int+Bool + f?g the domain of basic values

Fun = Basn ! Bas the domain of �rst-order functions

Bve = Bv ! D the domain of bound variable environments

Fve = Fv ! Fun the domain of function environments

We adopt the following conventional notations. Double brackets surround syn-

tactic objects, as in E [[exp]]. Square bracket are used for environment updates, as

in env[e=x]. We use [yj=xj]
n
1 as the shorthand for [y1=x1; : : : ; yn=xn].

Semantic Functions

Es : [[� : Exp]]! Bve! Fve! D

Es [[� : c]] bve fve = c; constant

Es [[� : x]] bve fve = bve(x)

Es [[� : up x]] bve fve = (Es [[up]] bve fve) (Es [[� : x]] bve fve)

Es [[� : np x]] bve fve = np (Es [[� : x]] bve fve)

Es [[� : let x = e0 in e1]] bve fve = Es[[�1 : e1]] bve[(Es [[�0 : e0]] bve fve)=x]

bve n fxg

28

Es [[� : f e1 : : : en]] bve fve = let d1 = Es [[�1 : e1]] bve fve

...

dn = Es [[�n : en]] bve fve

in fve(f)(d1; : : : ; dn)

Es [[� : if e0 then e1 else e2]] bve fve = (Es [[�0 : e0]] bve fve)!

(Es [[�1 : e1]] bve fve);

(Es [[�2 : e2]] bve fve)

The program semantic function As is de�ned as follows.

As [[pr]] = As [[ffi(x1; : : : ; xn)g]] = fve; where

fve = [(�(y1; : : : ; yn):Es [[�i : ei]] [yj=xj]
n
1)=fi]

n
1

For simplicity we assume that the �rst function f1 takes no arguments, and

a program is executed by calling f1. More speci�cally, to execute a program

pr = ffi(x) = eig is to evaluate As [[pr]] [[f1]].

2.3 Preliminaries

There are some notions the understanding of which helps clarify the semantic

model of destructive e�ect analysis.

29

2.3.1 Liveness Analysis with Time Stamps

We extend the idea of using lexicographically ordered time stamps for program

analysis described in [WC98]. Wand and Clinger applied a time stamp scheme for

a language with a continuation passing style semantics. The time stamps are used

for deciding the order of the executions of expressions.

In the discussion of this chapter, we characterize a time stamp scheme by a

function C(�1; �2) for comparing two time stamps �1 and �2. The functionality of

C is de�ned as follows.

C(�1; �2) =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�1 if �1 happens earlier than �2 (�1 < �2)

1 if �1 happens later than �2 (�1 > �2)

0 if �1 = �2

2 if �1 and �2 are in di�erent arms of an if expression

(�1 �= �2)

A detailed algorithm for computing C is included in the appendix.

With time stamps, we may describe a variable liveness analysis as follows.

De�nition (Variable Liveness Analysis with Time Stamps): We say x is live

at � if and only if 9�i < � such that x is initialized at �i, and 9�a > �

such that x is referenced at �a. 2

Let � be a set of time stamps. The minimum of a set of time stamps, min�,

30

is de�ned as follows.

min � = f� 2 �j8�0 2 �; C(�; �0) 6= 1g:2

It is clear that a minimum time stamp set has the following property.

8�1; �2 2 min�; such that �1 �= �2:2

We may analyze the liveness of a value with the liveness of the variables that

the value is bound to.

De�nition (Value Liveness Analysis with Time Stamps): Consider a value V

that is bound to variables x1; : : : ; xk, which are initialized at �i1 ; : : : ; �ik ,

respectively. We say that V is initialized at �iV = minf�i1 ; : : : ; �ikg.

V is live at � if 9�iV 2 �iV such that � > �iV and 9�a > �, 9x 2

fx1; : : : ; xkg such that x is referred at �a. 2

For an example, in the following program segment, the variable x is dead after

line 1 while the value bound to x is live until the end of the program execution.

1. y = x;

2.0 if i > j

2.1 then z = upd (y, i, 0);

2.2 else z = y;

31

2.3.2 Variable Last-Use Analysis

For a destructive update analysis, we want to answer the question: \For the ex-

pression � : up x, is the value bound to x referred at � for the last time in the

execution of the program?" This leads to the computation of last-use.

We de�ne the last-use of a variable as follows.

De�nition (Last-Use of a Variable): The last-use of a variable x, l(x) is a

set of time stamps such that 8�l 2 l(x) the expression �l : el refers to x,

and that 8�a > �l there is no reference to x at �a. 2

When analyzing the expression � : e that refers to x with a last-use l(x), we use

an auxiliary function S(l(x); �) to compute the new last-use of x after analyzing

the expression. The de�nition of S is as follows.

S(l(x); �) =

8>>><
>>>:
f�x 2 l(x) j C(�x; �) > �1g if 9�x 2 l(x); C(�x; �) = 1

f�x 2 l(x) j C(�x; �) > �1g [f�g otherwise:

It is clear that 8�1 2 l(x) such that �1 < �, �1 is removed from l(x), and that if

there is no �2 2 l(x) such that �2 > �, � is inserted into l(x).

We present the semantic model of the variable last-use analysis in Figure 2.1.

Please note that the variable last-use environment lbve is computable at compile

time since it does not rely on any run-time information. The time required for

the variable last-use analysis is O(N � s � d), where s is the maximum number

32

Semantic Domains

� = the domain of lexicographically ordered time-stamps
Lbve = Bv ! 2�

Lfve = Fv ! Lbve

Semantic Functions

El : [[� : Exp]]! Lbve! Lbve

El [[� : c]] lbve = lbve; constant c

El [[� : x]] lbve = lbve[S(�; �)=x]; where � = lbve(x)

El [[� : up x]] lbve = El [[� : x]] lbve

El [[� : np x]] lbve = El [[� : x]] lbve

El [[� : f e1 : : : en]] lbve = El [[�n : en]] (El [[�n�1 : en�1]] (: : :

(El [[�1 : e1]] lbve) : : :))

El [[� : let x = e0 in e1]] lbve = El [[�1 : e1]] (El [[�0 : e0]] lbve)[S(�; �0)=x]

where � = lbve(x)

El [[� : if e0 then e1 else e2]] lbve = El [[�2 : e2]] (El [[�1 : e1]]

(El [[�0 : e0]] lbve))

Al [[f� : fi(x1; : : : ; xn) = eig]] = lfve

where lfve = [El [[�i : ei]] []=fi]
n
1

Figure 2.1: The variable last-use analysis

33

of branches of nested if expressions and d is the maximum depth of nested if

expressions.

Lemma 1 By scanning a program once, we may collect the last-use in-

formation of all variables of a program in O(N � s� d) time.

Proof: The number of time stamps in the last-use of a variable x is

O(s). It takes O(s � d) time to update the last-use of x when x is

referenced. And, therefore the total time for a variable last-use analysis

is O(N � s� d). 2

It is clear that s and d are both O(N) in the worst case. We say that the compile-

time analysis for the dynamic destructive e�ect analysis takes O(N3) time to an-

alyze a program.

The last-use of a value is de�ned as follows.

De�nition (Last-Use of a Value): Consider a value V that is bound only

to variables x1; : : : ; xk. The last-use of V , l(V) is a set of time stamps

such that 8�l 2 l(V), 8�a > �l, there is no reference to any of x1; : : : ; xk

at �a. 2

The last-use of a value V is included as a part of the destructive e�ect of V . We

will describe more of it in Section 2.4.

34

2.3.3 Destructibility

In the cases of no function calls involved, the decision whether we may destructively

update a value is straightforward. We call the decision as local destructibility. The

local destructibility of a value in a function is de�ned as follows.

De�nition (Local Destructibility):

For a value V in function f , the local destructibility of V at �, ldf (V; �),

is true if and only if 9�v 2 �fV such that �v = � or �v < �, where �fV

is the last-use of V in f . 2

For example, in the following program segment, the value bound to x is not locally

destructible at line 1 while it is locally destructible at line 2.

1. y = upd (x, 1, 0);

2. z = upd (x, 2, 0);

Consider the following main function of a program.

1. f x;

2. g x;

35

The execution of function f can not destructively update the value bound to x in

any case, while the execution of function g may destructively update x at the last

reference to the value bound to x. We call this attribute of a value interprocedural

destructibility.

De�nition (Interprocedural Destructibility): Consider a value V in a func-

tion f .

1. If V is created in the execution of f , the interprocedural destruc-

tibility of V , idfV , is true through the execution of f .

2. When V is passed into f as a parameter at � in function g, the

interprocedural destructibility of V in f , idfV , is true if and only

if

� idgV is true, and

� ldg(V; �) is true. 2

The variables in di�erent functions may refer to the same value by passing the

value as a function argument. In a single-threaded lambda-lifted program, the

global destructibility of a value V is de�ned as follows.

De�nition (Global Destructibility): Consider a value V in a function f .

The global destructibility of V at time stamp � in function f , gdf(V; �),

is true if and only if

36

� idfV is true, and

� ldf (V; �) is true. 2

The global destructibility of a value is important for destructive e�ect analysis.

We will describe more of it in the following section.

2.4 Formal Semantics of Destructive E�ect Analysis

The goal of our destructive e�ect analysis is to facilitate a destructive update

optimization in the following way.

De�nition (Destructive Update Optimization with Destructive E�ect Analy-

sis): A destructive update optimization with the destructive e�ect anal-

ysis implements an updating primitive on a value V at time stamp �

with a destructive update i� the global destructibility of V , gdf(V; �) is

true. 2

We de�ne the destructive e�ect � of a value V in function f as

�f (V) = hdes; �i

where, des is the interprocedural destructibility of V passed into f when f is called,

and � is the last-use of V in f .

For example, a fresh value V in function f has the destructive e�ect �f(V) =

htrue; ;i. Note that des(V) = true indicates the fact that V may be destructively

37

updated at the last reference in f .

Now we describe the semantic model of the dynamic destructive e�ect analysis.

Semantic Domains

� the domain of lexicographically ordered time-stamps

� the domain of locations

U = Bool � 2� the domain of destructive e�ects

Fun = �n ! Int, n 2 Int

Bve = Bv ! �

Fve = Fv ! Fun

	 = �! U stores

Lbve = Bv ! 2�

Lfve = Fv ! Lbve

lfve 2 Lfve the last-use information from the variable last-use analysis

The destructive e�ects are modeled with a store � and a store (2) is a

map from locations to destructive e�ects. A bound variable environment bve maps

bound variables to the locations in the store where the destructive e�ects of the

values are stored. A modeled function fve gives the meaning of a lambda-lifted

top-level functions of the program, analogous to the fve in the standard semantics.

Our destructive e�ect analysis works with the time stamp schemes that sys-

tematically denote the program points so that the time stamps may be compared.

38

In other words, our destructive e�ect analysis works with any time stamp schemes

in which the comparing function C is de�ned. A detailed time stamp scheme is

described in the appendix of this chapter.

We present the semantic functions of the dynamic destructive e�ect analysis

in Figures 2.2. The operational semantics that we capture may be summarized as

follow. A program begins with an empty destructive e�ect store. As the program

executes, the expressions modify the destructive e�ects of values. When a value V

is bound to a variable x, the last-use of V is updated with the auxiliary function

L. Upon function calls, the interprocedural destructibilities of the arguments are

evaluated with the auxiliary functionD before passing the values into the functions.

Hence, for the updating primitives, the destructive update optimization can be

performed when the global destructibility of the value is true.

When V , with last-use �V , is bound to a variable x, with last-use �x, we use

the auxiliary function L(�V ; �x) to compute the last-use of V after binding.

L(�V ; �x) =
[

�x2�x

S(�V ; �x);

where S is de�ned in section 2.3.2.

We use the auxiliary function D(� : �) to evaluate the global destructibility of

a value stored at location �.

D(� : �) =

8>>><
>>>:
true if des = true and 9�V 2 �: C(�; �V) = 0 or 1

false otherwise;

39

Semantic Functions

Ed : [[� : Exp]]! Bve! Fve! 	! Lbve! �

Ed [[� : c]] bve fve lbve = �; [htrue; ;i=�]

Ed [[� : x]] bve fve lbve = bve(x)

Ed [[� : up x]] bve fve lbve =

�
�x; [htrue; ;i=�x] if D(� : bve(x))
�0; [htrue; ;i=�0]; otherwise

Ed [[� : np x]] bve fve lbve = np (Ed [[� : x]] bve fve lbve)

Ed [[� : f e1 : : : en]] bve fve lbve = let �1 = Ed [[�1 : e1]] bve fve lbve

...

�n = Ed [[�n : en]] bve fve lbve

in Rd(fve(f):(P(�n : �1); : : : ;P(�n : �n)))

Ed [[� : let x = e0 in e1]] bve fve lbve = Ed[[�1 : e1]] bve fve lbve; bve n fxg

where;�u = Ed [[�0 : e0]] bve fve lbve;

�x = lbve(x); hdes; �i = (�u);

 [hdes;L(�; �x)i=�u]; and bve[�u=x]

Ed [[� : if e0 then e1 else e2]] bve fve lbve = (Ed [[�0 : e0]] bve fve lbve)!

(Ed [[�1 : e1]] bve fve lbve);

(Ed [[�2 : e2]] bve fve lbve)

Ad [[ffi(x1; : : : ; xn) = �i : eig]] lfve = fve; where

fve = [(�(y1; : : : ; yn): funi bvei lbvei)=fi]
n
1

where bvei = [yj=xj]
n
1 ; lbvei = lfve(fi); and

funi = let hdes1; �1i = (y1);

 [hdes1; L(�1; lbvei(x1))i=y1];

...

hdesn; �ni = (yn);

 [hdesn; L(�n; lbvei(xn))i=yn]

in Q(Ed [[�i : ei]] bvei fve lbvei)

Figure 2.2: Semantic functions of dynamic destructive e�ect analysis

40

where hdes; �i = (�).

In destructive e�ect analysis, the functions are modeled in the following way.

� A function takes the interprocedural destructibility of each argument as a part

of the parameter. Based on the interprocedural destructibility, we compute

the global destructibility of the value and analyze whether the value can be

destructively updated in the execution of the function.

� A function either returns a fresh value created in the execution of the function

or returns one of its parameters. Since all the fresh values have the same

destructive e�ect value, we use an auxiliary function Q to encode the return

values into integers, where 0 indicates that the return value is created in the

execution of the function, and for 1 � i � n, i indicates that the return value

is the ith parameter passed into the function.

Q(�) =

8>>><
>>>:
i if � is the ith argument; 1 � i � n

0 otherwise:

Upon the function calls, each variable that appears in the arguments are con-

sidered as a reference no matter whether the value is referred in the execution of

the function body or not. This is analogous to the standard semantics of strict

languages in which all arguments are evaluated before passing into functions. Note

that some of the popular approaches also analyze programs in a similar way, such

as [Hud87].

41

Following the way that functions are modeled, function calls are modeled as

follows. For a function call f e1 : : : en, the arguments are evaluated into �1; : : : ; �n,

respectively.

� When passing a value V at location � to a function f at �, we initialize a

new copy of destructive e�ect for the analysis of V in the execution of f .

The new destructive e�ect is initialized as hD(�); ;i, and passed into f as a

formal parameter.

� For the arguments pointing to the same value in a function call, the same

locations of destructive e�ect are passed into the function. In the following

example, the function f gets the same destructive e�ect location for the both

arguments in the function call.

let y = x;

in f (x, y);

The auxiliary function P maps the arguments of the same value to the same

location of destructive e�ect so that the formal parameters of the same value

will be analyzed on the same copy of the destructive e�ect when analyzing

42

the execution of the function.

P(� : �) =

8>>><
>>>:
�0; [hD(� : �); ;i=�0] if � 2 f�1; : : : ; �ng

? otherwise

� After a function call is evaluated, we use the auxiliary functionRd to translate

a encoded return value into the corresponding destructive e�ect.

Rd(k) =

8>>><
>>>:
�k if 1 � k � n

�0; [htrue; ;i=�0] otherwise

If the return value is k, 1 � k � n, the function actually returns the kth

argument, and the destructive e�ect analysis on the return value will be per-

formed on the destructive e�ect of the kth argument passed into the function

for the analysis of the rest of the program execution. Otherwise, the return

value is 0, meaning that the return value is initialized in the execution of f ,

and therefore we initialize the destructive e�ect as htrue; ;i for the analysis

on the return value for the rest of the program execution.

Figure 2.3 demonstrates the destructive e�ect operations. Suppose that at some

snapshot of a program execution, there are k active functions. For a value V , we

have k copies of destructive e�ects of V , each of which is for the analysis of an

active function. All the variables in a function that point to V share the same

copy of destructive e�ect.

43

"!

"!

"!

�
�
�	

J
J
Ĵ

HHHHHHj

Z
Z
Z
ZZ~ ?

�
�

�
�

��+

�1(V) �k(V)

V

...�i(V)...

xi1 xi2 ... xiji

Figure 2.3: The destructive e�ects of a value

For example, consider the following simple program that initializes the elements

of an array of 100 integers to 0's.

fun init (x, i) =

1. if i < 1

1(1).1. then x;

1(2).1. else let y = upd(x, i, 0);

1(2).2. in init(y, i-1);

1. init(a, 100);

The last-use of a is f1g and the interprocedural destructibility of a is true when

passing a into init. The last-use of x in init is f1(1):1; 1(2):1g so that the upd

44

primitive at 1(2):1 is implemented by a destructive update. The last-use of y in

init is f1(2):2g so that the interprocedural destructibility of y is true when passing

into the recursive init. Hence, all the 100 upd primitives along the execution

of the program will all be implemented by destructive updates according to our

destructive update optimization with destructive e�ect analysis.

Theorem 2. The dynamic destructive e�ect analysis is safe.

Proof: In the dynamic destructive e�ect analysis, a destructive update

is performed on the value V for an updating primitive at time stamp �

in function f only if the global destructibility V , gdf(V; �), is true. By

the de�nition of global destructibility,

� ldf (V; �) is true, and

� idfV is also true.

ldf (V; �) is true implies that V will not be referenced in the rest of

function f . idfV is true implies that for the function g calling to f at

�g, gdg(V; �g) is true.

We show that when gdf(V; �) is true, V will not be referenced later in

the execution of the program by an induction on the depth of the calling

path, i. Let f1 be the main function.

� Base case i = 1: That is, � occurs in f1, the main function.

45

gdf1(V; �)

, ldf1(V; �) = true and idf1V = true

, There is no reference to V later in f1 and

V is created in f1

, V will not be reference later in the execution

of the program

� Induction: Suppose i = k (1 � k) it is true that when gdfk(V; �) =

true, V will not be referenced later in the execution of the program.

gdfk+1(V; �)

, ldfk+1(V; �) = true and idfk+1V = true

, There is no reference to V later in fk+1 and

V is created in f1 or gdfk(V; �fk) = true

, V will not be reference later in the execution

of the program

This completes the proof that if gdf(V; �) is true, V will not be referred

to in the rest of the execution of the program.

Hence, we proved that when the dynamic destructive update optimiza-

tion using the dynamic destructive e�ect analysis implements an up-

daing expression by a destructive update, there is no reference to the

value later in the execution of the program; that is, the dynamice e�ect

46

analysis is safe. 2

The dynamic destructive e�ect analysis consists of two phases:

� a variable last-use analysis at compile time, and

� computing destructive e�ects at run time.

We proved that for a program, a variable last-use analysis takes O(N3) time. Now,

we analyze the time required for computing a destructive e�ect as follows.

Lemma 3. In the dynamic destructive e�ect analysis, computing the

destructive e�ect of an expression introduces an O(s � d) overhead of

execution time, where N is the length of the program, s is the maximum

number of branches of nested if expressions and d is the maximum depth

of nested if expressions.

Proof: It follows from the facts that it takes O(d) time for each time

stamp comparison and that there are at most O(s) time stamps in �V ,

the last-use of V . 2

It is clear that both s and d are O(N) in the worst case. We say that the dynamic

destructive e�ect analysis introduces an O(N2) overhead to each expression for

computing the destructive e�ect at run time.

47

2.5 Abstract Interpretation of Destructive E�ect Analysis

The semantic model of dynamic destructive e�ect analysis presented in Figure 2.2

is exact, and thus evaluating a destructive e�ect may not terminate any more than

a program in the standard semantics would. For an analysis at compile time we

may abstract the destructive e�ect information away from the standard semantics.

Without the standard information of a predicate the destructive e�ect of an

if expression must be approximated with the assumption that either arm of an if

expression could be taken. This initially leads to two possible destructive e�ects

through each conditional, and ultimately to a set of possible destructive e�ects

through the program. Moreover, the destructive e�ect of a function applications is

approximated with the destructive e�ects of all possible values that the functions

may possibly return.

48

Semantic Domains

� the domain of lexicographically ordered time-stamps

� the domain of locations

U = Bool � 2� the domain of destructive e�ects

Fun = �n ! 2Int, n 2 Int

Bve = Bv ! �

Fve = Fv ! �

	 = �! U stores

Lbve = Bv ! 2�

Lfve = Fv ! Lbve

lfve 2 Lfve the last-use information from the variable last-use analysis

In the semantic functions of the destructive e�ect abstract interpretation pre-

sented in Figure 2.4, the auxiliary function P described in the previous section is

used for function applications, and the auxiliary functionRa is used for translating

the set of return values into the corresponding set of destructive e�ects.

Ra(fun; y1; : : : ; yn) = fyi j i 2 fun(P(�:y1); : : : ;P(�n : yn))g [

f�; [htrue; ;i=�] j 0 2 fun(P(�1 : y1); : : : ;P(�n : yn))g

We summarize the operations of the destructive e�ect abstract interpretation

as follows. The analysis starts with an empty set of destructive e�ect store. As

the analysis performs, the set of the possible destructive e�ects of each expression

49

Semantic Functions

Ea : [[� : Exp]] ! Bve! Fve! 	! Lbve! 2�

Ea [[� : c]] bve fve lbve = f�g; [htrue; ;i=�]

Ea [[� : x]] bve fve lbve = bve(x)

Ea [[� : up x]] bve fve lbve = H; [htrue; ;i=� j � 2 H]

where H = f� 2 bve(x) j D(� : �)g [

f�0 j 9� 2 bve(x); D(� : �) = falseg

Ea [[� : np x]] bve fve lbve = fnp � j � 2 bve(x)g

Ea [[� : f e1 : : : en]] bve fve lbve = fRa(fun; y1; : : : ; yn) j fun = fve(f); and

80 � i � n; yi 2 (Ea [[ei]] bve fve lbve)g

Ea [[� : let x = e0 in e1]] bve fve lbve = Ea[[�1 : e1]] bve fve lbve; bve n fxg

where � = Ea [[�0 : e0]] bve fve lbve;

bve[�=x]; �x = lbve(x); and

 [hdes;L(�; �x)i=� j � 2 �; and

hdes; �i = (�)]

Ea [[� : if e0 then e1 else e2]] bve fve lbve = (Ea [[�0 : e0]] bve fve lbve;

Ea [[�1 : e1]] bve fve lbve) [

(Ea [[�0 : e0]] bve fve lbve;

Ea [[�2 : e2]] bve fve lbve)

Aa [[ffi(x1; : : : ; xn) = �i : eig]] lfve = fve; where

fve = [(�(y1; : : : ; yn): funi bvei lbvei)=fi]
n
1

where funi = let hdes1; �1i = (y1);

 [hdes1; L(�1; lbvei(x1))i=y1];

...

hdesn; �ni = (yn)

 [hdesn; L(�n; lbvei(xn))i=yn];

bvei = [fyjg=xj]
n
1 ; lbvei = lfve(fi);

in fQ(�) j � 2 (Ea [[�i : ei]] bvei fve lbvei)g

Figure 2.4: Semantic Functions of destructive e�ect abstract interpretation

50

is computed. When a value is bound to a variable, the last-use of the value is

updated according to the last-use of the variable. Upon function calls, the inter-

procedural destructibilities of arguments are evaluated with the auxiliary function

D (presented in the previous section) before passing the values into the functions,

and the destructive e�ect set of the return values is the union of the destructive

e�ect sets for the function applications computed over all possible values of each

argument. Hence, for the updating primitives, the destructive updates can be per-

formed if the analysis of all the possible destructive e�ects show that the values

are globally destructible.

Note that instead of computing over the powerdomains of the destructive ef-

fects, we compute the values of function applications over the powerdomains of the

interprocedural destructibilities of the arguments in the abstract domain. This is

important for analyzing the safety and complexity of the destructive e�ect abstract

interpretation, and we will discuss more of this in the following section.

2.6 Safety And Complexity

In this section, we discuss the issues on the safety and the complexity of the

destructive e�ect abstract interpretation.

We summarize the operation of the abstract interpretation framework on the

functions in the abstract domain as follows. Our analysis translates a function

51

f 2 (Dn ! D) in the standard domain into fun 2 (Un ! 2N) in the abstract

domain, where N is the set f0::ng. The auxiliary function Q presented in Section

2.4 is used to translate the destructive e�ects into integers such that i indicates

the return value is the ith argument for 1 � i � n, and 0 indicates the return

value is initialized in the execution of the function. Two auxiliary functions P

and Ra are used for evaluating function calls in the abstract domain. P initializes

the destructive e�ects of the arguments in the function calls. Ra translates the

integers returned from fun into the corresponding destructive e�ects. With P

and Ra, we analyze a function call f e1 : : : en in the standard semantics by

evaluating fun P(e1) : : : P(en) in the abstract domain. For a recursive function

f , the evaluation of f e1 : : : en computes the �xed point of fun P(e1) : : : P(en),

written as Fix(fun P(e1) : : : P(en)).

Lemma 4. (Termination of Fix(fun P(e1) : : : P(en))): For a �nite

program pr in the abstract domain, Fix(fun P(e1) : : : P(en)) is com-

putable for all f 2 pr in the standard domain.

Proof: Fix(fun P(e1) : : : P(en)) can be e�ectively computed in the

standard iterative manner and the iteration terminates when the least

upper bound of the chain is reached, which is guaranteed because the

domains are �nite and the chain is monotonically increasing. 2

Corollary 5. (Computability of Ea [[f e1 : : : en]]): For a �nite program

52

pr, Ea [[f e1 : : : en]] bve lbve is computable.

Proof: This follows lemma 4 and the fact that there is no recursion in

the evaluations of P, Q, and Ra. 2

Consider the following example program of initializing an array.

fun init (x, i) =

1. if i < 1

1(1).1. then x;

1(2).1. else let y = upd (x, i, 0);

1(2).2. in init(y, i-1);

1. let a = read(); // input an array at run-time

2. j = read(); // input an integer at run-time

3. in init(a, j);

The function init is analyzed as dinit in the abstract domain.

dinit = Fix(�x̂:�î:(f1g [Q(Ra(dinit(true; true)))))
= Fix(�x̂:�î:(f1g [(x̂! f1g; f0g)))

= �x̂:�î:(x̂! f1g; f0; 1g)

53

Hence, the analysis of the function call init(a; j) evaluates Ra(dinit(true; true)) in
the abstract domain, and gets the result of Ra(f1g) = f�ag. That is, the set

of possible return values has only one element, the destructive e�ect of the value

bound to a. The analysis shows that with the destructive update optimization the

function call f(a; j) either returns the original value of a or returns a value which

is destructively updated on a, and that in the both cases the analysis on the return

value will be make on the destructive e�ect of the value passed into init as the

�rst argument. 2

Lemma 6. If an upd expression is implemented with a destructive update

by the static analysis, the upd expression will be implemented with a

destructive update by the dynamic analysis.

Proof: It follows from the following two facts. First, the destructive

e�ect of an expression computed in the dynamic analysis is an element

in the destructive e�ect set of the expression computed in the static

analysis. And second, a destructive update made for a upd expression

in the static analysis guarantees all the possible values in the destructive

e�ect set are globally destructible. 2

Note that the converse of Lemma 6 does not necessarily hold.

We are ready to show the safety of the destructive e�ect abstract interpretation.

Theorem 7. (Safety): Aa [[pr]] is computable for any �nite program pr,

54

and a destructive update optimization with destructive e�ect analysis is

safe.

Proof: It follows from corollary 5 and lemma 6. 2

Due to the high complexity of an abstract interpretation framework, it is dif-

�cult to analyze the complexity of the algorithms of abstract interpretation. For

example, consider the complexity of computing the �xed point of fi x1 : : : xn

for 1 � i � n in the abstract domain in the case that f1; : : : ; fn are n mutually

recursive functions. For the purpose of comparing the complexity of abstract in-

terpretation frameworks, we usually consider the size of the powerdomains of the

functions in the abstract domains since the computation for the function appli-

cations of recursive functions requires computing the �xed points of the abstract

functions over the powerdomains.

Theorem 8. (Complexity): In the static destructive e�ect analysis, the

powerdomain of the abstract functions has a size of O(2N).

Proof: For the analysis of function applications, the way our analysis

evaluates the functions in the abstract domain may be summarized as

follows. After it is translated by the auxiliary function P, the set of

destructive e�ects passed into the abstract function has a size of 2 for

each argument (the size of ftrue; falseg). fun computes over the O(2N)

combinations of the possible argument sets and generates a set of pos-

55

sible return values, which has a size of O(2N). And, R translates the

set of return values into a set of possible destructive e�ects. It is clear

that for the other cases, the order of the number of possible destruc-

tive e�ects for an expression follows that for function application. This

completes the proof. 2

2.7 Example

We use the functional bubble sort program in Figure 2.5 to demonstrate the dy-

namic destructive e�ect analysis and the destructive e�ect abstract interpretation.

The variable last-use analysis computes the last-use of variables as follows.

variable �

a1 f2g

a2 f1(1):1; 1(2):1g

a3 f1(1):1; 1(2):1(1):1; 1(2):1(2):1g

t f3g

a f1g

b1 f4g

b2 f2g

b3 f3g

b3 f5g

56

swap(a1, i, j) =

1. let k = sel(a1, i);

2. t = upd(a1, i, sel(a1, j));

3. in upd(t, j, k);

bsort2(a2, n, c) =

1. if c

1(1).1. then bsort1(a2, n, 0, false);

1(2).1. else a2;

bsort1(a3, n, i, c) =

1. if (i == n-1)

1(1).1. then bsort2(a3, n-1, 0, c);

1(2).1. else if (sel(a3, i) > sel(a3, i+1))

1(2).1(1).1. then let t1 = swap(a3, i, i+1);

1(2).1(1).2. in bsort1(t1, n, i+1, true);

1(2).1(2).1. else bsort1(a3, n, i+1, c);

bubsort(a, n) =

1. bsort2(a, n, true);

1. let b1 = [3, 6, 9, 2, 4, 8, 1, 5, 7];

2. b2 = swap(b1, 2, 3);

3. b3 = bubsort(b1, 9);

4. b4 = b1;

5. in bubsort(b4, 9);

Figure 2.5: A functional bubble sort program

57

In the discussion we adopt the notation of labeling function calls. For example,

the second invocation of function swap is denoted as swap2.

2.7.1 Dynamic Destructive E�ect Analysis

The dynamic destructive e�ect analysis performs a destructive update optimization

along the execution of a program. We highlight some of the analysis on the bubble

sort program in Figure 2.5 as follows.

� The binding of V1 = [3; 6; 9; 2; 4; 8; 1; 5; 7] to b1 at time stamp 1 updates the

destructive e�ect of V1 as �(V1) = htrue; f4gi.

� On passing parameters for function call swap2 at time stamp 2, the argument

a1 gets �swap2(V1) = hfalse; f2gi. The upd expression at time stamp 3

in function swap will be implemented by making a fresh copy of V1 since

des(V1) = false. Hence, swap2 returns a fresh copy of destructive e�ect

for the value V2 initialized in the execution of swap. The binding to b2 at

time stamp 2 makes b2 point to V2, and the destructive e�ect of V2, �(V2), is

updated as htrue; f2gi.

� In a similar way, on passing parameters for function call bubsort1 at time

stamp 3, the argument a gets �bubsort1(V1) = hfalse; f1:gi. And therefore,

a2 of bsort2 and a1 of swap get �bsort22(V1) = hfalse; f1(1):1; 1(2):1gi and

�swap1(V1) = hfalse; f2gi, respectively. The upd expression in function swap

58

will be implemented by making a fresh copy of V1 as a new value V3. All

the following updates in functions bsort1, bsort2, swap are implemented by

destructive updates since the value passed among the functions is V3, and

des(V3) = true. Hence, the binding to b3 at time stamp 3 makes b3 point to

V3 which is initialized in the execution of swap, and the destructive e�ect of

V3 is updated as �(V3) = htrue; f3gi.

� When V1 is bound to b4 at time stamp 4, the destructive e�ect of V1, �(V1),

is updated as htrue; f5gi.

� On passing parameters for function call bubsort2 at time stamp 5, the ar-

gument a in bubsort2 gets �bubsort2(V1) = htrue; f1gi. Therefore, all the

following upd expressions when swap is called are implemented by destruc-

tive updates since des(V1) = true.

2.7.2 Destructive E�ect Abstraction Interpretation

The destructive e�ect abstract interpretation performs a destructive update opti-

mization at compile-time as follows. Please note that a static destructive e�ect

analysis does not rely on the value in the standard semantics, and therefore con-

siders more cases than what will be actually executed. We highlight some of its

operations on the bubble sort program in Figure 2.5 as follows.

59

� The computed functions in the abstract domain are shown as follows.

dswap = �ca1:�n̂:(ca1! f1g; f0g)

dbsort1 = �ca3:�n̂:(ca3! f1g; f0; 1g)

dbsort2 = �ca2:�n̂:(ca2! f1g; f0; 1g)

dbubsort = �â:�n̂:(â! f1g; f0; 1g)

� The destructive e�ect sets of expressions at time stamps 1 and 2 have one

element each, which are exactly the destructive e�ects computed in the dy-

namic destructive e�ect analysis. Therefore, the operations are similar to

those of the dynamic destructive e�ect analysis.

� For the analysis of the function call bubsort1(b1; 9) at time stamp 3, we com-

pute the destructive e�ect of bubsort1(false; true) in the abstract domain,

shown as follows.

bubsort1(false; true) = Ra(bubsort)(dbubsort(false; true))
= Ra(bubsort)(f0; 1g)

= f�V1; �V3g 2

Hence, the binding to b3 at time stamp 3 makes b3 bind to a destructive e�ect

set with two elements: one for the destructive e�ect of V1 and the other for

a fresh value V3, initialized in the execution of function swap. Since without

60

the exact information in the standard semantics we analyze at compile time

on both the consequences and the alternatives of if expressions.

� The binding expression at time stamp 4 binds b4 to the destructive e�ect set

f�V1g and updates �(V1) as �(V1) = htrue; f5gi.

� The analysis of function call bubsort2(b4; 9) at time stamp 5 is di�erent from

the analysis of bubsort1 at time stamp 3 in spite that the �rst arguments in

both function calls get the value V1. The analysis of bubsort2(b4; 9) actually

computes bubsort2(true; true) in the abstract domain, shown as follows.

bubsort2(true; true) = Ra(bubsort)(dbubsort(true; true))
= Ra(bubsort)(f1g)

= f�V1g 2

That is, either bubsort2 returns the original value of V1 or bubsort2 returns

a value that is destructively updated on V1. For both cases the returned

destructive e�ect set contains only one element, �(V1).

2.8 Comparison

Since there are only few, if any, works on the static analysis for a destructive

update optimization on strict languages, we compare our analysis with some of

the well-known analyses, although the major goals of their analyses are di�erent.

61

The works on a destructive update analysis for lazy languages show the most

similarity to our work. We discuss three of the popular analyses for lazy languages.

Compared to those analyses when applied to the analysis for strict programs, our

analysis is more eÆcient in a sense that our abstract domain has a smaller size.

Among those destructive update analyses for imperative languages, the recent

work by Paige and Goyal is a good comparison to our dynamic analysis. They

applied their work to the imperative SETL language, which has a special value !

(om) for nullifying variables. The algorithm of our dynamic analysis has the same

asymptotic order of complexity as Goyal and Paige's algorithm does. The extension

of Goyal and Paige's algorithm to an interprocedural analysis is not clear yet, while

our analysis has been successfully applied to the analysis of interprocedural cases.

Sestoft's work of replacing the function parameters by global variables includes

some techniques closely related to our analysis, although the goal of his analysis

is quite di�erent.

2.8.1 Destructive Update Analysis For Lazy Languages

We discuss three approaches of destructive update analysis for lazy languages:

the path analysis by Bloss [Blo89a, Blo89b, Blo94], the evaluation order analysis

by Draghicescu and Purushothaman [DP93], and the e�ect analysis by Odersky

[Ode91]. In spite that their major interests have been in lazy languages, these ap-

62

proaches may be applied to strict languages for a destructive update optimization

as well.

Bloss developed the path model for representing order of evaluation of ex-

pressions in a lazy sequential functional language so that the order in which

expressions are used is shown to be as the order in which they are evaluated

[Blo89a, Blo89b, Blo94]. In this model, a destructive update analysis is simple:

Compute the set of update paths for each function in a program, and for the oc-

currence version of each function. Then look at the update paths through the

occurrence functions: if in any path in which an update element (updi; a) oc-

curs there is later another occurrence of a, we conclude that updi cannot be done

destructively.

Draghicescu and Purushothaman developed a uniform treatment of order of

evaluation and aggregate update [DP93]. Under their assumption the expressions

evaluate to references each of which is either a reference to a newly created object,

or a reference denoted by some variable in the expression. Their destructive update

analysis is based on their analysis of the access orders of variables.

Odersky proposed liabilities of expressions for checking the side-e�ect which a

function may exert via a destructive update that remains invisible [Ode91]. The

e�ect on an entity x of evaluating an expression e is abstracted to: ? (not ac-

cessed), rd (read), id (potential alias), el (potential element), sh (potential alias

63

or element), wr (potentially updated), and > (con
ict). The total e�ect of an ex-

pression is abstracted to a liability, mapping from the program's bound variables

to pairs of uses u1:u2, where u1 represents the e�ect on e of x and u2 represents

the e�ect of e on x.

The static destructive update analysis for lazy languages is expensive. The

following table shows the summary of the comparison among these approaches

on the number of possible sets for the arguments of an n-ary function f in their

abstract domains.

analysis size of powerdomain

Path (Bloss) O(2N !+(N�1)!+:::+1)

Evaluation order (Draghicescu and Purushothaman) O(22
N

)

E�ect (Odersky) O(22
N

)

Destructive e�ect O(2N)

Please note that one of the reasons that our destructive e�ect analysis has a

smaller number of possible sets of the arguments is that our source language has

a strict semantics.

2.8.2 Destructive Update Analysis For Imperative Languages

The recent work by Goyal and Paige [GP98] views the variables pointing to the

same value as an equivalent class. In such a way, the must-alias problem is treated

64

as a partitioning problem over the space of variables. They improved the intuitive

O(N4) algorithm for partitioning the set of variables into an O(N3) algorithm with

the work-list technique. They also envisioned a way to abstract variable partitions

away from the standard semantics, while some more details than in [GP98] are

needed to complete the abstract interpretation.

The goal of their work is to achieve a fast intra-procedural analysis for a de-

structive update optimization. Therefore, there are no function de�nition and

function application statements in the source language they studied. And, they

analyzed the must-alias, instead of may-alias, relationship among variables which

result in a more conservative optimization.

When applying their approach to a destructive update optimization, they rely

on the dynamic reference counts to decide the liveness of values. They conjectured

the static destructive update analysis can be done by the static variable partition

analysis together with a static polyvariant analysis for the liveness of values. It

still needs more adaption work to see how to achieve a static destructive update

optimization by the static variable partition analysis together with the variable

partition analysis.

65

2.8.3 Analysis For Globalization

Sestoft developed an optimization technique of replacing function parameters by

global variables [Ses88, Ses89]. The objective of globalization is to reduce the time

and space cost of stack (or heap) allocation of function parameters when possible.

Although Sestoft did not apply his approach to the analysis for aggregate updates,

and the goal of his work is di�erent from ours, we discuss the comparison between

our method and Sestoft's approach.

One of the main contributions in Sestoft's work is to introduce the concepts

of de�nition-use (or du for a shorthand) path, path semantics, interference, and

de�nition-use grammar. A de�nition-use path is a linear recording of the de�nitions

and uses of variables during a computation. A du-path � has interference with

respect to variable x if replacing x by a global variable could change the result of

the evaluation.

Sestoft assumes copying for each binding situation (and parameter passing) and

therefore no sharing between variables. By making a function parameter a global

variable, we can bene�t when passing a variable which will not be used for the

rest of the function. On other hand, our approach may achieve a more aggressive

optimization by allowing sharing and allowing destructive updates when safe. We

may easily �nd the examples that if a value is not updated in a function execution,

our approach actually makes no copies while Sestoft's approach makes a copy for

66

passing the parameter each time the function is called.

The way that Sestoft decides whether the globalization is safe is similar to

the way that we decide the local destructibility of objects, but we use the time

stamps (or program points) in contrast to his use of du paths. The manipulation

of du paths for the languages allowing sharing will be more complicated than what

Sestoft discussed in his paper.

Please note that Sestoft's analysis is expensive. The complexity of Sestoft's

analysis is of the same order of Bloss' path analysis, considering the size of Sestoft's

du paths is of the the same order of the size of Bloss' paths.

2.8.4 Analysis For Parallel Languages

We compare our analysis with three well-known approaches for parallel languages:

the Sisal project [FCO90, ACC95, ACW96], the way of executing a program on the

MIT Tagged-Token Data
ow Architecture, TTDA, by Arvind and Nikhil [AN87],

and the program transformation for software reusability by Boyle [BM86]. Note

that the main goal of these approaches is improving the implementation of parallel

programs, instead of eliminating implicit copying.

Sisal [FCO90] was developed by a joint project of the Lawrence Livermore Na-

tional laboratories and the University of California at Berkeley during the mid

1980's. Sisal has syntax for loops construct on Arrays, which eliminates the pos-

67

sibility of implicit copying for recursive function calls that implement loops. How-

ever, in the Sisal formal semantics [ACC95, ACW96], it is still not clear how to

eliminate implicit copying for array updates and for passing arrays as function

parameters.

Arvind and Nikhil propose using data
ow graphs as a target for compilation

[AN87]. Their source language, Id, also has syntax for loops. In order to overcome

the de�ciencies in purely functional data structures, a special data-structuring

mechanism called I-structure is introduced into Id. After reducing a program into

its data
ow representation, when a data
ow manager responds to a request, it is

sent the request to the forwarding address that accompanied the request using the

change tag operator. I-structures can be implemented eÆciently without complex

compile-time or run-time analysis and they do not restrict parallelism. However,

write-once structures lack the
exibility of general incrementally updatable struc-

tures [Blo89b, ANK87].

Boyle use automated program transformations to derive a Fortran program

from a pure functional speci�cation [BCF92, BH91, BM86]. They show that the

derived program executed faster on CRAY X-MP than the handwritten Fortran

implementation of the same algorithm. They outline 17 major transformational

steps for the derivation, and one of the steps is reducing the complexity of storage

usage (implementing reuse of the grip array). However, they did not specify the

68

analysis needed for reducing the complexity of storage usage and implementing

reuse of the array with preserving the semantics.

2.9 Conclusion

We present destructive e�ect analysis as a new approach to a destructive update

optimization. We include the semantic model of destructive e�ect analysis for a

dynamic destructive update optimization, and the abstract interpretation of de-

structive e�ect analysis for a static destructive update optimization. Our analysis

uses time stamps for the liveness analysis. The variables in a function sharing

the same values in the standard semantics eventually share the same destructive

e�ects in the abstract domain of our analysis.

The algorithm of our dynamic destructive e�ect analysis has an O(N3) com-

plexity, but it introduces an O(N2) overhead for computing a destructive e�ect at

run time. Note that among the conventional approaches to a dynamic destructive

update optimization, the best known algorithm was the O(N4) algorithm by Choi,

Burke, and Carini [CBC93]. The recent work by Goyal and Paige proposed an

O(N3) algorithm [GP98] for the intra-procedural analysis.

Compared with the other dynamic optimization techniques, the structure of

a program is signi�cant to the complexity of our analysis. For most of the pro-

grams in the practical software industry, the depths and the number of branches in

69

nested if expressions are usually less than 10. For those cases, our analysis actually

analyzes programs in time linear to the program length while the other analyses

require O(N3) or more time.

The abstract interpretation of destructive e�ect analysis has the possible de-

structive e�ect sets of size O(2N) through the analysis for n-ary functions in the

abstract domain. It is smaller than the conventional approaches of abstract inter-

pretation frameworks for a destructive update analysis, which have the possible

sets of size O(22
N

) or more for n-ary functions in their abstract domains. One

of the reasons that our static destructive e�ect analysis applies in a smaller ab-

stract domain is that our source language has a strict semantics while the other

techniques may be applied to analyze lazy programs.

Appendix: A Semantic Model of Time Stamping Scheme

Here we give a semantic model of time stamps that labels the expressions of a

program with lexicographically ordered time stamps. So that, we may compare

two program points in a function by their time stamps �1 and �2. We denote as

�1 < �2, and �1 > �2, that a single threaded execution goes to �1 earlier, or later,

than �2, respectively; �1 = �2 that the two program points happen at the same

time; and �1 �= �2 that �1 and �2 happens exclusively to each other.

70

We de�ne a time stamp � as follows.

� = hi; �i :: � j nil:

where i is a sequential numbering of expressions at the current if-level, and � is

de�ned as

� =

8>>>>>>>><
>>>>>>>>:

1 if in the consequence of an if expression

2 if in the alternative of an if expression

0 otherwise:

In the discussion we adopt the following notations. We use �:i(�) for a shorthand

of : : : hi; �i :: nil. We use �(�) for a shorthand of �:i(�) when the value of i is

insigni�cant. We use �:i for a shorthand of �:i(�) when � = 0.

Semantic Domains

� the domain of lexicographically ordered time stamps

Semantic Functions

Et : [[Exp]]! �! � : Exp

Et [[c]] � = � : c; [Inc(�)=�]

Et [[x]] � = � : x; [Inc(�)=�]

Et [[up x]] � = � : up x; [Inc(�)=�]

71

Et [[np x]] � = � : np x; [Inc(�)=�]

Et [[f e1 : : : en]] � = f (�1 : e1) : : : (�n : en); [Inc(�n)=�]

where �1 = �; and [�i+1 = Inc(�i)]
n�1
1

Et [[let x = e0 in e1]] � = let � : x = e0 in Et[[e1]] �1; [Inc(�1)=�];

where �1 = Inc(�)

Et [[if e0 then e1 else e2]] � = if Et [[e0]] � then Et [[e1]] �(1):1

else Et [[e2]] �(2):1; [Inc(�)=�]

At [[ffi(x1; : : : ; xn) = ei]] � = ffi(x1; : : : ; xn) = (Et [[ei]] 1)g

Please note that the time stamps of the expressions in di�erent functions are

independent from each other.

We use an auxiliary function Inc(�) to compute the time stamp after the exe-

cution of an expression.

Inc(hi; �i :: �) =

8>>><
>>>:
i+ 1 if � = 0

hi; �i :: Inc(�) otherwise:

The auxiliary function C(�1; �2) for comparing two time stamps is de�ned as

follows.

C(hi1; �1i :: �1; hi2; �2i :: �2)

72

=

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�1 if i1 < i2 or (i1 = i2 and �1 = 0 and �2 > 0)

1 if i1 > i2 or (i1 = i2 and �2 = 0 and �1 > 0)

0 if i1 = i2 and �1 = �2 = 0

2 if i1 = i2 and �1 + �2 = 3

C(�1; �2) otherwise:

We analyze the complexity of the algorithm of time stamps as follows.

Theorem A. By scanning a program once, we may give the time stamp to

each expression in a program in O(N�d) time, where d is the maximum

depth of nested if expressions, and d is O(N) in the worst case.

Proof: It follows the facts that it takes O(d) time to make a copy of a

time stamp, and that there is no recursive evaluation for time stamps.

2

73

Chapter 3

Implementation

In this chapter we present the implementation work of this dissertation, which

includes:

� extending the typed �-calculus with sets,

� designing the syntax and semantics of EAS,

� implementing a dynamic optimizer with destructive e�ect analysis, and

� implementing a program analyzer with static destructive e�ect analysis.

\All functional programming languages can be viewed as syntactic variations of

the �-calculus, so that both their semantics and implementation can be analyzed

in the context of the �-calculus [SK95]." In [Yun97], we extended the typed �-

calculus to accommodate the operations with typed sets. Our extension is based

75

on the typed �-Calculus described in [NN92].

We designed an experimental applicative language with sets, EAS, that imple-

ments the SET �-calculus. EAS (read as ease) is strongly and statically typed.

It has a polymorphic type system. This chapter includes a description on the

de�nition of the EAS programming language.

The dynamic optimizer that we implemented works by augmenting the object

code with the codes that analyze a program at run time. So that, the program

performs an updating expression by a destructive update when the analysis detects

that it is safe.

The destructive update analyzer implements the static destructive e�ect anal-

ysis. In contrast with the dynamic optimizer, the destructive e�ect analyzer per-

forms the analysis without the actual values in the standard domain. This leads

to the computation of a set of all possible values for an if expression and the com-

putation of a �xed point for a recursive function in the abstract domain so that

the analysis may be performed at compile time.

3.1 Set-Enriched Typed �-Calculus

This section brie
y describes our work on extending the typed �-calculus to accom-

modate the operations with typed, or homogeneous, sets. We call the extension

as Set-Enriched Typed �-Calculus, or in short SET �-calculus. Please refer to

76

[Yun97] for a more detailed description.

Functions play an essential role in mathematics. Much of the theory of func-

tions, including the issue of computability, unfolds as part of mathematical logic

before advent of computers. In particular, Alonzo Church developed the �-calculus

in the 1930s as a theory of functions that provides rules for manipulating functions

in a purely syntactic manner [SK95].

Beyond the in
uence of the �-calculus in the area of computation theory, it has

contributed important results to the formal semantics of programming languages:

� Although the �-calculus has the power to represent all computable func-

tions, its uncomplicated syntax and semantics provide an excellent vehicle

for studying the meaning of programming language concept.

� All functional programming languages can be viewed as syntactic variations

of the �-calculus, so that both their semantics and implementation can be

analyzed in the context of the �-calculus.

� Denotational semantics, one of the foremost methods for a formal speci�ca-

tion of programming languages, grew out of the research in the �-calculus and

expresses its de�nitions using the higher-order functions of the �-calculus.

Hence, the work of extending the typed �-calculus to sets is actually the study of

feasibility of extending all functional languages with sets.

77

3.1.1 SET �-Calculus Syntax

In this section, we present the syntax of the SET �-calculus. The SET �-calculus

has types, t 2 T , and expressions, e 2 E, and its syntax is shown in Figure 3.1.

Following the syntax of the typed �-calculus [NN92], Ai are base types where i

ranges over an unspeci�ed index set I and we shall write Bool for the type Abool

of booleans; Int for the type Aint of integers; and Void for the type Avoid that

intuitively only has a dummy element. Product types, function types, list types,

and set types are constructed using the type constructors �, !, list, and set,

respectively. fi[t] are primitives of type t as indicated. Related to products we

has notation for forming pairs and for selecting their components. Associated

with function space we have notation for �-abstraction, application and variables.

Related to lists we have notation for constructing lists, for selecting their �rst

components and for testing for emptiness of lists. Associated with sets we have

notation for constructing sets, for selecting their set representatives, for testing for

emptiness of sets, and for testing for the membership of elements in sets.

We shall consider SET �-expressions together with their overall types. We

use the term programs for such speci�cations. We de�ne the syntactic category

P (E; T) of programs as follows:

e 2 E

t 2 T

78

t 2 T

t ::= Int j t� t j t list j t set j t! t

e 2 E

e ::= fi[t] j he; ei j fst e j snd e j �xi[t]:e j e(e) j xi j

e :: e j nil[t] j hd e j tl e j isnil e

e with e j emp[t] j rep e j e1 less e2 j isemp e j e1 in e2

true j false j if e then e else e

Figure 3.1: The syntax of the Set-Enriched Typed �-calculus

p 2 P (E; T)

p ::= DEF xi = e p j VAL e HAS t

where P (E; T) is the syntactic category of the programs in which all the expressions

are SET �-expressions and their types are as shown above.

When we allow the user to specify a SET �-expression and its corresponding

type by giving an untyped expression, we pretend that we have a function of the

functionality P (UE; T)! P (E; T) that can automatically introduce the required

type information into the untyped expressions.

3.1.2 Well-Formedness

We need to be precise about when an expression in the set-enriched typed �-

calculus has a given type. Our goal is to show that our extension preserve the

79

well-formedness of the typed �-calculus. The details are given in Figure 3.2. We

de�ne a relation tenv ` e : t for when the expression e has A type t, where tenv

is a type environment. We use the notation tenv[t=xi] for an environment that is

like tenv except that it maps the variable xi to the type t. The well-formedness of

a program is then given by

; ` e1 : t1

...

;[t1=x1] : : : [tn�1=xn�1] ` en : tn

;[t1=x1] : : : [tn=xn] ` e : t

` DEF x1 = e1 : : : DEF xn = en VAL e HAS t

where we have extended the relation ` to work on programs as well as on expres-

sions.

In the syntax of the SET �-calculus, we have included suÆcient type informa-

tion in an expression for the type of an expression to be determined by the types

of its free variables. We may state as follows.

The relation tenv ` e : t is functional in tenv and e; this means that

tenv ` e : t1 and tenv ` e : t2 imply t1 = t2. 2

Hence, we have shown the following fact:

An expression in the SET �-calculus has a given type. 2

In other words, the SET �-calculus is well-formed.

80

[f] tenv ` fi[t] : t

[hi]
tenv ` e1 : t1 tenv ` e2 : t2

tenv ` he1; e2i : t1 � t2

[fst]
tenv ` e : t1 � t2
tenv ` fst e : t1

[snd]
tenv ` e : t1 � t2
tenv ` snd e : t2

[�]
tenv[t0=xi] ` e : t

tenv ` �xi[t0]:e : t0 ! t

[()]
tenv ` e1 : t0 ! t tenv ` e2 : t0

tenv ` e1(e2) : t

[x] tenv ` x : t

[::]
tenv ` e1 : t tenv ` e2 : t list

tenv ! e1 :: e2 : t list

[nil] tenv ` nil[t] : t list

[hd]
tenv ` e : t list

tenv ` hd e : t

[tl]
tenv ` e : t list

tenv ` tl e : t list

[isnil]
tenv ` e : t list

tenv ` isnil e : Bool

[with]
tenv ` e1 : t set tenv ` e2 : t

tenv ! e1 with e2 : t set

[emp] tenv ` emp[t] : t set

[rep]
tenv ` e : t set

tenv ` rep e : t

[less]
tenv ` e1 : t set tenv ` e2 : t

tenv ` e1 less e2 : t set

[isemp]
tenv ` e : t set

tenv ` isemp e : Bool

[in]
tenv ` e1 : t tenv ` e2 : t set

tenv ` e1 in e2 : Bool

[true] tenv ` true : Bool

[false] tenv ` false : Bool

[if]
tenv ` e1 : Bool tenv ` e2 : t tenv ` e3 : t

tenv ` if e1 then e2 else e3 : t

Figure 3.2: Well-formedness of the SET �-calculus

81

3.1.3 Type Analysis

In this section, we consider how to propagate type information into an untyped �-

expression so as to obtain an expression in the set-enriched typed �-calculus. Our

goal is to show that our extension preserves the soundness and the completeness

of the type analysis for the typed �-calculus.

We consider the type analysis as a transformation

P : P (UE; T)! P (E; T):

We introduce a syntactic category of type variables as follows.

tv 2 TV

tv ::= X1 j X2 j : : :

A polytype is then like a type except that it may contain type variables and this

motivates the following de�nition:

pt 2 PT

pt ::= Ai j pt� pt j pt! pt j pt list j pt set j tv

We write FTV (pt) for the set of free variables in pt. If FTV (pt) = ; we say

that pt is a monotype. A type scheme then is a polytype where some of the type

variables may be universally bound. More precisely,

ts 2 TS

82

ts ::= pt j 8tv:ts

A type scheme with an empty set of free type variables is said to be closed.

Closely related to polytypes is the notation of a substitution. For a total

function S : TV ! PT to qualify as a substitution we require that the set

Dom(S) = ftv 2 TV jS(tv) 6= tvg is �nite. Hence, we could present a substi-

tution S as [pt1=X1; : : : ; ptn=Xn] where Dom(S) = fX1; : : : ; Xng and S(Xi) = pti.

We will simply write S(pt) for the result of applying the substitution S to the poly-

type pt. We may thus regard a substitution S as a total function S : PT ! PT

and this allows us to de�ne the composition of substitutions as a merely functional

composition. So, we say FTV (S), for the free type variables that S uses as

FTV (S) =
[
fFTV (S(tv)) j tv 2 Dom(S)g:

If the set FTV (S) is empty we shall say that S is a ground substitution.

An instance of a polytype pt for a substitution S is a polytype of the form

S(pt). We shall say that S covers pt if Dom(S) � FTV (pt). When S covers pt

and S is a ground substitution, the polytype S(pt) will be a monotype because

all type variables in pt will be replaced by monotypes. Turning to a closed type

scheme ts = 8tv1: � � � :8tvn:pt, an instance of ts is simply an instance of pt. A

generic instance of the closed type scheme ts is an instance pt0 of pt such that pt

is also an instance of pt0.

83

Lemma 1. (Robinson) There exists an algorithm U which, when supplied with

a set fpt1; : : : ; ptng of polytypes, either fails or produces a substitution S:

� It fails if and only if there exists no substitution S such that S(pt1) = : : : =

S(ptn).

� If it produces a substitution S then

{ S uni�es fpt1; : : : ; ptng, i.e. S(pt1) = : : : = S(ptn),

{ S is a most general uni�er for fpt1; : : : ; ptng, i.e. whenever S 0(pt1) =

: : : = S 0(ptn) for a substitution S 0 there exists a substitution S 00 such

that S 0 = S 00 Æ S,

{ S only involves type variables in the pti; or more formally expressed as

Dom(S) [FTV (S) �
Sn
i=1 FTV (pti). 2 [Rob65]

We now present the transformation from untyped programs in P (UE; T) into

typed programs in P (E; T). We allow the SET �-expression e to be polytyped.

In other words, rather than producing an expression e 2 E we shall transform

into a polytyped expression pe 2 PE where the syntactic category of polytyped

expressions is given by

pe 2 PE

pe ::= fi[pt] j : : : j if Bool then pt else pt:

84

Clearly, if we remove the polytypes in pe we must obtain the untyped �-expression

ue that we start with.

The functionality of the type analysis algorithm Eta thus is

Eta : UE ! PE � pt

while it is helpful to obtain also the overall polytype of the polytyped expression.

This function is partial, i.e. is allowed to fail for it will use the algorithm U in

Lemma 1, which is also allowed to fail.

We de�ne an assumption function A : PE ! Pfin(fxiji 2 Ig � PT) that

extracts the required information. A is a �nite subset of fxiji 2 Ig. We shall

write FTV (A) =
S
fFTV (pt) j (xi; pt) 2 Ag for the type variables that A uses,

S Æ A = f(xi; S(pt) j (xi; pt) 2 Ag for the result of applying a substitution S to

an assumption A, Ax = f(xi; pt) 2 A j xi 6= xg for the part of A that does not

involve the variable x, and A(x) = fpt j (x; pt) 2 Ag for the set of polytypes that

A associates with x. We say that A is functional if each A(x) is empty or singleton.

We now de�ne the type analysis algorithm Eta in Figures 3.3, 3.4, and 3.5 by

a structural induction in which we ask for fresh variables, i.e. type variables that

have not been used before. Also, we extend substitutions to work on polytypes. Eta

inspects its arguments in a bottom-up manner. For each occurrence of a variable

it introduces a fresh variable. These type variables may be replaced by other

polytypes as a result of unifying the polytypes of various sub-expressions. However,

85

only when the enclosing �-abstraction is encountered will the polytypes of the

variable occurrences be uni�ed.

We may now de�ne the transformation function P for programs has the func-

tionality

P : P (UE; T)! P (E; T):

P is partial because it invokes Eta and U , and these two algorithms may fail. The

de�nition of P is

P[[DEF xi = ue1 : : : DEF xn = uen VAL ue0 HAS t]]

= let ((�x1[pt1]: � � � :(�xn[ptn]:pe0)(pen) : : : (pe1)); pt) =

E [[�x1: � � � :(�xn:ue0)(uen) : : : (ue1)]]

let S1 = U(fpt; tg)

let S2 = (�tv:Void) Æ S1

in DEF x1 = Ee(S2(pe1)) : : :DEF xn = Ee(S2(pen))

VAL Ee(S2(pe0)) HAS t

To obtain the desired result we need to unify the overall polytype produced by

Eta with the monotype t supplied. Also, we need to get rid of any remaining type

variables and this motivates the substitutions �tv:Void that replaces type variables

with the uninteresting type Void. Finally, the expression S2(pei) are not yet in E

because variables in S2(pei) will be annotated with their types and this is not the

86

Eta[[fi]] =

8>>><
>>>:

(fi[pt]; pt) if C(fi) = ts
and pt is a generic instance of ts
and FTV (pt) are all fresh

fail otherwise

Eta[[hue1; ue2i]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

in (hpe1; pe2i; pt1 � pt2)

Eta[[fst ue]] = let (pe; pt) = Eta[[ue]]

let tv1 and tv2 be fresh

let S = U(fpt; tv1 � tv2g)

in (fst S(pe); S(tv1))

Eta[[snd ue]] = let (pe; pt) = Eta[[ue]]

let tv1 and tv2 be fresh

let S = U(fpt; tv1 � tv2g)

in (snd S(pe); S(tv2))

Eta[[�xi:ue]] = let (pe; pt) = Eta[[ue]]

let tv be fresh

let S = U(ftvg [A(pe)(xi))

in (�[S(tv)]:S(pe); S(tv) ! S(pt))

Eta[[ue1(ue2)]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

let tv be fresh

let S = U(fpt1; pt2 ! tvg)

in (S(pe1)(S(pe2)); S(tv))

Eta[[xi]] = let tv be fresh

in (xi[tv]; tv)

Figure 3.3: Type analysis of set-enriched typed �-expressions (part 1)

87

Eta[[ue1 :: ue2]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

let S = U(fpt1 list; pt2g)

in (S(pe1) :: S(pe2); S(pt2))

Eta[[nil]] = let tv be fresh

in (nil[tv]; tv list)

Eta[[hd ue]] = let (pe; pt) = Eta[[ue]]

let tv be fresh

let S = U(fpt; tv listg)

in (hd S(pe); S(tv))

Eta[[tl ue]] = let (pe; pt) = Eta[[ue]]

let tv be fresh

let S = U(fpt; tv listg)

in (tl S(pe); S(pt))

Eta[[isnil ue]] = let (pe; pt) = Eta[[ue]]

let tv be fresh

let S = U(fpt; tv listg)

in (isnil S(pe);Bool)

Eta[[ue1 with ue2]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

let S = U(fpt1; pt2 setg)

in (S(pe1) with S(pe2); S(pt1))

Eta[[emp]] = let tv be fresh

in (emp[tv]; tv set)

Eta[[rep ue]] = let (pe; pt) = Eta[[ue]]

let tv be fresh

let S = U(fpt; tv setg)

in (rep S(pe); S(tv))

Figure 3.4: Type analysis of set-enriched typed �-expressions (part 2)

88

Eta[[ue1 less ue2]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

let S = U(fpt1; pt2 setg)

in (S(pe1) less S(pe2); S(pt1))

Eta[[isemp ue]] = let (pe; pt) = Eta[[ue]]

let tv be fresh

let S = U(fpt; tv setg)

in (isemp S(pe);Bool)

Eta[[ue1 in ue2]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

let S = U(fpt1 set; pt2g)

in (S(pe1) in S(pe2);Bool)

Eta[[true]] = (true; Bool)

Eta[[false]] = (false; Bool)

Eta[[if ue1 then ue2 else ue3]] = let (pe1; pt1) = Eta[[ue1]]

let (pe2; pt2) = Eta[[ue2]]

let (pe3; pt3) = Eta[[ue3]]

let S1 = U(fpt1; Boolg)

let S2 = U(fpt2; pt3g)

in (if S1(pe1) then S2(pe2)

else S2(pe3); S2(pt2))

Figure 3.5: Type analysis of set-enriched typed �-expressions (part 3)

89

case for the expression in E. We therefore need to use the type erasing function Ee

that has a functionality of Ee(xi[t]) = xi for the variables with type information,

but otherwise behaves as the identity.

3.1.4 Soundness and Completeness

In this section, we discuss the soundness and the completeness of the type analysis

function Eta. We need two auxiliary sets, WFF (ue) and INS(ue). The set

WFF (ue) = fhtenv; e; ti j tenv ` e : t ^ ue = Ee(e) ^Dom(tenv) = FEV (ue)g

is a set of triples of the form htenv; e; ti such that e has a type t; that is, tenv ` e : t,

and e equals ue when the types are erased by the type erasing function Ee : PE !

UE, and where FEV (ue) is the set of free variables in ue. Analogously, the set

INS(ue) = fhS Æ A(pe); Ee(S(pe)); S(pt)i

j Eta[[ue]] = (pe; pt) ^Dom(S) � FTV (pe) [FTV (pt)

^ S is a ground substitution ^ S ÆA(pe) is functionalg

is a set of triples of the form hS ÆA(pe); Ee(S(pe)); S(pt)i, when E [[ue]] = (pe; pt).

The type is obtained as S(pt), that is a ground substitution applied to polytype

pt. The expression would similarly be S(pe), except that polytyped variables are

annotated with their types so that we have to use the type erasing function Ee.

Finally, the analogue of the type environment is S ÆA(pe) where it is required that

90

this set may be regarded as a function. Please note that INS(ue) is the empty

set, ;, if Eta[[ue]] fails.

We now show a conjunction of two results. WFF (ue) � INS(ue) is the sound-

ness, which says that Eta only speci�es will-formed expressions; the other result

is the completeness, WFF (ue) � INS(ue), which says that every well-formed

expression is obtainable from the result that Eta speci�es.

Theorem 2. (Soundness and Completeness of Eta)

WFF (ue) = INS(ue)

for all expressions ue 2 UE.

Note that the correctness of program translating follows, with the introduction

of type erasing function Pe : P (E; T)! P (UE; T), de�ned by

Pe[[DEF x1 = e1 : : :DEF xn = en VAL e HAS t]]

= DEF xi = Ee[[e1]] : : :DEF xn = Ee[[en]] VAL Ee[[e]] HAS t

Proof. We prove by a structural induction on ue using the freshness of the type

variables generated in Eta.

� The case ue ::= fi. If fi =2 Dom(C), bothWFF (ue) and INS(ue) are empty,

where C is the set of constraints. Assuming fi 2 Dom(C), we have

WFF (ue) = fh;; fi[t]; ti j t is an instance of C(fi)g

91

INS(ue) = fh;; fi[S(pt)]; S(pt)i

j S covers pt; S is ground; pt is a generic instance of C(fi)

with FTV (pt) all being freshg

where C(fi) is the set of all constraints on fi. The result then follows because

the set of types that are instances of a closed type scheme equals the set of

types that are ground instances of a polytype that is a generic instance of

the same closed types scheme.

� The case ue ::= �xi:ue0. We assume that xi 2 FEV (ue0). We then have

WFF (ue) = fhtenv; �xi[t]:e0; t! t0i

j htenv[t=xi]; e0; t0i 2 WFF (ue0) ^Dom(tenv) = FEV (ue)g

because the instance system in Figure 3.2 is such that [�] must be the last

rule used in a proof of well-formedness of �xi:e0. We write tenv=X for the

restriction of an environment tenv to a subset X of its domain Dom(tenv).

We have

WFF (ue) = fhtenv=FEV (ue); �xi[tenv(xi)]:e0; tenv(xi)! t0i

j htenv; e0; t0i 2 WFF (ue0)g:

For INS(ue) we have

INS(ue) = fh(S Æ S 0) Æ A(pe0)xi; �xi[(S Æ S
0)(tv)]:"0((S Æ S 0)(pe0));

92

(S Æ S 0)(tv)! (S Æ S 0)(pt0)i

j E [[ue0]] = (pe0; pt0) ^ tv is fresh ^ Uftvg [A(pe0)xi = S 0

^ S covers all of S 0 Æ A(pe0)xi; S 0(tv); S 0(pe0); and S
0(tv)

^ S is ground ^ (S Æ S 0) Æ A(pe0)xi is functional g

where, we have used

(S Æ S 0) Æ A(pe0)xi = S Æ (S 0 Æ A(pe0)xi);

(S Æ S 0)(pe0) = S(S 0(pe0));

(S Æ S 0)(pt0) = S(S 0(pt0)); and

A(�xi[tv]:pe0) = A(pe0)xi :

Since S 0 uni�es the set A(pe0)(xi), the set ((SÆS
0)ÆA(pe0))(xi) is a singleton.

Hence, (S Æ S 0)(tv) may be replaced by ((S Æ S 0) Æ A(pe0))(xi): And, since

FEV (ue) = FEV (ue0)nfxig where n is the set di�erence, we may replace

(S Æ S 0) Æ A(pe0)xi by ((S Æ S 0) Æ A(pe0))=FEV (ue): Thus, we have

INS(ue) = f(((S Æ S 0) Æ A(pe0))=FEV (ue);

�xi[((S Æ S
0) Æ A(pe))(xi)]: "

0((S Æ S 0)(pe0));

((S Æ S 0) Æ A(pe0))(xi)! (S Æ S 0)(pt0))

j E [[ue0]] = (pe0; pt0) ^ ((S Æ S 0) Æ A(pe0))(xi) is a singleton

^(S Æ S 0) covers all of A(pe0)xi; A(pe0)(xi); pe0 and pt0

93

^(S Æ S 0) is ground

^((S Æ S 0) Æ A(pe0))=FEV (ue) is functionalg

where the need for tv vanished, given that ((S ÆS 0)ÆA(pe0))(xi) has replaced

(S Æ S 0)(tv). We then get

INS(ue) = f(tenv=FEV (ue); �xi[tenv(xi)]:e0; tenv(xi)! t0)

j (tenv; e0; t0) 2 INS(ue0)g:

So, the desired result follows from the induction hypothesis. Finally, we

observe that if xi =2 FEV (ue0) the result may be obtained in much the same

manner.

� We observe that the desired results for the following cases follow the pattern

of the above cases:

ue ::= hue1; ue2i, ue ::= fst ue0, ue ::= snd ue0,

ue ::= ue1(ue2), ue ::= xi, ue ::= ue1 :: ue2,

ue ::= nil, ue ::= hd ue0, ue ::= tl ue0,

ue ::= isnil ue0, and if ue1 then ue2 else ue3.

� The cases

ue ::= e1 with e2, ue ::= isemp, ue ::= rep ue0,

ue ::= ue1 less ue2, ue ::= isemp ue0

94

follow, respectively, the general patterns of the cases

ue ::= ue1 :: ue2, ue ::= nil, ue ::= hd ue0,

ue ::= tl ue0, ue ::= isnil ue0.

� Finally, the case of ue ::= ue1 in ue2 follows the general pattern of ue ::=

ue1 with ue2 with replacing t set by Bool. 2

Theorem 3. (Soundness and Completeness of P) Consider an untyped

program up = DEF x1 = ue1 : : :DEF xn = uen VAL ue HAS t]], and consider the

outcome of P [[up]]. If it produces the program p = DEF x1 = e1 : : :DEF xn =

en VAL e HAS t then

� p is well-formed, i.e. ` p,

� the underlying program of p is up, i.e. up = Pe(p).

If p[[up]] fails then

� there is no well-formed program p in P (E; T) that has up as its underlying

program.

Proof. This is a straightforward corollary of Theorem 2. 2

3.2 EAS

As for the study of programming languages, the language de�nitions usually consist

of two major components [SK95]:

95

1. Syntax refers to the ways symbols may be combined to create well-formed

sentences or programs in the language. Syntax de�nes the formal relations

between the constituents of a language, thereby providing a structural de-

scription of the various expressions that make up legal strings in the language.

2. Semantics reveals the meaning of syntactically valid strings in a language.

For a programming language, semantics describes the behavior that a com-

puter follows when executing a program in the language.

This section is a brief description on both the syntax and the semantics of EAS,

an experimental programming language with sets.

Every programming language presents its own conceptual view of computations.

We note the highlights of the EAS programming language as follows:

� EAS is an applicative programming language. The principal control mecha-

nism in EAS is recursive function applications.

� EAS is strongly typed. Every valid EAS expression has a type which is deter-

mined automatically by the type system. Strong typing guarantees that no

program can incur a type error at run time.

� EAS has a polymorphic type system. Each valid EAS phrase has a uniquely

determined and most general typing that determines the set of contexts in

which that the EAS phrase may be legally used.

96

� EAS is statically scoped. EAS resolves identi�er references at compile time,

leading to more modular and more eÆcient object programs.

� EAS includes syntax for list constructors and set constructors.

An EAS program consists of a sequence of declarations; the execution of each

declaration modi�es the environment. In the execution of a declaration there are

three phases:

1. Parsing determines the grammatical form of a declaration.

2. Elaboration is the static phase which determines whether it is well-typed and

well-formed.

3. Evaluation is the dynamic phase which determines the value of the declaration

in the environment.

Usually, we call the combination of the �rst two phases as compilation. Once a

declaration is compiled we may evaluate it repeatedly with re-evaluation.

In the following discussion, we adapt the notation used in [MTH90]. In following

section, we present the syntax of the EAS programming language. We describe, in

section 3.2.2, the EAS static semantics. Section 3.2.3 describes the EAS dynamic

semantics.

97

t 2 T (Types)

t ::= Int j t� t j t list j t set j t! t

e 2 E (Expressions)

op1 ::= ! j fst j snd j hd j tl j rep

op2 ::= + j � j � j = j % j j > j >= j < j <= j == j ! = j

and j or j :: j with j less j in

e ::= n j x j op1 e j e1 op2 e2 j if e then e else e j x = e j (e; e) j (e) j

fun fi(x1; : : : ; xn) = ei j fi(e1; : : : ; en) j let e1; : : : ; en; in e0 j

[x : e1 j e2] j fx : e1 j e2g

Figure 3.6: The EAS syntax

3.2.1 The EAS Syntax

In this section, we present the EAS syntax. The EAS syntax is a modi�ed version

of the SET �-calculus for the implementation practice purpose. Here are a couple

of highlighted modi�cations:

� EAS adopts the C convention of simulating boolean values with integers.

� EAS includes literals of derived types.

The EAS syntax is shown in Figure 3.6.

Reserved Words

The following are reserved words used in EAS. They may not be used as identi�ers.

98

and else fun fst if hd

in less let or rep snd

tl with ! () [] f g

, :: ; = == >

>= < >= + � �

= != ++ �� j %

Literals

EAS has one base data type, integer. Hence, EAS has one type of base literals,

integer literal. An integer literal is any non-empty sequence of digits, possibly

preceded by a negation symbol �. Examples: 23, �45.

EAS has two kinds of derived lexical forms: one for list, and the other for set.

They are presented in the following table.

Derived Form Equivalent Form

[lit1; : : : ; litn] lit1 :: : : : :: litn :: nil

flit1; : : : ; litng emp with lit1 : : : with litn

Identi�ers

The rule of an EAS identi�er vid is described as follows:

A letter followed by any sequence of letters and digits.

99

The class of EAS identi�ers is denoted as Vid.

Lexical Analysis

By means of the above rules a compiler can determine the class to which each

identi�er occurrence belongs. Each item of lexical analysis is either a reserved

word, an identi�er, or a literal. Comments and formatting characters (such as

space, tab, newline, and formfeed) are ignored.

Grammar

EAS has the following phrase classes.

Lit literals

AtExp atomic expressions

Constr constructors

Bind bindings

Exp expressions

The grammatical rules for EAS are shown in Figure 3.7. In the EAS grammar,

op1 and op2 follow the de�nition presented in the EAS syntax. An EAS program

is a sequence of EAS expressions.

100

lit ::= n integer
atexp ::= lit literal

vid value identi�er
(atexp, atexp) pair
op1 atexp unary primitives
atexp op2 atexp binary primitives
(atexp) precedence overriding

constr ::= [vid : atexp j atexp] list constructor
fvid : atexp j atexpg set constructor

bind ::= vid = exp variable binding
fun vid (vid) = exp function declaration

exp ::= atexp atomic expression
exp (atexp) function application
if exp then exp else exp if-then expression
let bind in exp local declaration

Figure 3.7: The EAS grammar

101

3.2.2 The EAS Static Semantics

In addition to the classes of syntactic objects, de�ned in the previous section,

we now de�ne the classes of semantic objects. The static semantic objects are

presented in this section, and the dynamic objects are presented in the following

section.

The static semantic objects are the object classes manipulated in the elabo-

ration phase of compiling. Some classes contain simple semantic objects; such

objects are usually identi�ers or names of some kind. Other classes contain com-

pound semantic objects, such as types or environments, which are constructed from

compound objects.

Simple Objects

All semantic objects in the static semantics of the EAS programming language are

built from identi�ers. EAS has one kind of simple objects: type constructor names.

The simple semantic object classes and the variables ranging over them are shown

as follows.

� or tyvar 2 TyVar type variables

EAS has only one base type, and therefore type(lit) = int.

Since EAS does not have user-de�ned type variables, all the type variables are

generated by the compiler during the type analysis. A type variable tyvar may be

102

� 2 Type = TyVar [FunType

� ! � 0 2 FunType = Type�Type

TE 2 TyEnv = TyVar
fin
�! Type

V E 2 ValEnv = Vid
fin
�! Type

E or hTE; V Ei 2 Env = TyEnv�ValEnv

U 2 TyVarSet = Fin(TyVar)

C or hU;Ei 2 Context = TyVarSet� Env

Figure 3.8: EAS Compound Static Semantic Objects

any alphanumeric identi�er starting with a prime (').

Compound Objects

The compound objects for the static semantics of EAS are shown in Figure 3.8.

We take [to mean disjoint union over semantic object classes. We also understand

all the de�ned object classes to be disjoint. We use the notations A
fin
�! B for

the set of �nite maps from A to B, and Fin A for the set of �nite subsets of A.

The domain and range of a �nite map f are denoted as Dom f and Ran f . A

�nite map is often written explicitly in the form fa1 7! b1; : : : ; ak 7! bkg, k � 0; in

particular the empty map is fg.

A value environment V E maps to variable identi�ers to types. Note that we

treat primitives in the same way as variable identi�ers. The types of primitives

103

Primitive Type

! int ! int

fst t1 � t2 ! t1
snd t1 � t2 ! t2
hd t list! t

tl t list ! t list

rep t set ! t

+, �, �, =, %, >, >=, <, <=, ==, ! =, and, or int� int ! int

:: t� t list ! t list

with, less t set� t! t set

in t� t set ! int

Figure 3.9: Types of the EAS primitives

are shown in Figure 3.9.

Types and Type Environment

A type � is one of the following forms:

� int,

� �, and

� flab1 7! �1; : : : ; labn 7! �ng.

A type environment TE is a �nite map from bound type variables tyvar to

types t.

104

Inference Rules

Each rule of the semantics allows inferences among sentences of the form

A ` phrase) A0;

where A is usually an environment or a context, phrase is an EAS phrase, and

A0 is a semantic object, usually a type or an environment. It may be pronounced

\phrase elaborates to A0 in context A". Some rules have extra hypotheses not of

this form; they are called side conditions.

In the presentation of the rules, phrases within single angle brackets h i are

called options. To reduce the number of rules, we have adopted the following

convention:

In each instance of a rule, the options must be either all present or all

absent. 2

Atomic Expressions C ` atexp) �

The inference rules of EAS atomic expressions are given as follows.

C ` lit) type(lit)
(3.1)

C(vid) � �

C ` vid) �
(3.2)

C ` atexp1) �1 C ` atexp2) �2
C ` (atexp1; atexp2)) �1 � �2

(3.3)

105

C ` atexp) � 0 C(op1) � � ! �

C ` op1 atexp) �
(3.4)

C(op2) � �1 � �2 ! � C ` atexp1) �1 C ` atexp2) �2
C ` atexp1 op2 atexp2) �

(3.5)

C ` atexp) �

C ` (atexp)) �
(3.6)

We note the following:

� In (3.2), the instantiation of type schemes allows di�erent occurrences of a

single vid to assume di�erent types.

� In (3.3) and (3.4), the type schemes of primitives are prede�ned in V E.

Constructors C ` constr) �

We present the inference rules of EAS constructors as follows.

C(vid) � � C ` atexp1) � list C ` atexp2) int

C ` [vid : atexp1 j atexp2]) � list
(3.7)

C(vid) � � C ` atexp1) � set C ` atexp2) int

C ` fvid : atexp1 j atexp2g) � set
(3.8)

Value Binding C ` bind) V E

The inference rules of EAS value bindings are given as follows.

C `) fg in Env
(3.9)

C ` vid) hV E; �i C ` exp) � C ` bind) V E 0

C + V E ` vid = exp) V E 0
(3.10)

106

C ` vid1) hV E; �1 ! �2i C ` vid2) hV E; �1i C ` exp) �2

C ` bind) V E 0

C + V E ` fun vid1(vid2) = exp) V E 0
(3.11)

We note that

� In (3.10), when the option is present we have Dom(V E)\Dom(V E 0) = ; by

the syntactic restrictions.

Expressions C ` exp) �

The inference rules of EAS expressions are given as follows.

C ` atexp) �

C ` atexp) �
(3.12)

C ` exp) � 0 ! � C ` atexp) � 0

C ` exp (atexp)) �
(3.13)

C ` exp1) int C ` exp2) � C ` exp3) �

C ` if exp1 then exp2 else exp3) �
(3.14)

C ` bind) E C � E ` exp) �

C ` let bind in exp end) �
(3.15)

Here are some comments:

� In (3.12), the relational symbol ` is overloaded for all syntactic classes.

� In (3.15), the use of � ensures that type names generated by the �rst sub-

phrase are di�erent from type names generated by the second sub-phrase.

107

3.2.3 The EAS Dynamic Semantics

In addition to the classes of syntactic objects and static semantic objects, we de�ne

the classes of dynamic semantic objects in this section.

Since types are fully dealt with in the static semantics, the dynamic semantics

ignores type information. The EAS syntax is therefore reduced for the purpose of

the dynamic semantics. The reduced representation is transformed by removing

the asserted type information with the syntax.

Simple Objects

All objects in the dynamic semantics are built from identi�er classes together with

the simple object classes show as follows.

b 2 BasVal basic values

op1 2 Op1Val unary primitive values

op2 2 Op2Val binary primitive values

constr 2 ConVal constructor values

sv 2 SVal special values

where BasVal is such that each integer denotes a value according to normal math-

ematical conventions, Op1Val is the class of unary primitive values, Op2Val is the

class of binary primitive values, ConVal is the class of constructor values, and SVal

is the class of special values. In the EAS dynamic semantics, SVal has only one

108

element Fail, which is the result of a failing attempt.

Compound Objects

The compound objects for the EAS dynamic semantics EAS are shown as follows.

v 2 Val = BasVal [Op1Val [Op2Val [ConVal [SVal

E 2 ValEnv = Vid
fin
�! Val

In the presentation of the EAS dynamic compound object, many conventions and

notations are adopted in the same way as in the EAS static semantics. We take

[to mean disjoint union over semantic object classes. We also understand all the

de�ned object classes to be disjoint.

Although with the same names, E, for an environment are used as in the

static semantics, the objects denoted are di�erent. We understand this causes no

confusion since the static and dynamic semantics are present separately.

Values

The basic values in BasVal are the values bound to prede�ned variables. The

meaning of basic values is presented as the following function:

APPLYbas : BasVal� Val! Val [fFailg:

In EAS, we treat primitives and constructors in the same way as basic values.

That is, we present the meaning of unary primitive values, binary primitive values,

109

and constructor values by the following functions:

APPLYop1 : Op1Val� Val! Val [fFailg;

APPLYop2 : Op2Val� Val� Val! Val [fFailg; and

APPLYconstr : ConVal� Vid timesVal� Val! Val [fFailg:

Inference Rules

The dynamic semantic rules allow sentences of the form

A ` phrase) A0

to be inferred, where A is usually an environment, and A0 is some semantic object.

Some hypotheses in the rules are not of this form, and they are called side condi-

tions. The convention for options follows from that of the EAS static semantics.

Another convention adopted in our discussion is that we allow compound vari-

ables to range over unions of semantic objects. For instance, we allow x=Fail to

range over X [fFailg where x ranges over X.

Atomic Expressions C ` atexp) v=Fail

The dynamic semantic inference rules of EAS atomic expressions are given as

follows.

E ` lit) value(lit)
(3.16)

110

E(vid) = v

E ` vid) v
(3.17)

E ` atexp) v0 APPLYop1(op1; v
0) = v

E ` op1 atexp) v
(3.18)

E ` atexp1) v1 E ` atexp2) v2 APPLYop2(op2; v1; v2) = v

E ` atexp1 op2 atexp2) v
(3.19)

E ` atexp) v

E ` (atexp)) v
(3.20)

We note that in (3.19), the same as in the static semantics, value identi�er vid

is looked up in the environment E.

Constructors E ` constr) v=Fail

We present the inference rules of EAS constructors as follows.

E ` atexp1) v0 APPLYconstr(constr; vid; v
0; atexp2) = v

E ` [vid : atexp1 j atexp2]) v
(3.21)

E ` atexp1) v0 APPLYconstr(constr; vid; v
0; atexp2) = v

E ` fvid : atexp1 j atexp2g) v
(3.22)

We note that although the above inference rules (3.21) and (3.22) are not

precise, this should cause no confusion for implementing the constructors.

Value Bindings E ` bind) V E=Fail

The dynamic semantic inference rules of the EAS bindings are given as follows.

E `) fg in Env
(3.23)

E ` exp) v E; v ` vid) V E hE ` bind) V E 0i

E ` vid = exp) V Eh+ V E 0i
(3.24)

111

E ` exp) v E; v ` vid) Faul

E ` vid = exp) Fail
(3.25)

E ` bind) V E

E ` bind) V E in Env
(3.26)

Expressions C ` exp) v=Fail

The dynamic semantic inference rules of EAS expressions are given as follows.

E ` atexp) v

E ` atexp) v
(3.27)

E ` exp) b E ` atexp) v APPLYbas(b; v) = v0

E ` exp atexp) v0
(3.28)

E ` bind) E 0 E + E 0 ` exp) v

E ` let bind in exp end) v
(3.29)

E ` exp1) 0 E ` exp3) v

E ` if exp1 then exp2 else exp3) v
(3.30)

E ` exp1) v0 (v0 6= 0) E ` exp2) v

E ` if exp1 then exp2 else exp3) v
(3.31)

In (3.29), notice that none of the rules for function application has a premise

in which the operator evaluates to constructed value. This is because we are

interested in the evaluation of well-typed programs only, and in such programs

exp will always have a functional type.

3.3 EAS Dynamic Optimizer

A naive implementation of EAS programs makes a copy for a bound compound

value in an updating expression. The EAS dynamic optimizer applies the dynamic

112

destructive e�ect analysis and the optimized program performs a destructive up-

date for an updating expression at run time when it is safe.

The implementation of the EAS dynamic optimizer includes two phases:

� the enriched type system, which time stamps the program points and com-

putes the last-use of variables, and

� the optimizing code generator, which augments the object code with the codes

for the dynamic destructive e�ect analysis and destructive update optimiza-

tion.

3.3.1 Enriched Type System

We apply the idea of Turner, Wadler and Mossin [TWM95], in which they devel-

oped a method for determining whether a value is used at most once based on a

modi�cation of the Hindley-Milner type system. We integrate the data collecting

phase together with the type system of the EAS compiler.

In addition to type analysis, the enriched type system has two major tasks:

� giving each program point a time stamp, and

� computing the last-use of each variable.

The time stamp scheme we implemented is described in the appendix section

of Chapter 2. We also implemented the comparing function for the use of the EAS

113

dynamic optimizer and the EAS program analyzer.

The semantic model of the variable last-use analysis is presented in Figure 2.1.

The last use of a variable V is a set of the time stamps after any of which there is

no reference to V .

3.3.2 Optimizing Code Generator

The EAS dynamic optimizer generates the code that implements the semantic

functions of expressions for the dynamic destructive e�ect analysis shown in Figure

2.2. The basic idea is that when the EAS dynamic optimizer detects it is safe, it

implements an updating expression with a destructive update.

In order for tracing back the destructive e�ects of values in the outer scopes

at the time of function return, we adapted the structure e�ect � of a value V in

function f as

�f(V) = hdes; �; �g(V)i

where, des is the interprocedural destructibility of V when f is called, � is the

last-use of V in the execution of f , and �g(V) is the location of the destructive

e�ect of V at the time when f is called. In such a way, when f returns a value

V that is one of its arguments, we may use �3(�f(V)) to get the destructive e�ect

when f is called.

Our optimizing code generator has two major tasks:

114

� it generates an optimizing version of each updating primitive, which makes a

destructive update when it is safe and makes a fresh copy otherwise, and

� it compute the last-use of values along the program execution.

3.4 EAS Static Analyzer

The EAS static analyzer computes the destructive e�ects of expressions in a pro-

gram at compile time. Since the computation assumes that the values in standard

semantics are not available at compile time, the analyzer actually computes the

destructive e�ects of the expressions of all the possible control
ows.

The EAS static analyzer is an implementation of the abstract interpretation

framework described in Section 2.5. We apply a two-level intermediate represen-

tation transformation to translate the abstract syntax tree of expressions into the

representation in our abstract domain. Then, we compute the values of expressions

in our abstract domain, each of which is a set of destructive e�ects. In particu-

lar, we compute the �xed points for the mutually recursive functions. At last,

the analysis concludes for the cases of updating expressions whether it is safe for

destructive update optimization or not.

115

3.4.1 Two-Level Intermediate Representation

In order to transform an abstract syntax tree of an EAS expression eas exp into the

representation in our abstract domain abs exp, we apply a two-pass transformation

as follows.

1. Transform the eas exp expression into the intermediate representation int exp.

In this pass, we also initialize the values of the expressions of derived types

as ;; and the values of the expressions of base types as ?. (The analysis for

integer expressions is omitted.)

2. Transform the int exp expression into the representation of our abstract do-

main abs exp. In this pass, we compute all the possible destructive e�ects of

each expression in three steps:

� Compute the destructive e�ects of each abs exp in the function de�nitions

f1; : : : ; fn.

� Solve the �xed points of mutually recursive functions.

� Compute all the possible destructive e�ects of each abs exp expressions

in the main function of the program f1. 2

Please note that we use exactly the same code for the set operations of com-

puting the expression values in the abstract domain, which are sets of destructive

116

e�ects, as that we generate as the object code for the set operations of the set-

theoretic expressions in EAS programs.

3.4.2 Static Destructive Update Optimization

As soon as the destructive e�ects of the expressions are available, we may perform

the static destructive update optimization. The applying method of the static

destructive update optimization is straightforward:

It is safe to implement an updating expression with a destructive update

when all the possible destructive e�ects of the expression indicate that

the value is globally destructible. 2

More speci�cally, in the static destructive update analysis, we try to answer

two kinds of questions based on the compile time analysis:

1. Is it safe to implement an updating expression in a program with a destructive

update?

2. Is it safe to implement an updating expression with a destructive update for

a certain occurrence along a speci�c control
ow?

And, usually we give a more conservative answer for question 1 than that for

question 2.

Consider the swap function in the bubble sort program in Figure 2.5. For ques-

tion 1, it is not safe to implement the updating expression upd1 with time stamp

117

2 by a destructive update, while it is safe to implement the updating expression

upd2 with time stamp 3 by a destructive update.

For question 2, let us consider the execution of bubsort2 with time stamp 5 in

the main function. Since b4 is referred the last in the program, all the function

calls to swap pass a dead value to swap as the �rst parameter, and therefore both

upd1 and upd2 may be implemented by destructive updates for the execution of

bubsort2.

3.5 Benchmarks

We experiment on the performance of the naive implementation of programs and

the dynamically optimized program. The naive implementation makes a fresh copy

in each case of updates. The optimized programs include the code that performs

a destructive update optimization at run time.

The programs that we experimented are:

� BubbleSort: a bubble sort that terminates when no swap occurs in an itera-

tion,

� HeapSort: a heap sort for arrays in which the children of the ith element are

the (2� i)th and the (2� i+ 1)th elements,

� QuickSort: a quick sort based on the divide-and-conquer paradigm, whose

118

expected running time is O(n logn) and worst-case running time is O(n2) on

an array of n numbers,

� TopoSort2: a �nite di�erencing version of topological sort that di�erentially

updates the set of candidates,

� Dijkstra: Dijkstra's single-source shortest path algorithm implemented with

a binary heap, and

� Kruskal: Kruskal's minimum spanning tree algorithm implemented with a

priority queue by a binary heap.

We executed BubbleSort, HeapSort, and QuickSort on integer arrays of 100 num-

bers, and we executed TopoSort2, Dijkstra, and Kruskal on graphs with 100

nodes and 300 edges. All the test data were automatically generated by random.

We used the standard C library htime:hi to measure the cpu elapsed time [KR88],

and translated the results into the numbers of seconds.1 The empirical results are

shown in Figure 3.10.

We computed the ratio of the optimized running time over the unoptimized

running time. For example, the running time for the optimized Kruskal program

is 0.159 of the running time for the unoptimized Kruskal program. In other

words, 0.841 of the running time for the unoptimized Kruskal program is spent

1The C functions for measuring benchmarks are coded by M. Nayakkankuppam for the SeQuL pack-

age.

119

Program data size unoptimized t1 (sec) optimized t2 (sec)
t2
t1

BubbleSort 100 1:080 0:350 0.324

HeapSort 100 0:260 0:060 0.231

QuickSort 100 0:130 0:070 0.538

TopoSort2 100/300 0:110 0:070 0.636

Dijkstra 100/300 0:820 0:230 0.280

Kruskal 100/300 3:710 0:590 0.159

Figure 3.10: Benchmarks for the unoptimized and optimized programs

on unnecessary hidden copying. Note that the execution time of the optimized

programs range from 0.159 to 0.636 of the execution time of the unoptimized

programs.

120

Chapter 4

Finite Di�erencing Functional

Programs

In this chapter we will be concerned principally with general sets and mappings

represented by sets and tuples. The set-theoretic operations S+T , S�T , and S�T

compute the union set, di�erence set (set minus), and intersection set. Consider

the program segments (a) and (b) in Figure 4.1. When the value bound to S

is di�erentially changed and the value C of S � T can be restored with either

the expression of line 3 in (a) or the expression of line 3 in (b). The expected

cost of computing C = S � T is proportional to #S, the cardinality of S, while

C = C + (fxg � T) can be computed in constant time. This leads to the study of

the optimization technique of �nite di�erencing.

121

Program segment (a)

1) C = S - T;

2) S = S + {x};

3) C = S - T;

Program segment (b)

1) C = S - T;

2) S = S + {x};

3) C = C + ({x} - T);

Figure 4.1: Program segments with set-theoretic expressions

Paige proposed four rules of �nite di�erencing the set-theoretic expressions that

are continuous in all of their parameters [Pai81]. We describe the rule 1 here as

an example of showing how �nite di�erencing works.

(Finite di�erencing of set-theoretic expressions) Rule 1: We begin by mak-

ing expressions with form C = fx 2 SjK(x)g available on the en-

trance to a program block B. Then, at each program point p inside

B where the value of S changes by S = S � A, the value of C, which

could be spoiled at p, is updated by inserting the pre-derivative code

C = C � fx 2 AjK(x)g. 2

With this rule, the result of �nite di�erencing of program segment (c) is shown as

program segment (d)1 in Figure 4.2.

1C = C + fx 2 AjK(x)g is transformed into the form of if K(x) then C = C + fxg; end if ;.

122

Program segment (c)

forall x in S

if f(x) then

S = S + {x};

end if;

C = { x in S | K(x) };

end forall;

Program segment (d)

C = { x in S | K(x) };

forall x in S

if f(x) then

S + {x};

if K(x) then

C = C + {x};

end if;

end if;

end forall;

Figure 4.2: Example of �nite di�erencing of set-theoretic expressions

123

The formal speci�cation of �nite di�erencing is presented in terms of a collection

of program transformations. The �nite di�erencing transformed programs were

shown to improve the execution performance from the original version of programs

[PK82].

We brie
y describe the �nite di�erencing of computable expressions in the

following section. In section 4.2, we present the way that we perform �nite dif-

ferencing transformations on functional set-theoretic expressions. We extend, in

section 4.3, the application of �nite di�erencing technique to the optimization of

list expressions. The benchmarks are included in section 4.4.

4.1 Finite Di�erencing of Computable Expressions

Finite di�erencing of computable expressions was developed from Paige's technique

of formal di�erentiation [Pai81] as a global program optimization method that cap-

tures a commonly occurring yet distinctive mechanism of program construction in

which repeated costly calculations are replaced by inexpensive incremental coun-

terparts. When �nite di�erencing is applied to algorithms expressed as high-level,

lucid, but ineÆcient program statements, the transformed algorithms materialize

as more complex but eÆcient program versions. This method generalizes John

Cocke's method of strength reduction, and provides a convenient framework for

implementing a host of program transformations, including Earley's \iteration in-

124

version" [PK82].

The idea of �nite di�erencing was originated with \reduction in strength."

Reduction in strength is viewed as an extension of code motion whereby the major

cost of evaluating an expression E = f(x1; : : : ; xn) is moved outside a program

region R despite modi�cations to its parameters x1; : : : ; xn occurring within R.

By making E available on the entry to R and keeping E available within R with

appropriately modifying E each time one of the parameters x1; : : : ; xn is modi�ed,

we can avoid full calculations of f within R by replacing the expression E for the

redundant occurrences of f within R. For the case that the cost of keeping E

available in R is less than the cost of calculating f anew each time it is referred,

the �nite di�erencing technique is valuable and useful.

Finite di�erencing is formulated in terms of three semantics preserving program

transformations that generalize the above reduction in strength schema.

1. Init transformation: The Init transformation Init(P) replaces each con-

tiguous sequence of achieve statements, e:g: achieve E = f(x1; : : : ; xn), within

a program P by a code block B that computes and stores the values of the

expressions f(x1; : : : ; xn) into their respective virtual variable E.

2. Di�erential transformation: The Di�erentiation transformation @JhRi

inserts code within a program region R in order to keep each expression

E = f(x1; : : : ; xn) belonging to a sequence of expressions J available at the

125

program points in R after which redundant uses of f(x1; : : : ; xn) are replaced

by E.

3. Clean transformation: The Clean transformation, which is the last step

of �nite di�erencing, eliminates redundant codes.

Finite di�erencing has been successfully applied to imperative language com-

pilation and imperative program transformations. Our attempt is to extend the

technique to functional language compilation and functional program optimization.

Among the three transformations, di�erential transformation is fundamental

to �nite di�erencing. We describe, in the section, the di�erential transformations

and the chain rule formally speci�ed by Paige [Pai81]. We also include the algo-

rithm of detecting induction variable sets and the algorithm of applying the �nite

di�erencing transformations proposed by Paige [Pai81, PK82].

A di�erential transformation is de�ned in the following terms:

� an applicative expression E = f(x1; : : : ; xn) where E is a variable uniquely

associated with the value of f(x1; : : : ; xn);

� a single-entry single-exit code block B that can modify the values of the

variables x1; : : : ; xn on which E depends; and

� a computable derivative @E that allows us to determine the new value Enew

of E from its old value Eold when Eold is spoiled by changing the value with

126

dxi to xi on which E depends.

The computable derivative is formally de�ned as follows:

De�nition 4.1 (Computable derivative): Let E = f(x1; : : : ; xn) be an

applicative expression that depends on the variables x1; : : : ; xn and let

dxi be an expression changing the value of xi. The code block pair

[B1; B2] is said to be a derivative of E with respective to dxi if

1. the only variables modi�ed by B1 or B2 are E and variables local

to B1 and B2; and

2. the code block

achieve E = f(x1; : : : ; xn);

B1

dxi

B2

assert E = f(x1; : : : ; xn);

preserves the semantics of dxi and contains only redundant uses of

f(x1; : : : ; xn).

When [B1; B2] is a derivative of E with respect to dxi, we say that

B1 is a pre-derivative of E with respect to dxi and that B2 is a corre-

127

sponding post-derivative of E with respect to dxi, for which we write

B1 = @�Ehdxii, and B2 = @+Ehdxii, respectively. Note that the occur-

rences of the variable xi within B1 refer to the old value of xi prior to

the change dxi while those of xi within B2 refer to the new value 2.

Note that when no uses of E within the derivative code B1 or B2 are live on

the entry of B1, we can omit the achieve statement in the code, in which case we

that [B1; B2] is a strong derivative.

Now, we de�ne �nite di�erencing with derivative code insertion and redundant

evaluation elimination.

De�nition 4.2 (�nite di�erencing): Consider an applicative expression

E = f(x1; : : : ; xn) that is well de�ned within a single-entry single-exit

code block B occurring in a valid program P . Suppose that no uses

of E in P are live within B. Suppose that the collection of derivative

rules Derives are rules giving derivatives for E with respect to every

assignment dxi occurring in B to a variable xi on which E depends. E

is said to be di�erentiable with respect to B if

� f is well de�ned on entry to B, and

� the �rst expression of B is an updating expression with respect to

which the derivative of E is a strong derivative.

128

The di�erential of E with respect to B, denoted as @EhBi, is a new

code block formed from B in the following ways:

1. Derivative Code Insertion: Replace each statement dxi, that

modi�es a variable xi on which E depends by a code block

@�Ehdxii

dxi

@+Ehdxii

2. Redundant Evaluation Elimination: Replace all uses of f(x1;

: : : ; xn) within the code block by uses of the variable E. 2

Now we are ready to introduce a theorem. Please refer to [PK82] for the detailed

proof.

Theorem 4.3 (Semantic preservation) Let E = f(x1; : : : ; xn) be an ap-

plicative expression that is di�erentiable with respect to a code block

B in a valid program P . If any use of E occurring within @EhBi is live

on the entry to @EhBi, the code block

129

achieve E = f(x1; : : : ; xn);

@EhBi

preserves the semantics of B; otherwise, @EhBi preserves the semantics

of B. Furthermore, E is available on exit from @EhBi. 2

Corollary 4.4 (linearity of di�erential transformation) The di�erential trans-

formation is a linear operator with respect to sequential blocks; that is,

@EhB1 B2i = @EhB1i@EhB2i. 2

The following de�nition and theorem will show how to di�erentiate sequences

of expressions using a chain rule.

De�nition 4.5 (Di�erential chain): Consider n expressions E1 = f1, : : :,

En = fn and a single-entry single-exit code block B occurring in a

valid program P . Suppose that E1 is di�erentiable with respect to

B, that E2 is di�erentiable with respect to @E1hBi, . . . , and that En

is di�erentiable with respect to @En�1h: : : h@E1hBii : : :i. Suppose also

that i > j implies that fj does not involve the variable Ei; i.e., f1; : : : ; fn

preserve an inner-to-outer subexpression ordering. Then, the list of

virtual variables En; : : : ; E1 is said to form a di�erentiable chain. And,

130

the extended di�erential of the chain En; : : : ; E1with respect to B is

de�ned recursively by the following \chain rule":

@En; En�1; : : : ; E1hBi = @En; En�1; : : : ; E2h@E1hBii2 (4.1)

It is important to further restrict the chain ordering (4.1) to prevent the deriva-

tive code for Ei from introducing any expression fj, j < i, since such an occurrence

of fj might not be eliminated as redundant within the di�erential.

Theorem 4.6 (Chain Rule): Let En = fn; : : : ; E1 = f1 be a chain of

n applicative expressions di�erentiable with respect to a code block

B occurring within a valid program P . Let S be the set of indices

i = 1; : : : ; n for which there are uses of Ei within B
0 = @En; : : : ; E1hBi

that are live on the entry to B0. Then the code block

achieve
V
i2S Ei = fi;

@En; : : : ; E1hBi

preserves the semantics of B and keeps E1; : : : ; En available on exit.

Furthermore, if g is any expression formed from some fj, j = 1; : : : ; n,

by substituting fi, for Ei, i = 1; : : : ; j� 1. Then, any use of g occurring

within B or introduced within derivative code by the chain rule will be

131

made redundant and therefore replaced by Ej within @En; : : : ; E1hBi.

2

Corollary 4.7(Linearity to blocks): The extended di�erential is a linear

operator with respect to sequential code blocks; that is,

@En; : : : ; E1hB1; B2i = @En; : : : ; E1hB1i@En; : : : ; E1hB2i2

In general, we must allow a di�erent set of induction variables for every com-

ponent of every elementary expression. We de�ne induction sets as follows.

De�nition 4.8 (Induction variable set): Given a variable v found in a parse

tree of a loop L and an elementary function f(x1; : : : ; xn), we say that

v belongs in the ith induction set for f , denoted as IV (xi; f), if the

following two conditions hold:

1. All de�nitions of v in L in which �nite di�erencing is applied match

the parameter de�nition patterns in D(xi; f), and

2. For each such de�nition pattern the corresponding derivatives must

consist of easy calculations relative to f . 2

We now give the details of the algorithms used for detecting reduction candi-

date expressions in Figure 4.3. We use an auxiliary function Expand(f; Pfunc) for

macro expansion. The two parameters of Expand are a function form f and a map

132

� Input: a derivative table D, a set of elementary form F , A parse tree L of the
optimization loop, and a mapDefs which associates each variable name v occurring
in L with the set Defs(v) of nodes in L corresponding to statements which can
modify the value of v.

� Output: a loop L that is a candidate expression for �nite di�erencing optimization.

1. Find the set RC of nodes in L corresponding to region constant expressions of L.

2. Compute initial sets IV (x; f) of induction variables for every elementary form
f 2 F and each pattern variable x of f .

3. Initialize Prologue to an empty code block.

4. While 9 a node t 2 L and an elementary form f(x1; : : : ; xn) 2 F such that

(a) Match(t; f; Pfunc), and

(b) for i = 1; : : : ; n, either Pfunc(xi) 2 RC or xi 2 IV (xi; f),

perform �nite di�erencing optimization algorithm. Finally, eliminate redundant
code, and halt.

Figure 4.3: Algorithm detecting reduction candidate expressions

Pfunc which associates each formal parameter x of f with a parse tree Pfunc(x).

Expand(f; Pfunc) returns the root of a new parse tree which results from replac-

ing each formal parameter x of f by Pfunc(x). The predicateMatch(t; f; Pfunc)

indicates whether f matches a tree t. IfMatch(t; f; Pfunc) holds, we use the sym-

bol f(x1; : : : ; xn) as an abbreviation for Text(t), and we use the term f(y1; : : : ; yn)

to express Text(Expand(f; Pfunc)), where Pfunc(xi) = ti, and yi = Text(ti),

i = 1; : : : ; n.

The algorithm of �nite di�erencing optimization is presented in Figure 4.4. We

assume that before the �nite di�erencing transformations are applied the code

133

structure is in the form of a parse tree, over which a control
ow graph is imposed.

Data
ow analysis is worked out so that the usetodef and deftouse maps are

de�ned. Type analysis is also performed.

We now sketch an algorithm that could actually automate all of the transfor-

mational steps. Certain implementation-level details are absent here, but may be

found in [PK82]. The automatic �nite di�erencing algorithm is shown in Figure

4.5.

Finite di�erencing of applicative expressions extends an old mathematical idea

to the general problem of algorithm optimization and to the implementation of

high-level languages. The technique of �nite di�erencing o�ers new and eÆcient

implementations of very high-level programming language dictions. Our goal is

to extend the application of �nite di�erencing to functional language implementa-

tions.

4.2 Finite Di�erencing Functional Set-Theoretic Programs

We present our extension of the �nite di�erencing technique to functional programs

with set-theoretic expressions. Since in functional programs the control
ows are

in the form of recursive function calls, we need a new algorithm to compute the

sets of induction variables. Also, we detect three groups of candidate expressions

for �nite di�erencing, namely unary di�erentiable expressions, binary di�erential

134

� Input: a derivative table D, a set of elementary form F , A parse tree L of the
loop detected as a reduction candidate, and a map Defs which associates
each variable name v occurring in L with the set Defs(v) of nodes in L
corresponding to statements which can modify the value of v.

� Output: a new optimized loop L0 and its prologue code block.

1. Generate a unique variable v
f
for keeping the matched expression f available

in L, and insert an assignment v
f
:= f at the end of the Prologue block.

2. For each expression xi, i = 1; : : : ; n, such that xi 2 IV (x; f), and
for each program point p 2 Defs(x) at which x undergoes a change
x = �x, insert appropriate derivative code can be generated by �rst �nd-
ing the unique triple hmod; preD; postDi belonging to D(xi; f) in which
Match(p;mod; Pfunc) holds. Next, to prepare for macro expansion we
must produce a new pattern variable map Sfunc (which can be formed
from Pfunc) which maps pattern variables found in preD and postD
into appropriate trees. Finally, we expand the pre-derivative and post-
derivative patterns preD and postD by executing Expand(preD; Sfunc)
and Expand(postD; Sfunc), and insert the resulting code immediately be-
fore and after p.

3. Within L replace all occurrences of f by v
f
. Also, within the derivative code

generated in step 6 substitute the variable ve for any expression e which has
already been reduced. Finally, make appropriate additions to the set RC
of region constants and to the induction sets IV .

Figure 4.4: Algorithm for �nite di�erencing optimization

135

Algorithm: Automatic Finite Di�erencing

1. Apply preparatory transformations.

2. Decompose the program into its loop structure L1; : : : ; Ln with the property
i < j) Li is contained in Lj or Li \ Lj = fg.

3. For i = 1 : : : n determine a chain Ji of di�erentiable expressions to be re-
duced within Li, but not in any region enclosing Li.

4. For i = n; n� 1; : : : ; 1 transform Li into
achieve

V
(E=f)2J E = f ;

@JihLii.

5. If P is the program that results from step 4, transform P into the �nal
program CleanhInithP ii.

Figure 4.5: Automatic �nite di�erencing algorithm

expressions, and implicit binary di�erentiable expressions.

After we detect the induction variables and the candidate expressions for �nite

di�erencing, we may apply the algorithm for �nite di�erencing optimization in

Figure 4.4 and the automatic �nite di�erencing algorithm in Figure 4.5 to optimize

the set-theoretic expressions in functional programs.

4.2.1 Induction Variable

In functional programming paradigm loops are in a form of recursive function calls,

and the induction variables appear as function parameters. This leads to the need

of a new algorithm for identifying the sets of induction variables when the �nite

136

fun foo1 S T =

if isemp S then T;

else let a = rep S;

Q = S less a;

R = {x in Q | k1(x)};

in foo1 Q {y in R | k2(y)};

Figure 4.6: Example of identifying induction variables in a functional program

di�erencing transformations are applied to functional programs.

As an example, in Figure 4.6, the �rst parameter S of function foo1 is an

induction variable while the second parameter T is not.

Since we are interested in applying the �nite di�erencing technique to the ex-

pressions in functional programs which actually perform as loops in the control
ow

of the programs, we propose the following algorithm for detecting the induction

variables of candidate di�erentiable expressions.

De�nition 4.9 (induction variable set of recursive functions): Given a vari-

able v found in a parse tree of a loop L and an elementary function

f(x1; : : : ; xn), we say that v belongs in the ith induction set for f , de-

noted as IV (xi; f), if the following three conditions hold:

1. In the de�nition of f , the formal parameter xi appears in the pred-

icate of an if expression of which one arm includes recursive calls

to f and the other does not,

137

2. All de�nitions of v in L in which �nite di�erencing is applied match

parameter de�nition patterns in D(xi; f), and

3. For each such de�nition pattern the corresponding derivatives must

consist of easy calculations relative to f . 2

4.2.2 Unary Di�erentiable Expressions

Unary di�erentiable expressions are the set-theoretic expressions that are di�eren-

tiable with respect to one of their parameters. Consider the set former expression

E1 = fx 2 Sjk(x)g:

The di�erential forms of E1 with respect to the changes S with y and S less y are

if k(y) then

E1 with y;

end if;

and

if k(y) then

E1 less y;

end if;

respectively.

For example, in Figure 4.7 we transform the unary di�erentiable expression in

program segment (e) into the di�erential form in program segment (f).

Please note that in the case that the implementation of sets does not include the

cardinality, the cardinality expression #S is also a unary di�erentiable expression.

138

Program segment (e)

fun f2 (S, T, E) =

if isemp S then E

else let y = rep S;

in if y > 20 then let R = T less y;

in f2(S less y, R, { x in R | x > 0 })

else f2(S less y, T, { x in T | x > 0 });

fun f (S) = f2(S, S, { x in S| x > 0 });

Program segment (f)

fun f2 (S, T, E) =

if isemp S then E

else let y = rep S;

in if y > 20 then f2(S less y, T less y, E less y)

else f2(S less y, T, E);

fun f (S) = f2(S, S, { x in S| x > 0 });

Figure 4.7: A unary di�erentiable expression

139

4.2.3 Binary Di�erentiable Expressions

Binary di�erentiable expressions are the set-theoretic expressions that are di�er-

entiable with respect to two of their parameters. Consider the following set ex-

pressions

E2 = S + T;

E3 = S � T; and

E4 = S � T:

The di�erential forms of E2 with respect to the changes S with y and S less y are

if !(y in T) then

E2 with y;

end if;

and

if !(y in T) then

E2 less y;

end if;

respectively. We may derive the di�erential forms of E3 and E4 with respect to

the changes S with y and S less y in a similar way.

For example, in Figure 4.8 we transform the binary di�erentiable expression in

program segment (g) into the di�erential form in program segment (h).

140

Program segment (g)

fun g2 (R, S, T, E) =

if isemp R then E

else let y = rep R;

in if y > 20 then let Q = S less y;

in g2(R less y, Q, T, Q+T)

else g2(R less y, S, T, S+T);

fun g (S, T) = g2(S, S, T, S+T);

Program segment (h)

fun g2 (R, S, T, E) =

if isemp R then E

else let y = rep R;

in if y > 20 then

if y in T then g2(R less y, S less y, T, E)

else g2(R less y, S less y, T, E less y)

else g2(R less y, S, T, E);

fun g (S, T) = g2(S, S, T, S+T);

Figure 4.8: A binary di�erentiable expression

141

4.2.4 Implicit Binary Di�erentiable Expressions

Consider E6 in the following code.

E5 = S + T ;

E6 = fx 2 E5jk(x)g;

We say E6 is an implicit binary di�erentiable expression in S and T .

We apply the systematic scheme described in Section 4.1 to compute the �nite

di�erencing of the implicit binary di�erentiable expressions. The di�erential form

of E6 with respect to the change S with y is

@E6; E5hS with yi ! @E6hif y 62 T then

E5 with y;

end if;

S with y; i

! hif y 62 T then

if k(y) then

E6 with y;

end if;

end if;

S with y; i

142

Program segment (i)

fun h2 (R, S, T, E) =

if isemp R then E

else let y = rep R;

in if y > 20 then let Q = S less y;

in h2(R less y, Q, T, {x in Q++T| x>0})

else h2(R less y, S, T, {x in S++T| x>0});

fun h (S, T) = h2(S, S, T, {x in S++T| x>0});

Program segment (j)

fun h2 (R, S, T, E) =

if isemp R then E

else let y = rep R;

in if y > 20 then

if y in T then h2(R less y, S less y, T, E)

else h2(R less y, S less y, T, E less y)

else h2(R less x, S, T, E);

fun h (S, T) = h2(S, S, T, {x in S++T| x>0});

Figure 4.9: An implicit binary di�erentiable expression

We may derive the di�erential forms of E6 with respect to the change S less y in

a similar way.

For example, in Figure 4.9 we transform the implicit binary di�erentiable ex-

pression in program segment (i) into the di�erential form in program segment (j).

143

A naive version:

1. fun TSort (S, T, L) =

2. if isemp T then L;

3. else let a = rep T;

4. S1 = S less a;

5. in TSort({a in S1 | sp{a}**S1=={} }, S1, a::L);

6. fun TopSort S =

7. TSort({a in S | sp{a} ** S == {} }, S, []);

Figure 4.10: A topological sort program in EAS

4.2.5 Example

Consider the topological sort program in Figure 4.10. We detect the function

TSort as a candidate expression for �nite di�erencing with respect to the induction

variable S. We note that the recursive call to TSort repeatedly construct the set

fa 2 S1jspfag \ S1 == ;g.

We present the �nite di�erencing optimized program version in Figure 4.11.

We apply a few �nite di�erencing transformations to the program.

1. We replace the intersection operation S = spfag\S1 with respect to S1 less x

by updating S with its di�erential form. Therefore, we may transform the

predicate expression spfag \ S1 == ; into testing if the cardinality of S, or

#S, is 0. This leads to the introduction of map Count.

2. The pre-derivative code @�TSort is derived as a function initTS.

144

A �nite di�erencing optimized version:

1. fun initTS (sp, domS, S, C) =

2. if isemp sp then <S, C>;

3. else let <x, y> = rep sp;

4. in if y in domS

5. then let z = S{y};

6. c = C{y};

7. in initTS(sp less <x, y>, domS,

S with <y, z with x>, C with <y, c+1>);

8. else initTS(sp less <x, y>, domS with y,

S with <y, {x}>, C with <y, 1>);

9. fun chkZ (S, Z, C) =

10. if isemp S then <Z, C>;

11. else let u = rep S;

12. c = C{u};

13. in if c == 1 then chkZ(S less u, Z with u,

C with <u,0>);

14. else chkZ(S less u, Z, C with <u, c-1>);

15. fun TSort (Z , S, C, L) =

16. if isemp Z then L;

17. else let a = rep Z;

18. <Z1, C1> = chkZ(S{a}, Z, C);

19. in TSort(Z1, S, C1, a::L);

20. fun TopSort S =

21. let <Prec, Count> = initTS(sp, {}, {}, {});

22. Z = { a in S | Count{a} == 0 };

23. in TSort(Z, Prec, Count, []);

Figure 4.11: A �nite di�erencing optimized topological sort program

145

3. We transform the repeated construction of fa 2 S1jspfag \ S1 == ;g into

its di�erential form, which is the expressions needed for maintaining the set

Z in function chkZ.

4. After removing the redundant evaluations, nothing is needed for the post-

derivative code @+TSort.

4.3 Finite Di�erencing General Functional Programs

The technique of �nite di�erencing may be applied to general functional expres-

sions as well besides the set-theoretic expressions. One of the examples is the list

constructor expression [x : Ljk(x)], which is a unary di�erentiable expression.

The calculation of the list constructor expression

E7 = [x : Ljk(x)]

is actually performed by the following standard function foo.

fun foo [] = [];

| foo y::L =

if k(y) then y::(foo L);

else foo L;

146

Let L = y :: Lt, the di�erential form for E7(L) = [x : Ljk(x)] relative to the

changes tl L is

if k(y) then

y :: tl E7(Lt);

else

E7(Lt);

end if;

For example, in Figure 4.12 we transform the di�erentiable list expression in

program segment (k) into the di�erential form in program segment (l).

4.4 Benchmarks

We measured the running time of a topological sort program to show the e�ective-

ness of a �nite di�erencing optimization 2. We experimented for four cases:

1. Run the program compiled with no optimization at all,

2. Run the program compiled with a �nite di�erencing optimization only,

3. Run the program compiled with a destructive update optimization only, and

2More empirical results are coming soon.

147

Program segment (k)

fun p (L) =

if isnil L then ([], [])

else let y = hd L;

M = fst p(tl L);

if y>20 then (M, [x : M | x>0])

else (y::M, [x : (y::M) | x>0]);

Program segment (l)

fun p (L) =

if isnil L then ([], [])

else let y = hd L;

A = p(tl L);

if y>20 then A

else if y>0 then (y::fst A, y::snd A)

else (y::fst A, snd A);

Figure 4.12: A unary di�erentiable list expression

148

Program unoptimized t1 (sec) optimized t2 (sec)
t2
t1

TopoSort1 0:960 0:970 1.010

TopoSort2 0:110 0:070 0.636
TopoSort2
TopoSort1 0.1146 0.0722 0:0729�

* is optimized TopoSort2
unoptimized TopoSort1 .

Figure 4.13: Execution time of the programs

4. Run the program compiled with both �nite di�erencing optimization and

destructive update optimization.

The empirical results are shown in Figure 4.13.

The program TopoSort1 is a topological sort that repeatedly uses the set con-

structor fa 2 Sjspfag \ S = ;g to compute the set of candidates. Since the cost

of constructing a set anew is high, we apply �nite di�erencing and transform the

expression into its di�erential form. Thus, when we have the set available at the

entry of a code block or a function, we may keep the set updated with the di�eren-

tial expressions which keep the set updated step by step. The program TopoSort2

is the program transformed from TopoSort1 with a �nite di�erencing optimization.

We ran the programs TopoSort1 and TopoSort2 on graphs with 100 nodes and

300 edges. The test data is automatically generated by random. We used the

standard C library [KR88] for measuring the time, and the results are translated

into number of seconds.

149

We note the following:

� The running time of unoptimized TopoSort2 is 0.1146 of the running time

of unoptimized TopoSort1, which shows that the unoptimized TopoSort1

program spent much of its running time on repeatedly constructing the set of

candidates. The running time be substantially reduced by �nite di�erencing

transformations. If the program is compiled by an optimizing compiler with

dynamic destructive update optimization, we may further reduce the running

time. More precisely, the running time of the optimized TopoSort2 program

is 0.0729 of the running time for the optimized TopoSort1 program.

� The running time for the optimized TopoSort1 program is slightly more than

the running time for the unoptimized TopoSort1 program, which shows that

in the case of no hidden copy additional time is spent on dynamic destruc-

tive update optimization. For TopoSort1 the additional time for a dynamic

destructive update optimization is 0.010 of the total running time.

� The running time for the optimized TopoSort2 program is 0.636 of the run-

ning time for the unoptimized TopoSort2 program, which shows the e�ec-

tiveness of a destructive update optimization applied together with �nite

di�erencing.

150

Chapter 5

Conclusion and Future Directions

We recapitulate in this chapter the results developed in this dissertation. We also

contemplate several directions of future work.

5.1 Destructive E�ect Analysis for a Fist-Order Language

We have developed a semantic model of destructive e�ect analysis and its corre-

sponding abstract interpretation for a destructive update optimization of �rst-order

strict functional languages. It is shown that our algorithms are quite e�ective when

compared with the algorithms of some well-known methods.

Our method uses the time stamps for the liveness analysis. From the liveness

of a value, we analyze the local destructibility, the interprocedural destructibility,

and the global destructibility of the value. For a destructive update optimization,

151

we implement an updating expression with a destructive update when it is safe

according to our analysis; in other words, when the value is globally destructible.

We implemented an optimizer with the dynamic destructive e�ect analysis.

The optimizer computes the last-use of variables in the phase of elaboration, and

generates optimizing code for a destructive update optimization at run time.

We also implemented a static analyzer of the destructive e�ect analysis. The

analyzer computes the set of destructive e�ects for all possible values of each

expression. We may analyze a program and decide at compile time whether an

updating expression may be implemented with a destructive update.

The �nite di�erencing optimization shows a good motivation and application

of our analysis. When a destructive update analysis is available, transforming

a repeatedly costly expression into its di�erential counterparts may improve the

performance of a program. We modi�ed the algorithms of detecting induction

variables and reduction candidate expressions so that the �nite di�erencing opti-

mization may be practically applied to functional programs.

5.2 Destructive E�ect Analysis for a Higher-Order Lan-

guage

One of our future directions is extending the destructive e�ect analysis to higher-

order languages. We found that a straightforward extension to the destructive

152

Program (a):
1. f = � x. upd x;

1. g = � (x; y). x y;

1. g f A;
2. let B = upd A;
3. in g f B;

Figure 5.1: A simple higher-order program

e�ect analysis may be applied to a few of the higher-order cases.

For example, let us consider the program a in Figure 5.1, and apply the de-

structive e�ect analysis. The last-use of A is f2g, and the last-use of B is f3g.

The destructive e�ect analysis is as follows.

� For the expression of time stamp 1, since A is not locally destructible (1 62

f2g), the interprocedural destructibility is false when A is passed into func-

tion g as the second parameter. For the function application x y in the

execution of g, the interprocedural of y is false when y is passed into x,

or function f . Hence, the upd expression in the execution of function f is

implemented with making a fresh copy since the global destructibility of the

value bound to x is false.

� For the expression of time stamp 2, since 2 2 f2g, the global destructibility

of the value bound to A is true, and we may perform a destructive update

153

on A.

� For the expression of time stamp 3, since 3 2 f3g, the interprocedural de-

structibility of B is true when B is passed into function g as the second

parameter. For the function application x y in the execution of g, the inter-

procedural of y is true when y is passed into x, or function f . Hence, the upd

expression in the execution of function f is implemented with a destructive

update since the global destructibility of the value bound to x is true. 2

However, for some more complicated programs, the straightforward extension

of the destructive e�ect analysis could not catch the updating cases and analyze

for a destructive update optimization. For example, function p in Figure 5.2 takes

a function as its parameter x and apply the function x with A as the argument.

Since each application of function p will actually refer to A, the destructive update

analysis needs not only the global destructibility of A but also the global destruc-

tibility of p so that the analysis can decide whether it is safe for a destructive

update or not.

We envision that a destructive e�ect analysis for higher-order languages may

be derived with the analysis for the global destructibility of the functions whose

de�nition integrates with aggregates, which are candidates for a destructive update

optimization. More precisely, we are interested in analyzing the destructive e�ects

of a function class F . A function f 2 F i� f is derived from applying a higher-order

154

Program (b):
1. f = � x. upd1 x;

1. g = � x. upd2 x;

1. h = � y .(� x. x y);

1. let p = h A;
2. X = p f ;
3. B = upd A;
4. q = h B;
5. Z = q f ;
6. in q g;

Figure 5.2: The destructibility of higher-order functions

function g to aggregate values V1; : : : ; Vn.

In such a way, the destructive e�ect analysis for the program b in Figure 5.2 is

as follows.

� The last-use of A is f3g, the last-use of B is f4g, the last-use of p is f2g, and

the last-use of q is f6g.

� The application of h to A at time stamp 1 actually extends the liveness of

the value VA bound to A such that VA is live i� either p or A is live. After

binding h A to p, the last-use of VA is f3g.

� Similarly, after binding h B to q at time stamp 4, the last-use of VB is 6g.

� The function application p f at time stamp 2 could not destructively update

VA since VA is not globally destructible (2 62 f3g).

155

� The upd expression at time stamp 3 is implemented with a destructive update

since the global destructibility of VA is true.

� in the execution of function q evoked with q f at time stamp 5 could not

destructively update VB since VB is not globally destructible.

� in the execution of function q evoked with q g at time stamp 6 may be

implemented by a destructively update on VB since the global destructibility

of VB is true (6 2 f6g). 2

156

Bibliography

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Tech-

niques, and Tools, Addison-Wesley Publishing, 1986.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis

of Computer Algorithms, Addison-Wesley Publishing, 1974.

[App92] A. W. Appel. Compiling with Continuations, Cambridge University

Press, 1992.

[AR95] S. Anglade, and G. Richard. \S3L: a Fair Functional Language Imple-

menting In�nite Sets," appeared in TENCON '91, revised on November

1995.

[AN87] Arvind and R. S. Nikhil. \Executing a Program on the MIT Tagged-

Token Data
ow Architecture," PARLE: Parallel Architectures and Lan-

guages Europe 1987, Volume II: Parallel Languages, pp. 1-29, Nether-

lands, June 1987.

157

[ANK87] Arvind, R. S. Nikhil, and K. P. Keshav. \I-structures: data structures

for parallel computing," Proceedings of the Workshop on Graph Reduc-

tion, New Mexico, February 1987.

[ACG96] I. Attali, D. Caromel, R. Guilder and A. L. Weldelborn. \Optimizing

Sisal Programs: a Formal Approach," Proceedings of International Con-

ference on Parallel Processing, LNCS 1123-1124, Springer-Verlag, Lyon,

August 1996.

[ACW96] I. Attali, D. Caromel and A. L. Weldelborn. \A Formal Semantics and

an Interactive Environment for Sisal," Tools and Environments for Par-

allel and Distributed Systems, edited by A. Zaky and T. Lewis, Kluwer

Academic Publishers, February 1996.

[ACC95] I. Attali, D. Caromel, Y-S. Chen, R. Guilder and A. L. Weldelborn. \A

Formal Semantics for Sisal Arrays," Proceedings of Joint Conference on

Information Information Sciences (JCIS]95), North Carolina, October

1995.

[Ban97] A. Banerjee. \A Modular, Polyvariant and Type-based Closure Anal-

ysis," Proceedings of second ACM International Conference on Func-

tional Programming, pp. 1-10, The Netherlands, June 1997.

158

[Ber82] F. Le Berre. Un Langage pour manipuler les ensembles: MANENS,

Ph.D. thesis, Paris VII, 1982.

[Blo94] A. Bloss. \Path Analysis and the Optimization of Non-strict Functional

Languages," ACM Transactions on Programming Languages and Sys-

tems, Vol. 16, No. 3, pp. 328-369, May 1994.

[Blo89a] A. Bloss. Path Analysis and the Optimization of Non-strict Functional

Languages, Ph.D. thesis, YALEU/DCS/RR-704, Yale University, May

1989.

[Blo89b] A. Bloss. \Update Analysis and the EÆcient Implementation of Func-

tional Aggregates," 4th International Conference on Functional Pro-

gramming and Computer Architecture, pp. 26-38, 1989.

[BCF92] J. M. Boyle, M. Clint, S. Fitzpatrick and T. J. Harmer. \Deriving

DAP Implementations of Numerical Mathematical Software through

Automated program Transformation," Technical Report 1992/Jul-

JMB.MC.SF.TJH, Computer Science Department, The Queen's Uni-

versity of Belfast, July 1992.

[BH91] J. M. Boyle and T. J. Harmer. \Functional Speci�cations for Mathemat-

ical Computations," Constructing Programs from Speci�cations, edited

by B. Moller, North-Holland Press, pp. 205-242, May 1991.

159

[Boy89] J. M. Boyle. \Abstract Programming and program transformations {

An approach to reusing programs," Software Reusability, Vol. 1, edited

by T. J. Biggersta� and A. J. Perlis, pp. 361-413, ACM Press, 1989.

[BM86] J. M. Boyle and M. N. Muralidharan. \Program Reusability through

Program Transformation," Tutorial: Software Reusability, edited by P.

Freeman, pp. 235-249, IEEE the Computer Society Press, December

1986.

[CP93] J. Cai, and R. Paige. \Towards Increased Productivity of Algorithm

Implementation," Proceedings on ACM SIGSOFT 1993, pp. 71-78, also

in ACM Software Engineering Notes, Vol. 18, No. 5, December 1993.

[CE95] D. C. Cann and P. Evripidou. "Advanced Array Optimizations for High

Performance Functional languages," IEEE Transactions on Parallel and

Distributed Computing, Vol. 6, No. 3, pp. 229-239, March 1995.

[CBC93] J.-D. Choi, M. Burke, and P. Carini. \EÆcient Flow-Sensitive Interpro-

cedural Computation of Pointer-Induced Aliases and Side E�ects," Pro-

ceedings of 20th ACM Symposium on Principles of Programming Lan-

guages, pp. 232-245, Jan. 1993.

[CG92] T-R. Chuang, and B. Goldberg, \Backward Analysis for Higher-Order

160

Functions Using Inverse Images," Technical Report, TR1992-620, Com-

puter Science Department, New York University, November 1992.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Riverst. Introduction to Al-

gorithms, The MIT Press, 1990.

[DP93] M. Draghicescu, and S. Purushothaman. \A Uniform Treatment of Or-

der of Evaluation and Aggregate Update," Theoretical Computer Sci-

ence, B , 2(118), September 1993; also in Proceeding of the 1990 ACM

Conference on Lisp and Functional Programming.

[FCO90] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. \A Report on the Sisal Lan-

guage Project," Journal of Parallel and Distributed Computing 1990,

Vol. 10, No. 4, pp. 349-366, December 1990.

[FO95] S. M. Fitzgerald, and R. R. Oldehoeft. \Update-in-place Analysis for

True Multidimensional Arrays," High Performance Functional Comput-

ing, A. P. Wim Bohm, and J. T. Feo, editors, pp. 105-118, April 1995.

[FSS83] S. M. Freudenberger, J. T. Schwartz, and M. Sharir. \Experience with

the SETL Optimizer," ACM Transaction on Programming Languages

and Systems, pp. 26-45, Vol. 5, No. 1, January 1983.

[GH89] K. Gopinath, and J. L. Hennessy. \Copy Elimination in Functional

161

Languages," 16th ACM Symposium on Principles of Programming Lan-

guages, pp. 303-314, 1989.

[Gou94] J. Goubault. \HimML: Standard ML with fast sets and maps," ACM

SIGPLAN Workshop on Standard ML and its Applications, June 1994.

[GP98] D. Goyal, and R. Paige. \A New Solution to the Hidden Copy Prob-

lem," Technical Report #763, Computer Science Department, New York

University, New York, 1998.

[Hud87] P. Hudak. \A Semantic Model of Reference Counting and Its Abstrac-

tion," Abstract Interpretation of Declarative Languages, S. Abramsky

and C. Hankin, editors, Ellis Horwood Press, 1987.

[HB85] P. Hudak, and A. Bloss. \The Aggregate Update Problem in Func-

tional Programming Systems," 12th ACM Symposium on Principles of

Programming Languages, pp. 300-314, 1985.

[Joh85] T. Johnsson. \Lambda Lifting: Transforming Programs to Recursive

Equations," Functional Languages and Computer Architecture, LNCS

Vol. 201, pp. 190-203, Springer-Verlag Press 1985.

[KR88] B. W. Kernighan, and D. M. Ritchie. The C Programming Language,

second edition, Prentice-Hall Press, 1988.

162

[Lac92] J.-J. Lacrampe. \S3L �a tire d'ailes," Technical Report 92-11, Labora-

toire d'Informatique Fondamentale de l'Universit�e d'Orl�eans, BP 6759-

45067, Orl�eans Cedex 2, France, 1992.

[Liu96] Y. A. Liu, Incremental Computation: A Semantics-Based Systematic

Transformational Approach, Ph.D. Dissertation, Computer Science De-

partment, Cornell University, January 1996.

[MTH90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML,

MIT Press, 1990.

[MTH97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of

Standard ML (Revised), MIT Press, 1997.

[Muc97] S. S. Muchnick. Advanced Compiler Design Implementation, Morgan

Kaufmann Publishers, 1997.

[Myc81] A. Mycroft. Abstract Interpretation and Optimising Transformations for

Applicative Programs, Ph.D. thesis, University of Edinburgh, 1981.

[NN92] F. Nielson, and H. R. Nielson. Two-level Functional Languages, Cam-

bridge University Press, 1992.

[Nik90] R. S. Nikhil. \The Semantics of Update in a Functional Database Pro-

163

gramming Language," Advances in Database Programming Languages,

eds. F. Bancilhon and P. Buneman, pp.403-421, ACM Press, 1990.

[Ode91] M. Odersky. \How to Make Destructive Update Less Destructive," Pro-

ceedings on 18th ACM Symposium on Principles of Programming Lan-

guages, 1991.

[Pai81] R. Paige. Formal Di�erentiation: A Program Synthesis Technique, UMI

Research Press, 1981.

[PK82] R. Paige, and S. Koenig. \Finite Di�erencing of Computable Expres-

sions," ACM Transactions on Programming Languages and Systems,

pp. 402-454, Vol. 4, No. 3, July 1982.

[Pai86] R. Paige. \Programming with Invariants," IEEE Software, pp. 560-69,

Vol. 3, No. 1, January 1986.

[Pai89] R. Paige. \Real-Time Simulation of A Set Machine on a RAM," Proceed-

ings on ICCI 89, May 1989, also in Computing and Information, Vol. II,

eds. R. Janicki and W. Koczkodaj, pp. 69-73, Canadian Scholars Press,

1989.

[Pai90] R. Paige. \Symbolic �nite di�erencing - Part I.", Third European Sym-

posium on Programming, ESOP '90, pp. 36-56, Edited by N. D. Jones,

LNCS 432, Springer-Verlag, 1990.

164

[Pai94] R. Paige. \Viewing a Program Transformation System at Work," Joint

6th International Conference on Programming Language Implementa-

tion and Logic programming (PLILP) and 4th International Confer-

ence on Algebraic and Logic Programming (ALP), LNCS 844, eds. M.

Hermenegildo and J. Penjam, Springer-Verlag, September 1994, pp. 5-

24.

[Pai97] R. Paige. \Future Directions in Program Transformations," ACM SIG-

PLAN Notices, pp. 94-98, Vol. 32, No. 1, January 1997.

[Pip97] N. Pippenger. \Pure versus Impure Lisp," Transactions on Program-

ming Languages ans Systems, Vol. 19, No. 2, pp. 223-238, March 1997.

[Rob65] J. A, Robinson. \A Machine-Oriented Logic Based on the Resolution

Principle," Journal of the ACM, pp. 23-41, Vol. 8, No. 12, December

1965.

[Scm85] D. A. Schmidt. \Detecting Global Variables in Denotational Speci�-

cations," ACM Transactions on Programming Languages and Systems,

Vol. 7, No. 2, pp. 299-310, 1985.

[Scm88] D. A. Schmidt. \Detecting Stack-Based Environments in Denotational

De�nitions," Science of Computer Programming, Vol. 11, pp 107-131,

1988.

165

[Scw75a] J. T. Schwartz. \Optimization of Very High Level Languages { I," Jour-

nal of Computer Languages, Vol. 1, No. 2, pp. 161-194, June 1975.

[Scw75b] J. T. Schwartz. \Optimization of Very High Level Languages { II,"

Journal of Computer Languages, Vol. 1, No. 3, pp. 197-218, September

1975.

[SDD86] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, E. Schonberg. Program-

ming With Sets: An Introduction to SETL, Springer-Verlag Press, 1986.

[Ses88] P. Sestoft. Replacing Function Parameters By Global Variables, Mas-

ter's thesis, DIKU, University of Copenhagen, October 1988.

[Ses89] P. Sestoft. \Replacing Function Parameters By Global Variables," Pro-

ceedings on Conference on Functional Programming Languages and

Computer Architecture, pp. 39-53, ACM Press, London, September

1989.

[Set89] R. Sethi. Programming languages: Concepts and Constructs, Addison-

Wesley Press, 1989.

[SK95] K. Slonneger, and B. L. Kurtz. Formal Syntax and Semantics of Pro-

gramming Languages, Addison-Wesley Press, 1995.

[Smi90] D. R. Smith. \KIDS: A Semi-Automatic Program Development Sys-

166

tem," IEEE Transactions on Software Engineering, Special Issue on

Formal Methods, Sep. 1990.

[Sny90] W. K. Snyder. \The SETL2 Programming Language," Technical Report

490, Computer Science Department, Courant Institute of Mathematical

Sciences, New York University, September 1990.

[Tar83] R. E, Tarjan. Data Structures and Network Algorithms, SIAM Press,

1983.

[TWM95] D. N. Turner, P. Wadler, and C. Mossin. \Once Upon A Type," Pro-

ceedings on 7th International Conference on Functional Programming

and Computer Architecture, June 1995.

[WC98] M. Wand, and W. D. Clinger. \Set Constraints for Destructive Array

Update Optimization," Proceedings of ICCL'98, May 1998.

[WM95] R. Wilhelm, and D. Maurer. Compiler Design, English Edition,

Addison-Wesley Press, 1995.

[Win93] G. Winskel. The Formal Semantics of Programming Languages, MIT

Press, 1993.

[WF91] A. K. Wright, and M. Felleisen. \A Syntactic Approach to Type Sound-

167

ness," Rice Technical Report TR91-160, Computer Science Department,

Rice University, revised June 1992.

[Yun97] C. Yung. \Extending Typed Lambda Calculus to Sets," The Proceedings

of MASPLAS'97, in cooperation with ACM SIGPLAN, Stroudsburg PA,

April 1997.

[Yun98] C. Yung. \EAS: An Experimental Applicative Language With Sets,"

Proceedings of 1998 Mid-Atlantic Student Workshop on Programming

Languages and Systems (in cooperation with ACM SIGPLAN), New

Brunswick NJ, April 1998.

168

