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Abstract

This dissertation presents an efficient and high-order boundary integral solver for the
Stokes equations in complex 3D geometries. The targeted applications of this solver
are the flow problems in domains involving moving boundaries. In such problems,
traditional finite element methods involving 3D unstructured mesh generation expe-
rience difficulties. Our solver uses the indirect boundary integral formulation and
discretizes the equation using the Nystrom method.

Although our solver is designed for the Stokes equations, we show that it can be
generalized to other constant coefficient elliptic partial differential equations (PDES)
with non-oscillatory kernels.

First, we present a new geometric representation of the domain boundary. This
scheme takes quadrilateral control meshes with arbitrary geometry and topology as
input, and produces smooth surfaces approximating the control meshes. Our surfaces
are parameterized over several overlapping charts through explicit nonsingular C*°
parameterizations, depend linearly on the control points, have fixed-sizelocal support
for basis functions, and have good visual quality.

Second, we describe a kernel independent fast multipole method (FMM) and its
paralel implementation. The main feature of our algorithm is that it is based only

on kernel evaluation and does not require the multipole expansions of the underlying



kernel. We have tested our method on kernels from a wide range of elliptic PDEs.
Our numerical results indicate that our method is efficient and accurate. Other ad-
vantages include the simplicity of the implementation and itsimmediate extension to
other elliptic PDE kernels. We aso present an MPI based parallel implementation
which scales well up to thousands of processors.

Third, we present severa algorithms to evaluate the singular integrals in our
solver. A singular integral is decomposed into a smooth far field part and a local
part that contains the singularity. The smooth part of the integral is integrated us-
ing the trapezoidal rule over overlapping charts, and the singular part isintegrated in
the polar coordinates which removes or decreases the order of singularity. We also
describe a new algorithm to integrate the nearly singular integrals coming from the

evaluation at points close to the boundary.
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Chapter 1

| ntroduction

1.1 Motivation

The development of fast and robust numerical solvers for the boundary value prob-
lems of the eliptic partial differential equations (PDEs) on complex three dimen-
sional domains has been one of the most important tasks in computational science
and applied mathematics. The applications of such solvers can be found in amost
every corner of the engineering sciences. One of the most important equationsisthe

Stokes equation:

—pAu+Vp = 0

dive = 0

which governs the behavior of a incompressible viscous fluid with velocity « and
pressure p.
The most popular methods for such problems use finite element discretization on

unstructured meshes. Multigrid methods [15, 86] and domain decomposition meth-



0ds[17, 18, 82] are often used to precondition the linear system resulting from the fi-
nite element discretization. Nevertheless, applications of these methods to problems
with complex geometry have two major difficulties: the generation of the unstruc-
tured mesh and the construction of efficient preconditioners.

First, 3D unstructured mesh generation is algorithmically difficult and compu-
tationally intensive. Although a lot of great work has been done in this direction
[48, 74, 79], it still remains an area of active and ongoing research. For large-scale
problems, paralel computing is often required in order to obtain sufficient accu-
racy within reasonable time period, therefore the unstructured mesh generation often
needs to be donein parallel aswell. This poses an even more challenging problem.

Second, most preconditioners, such as multigrid methods and domain decom-
position methods, are multilevel techniques which necessitates construction of one
or more progressively coarser versions of the finest unstructured mesh used in the
computation. However, the difficulty in automatic generation of such unstructured
mesh hierarchies greatly restricts us from applying these efficient preconditioners to
general problems.

Along with the increase in computational power, researchers have begun to study
time-dependent multi-physics problems with deforming or moving boundaries, such
as the fluid-fluid interaction [78] and fluid-structure interaction [29] problems. At
every time step, usually one or more elliptic PDE boundary value problems need to
be solved on the updated domain. Thefinite element based algorithms are not optimal
for these problems, since they often require unstructured mesh generation whenever
the existing unstructured mesh becomes distorted.

Another class of methods use boundary integral equation formulations, in which,

the boundary value problem iswritten asan integral equation form, involving only the



guantities defined on the boundary. Compared to the finite el ement method, the major
advantage of this approach is that there is no need for unstructured volume mesh
generation. The discretization of the integral equations also result in a much smaller
number of unknowns. Moreover, the resulting linear system often has much nicer
spectral properties, which enable the algorithms based on the integral formulation
to demonstrate optimal complexity. These properties make the boundary integra
formulation an attractive and promising approach to model problems with complex
or deforming boundaries.

The boundary integral formulations have three major disadvantages. First, the
linear system resulting from discretization is always dense, which makes it compu-
tationally expensive to perform matrix vector multiplication. Second, the integrals
in these formulations are often singular, which makes it difficult to evaluate these
integrals accurately. Third, the integrals involved are different for various elliptic
PDEs, which often require different implementations for the singular integration of
each equation.

Thisthesis presents an efficient and high-order boundary integral equation solver
for the Stokes equations. It solves the dense linear system efficiently and integrates
the singular integrals with high-order accuracy. In addition, the algorithmic compo-
nents of this solver have been extended to other constant coefficient elliptic PDES

with minimal modification.

1.2 Problem Statement

The goal of this thesis is to develop an efficient and highly accurate solver for the

boundary integral equation of the Stokes equation with complex geometry.



The problems with non-smooth boundaries are more complicated and not ad-
dressed in this thesis, athough the techniques and algorithms we developed can be
extended to address the non-smooth case. We explain our solver for the Stokes
Dirichlet problem. The boundary integral formulation for the Neumann boundary
condition is similar and we comment on their differencesin Section 1.4.

The Stokes equations for a Dirichlet boundary value problem can be stated as

follows:

—puAu+Vp = 0 in
divu = 0 in T, (1.1)

u = f on T,

where (2 is the 3D fluid domain, I" the domain boundary, u the velocity field, p the
pressure, and f the Dirichlet boundary condition defined on I.

A boundary integral formulation writes the velocity « in Q2 as

wwzﬁmeme@ (1.2

[69, 70]. Here ¢ isafunction defined on I" and called the double layer density. D is
the double layer kernel for velocity and defined by

D(l’, y) _ _8% (7‘ ® T)‘S';' n(y))’

where x € (2 isthe observation point, y € I is the source point, r = = — y and n(y)
is the outward normal direction of the boundary surface at point y. By introducing
the following operator notation

(Co)(x) = / O, 9)oly) ds(y),

T



we can write the integral representation as

u(z) = (D) (x).

As ' € () approaches a boundary point = € I', the limit of w(z"), which is usually

denoted as u. (), is given by:

ui(x) = Iim (Dy)(a') = Sple) + (D)), (L3

Here o(x) isaso equal tothejumpat x: [[u]](z) = uy(z)—u_(x) whereu_(z) isthe
limit of (1.2) at = from the exterior of the domain. Given the boundary condition f on
I, we obtain the double layer boundary integral equation for the Dirichlet problem
of the Stokes equation [69, 70]:

So(2) + (D)) = f(x). (19

A boundary integral equation accomplishes two tasks. First, it solvesfor ¢ using
(1.4). Second, it evaluates u(x) and other related quantities (such as pressure and
stress) at an arbitrary point z in €2 or I'. For u we can use (1.2) or (1.3) depending on
whether = isin 2 or on I". For pressure p and stress s = —pl + p(Vu + Vu'), the

equation for z in €2 isgiven by:

mm:mwwzﬁKmewmm

and

amzwwmz/ﬁmwwwm@,

r
where the pressure kernel K and the stress T are given in the appendix. For a point

x on T, the equations are correspondingly



and

1

s(z) = 5llsll(@) + (Tp)(@),

where [[p]] and [[s]] are the jumps for the pressure and stress. It isimportant to point
out that, in the equations for = on I, both integrals have an # singularity and areto
be understood in the Hadamard sense [39].

There are several advantages of using the integral formulation instead of the dif-
ferential formulation in the numerical computation. First, as we mentioned, both the
constraints and the unknowns are restricted to the boundary I". Therefore, thereisno
need for unstructured mesh generation, and the number of unknowns to be solved is
much smaller than the number for a finite element solver. Second, (1.4) is an inte-
gral operator of the second kind. The Fredholm alternative states that the spectrum of
such operatorsare nicely bounded. Therefore, the algebraic system resulting from the
discretization of such equations can be solved using an iterative solver like GMRES
with only afew iterations.

However, boundary integral equations also pose several new challenges as we
pointed out in the previous section. First, D(x,y) is non-zero for al pairs of z
and y, which means that the linear system to be solved is a dense matrix, and each
matrix-vector multiplication in the iterative solver can be costly. Second, the oper-
ators (Dy)(z) and (K p)(z) in (1.4) are either weakly-singular or singular integrals
since x belongs to I'. Our numerical scheme should be able to integrate these sin-
gular integrals with high accuracy. Third, for x € Q the operator (Dy)(z) for the
evaluation of u(x) can have arbitrary sharp peaks as x approaches the boundary T'.
Developing a scheme to integrate such integral's, independent of the distance between

zand T, isfar fromtrivial.



1.3 Approach

The approach taken in this thesis is as follows. First, the possibility of a high-order
solver hinges on a high-order smooth surface representation for the domain bound-
ary [16, 34]. Most of the available boundary integral solvers use piecewise linear or
piecewise quadratic representation for the boundary, which is acceptableif the solver
itself is only first or second order accurate. To get high-order accuracy, the bound-
ary representation needs to have at least the same order of accuracy as the targeted
order of accuracy of the boundary integral solver. Moreover, in order to represent
deforming objects, the surface representation should also be free-form and able to
model boundaries with complex topology and geometry. This thesis first presents
a free-form parametric surface representation for modeling smooth manifolds with
arbitrary geometry and topology. We generate the surface based on a set of control
points. The resulting surface is C* continuous with explicit C* parameterizations
(k > 2 or k = oo) over aset of bounded open domainsin R?, and has an explicitly
constructed C'*° smooth partition of unity.

We discretize the boundary integral equation using the Nystrom method and use a
GMRES solver to solve the resulting linear algebraic system. In a Nystrom method,
the integral operator is approximated by a quadrature formula, and the solution of
the integral equation is approximated by the solution of matching constraints at the
guadrature points [2, 47]. Since the essentia step of the GMRES solver is the ma-
trix vector multiplication (in our case, the evaluation of the boundary integral at the
Nystrom points using the double layer density at the same points), the success of
this approach depends on the ability to integrate the singular kernel accurately. To

construct an efficient and high-order accurate integrators, we face two challenges:



evaluating smooth non-adjacent interactions efficiently and evaluating singular adja-
cent interactions accurately. This thesis overcomes the first challenge by developing
akernel-independent fast multipole method (FMM). In attempting to handle the sec-
ond problem, we develop a method which is similar to, but more general than [16].
The C* parameterizations and the smooth partition of unity of the boundary surface
are essentia to the accurate and efficient integration of our Nystrom method.

Finally, we develop a scheme to evaluate the solution at points in the domain or
on the boundary. For points on the boundary, we use the same integrator we used
in the Nystrom solver to evaluate the singular integral. We aso derive the formulas
for the jumps and use fast Fourier transform (FFT) to evaluate them. To evaluate
the solution everywhere in the domain, we partition the points in the domain into
different regions depending on their distance to the boundary. For points which are
adequately separated from the boundary, we evaluate the solution with an integrator
using atrapezoidal quadrature rule and FMM acceleration. For points which are very
close to the boundary, we compute the integral by first evaluating the field in several

nearby points and then interpolating the solution at the target point.

1.4 Neumann Boundary Condition and Other PDEs

We briefly sketch the boundary integral representation for the Neumann problem
here and comment on how the approach described in the previous section can be
used. The Neumann boundary condition specified in terms of the stress tensor s =
—pI + pu(Vu + Vu')is

s-n=g¢g on I,



where g isasmooth function defined on I'. In the Neumann case, the velocity field «
is represented using the single layer formulation by
ule) = (5¢)(@) = [ S(a.)ely) dsty).

where ¢ isthe single layer density and S the singular layer kernel

1 1 rer

S(e9) = g + )

pum— %
where again » = x — y. Theintegral equation is given in terms of the singular layer

density ¢ and the boundary condition ¢ by:

o) = o)+ [ o) asty
= %w(xH/F (—8%(7“@7“1575%(:6)))90(31) ds(y).

The singularity of this kernel is of the same type as the one for D. Asin the case

of D, this equation is again of the second kind. Therefore, the same approach we
discussed in Section 1.3 can be used to solve thisintegral equation.

We can extend our approach to several other elliptic PDES, including the Laplace
equation, the Navier equation and all their modified versions. For all of these equa-
tions, the boundary integral equation formulation takes the same form as (1.4), only
with different double layer kernels D(z, y). The kernels are given in the appendix.

However, for the Navier equation and its modified version, the equations are no
longer integral equations of the second kind anymore, due to the fact that the double
layer kernel D for the Navier equation is singular (instead of just weakly singular
in the case of the Stokes equation). The operator D needs to be interpreted in the
Cauchy sense and is not a compact operator anymore, which means that we cannot

directly apply the Fredholm alternative on such integral equation. However, asimilar



version of the Fredholm alternative can be applied [63] and the same numerical a-
gorithm adopted in this thesis for the Stokes equations can be utilized on the Navier
eguation.

1.5 Contributionsand Thesis Organization

This thesis develops an efficient and high-order boundary integral solver for the

Stokes equation with complex geometries. The main contributions of thisthesis are:

e A free-form method to model high-order smooth surfaces with arbitrary com-
plex geometry and topology. Surfaces constructed by this method have an
explicit smooth parameterization. They linearly depend on the control points,

have fixed-size support for basis functions, and demonstrate good visual qual-
ity.

e A kernel-independent adaptive fast multipole method in 2D and 3D. This
method is adaptive and uses only kernel evaluation. It exhibits good accu-
racy and efficiency, and has proved error bounds. We aso develop a parallel

version of this algorithm which demonstrates good scalability.

e Genera schemes to evaluate singular integrals and nearly singular integrals.
The scheme for singular integral integration improves upon previous research.
These schemes are independent of the specific kernel, efficient and high-order

accurate.

o All the algorithmic components are kernel-independent and the boundary in-
tegral solvers for other equations can be constructed from them in a blackbox

fashion.

10



This thesisis organized as follows. Chapter 2 describes the new high-order sur-
face representation. Chapters 3 and 4 present the kernel-independent fast multipole
method and its parallel implementation. Chapter 5 describes the Nystrom discretiza-
tion based on our surface representation and the general schemes for evaluating sin-
gular integrals and nearly singular integrals. Chapter 6 presents the numerical results

and applications.

1.6 Background

Boundary integral formulation has been used to investigate alot of physics problems
involving second order elliptic partial differential equations.

For the fluid problems, the boundary integral formulation in prime variables for
the Stokes equations can be found in [46, 69, 70]. In [31, 51, 68], the homogeneous
Stokes problem is solved using a boundary integral representation combined with
multipole-like far-field expansions to accelerate the matrix-vector multiplications.
The Stokes equation can also be posed as a biharmonic problem. Related formula-
tions can be found in [53, 54]. In[34] the homogeneous Stokes problem is solved for
both interior and exterior problems using this formulation. In [42, 78], the velocity
potential formulation is used to solve intefacial flow problems.

The boundary integral formulation has also been used widely to solve physics
problems in electrostatics [44, 45], electromagnetics [16, 55], elastics [63] and scat-
tering theory [11, 16, 83].

In the rest of this section, we review the related research on the numerical solu-

tions of the boundary integral formulation of the second kind for elliptic PDEs. The

11



genera form of the equation is:

39@)+ [ Da)e)dstn) = f@) o Se+Do=f @9

1.6.1 Discretization M ethods

The general theory on theintegral equations of the second kind has been developed in
the early 20th century. Some good referencesare[39, 47, 53, 54]. Most of the numer-
ical methods fall into two categories: projection methods and quadrature (Nystrom)
methods. The projection methods solve the integral equation by choosing afinite di-
mensional space ¢ of functions defined on I which is constructed to contain a good
approximation ¢ to the true solution ¢, and solving for ¢ by satisfying (1.5) in an
approximate sense. The finite dimensional function space ¢ isalinear span of a set
of basis functions {¢1, - - - , v, }. The basis functions are usualy locally supported,
in which cases the numerical methods are generally called boundary element meth-
ods. Sometimes, the basis functions are globally supported, such as polynomials,
spherical polynomials and trigonometric polynomials, and these type of methods are

called spectral element methods. We can write ¢ as
p = Z CiPi,
=1
and solving the integral equation numerically is equivalent to finding the coefficients
C;.
Depending on the sense in which (1.5) is approximated, the projection methods
can be further classified into collocation methods and Galerkin methods. In the col-

location methods, the residual

r=f-(0+Dg)

12



is required to vanish at a set of points {z;,i = 1,---,n} onI'. This leads to the

linear system:

6 (yeie) + [ Danandst)) = ). i=1.20

j=1
In the Galerkin methods, the residual r is required to be orthogonal to afinite dimen-

sional space ¥ of functionswith bases {v, - - - , 4, }. Thisnew spaceis often chosen

to be the same as ®. Thisleads to the following linear system:

n

ch (%(¢ia@j)+(¢i7D¢j>> =i, f), i=12,-,n

7=1

There have been numerous algorithms and implementations of collocation and Galerkin
methods for integral equations in both 2D and 3D. We refer to [2, 3, 39, 47, 54, 81]
for general descriptions of the collocation and Galerkin methods. For applications of
boundary element methods in 3D case, good references include [14, 19, 39, 92]. Ex-
amples of using spectral element methodsin 3D applications can be found in [2, 21].

The quadrature or Nystrom methods approximate the integral operator in (1.5)
by numerical integration. Given a quadrature rule with points z;,--- ,z, onI' and

weights a, - - - , a,,, We approximate the integral D (x) with
D@(I) = Z Oéj(ﬂf)D(CL’, Ij)90<xj)7
j=1

where «;(x) can be functions of = though they are mostly constants. The solution of
(1.5) is approximated by the solution of the following operator equation

=
P +Deo=1f
Writing the equation at every quadrature point x; leads to afinite dimensional linear

system

I B
5%‘ + Z Oész(l‘i, l’j)% = f(zs),

j=1

13



where o;; = a;(z;) and ¢; = @(z;). Nystrdom methods are widely used for 2D
problems, in which case the integral in (1.5) is on a 1D periodic domain. High-
order integrators with exponentially accurate trapezoidal rule and other high-order
guadrature rules are the optimal tools to treat these boundary integrals. Detailed
treatments can be found in [2, 3, 39, 47]. The situation changes drastically if we
move to 3D problems, in which case there are no straightforward quadrature rules
available for the integrals in (1.5). There are two difficulties: First, the integrand
is aways singular. Second, even for smooth functions, trapezoidal rules cannot be
used, and the development of other high-order quadrature rules is non-trivial. Only

recently, [16] presents an algorithm to solve the 3D acoustic scattering problem.

1.6.2 Techniquesfor Fast Solvers

The discretization of the boundary integral equations always leads to dense matrices.
The matrix-vector multiplication, if carried out in the direct way, requires O(N?)
operations, where N is the number of unknowns. In this case, even the iterative
solvers, such as GMRES, can be quite expensive for real applications. For large-
scale problems, we need to develop efficient schemes to perform the matrix vector
multiplication. The basic idea is to exploit the fact that the kernel D(x,y) is very
smooth when = and y are well separated. Most of the methods fall into three classes.

Thefirst classisbased on thefast Fourier transform (FFT). These methods embed
the boundary into a Cartesian grid. The sources at the discretization nodes (usually
the basis function in projection methods or the Nystrom pointsin Nystrom methods)
are transfered onto the Cartesian grid in a way that the potentials produced by the
original sources and the ones on Cartesian grids are sufficiently close for the region

far away from the sources. Then the far interaction by the grid sources is naturally
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formulated as a 3D convolution and FFT is used to compute this convolution effi-
ciently. These methods are easy to implement and work for different PDES without
much modification. The maor disadvantage of this method is that it is not adaptive
due to the use of the Cartesian grid. Examples of this classinclude [16, 55].

The second class of methods [6, 22] is based on wavel et decomposition. Theidea
is to use a redundant wavelet representation which automatically zeros out the far
field interaction. These methods are adaptive and have optimal complexity. However,
the difficulty with these methods is the construction of appropriate wavelet bases on
the boundaries of the complex domains. Moreover, the application of these methods
isusually restricted only to Galerkin methods.

The third class of methods is based on the fast multipole method (FMM) [20,
35, 36]. Theideaisto construct efficient representations for the potential generated
by a cluster of sources and aso efficient translations between these representations.
Moreover, this is done in a hierarchical fashion so that the algorithm has optimal
complexity O(N). This algorithm is fully adaptive and highly accurate. The disad-
vantage is that it requires different implementations for different equations. Chapter
3 of this thesis addresses this issue. Related research about the FMM is reviewed in
that chapter.
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Chapter 2

High-order Surface Representation

Scheme

This chapter describes a high-order surface representation scheme which is used to
model the boundaries of the computational domains. These boundaries are required
to have high-order smooth parameterizations in order to make it possible for the

solver to achieve high-order accuracy.

2.1 Introduction

Much of the work on smooth surface representations, excluding variational surfaces,
isbased on the paradigm of stitching polynomial patches together. While subdivision
surfaces are generally defined as limits of recursive refinement algorithms, the sur-
faces produced by most popular schemes can till be interpreted asinfinite collections
of stitched spline patches.

In this chapter we take adifferent and often neglected approach based on the man-
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ifold construction of [38]. We demonstrate how this approach can produce with rel-
ative ease a number of desirable properties which are hard to achieve simultaneously
with polynomial patches, subdivision surfaces or variational surfaces. Specifically,
our surfaces are C'*°-continuous with explicit nonsingular C'*° parameterizations, are
at least 3-flexible (i.e., can have arbitrary derivatives of order up to three) at control
vertices, depend linearly on control points, have fixed-size local support for basis
functions, and have good visual quality.

This surface representation was developed with its application to the boundary
integral equations. It provides a high-order, smooth and nonsingular parametrization
to ensure fast convergence of quadrature rules on surfaces, i.e., for the parametriza-
tion to have good mathematical quality; at the same time, it is essential to be able
to model objects of arbitrary shape and obtain good visual quality without additional
processing.

We have observed that even all existing flexible C? constructions are quite com-
plex, and while higher-order constructions exist, despite having nice mathematical
properties few were ever fully implemented and visual surface quality was typically
inferior to lower-order schemes.

Subdivision surfaces are a notable exception: they were not constructed to satisfy
aspecific set of requirements. Rather, it was observed that the subdivision algorithms
for splines generalize well to arbitrary control meshes, and the visual quality of the
surface is adequate in an intuitive sense, except near high-valence vertices. Analy-
sis of properties came later and is quite complex: even obtaining a C' nonsingular
parametrization is nontrivial and requires inversion of the characteristic map [84].

In our approach, we relax the requirement of representing surfaces using poly-

nomia patches to simplify the construction needed to achieve good mathematical
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quality, and we ensure that our surfaces approximate closely the shape of subdivision
surfaces to achieve acceptable visual quality for asimilar range of vertex valences.
We believe that due to the properties enumerated above, representations of this
type provide the most convenient basis for “black-box” surface approximation soft-
ware: the user provides an input control mesh, and the surface and its parametric
derivatives of any order can be evaluated at any point. While the black-box approach
is not the most efficient, it is the most convenient and reliable one for applications

requiring alarge variety of algorithmsto operate on surfaces.

2.2 Related Work

We are not aware of any C'* constructions for surfaces with general control meshes.
The work on computational representations of surfaces based on manifolds is rela
tively limited. The ideawas introduced in [38]. More recently, [58] have proposed a
C* construction based only on polynomials.

Extensive literature exists on spline-based constructions of different types;, C*
constructions include S-patches [49], DMS splines [76], freeform splines [71] and
TURBS[72]. DMS splines were devel oped to the greatest extent; as a large number
of knots and control points need to be introduced for each triangle, an additional al-
gorithm is needed to position these points if only an initial mesh is given. TURBS
are based on singular parameterizations; both for free-form splines and TURBS, ad-
ditional degrees need to be set which can be done using fairing functionals and pre-
computed matrices, similar to the technique that we use. There are numerous C*?
constructions, e.g. [37], [88], [60], [41],[12], and most recently [62]. Thereis an

even larger number of C*-constructions; excluding subdivision surfaces, which are
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C? away from isolated points, these constructions rarely yield surfaces of acceptable
quality. In all cases, the required polynomial degree and number of additional patch
control pointsto be set rapidly grows with smoothness.

Unfortunately, in most casesit isimpossible to compare the visual quality of the
resulting surfaces to our construction. The implementation is complex and only few
images of simple objects are provided in the papers, as the stated goal in most cases
isto obtain surfaces satisfying a specific mathematical condition.

The literature related to subdivision surfaces is extensively reviewed in the book
[89] and in the course notes[96]. Direct fixed-time eval uation of subdivision surfaces
was introduced in [84], which isthe only known approach to directly cast subdivision
surfaces in parametric form. [61] describes a technique for approximating Catmull-

Clark surfaces with a collection of bicubic patches joined with C'! continuity.

2.3 Construction

In this section, we start with the basic definitions of manifolds. We then give an

overview of our construction, followed by three key components of the construction.

2.3.1 Manifold Structure

We consider meshes consisting of quadrilaterals, although thisis not critical for our
construction: it can be carried out in a similar way using triangle meshes and Loop
subdivision surfaces [96], for example. We focus on the quadrilateral case as it has
more relevance for geometric modeling applications.

The foundation of our approach is a ssimple construction of a C*°-manifold as-

sociated with a mesh. The basic definition of a manifold is as follows; a set M
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has 2D manifold structure, if a collection of charts (C;, x;) is defined, where C; are
open domains in the plane, y; are one-to-one maps C; — M, such that the images
P, = x;(C;) cover dl of M. M isaC> manifold if the transition maps from chart
to chart

tii=x;" oxi:x; (P.NP)—x;' (PN P)

defined for pairs of charts for which x;(C;) and x,(C;) intersect, are C*°. Detailed
discussion of manifoldsis givenin [9, 13, 23, 38]. Notice that in our definition, the
charts are the maps from open setsin R? to the manifold, while in most differential
geometry books they are defined the other way around. The reason is that, in this
thesis, we focus on the smooth parameterization of the surface (which is essential
to the accurate integration) rather than the global intrinsic properties of the manifold
(which are the main problemsin differential geometry).

In our construction, we use the control mesh as the domain M. For this we need
to assume that the mesh has no self-intersections. This assumption is not crucia (we
can construct the domain in a more abstract manner) but simplifies explanations. It

has no implications for implementation.

Figure 2.1: Basic definitions of manifold.
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Another important idearelated to manifoldsis the partition of unity (POU). A set
of smooth functions w; each defined on M, and having compact support, is called a
partition of unity, if > . w;(m) = 1form € M. In our case, we require the support
of w; to be contained inside P;. Therefore, w; o y; isasmooth function defined on C;

and vanishes on the boundary of C;.

2.3.2 Overview of the Construction

The general approach is close to the one in [38]. We construct functions ¢! : C; —
R3, defining the local geometry on each chart; then, we use a partition of unity to

define the global geometry. The complete surface at m in M is defined by
> wi(m) - (g o x; ) (m)

where ¢ ranges over the charts such that m € y,;(C;). However, in practice it is

evaluated on individual charts C; via
gi(z) =Y _wi(xi(x)) - gi(ti(z)) x€Ch (2.1)
J

where j ranges over the charts which overlap with C;, and g; defines the global ge-
ometry in contrast to g! which defines the local geometry.

Note that the complexity of evaluation of this expression is determined by three
factors: complexity of transition maps ¢,;, weights w; and geometry functions gé.
In our case, the transition maps can be expressed in complex form as z* (up to a
rotation), the weights are piecewise exponential and C'*°, and the geometry functions
are polynomials of degrees proportional to the valence of vertices corresponding to
the charts. Another important observation is that g;(x) is C* if al components are

C*. Next, we discuss each component separately.
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2.3.3 Chartsand Transition Maps

As a basis for our construction, we use the conformal atlas for meshes. While its
variations can be found in the literature (e.g. [24] in the context of parametrization),
a complete description is not easily available, and we present it here. We define
charts per vertex. Each chart domain is a curved star shape D;, shown in Figure 2.2.
The overlap region between the images of two charts in the control mesh is two
faces of the mesh. Rather than constructing the maps x; we construct the maps y; .
The chart construction proceeds in two steps: first, the faces adjacent to a given
vertex are mapped piecewise bilinearly to the plane (maps L; to domains S;). Then a
transformation ¢; is applied to each wedge of the regular star S;; ¢; squeezesit so that
it becomes a conformal image of square. Maps ¢; have simple explicit expressionsfor
each wedge. Asiillustrated in Figure 2.3 for the shown choice of coordinate system
these maps are compositions of alinear map [;, with matrix
cos(m/4)/ cos(m/k;) 0
0 sin(m/4)/ sin(w /k;)

where k; is the valence of D, and a simple map gy,, which using standard identifi-
cation of the plane with complex numbers z = z + 4y, can be written as z*/*i. The
chart maps y; ! are compositionsc; o L;.

Thisatlas has an important property: all transition maps are conformal, in partic-
ular, C*°. In fact, the transition maps, for a certain choice of the coordinate systems
can be written as z*1/#2, The fact that transition maps have simple expressionsis very
important; it allows as to define the geometry in an efficiently computable way. The
proof of C'*° continuity for the transition map is outlined as follows:

Let’s fix coordinate systems in the domains S;, i = 1,2 depicted in Figure 2.2
with x direction along the common edge of two shaded wedges. Let L, i = 1,2 be

'Rl
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Figure 2.2: Construction of the charts. The maps L;, i = 1, 2 are piecewise bilinear;
the maps ¢; are constructed on individual wedges as shown in Figure 2.3.

— —
I ;i Ak
linear conformal

Figure 2.3: On each wedge, the map ¢; is acomposition of alinear map and the map
24k,
the piecewise linear maps from a pair of adjacent unit squares. We aso assume the
coordinate system x axis to be along the common edge. A similar choice is made
for the domains D;. The maps ¢; for these coordinates can be written as R(x/k;) o
gk, © Iy, o R(—m/k;) for thetop quad and R(w/k;) o gk, o Iy, o R(—n/k;), where k; is
the valence of the corresponding vertex, R(«) isthe rotation by the angle «, and the
maps [, and gy, are defined in Section 2.3.

Thetransition map cy0 Lyo LT ocy ! canthen bewrittenascyo Lo L, "' oy !, with
the mesh mapsitself eliminated. This can be done, as the composition of alinear and
a bilinear map is bilinear, and the maps are defined uniquely by the correspondence

of the domain corners, L; = L} o L, so the bilinear part L isfactored out.
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Next, we observe that the two piecewise linear parts of L. are equivaent to
R(m/k;)ol, " o R(—m/4) and R(— /k;) ol o R(w/4) inthe chosen coordinate sys-
tem. Therefore, the transition map can be rewritten, for example on the top square, as
R(w/ks)ogr, 09, o R(—m/k1). Inthe complex form, the rotation isjust amultiplica-
tion by exp(ic). The transition map is (exp(—im/k1)z)*/*2 o exp(im/kq) = 2F1/k2,

Exactly the same can be shown for the bottom square.

2.3.4 Partition of Unity

The partition of unity isacrucial element of our construction: the quality of surface
is defined not only by the quality of the geometry functions but also how well they
are blended. Our empirical observations are that the partition of unity cannot have
transition regions which are too steep, and, even more importantly, its support shape
should match the shape of the star-like shape of the corresponding chart.

We build the partition of unity from identical pieces defined initially on the stan-
dard square [0, 1] as a product of two identical one-dimensional functions n(u)n(v).

The function n is defined as follows [16]:

(

1 0<t<)d

= h((t-3)/a) . B
1) = w0 <t<1-36

0 1-0<t<1

(
wherea = 1 — 2§ and h(s) = exp(2exp(—1/s)/(s — 1)). Theresulting function is
guite close in appearance to a Hermite spline (Figure 2.4).

We set 6 > 0 for the following reason: When § = 0, the transition maps has
unbounded derivatives at the boundary of the overlapping charts. Whileit is possible

that the composition of the transition map and the partition of unity has bounded
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Figure 2.4: The solid lineisthe function 7(¢) used in the construction of the partition
of unity. The dashed line is a Hermite spline which is close to 7(t).

derivatives if the partition of unity has sufficiently fast decay, we simply choose the
partition of unity to be constant near the boundary. In our implementation, we use
§d=1/8.

Once the function is defined on the square, we obtain a weight, defined on the
whole chart as follows. First, we use a rotation by =/4 combined with the map
g, ' = 2¥*toremapn(u)n(v) toasinglewedge. Thefunction isdefined by rotational
symmetry on the rest of the chart. Finally, we use the chart to move the resulting
function onto M to get the partition of unity.

The resulting POU function is C'*° on the whole chart. One can easily verify that
derivatives of all orders of n(u)n(v), defined in Section 2.3 involving v, are zero at
the boundary v = 0, and sameistrue for v = 0 by symmetry. Remapping to awedge
using a non-degenerate C>° map does not change the fact that all derivatives vanish
identically, except derivatives along the boundary as the map that we use may not be
differentiable at zero; however, in a 0-neighborhood of zero the function n(u)n(v) is
constant. By symmetry, these match at all orders after rotations extending the map to

all wedges.
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2.3.5 Defining geometry.

We define geometry using polynomials. The basic idea is to apply several subdi-
vision steps to define the overall coarse shape of the surface, and use polynomials
in the chart to fit this shape in the least square sense. As the fit is linear and the
control points of refined subdivision mesh depend linearly on the control points of
the original mesh, the transformation matrix converting control points to the poly-
nomial coefficients can be precomputed. Thus, in practice the process is reduced to
assembling a vector of control points and multiplying them by a matrix.

Every control point of the refined mesh after two Catmull-Clark subdivision steps
can be assigned to the points with bilinear coordinates (i/4, j/4) in each sector of
the star S).. For each vertex v, we remap these points in .S, to the chart domain D,
by using the map ¢;. There are m = 12k + 1 points inside D, which we denote
Zo, - .- Tm_1. We compute 3D limit positions for these points in the same order, and
denote them s, ..., s,,_1. Our goal is to define a geometry function ¢ such that
differences g'(z;) — s; are minimized in the least squares sense.

We use the monomials of degree < d = |min(14, \/2(12k + 1))| as the basis
functions in thefitting process. The choice of 14 as the maximal degreeisempirical:
using higher-order polynomials results in lower quality surfaces for high valences.
We denote these monomials py, . .., p,—1 Wheren = d(d + 1)/2 is the number of
monomials used in the fitting. We use the least square fit to solve for the basis coef-
ficients a;, such that ¢' = Z;”;Ol a;p;. Let a bethe vector of coefficients a;, s bethe
vector of values s; and U be the m x n matrix of monomial values p;(z;) at points

z;. Then the least squares fit minimizing ||Ua — s||* is given by

a=UTs
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where (-)* denotes pseudoinverse. Then x m matrix U only depends on the valence
k since z; and p, depend only on k. Therefore, it can be precomputed once and used
for all charts with the same valence.

Flexibility of the surface at vertices in the center of the charts is easy to show, as
one can construct specific control point configurations yielding various low-degree
polynomialsin adirect form.

We note that the above construction is the simplest among those we have tried; its
disadvantage isthe relatively large size of Uy, which can be reduced by using amore
careful choice of polynomial bases and the singular value decomposition (SVD) from

n to 3k + 1 without loosing surface quality.

2.3.6 Alternatives

Although the construction described in the previous sections generates C'*° continu-
ous surfaces with good visual quality (Section 2.4), aternative choices for every step
of the construction are available and can potentially generate better surfaces.

In the chart definition step, instead of using the conformal map z*/* in the con-

struction of the map ¢; from S; to D;, we can use any function of the form

2P ()

2]

where p is positive. The chart maps and transition maps associated with this function

)

arestill C*° continuous although not conformal any more. One preferable choice of p
islog,(1/A,) where ), isthe second largest eigenvalue of the subdivision matrix of
the Catmull-Clark subdivision scheme at valence k;. This choice makes the domain
D; very closeto the shape of the characteristic map [96] of the Catmull-Clark scheme

and therefore the resulting map ¢; are very close to the standard C'! parameterization
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of the subdivision surface.

In cases when the C* property of the generated surface is not important, we can
also use spline functions as function 7 to construct the partition of unity (Figure 2.4).
The resulting surfaces will have the same order of continuity as the spline function
assuming the rest parts of the construction remain unmodified.

Using polynomial bases is only one way to define the local geometry. More ad-
vanced methods include using trigonometric splines [75], radial basis functions [87]
and other interpolation methods. Another ideais to approximate the product of sub-
division surface geometry and the POU in each domain C;, since only their product
is used for the construction of the global geometry. In this case, 2D trigonometric

polynomials can be used as the approximation bases.

2.4 Results

Implementing our scheme is relatively simple: our basic implementation has 1,500
lines of code including subdivision but excluding SVD code.

In most images, we use a reflection map on a part of the surface to show the sur-
face quality. Figure 2.5 shows a detailed comparison of the surfaces with Catmull-
Clark surfaces near valance 5, valence 8 and valence 12 vertices. The visual quality
of our surfaces is close to the one of Catmull-Clark surfaces, except in the imme-
diate neighborhood of the vertex, where reflection lines show lack of C2-continuity
of Catmull-Clark. This can also be observed in parametrization images, where a
uniformly spaced checkerboard in the parametric domain is mapped to the surface.

Figure 2.6 shows the sum of the magnitudes of the derivatives of the parametriza-

tion on achart, to demonstrate the variation. We note that starting from fourth deriva-
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tives the behavior is dominated by the behavior of the derivatives of the partition of
unity functions.

Figure 2.7 shows the principal curvature directions, Gaussian curvature, mean
curvature at various charts on several examples.

Figure 2.8 shows several examples of surfaces obtained from various control
meshes. In all cases, overal quality is quite similar to Catmull-Clark surfaces; as

expected, with smoother reflection lines near extraordinary vertices asin Figure 2.5.

29



Catmull-Clark  our surface

our surface

Figure 2.5: Left: comparison of parameterizations: chart for our surface and Stam’s
for Catmull-Clark. Right: Surface behavior near extraordinary points for valence

5,8,12.

II.S I 4 I5.7

I1.3 |O.17 I2.0
Figure 2.6: Maps of the total derivative magnitudes for the first, second and third
derivatives.
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Figure 2.7: Principa curvature directions, Gaussian curvature and mean curvature.
For each example, the first figure shows the principal curvature directions in the
chart of an extraordinary vertex. Every cross represents the two principal curvature
directions. Notice the smooth transition of the directions (away from the umbilical
points). The second and third figures show the Gaussian and the mean curvatures.
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Figure 2.8: Several examples of surfaces produced with our method.
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2.5 Summary

The development of the construction described in this paper was driven by the need
for high-order surface representation from the the boundary integral solver for the
Stokes equation. It nicely meets its needs while being a completely general tool.
The surfaces generated by our construction are C'* smooth with explicit C'*° param-
eterization, depend linearly and locally on control points and exhibits good visual

quality.
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Chapter 3

Kernel Independent Fast M ultipole
Method

This chapter describes a kernel-independent fast multipole method (FMM). This al-
gorithm is used to evaluate the non-adjacent interaction in the Nystrom solver of the

boundary integral formulation of the Stokes equation.

3.1 Introduction

In attempting to evaluate the integrals deriving from the boundary integral formu-
lation of the Stokes equations, we need to evaluate the non-adjacent interaction ef-
ficiently without compromising the accuracy of the integrator. After discretization,
this problem becomes a specia case of a more general problem: the evaluation of
pairwise interaction on alarge set of particles, where the interaction corresponds to
the potential related to the fundamental solution of elliptic partial differential equa-

tions. Many other methodsin computational physics (e.g., vortex methods, molecular



dynamics) are al so based on the evolution of particle systemswith this pairwise inter-
action. The most important among these kernelsisthe single-layer Laplacian. Other
kernelsinclude the the kernels of the Helmholtz and Navier operators, their modified
versions, and their derivatives (double-layer and hypersingular kernels).

Particle formulations result in dense linear algebraic systems because all pairwise
interactions have to be computed. Thisisasignificant bottleneck sincefor NV particles
it results in a O(N?) computation. In order to make large scale problems tractable
it is essential to efficiently compute these interactions. A number of algorithms have
been proposed for this purpose. The fast multipole method (FMM) has been one of
the most successful, especially for non-uniform particle distributions.

The method presented in this chapter is a new kernel-independent FMM-like al-
gorithm. Our agorithm has the structure of the adaptive FMM agorithm [32] but
requires only the kernel evaluations, and it does not sacrifice the efficiency of the
original algorithm. The crucial element of our approach is to replace the analytic
expansions and translations with equivalent density representations. These represen-
tations are computed by solving local exterior and interior problems on circles (2D),
spheres or cubes (3D) using the integral equation formulations. We demonstrate the
efficiency of our method in both 2D and 3D for many kernels. the single and dou-
ble layer potentials of the Laplacian, the modified Laplacian, the Navier, the Stokes,
and their modified variants. Our method has O(N') asymptotic complexity, and, like

analytic FMM, works well for non-uniform particle distributions.

Synopsis of the new method. The basic structure of our method follows [35], the
original fast multipole method, which we briefly review in Section 3.2. FMM consists

of the following steps:
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1. generation of ahierarchical tree partitioning of the computational domain;

2. accumulation of the multipole expansionsfor the far field by apostorder traver-

sal of the tree;
3. trangdlation of the multipole moments to the local expansions,
4. construction of local expansions by a preorder traversal of the tree;
5. evaluation of the far field action on the particles using local expansions;
6. evaluation of the near field interactions.

The same steps are used in our algorithm. However in the postorder traversal of
the tree, the multipole expansion construction is replaced by solving local exterior
inverse problems. To represent the potential generated by particles inside a box, we
use a continuous distribution of an equivalent density on a surface enclosing the box.
To find this equivalent density on the surface, we match its potential to the poten-
tial of the original sources at another surface in the far field. The trandations are
done by direct evaluation on the far field, sparsified with SVD or FFT. During the
preorder traversal of the tree, we evaluate the far field interaction on a surface enclos-
ing atarget box, and solve an interior Dirichlet-type integral equation to compute an
equivalent density. Then we use this density to represent the potential inside atarget
box.

Our method does not require implementation of analytic expansions for the ker-
nel, it only requires their existence, and exclusively uses kernel evaluations. Like
FMM, our algorithm is recursive and has an O(N) complexity. Additional proper-
ties like scale invariance and rotational symmetries of kernels can be used to further

accelerate the trandation step, asin the case of the standard FMM.
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Related work. The description of the original fast multipole algorithm can be
found in [35], and [73]. Although the method is highly successful in two dimen-
sions, the three-dimensional version of the original method was inefficient. Efficient
extensions in three dimensions were realized only recently [20]. For these reasons
many researchers tried to devise algorithms which were hybrids of tree codes and
FMM, in order to combine the high accuracy of FMM methods with the simplicity
of tree codes. In addition, the extension of the FMM to more general kernels like
the modified Laplacian [33], the Stokes [28] , and the Navier [27, 95] operators can
be quite cumbersome, due to the need to implement efficient tranglation operators.
Below, we only review agorithms that could be used to develop kernel independent
methods.

The idea of using a set of equivalent sources was first introduced in [1]. In that
paper, the far field is represented as the solution to an exterior Dirichlet problem on a
ball surrounding the particles using the exact Green’s function (Poisson formula) for
Laplacian. The method is somewhat easier than FMM to implement, but requires the
analytic form of the Green’s function for each kernel, which may not be available in
the general case.

In [5] instead of using the exact Green’s function, a number of equivalent densi-
ties are placed on a Cartesian grid in each source box; these densities are computed
analytically by matching a number of multipole moments in the multipole expan-
sion series of the original source densities. An important feature of this method is
the fact that the Cartesian grid allows the use of FFT to accelerate the multipole to
local-expansions trandations. However, the method is not kernel-independent since
for different kernels different expansions have to be constructed. The same ideais

used in [50], and like in Anderson’s method the densities are distributed over a ball
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containing the source box.

The idea of equivalent densities is also used in the precorrected FFT method,
[66]. The equivalent densities are distributed over aregular grid, so that the far field
convolutions can be computed with FFT instead of FMM. The term * precorrected”
isrelated to the computation of the local interactions: the subtraction of the local in-
fluence of the equivalent densities and the addition of the near field interactions. The
regular grid sources are computed by matching the field at selected checking points,
usually located on a ball enclosing the original sources. In [16], a precorrected FFT
method is applied to the Helmholtz kernel, but the equivalent sources are distributed
along the faces of an enclosing cube, and three FFTs along the coordinate system
planes are used to compute the far interaction. FFT-based methods are very efficient,
often faster than FMM due to much smaller constants. For uniform distributions of
particles FFT islikely to be preferable and it is kernel-independent. However, in the
case of highly irregular particle distributions FMM is more efficient.

A hybrid method for kernel independent matrix-vector multiplication algorithm
was proposed in [44] and [45]. Based on thefact that large blocks of the particleinter-
action matrix are low rank, this method uses singular value decomposition to sample
and sparsify these blocks. It can be applied recursively and attains a O (N log N)
complexity. We have applied this method on the Stokes and Navier operators [8] [7]
with very satisfactory resultsin both accuracy and speed. One serious shortcoming of
this method is the high setup cost. For problems with static particle distributions this
is not a concern, but it becomes a bottleneck for problems with time evolving parti-
cles. The SVD approach was been further explored in series of papers[93, 94, 30] to
obtain a kernel-independent method that does not require the kernel to be a solution

of an eliptic PDE or a convolution. However, due to its generality, as the authors of
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these papers assert, the method does not achieve the efficiency of FMM for kernels
that are related to fundamental solutions of PDEs.

Another method for fast matrix multiplication is based on higher-order Taylor
expansions in Cartesian coordinates. This approach is not suitable for high accu-
racy computations because is computationally expensive (for p;,-order accuracy it
requires O(p?) expansion terms). However, it is a kernel-independent method (the
higher-order expansions can be easily obtained by differentiation). For example, it
has been used to accel erate problems with the Stokes kernel [67].

As we pointed out in Chapter 1, another class of kernel-independent approaches
used in solving boundary integral equations is based on wavelet decompositions,
combined with a Galerkin scheme. This approach is quite promising, since it has
the same complexity with FMM, and allows the constructions of efficient precondi-
tioners for the resulting systems. However, it is hard to compare directly to FMM,
as different trade-offs are made: FMM is a “bottom-up” approach, and is relatively
insensitive to the distribution of samples. Adaptive wavelet methods are “top-down”
but require samples to be located on a surface satisfying certain assumptions, which
may not hold in the general case.

The rest of this chapter is organized as follows. In Section 3.2 we briefly review
the classica FMM algorithm for the two dimensional Laplacian. In Section 3.3 we
present the new algorithm and its implementation; in Section 3.4 we present an error
analysisfor the algorithm, and in Section 3.5 we present numerical resultsfor several

different scalar and vector kernelsin two and three dimensions.
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3.2 Review of the Fast Multipole M ethod

Given N source densities {¢;} located at NV points {y;} in R¢ (d = 2, 3), we want
to compute the potential {;} a N points {z;} induced by akernel G (single layer,
double layer or other kernels of a elliptic PDE) using the following relation:

N

N
u; = u(z;) = ZG(%%)S@(%) = ZGU%’, i=1,---,N.
j=1

j=1
We use z to refer to target locations and y to refer to source locations, but in general
{z;} and {y;} can be the same set of points.

Direct implementation of this summation gives an O(N?) algorithm. For alarge
class of kernels and under reasonabl e assumptions on the particle distribution, FMM
requires O(N) work to compute an approximate potential with a prescribed relative
error, [55], [20]. The constant in the complexity estimate depends on the relative
error (the absolute error of the potential is bounded by the product of the relative
error and the total charge).

We will use the single layer Laplacian kernel to describe FMM. In two dimen-
sionswehave G(x,y) = —5- log p, withr = z—y, and p = |r|. Inthe FMM context
itisconvenienttouse G(x, y) = Re(log(z, —z,)) where z, and z, are complex num-
bers corresponding to z (target) and y (source) points on the plane. The ideaof FMM
is to encode the potentials of a set of source densities using the multipole expansion

and local expansion at places far away from these sources.

Multipole expansion. Suppose the m source densities {,} located at {z;}, with

|z; — z¢| < r, thenfor any z with |z — z¢| > R, theinduced potential «(z) can be
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approximated by:

i

u(z) = aglog(z — z¢) + Y —— +0(+=) (3.1
where {a;,0 < k < p} satisfies
_ - _ — —pi(z — 20)*
ao—ngj and ak—ZT.
j=1 j=1

The vector of coefficients {ax, 0 < k < p} iscaled the multipole expansion.

Local expansion.  Suppose the m source densities { ¢, } located at {z; }, with |z; —

zo| > R, thenfor any |z — z¢| < r, the induced potential «(z) can be approximated

by:

p

u(z) = ch(z —z0)* +O(

k=0
where {c;,0 < k < p} satisfies

rP

=) (32)

~3 . N %
Co—jzl%log(zc zj) and Cl—;m-

The vector of coefficients {¢x,0 < k < p} iscalled the local expansion.

In both expansions, p is usually a small constant determining from the desired
accuracy of the result.

FMM employs the above representations in a recursive way. The computational
domain, a box large enough to contain all source and target points, is hierarchically
partitioned into a tree structure (a quadtree in 2D or an octtree in 3D). Each node of
the tree corresponds to geometric box (square or cube). Thetreeisconstructed so that
the leaves contain no more than a prespecified number of points. For each box, the
potential induced by its source densities is represented using a multipole expansion,

while the potential induced by the sources from non-adjacent boxes is encoded in a
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local expansion. For a prescribed relative error ¢, the number of expansiontermsp is
chosen to be | log, ¢| where cis (4 — v/2)/v/2in2D and (4 — v/3)/+/3 in 3D.

Not only these expansions (multipole and local) can be used for efficient eval-
uation, but translations between these expansions are also available which make an

O(N) agorithm possible. In particular, the following types of trandlations are used:

M2M: The multipole to multipole translation transforms the multipole expansions

of abox’s children to its own multipole expansion.

M2L: Themultipoleto local trandation transforms the multipole expansion of abox

to the local expansion of another non-adjacent box.

L2L: Finally, thelocal to local trandation of the local expansion of a box’s parent

to itsown local expansion.

M2M trandation. Suppose z¢ is the center of a box and z,, is the center of its
parent. Suppose further {ay} is the multipole expansion at z., then the multipole
expansion at z,; can be written as:

i b

u(z) = bglog(z — zpr) + Z l

=1

(Z _ Z]V[)l + O<€>7

where {b;,0 < k < p} satisfies

1 l

ap(ze — 2 [—1

bo = ag and bl:—w—i—g (Ik(Zc—ZM)l_k(k_1>.
k=1

M2L trangdlation. Suppose z,; and z;, are the centers of two non-adjacent boxes
on the same level, {b;} is multipole expansion at z,,. Then the local exp-anion at z;,

transformed from {b;} is:
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where {¢;, 0 < k < p} satisfies

i
S
=

co = bolog(zr — zp) +

bo u l+k—1 N
—1)".
l'(Z]w—ZL)l Z]\/[—ZLZZ1 ZM—ZL ( k—1 )< )

Cp = —

L2L trandation. Suppose z7 isthe center of abox and z;, the center of its parent.
Suppose further {¢;} is the local expansion at z;,, then the local expansion at z7 can

be written as

= Z di(z — zp)' + O(e),

=0
where {d;, 0 < k < p} satisfies

~ [k
dl = ch(l><ZT — ZL)(kil).

k=l

Using the tree structure, FMM consists of two basic steps. During the first step,
the upward pass, the tree is traversed in postorder (i.e., the children of a box are
visited before the box itself) to compute the multipole expansion for each box. At the
leaves, the multipole expansions are built following Equation (3.1) (this procedure
is also called the source to multipole (S2M) trandlation). At each non-leaf node, the
multipole expansion is shifted from its children using the M2M trangdlation. In the
second step, the downwards pass, the treeistraversed in apreorder (i.e., the children
of abox are visited after the box itself) to compute the local expansion. For each box
B, the local expansion isthe sum of two parts: first, the local-to-local transformation
collects the local expansion of B’s parent (the result condenses the contributions
from the sources in all the boxes which are not adjacent to B’s parent), and second,
the multipole-to-local transformation collects the multipole expansions of the boxes

which are the children of the neighbors of B’s parent but are not adjacent to B (these
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boxes compose the interaction list of B). The sum of these two parts encodes all the
contribution from the sources in the boxes which are not adjacent to B itself. At the
end, for each box, the far interaction, which is evaluated using the local expansion at
thisbox (thisstep iscalled thelocal to target (L2T) trandlation), is combined with the
near interaction evaluated by iterating over al the source points in the neighborhood

of the target box to obtain the potential (see Figure 3.1).

Figure 3.1: The multipole expansion at zg encodes the influence from the source
densities (marked with “+”) to the far field. The local expansion at =z encodes the
influence from the far field to the target points (marked with “A™). M2M trandation
transforms between the multipole expansions of the boxes in adjacent levels (zg to
zu), M2L trandation transforms multipole expansion of abox to the local expansion
of non-adjacent boxes (z); to z;), and finally L2L translation transforms between
local expansions between adjacent levels (2, to z7).

Instead of Laurent series, in three dimensionsthefar field is represented by spher-
ical harmonics. There are several implementation details (mostly for the M2L trans-
formation) that are required for efficient implementation (especialy in 3D), but we
do not mention them here. Overall, however, the organization of the computation
is the same as the two dimension case. For the derivation of the expansions and a

detailed discussion on error bounds and implementation details see [20] and [35].



3.3 TheNew Algorithm

Our algorithm is designed to generalize FMM to second-order constant coefficient
non-oscillatory elliptic partial differential equations. Examples of such systems are
givenin Appendix A, wherewe also list the corresponding fundamental solution ker-
nels. Such kernels satisfy the underlying PDE everywhere but the singularity location
(pole), and are smooth away from the singularity. All problems under consideration
admit a unique solution for the properly posed interior/exterior Dirichlet problems.
Smoothness and uniqueness are the basic properties that we use to develop our FMM
approximation.

Our agorithm has the same structure with the origina FMM method. The dif-
ferences are how the densities are represented efficiently and how the M2M, M2L,
and L2L transformations are computed. We first describe these representations and
transformations, then state the complete algorithm and conclude with a discussion on
efficient implementation. Below we summarize the notation we usein the description

of the method; these notations are defined in Section 3.3.1.

3.3.1 Density Trandations

Givenaset of N points, we define the computational domain to be abox large enough
to contain all points. We construct a hierarchical tree (aquadtreein 2D and an octtree
in 3D) so that each leaf of the tree contains no more than s points where s is a
prescribed number. We assume that some points are labeled as sources y; and other
points as targets x;. The source densities ¢; at the source locations y;, @ = 1... N
are given, and we want to evaluate the potential {u;,} at the target locations {x; }.

We refer to the tree nodes (squares in 2D and cubesin 3D) as boxes. For a spatial

45



B a box in the computation tree

NB  the near range of the box B in R?

FB  thefar range of the box B in R?

IB  theset of of indices of source points or densitiesin B
I theset of indices of target points or potentialsin B
yP*  the upward equivalent surface of B

8 6

N

the upward equivalent density of B
the upward check surface of B
the upward check potential of B

<

AN
& 3w w B 3w
Q& A & g S

8

the downward equivalent surface of B
the downward equivalent density of B
the downward check surface of B

u the downward check potential of B

D the degree of discretization for equivalent densities

s the maximum number of source (or target) points allowed in aleaf box
N the total number of source and target points

R the depth of the computation tree

M thetotal number of boxesin the computation tree

If B isabox centered at ¢ and has side length 27, then the box centered at ¢ with

Table 3.1: FMM related notations.

region R, we use 2 and I to denote the index sets of the source and target points

in R. Most commonly, R isabox of the computational tree.

sidelength 6r is called the near range of B and is denoted by N'Z. R4\ A'B iscalled

the far range and is denoted by FZ. Note that in our definition, B isa part of V2.

Equivalent densitiesand check potentials. We represent the potential in 2 from
the source densities {;,7 € 12} in B asthepotential from adensity distribution p?*

supported at prescribed locations %% in N2 (Figure 3.2). We call P the upward
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equivalent density and y”* the upward equivalent surface of box B.

Results from potential theory put two restrictions on the positions of y”* (see
[47], chapter 6). First, to guarantee the smoothness of the potential produced by
P its support vy should not overlap with F2. Second, to guarantee that 5 is
able to represent the potential produced by any source distribution in B, y”* needs
to enclose B. Therefore, in order to ensure the existence of 2, 2% isrequired to
lie between B and the boundary of FZ. We use acircle in 2D and a sphere or cube
in 3D for reasons that will be explained |ater.

The potentials induced by the source densities and the upward equivalent density
satisfy the underlying second order linear elliptic PDE. Asthe solution of an exterior
Dirichlet problem for such PDE is unique, these two potentials are guaranteed to be
equal in al of 77 if they coincide at the boundary of F7, or any surface between
FEB and yP*. We cal such an intermediate surface the upward check surface and
denote it by 2. We call the potential computed on this surface the upward check
potential and denote it by u?*. These surfaces are also chosen to be circlesin 2D,
and spheres or cubes in 3D. The equality of potentials on the upward check surface
can be written as follows:

/ G(z,y)pP" dy = Z Gz, y:)p; = uP*, forany x € x5, (3.3)
Ul icIP

Similarly, we represent the potential in B from the source densitiesin 2 asthe
potential induced by a density distribution (24 defined at prescribed location 35+
in N'B (Figure 3.2). We call ¢ downward equivalent density and 3¢ downward
equivalent surface. To ensure the existence of %4, y?¢ needs to be located between
FB and B. Asthe solution of theinterior Dirichlet problem for the PDE we consider

isalso unique, we need to match the potentials only on a surface »%¢ between B and
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Figure 3.2: The equivalent/check surfaces in 2D. Left: Given the potential gener-
ated by the source densities inside a box, located at the points marked with “+”, we
represent it by using the upward equivalent density located at the upward equivalent
surface. The equivalent surface is shown as the solid circle enclosing the box. The
upward check potentials induced by the sources and the upward equivalent density
are matched at the upward check surface (the dashed circle). Right: To represent the
potential in the box generated by the source in the far range, we use the downward
equivalent density located at the downward equivalent surface. The downward equiv-
alent potentials induced by both sources are matched at the upward check surface. In
both plots, the discretization points of the equivalent and check surfaces are equally
spaced and marked with “e” and “o” respectively. For both upward or downward
steps, the computation of the equivalent density includes two steps shown by arrows
in each plot: (1) the evaluation of the check potential using the original source, and
(2) the inversion of theintegral equation to obtain the equivalent density.

yB4. We call the surface 2% downward check surface, and the matched potential
1 the downward check potential.
We usually choose both y#+¢ and 2 to be circlesin 2D and spheres or cubesin

3D. The potential ¢ satisfies the following equation for any x € z5:

/ Gz, ) dy = Y Glz,y:)p; = u”. (34)
yBd

ieIFB
Theintegral equations(3.3) and (3.4) arethefirst-kind Fredholm equations. Inverting

such equations for a general right-hand side is an ill-conditioned problem since it
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is an ill-posed infinite dimensiona problem. However, the right-hand sides have a
special form that guarantees the existence of the solution of the integral equation. To
solve these equations numerically in a stable way, we use aregularization scheme, as

discussed in Section 3.3.2.
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Figure 3.3: Threetrandationsin 2D. Left: M2M trandation. To compute the upward
equivalent density of the large square, we eval uate the (upward check) potential at the
dashed circle using its child box’s upward equivalent density at the small solid circle
(this operation is marked with arrow (1)), and invert the integral equation to get its
upward equivalent density at the large solid circle (marked with arrow (2)). Middle:
M2L trandlation transforms the upward equivalent density of the left box (surrounded
by onecircle) to the downward equivalent density of the right box (surrounded by two
circles). Wefirst evaluate the downward check potential at the dashed circle using the
upward equivalent density (located at the small solid circle) (marked with (1)), and
then invert the equation to obtain the downward equivalent density at the downward
equivalent surface — the large solid circle (marked with (2)). Right: L2L transation
transforms the downward equivalent density of the large box to its child — the the
small box.

In al three figures, the discretization points for the equivalent surface are marked

with “e” and the ones for check surface are marked with “o”.

M2M tranglation. For every leaf box B in the tree, the computation of the upward

equivalent density ¢ from the source densities uses equation (3.3). The procedure
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of M2M trangdlationissimilar (Figure 3.3). To translate the upward equivalent density

from abox A to its parent box 5, we solve the following equation for ¢+

MZMi/ G(I,y)sOB’“(y)dy:/ G(z,y)e™"(y)dy, foralze ™
yB,u

yA,u

(3.5

To ensure the existence of o for B, y®* must enclose y** for any of its children

A.

M2L trandation. Oncethe upward equivalent density has been computed for each
box, M2L trandation computes the downward equivalent density (Figure 3.3). Sup-
pose A isabox in 2. The M2L trandation is similar to (3.4), and we solve the

following equation to find (¢

M2 [ Gty = [ Glew)e @y fordlsea,
yB,d yA,u
(36)

To ensure the existence of %4, 24 must be digoint from 34 for al Ain F&.

L2L trandation. TheL2L trandation computes the downward equivalent density
of abox B at level i from that of itsparent A at level i —1 (Figure 3.3). The procedure

isagain similar to equation (3.4). The potential ¢ satisfies
L2L: / G(z,y)0"(y) dy = / G(z,y)p(y)dy, foralx e 2P (3.7)
yB.d yAd

To ensure the existence of %4, y24 must liein y*+.

Equations (3.5), (3.6) and (3.7) corresponding to M2M, M2L and L2L transla-
tionsareal ill-conditioned for an arbitrary right-hand side. However, similar to (3.3)
and (3.4), the right hand sides in our case are sufficiently smooth to guarantee the

existence and stability of the solution of the integral equation.
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Summary. We have described two density representations and three trandlations
used to convert between these densities. The two equivalent densities correspond to
the multipole and local expansions in FMM, while the three trand ations replace the
three transformationsin FMM.

In order to guarantee the existence of the equivalent densities the equivalent and
check surfaces have to satisfy certain restrictions. We summarize them as follows:
for each box B

o yP% and 2P lie between B and FZ; 2P encloses yP;
o yP4 and 25 lie between B and FZ; y54 encloses 254,
ey encloses y4* for any descendant box A,

oy isdigoint from y*< for all Ain F?,

o y2? liesinside y*¢, where A is B’s parent.

3.3.2 Discretization

Regularization. Equations(3.3), (3.5), (3.6), and (3.7) need to be discretized. Each
one of them consists of two steps. First, we need to evaluate the check potential at
box B using the equivalent density from box A. This step is discretized using asim-
ple numerical quadrature. Second, we need to compute the equivalent density at B
from the check potential computed in the previous step. This requires the numerical

solution of afirst-kind Fredholm equation. We denote this equation as
Kp=u

where ¢ isthe equivalent density of B, u isthe check potential of B and K evaluates

u from the kernel and . We solve this equation using Tikhonov regularization [47]:

o= (al + K*K) 'K*u.
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This becomes a second-kind Fredholm integral equation, and in our implementation
we solve it using the Nystrom method (Galerkin or collocation methods could be

used).

Surface geometry and discretization. The above two steps need to discretize the
equivalent surfaces and check surfaces. In 2D we choose circular equivalent and
check surfaces. We use the trapezoidal ruleto integrate the check potential and to dis-
cretize the integral equations; in this manner we obtain super-algebraic convergence.
In 3D this is no longer possible: to the best of our knowledge, there are no smple
guadrature rules for functions defined on spheres that converge super-algebraically.
Instead, we use cubes as the equivalent and check surfaces (Figure 3.4 and 3.5), and
construct quadratures of fixed order on the faces of the cubes. In Section 3.3.4 we
explain how this approach facilitates fast M2L trandations, and in Section 3.5 we

show that the accuracy in 3D is not too different from the 2D case.

2D case. For abox B centered at ¢ with side length 2r, al related surfaces are
circles centered at c. The upward equivalent surface y?* hasradius (v/2 + d)r where
d afixed number satisfying 0 < d < %5 The upward check surface 25* hasradius
(4 — /2 — 2d)r. The downward equivalent surface y”¢ hasradius (4 — v/2 — 2d)r.
Finally, the downward check surface »” hasradius (v/2 + d)r (Figure 3.2 and 3.3).
Note that our choice of the surfaces satisfies all restrictions at the end of Section
3.3.1. All circles are discretized with p equally spaced points with trapezoidal rule.
The accuracy of our method is determined by the choice of p. This simple ruleis
known to have super-algebraic convergence for smooth functions. d is chosen to be

quite small (equal to 0.1 in our implementation). By doing so, the equivalent surface
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and check surfaces involved in each trandations are well-separated and the kernel
used in the check potential integration step is very smooth. Therefore the trapezoidal

rule gives good accuracy in the integration of check potential.

Remark 3.1. We could have chosen the upward/downward check surface to be identi-
cal with the upward/downward equivalent surface. However, in this case the integral
eguation would have a kernel-dependent form and we would need more complex

guadrature rules that can be used to integrate singular kernels.

3D case. For abox B centered at ¢ with side length 2r, al the related surfaces
are the boundaries of cubes centered at c. The upward equivalent surface 32 is the
boundary of a box with halfwidth (1 + d)r where0 < d < % The upward check
surface x5 is the boundary of a box with halfwidth (3 — 2d)r. The downward
equivalent surface % is the same as #%*. Finaly, the downward check surface
B4 isthe same as y?* (Figure 3.4 and 3.5). These surfaces satisfy the restrictions
at the end of Section 3.3.1. For every surface, the quadrature points are distributed
evenly on six faces, and on every face, the points are distributed on an evenly spaced
2D Cartesian grid. Under this distribution, the quadrature points at the corner of
the box are shared by three faces, and those at the edge of the box are shared by
two faces. We can also view these quadrature points as the boundary nodes of a 3D
regular Cartesian grid. Similarly to the 2D case, we use p to denote the total number
of quadrature points on the surface of the box. Note that in 3D analytic FMM p is
used to denote the order of the multipole/local expansion, therefore, p? is the actual
number of coefficients used in the expansion. The quadrature weights are chosenin a
way such that on every face the quadrature rule integrates low order 2D polynomials

exactly. Inour experiments, good quadrature results are observed since al the kernels
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are smooth away from the singularity. The parameter d is chosen to be quite small

(again equal to 0.1 in our implementation) due to the reason stated in the 2D case.
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Figure 3.4: The cross sections of the equivalent/check surfacesin 3D. Left: the up-
ward equivalent density. Right: the downward equivalent density. In both plots, the
innermost square is the source box. The equivalent and check surfaces are both dis-
cretized using the boundary nodes of a regular Cartesian grid. The nodes for the
equivalent surfaces are marked with “e” and those for the check surfaces with “o”.
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Figure 3.5: Three trandationsin 3D. Left: M2M trandation. Middle: M2L transla-
tion. Right: L2L trandation. 3D trandations are similar to 2D. There are two dif-
ferences: (1) equivalent/check surfaces are now cubes and (2) discretization points
are the boundary nodes of aregular Cartesian grid. Note that for M2L trand ation the
discretization points of upward equivalent surface and downward check surface are
from the same Cartesian grid, therefore it can be sped up with FFT (interior nodes
are padded with zero density).



Summary. Each oneof thediscretized M2M, M2L and L2L translationsinvolvesa
potential evaluation and a solution of an integral equation. However, by choosing the
guadrature points fixed relative to the box, both the evaluation and the solving depend
only the level and the relative positions of the boxes involved in these trandations.
We can precompute and store these operatorsfor each level and each relative position.

Therefore, each trand ation invokes two matrix multiplications.

3.3.3 The Complete Algorithm

In this section we describe our algorithm in detail. First we give some definitions

related to the algorithm. Our definitions closely follow Greengard [32].

Definitions. The neighbors of a box are adjacent boxes in the same level. For
uniform distributions of particles, a uniformly refined grid is used. In this case the
neighbor list L% of abox B isthe set of all neighbors of B and B itself. For a box
away from the boundaries, the neighbor list contains 9 boxes in 2D or 27 boxes in
3D. These boxes are all contained in /2,

Theinteraction list L? isthe set of children of the neighbors of B’s parent which
are not B’s neighbors. Again, ignoring the boundary effects, this list contains 27
boxes in 2D and 189 boxesin 3D. These boxes are al contained in 7.

If the particle distribution is uniform, aregular grid can be used; however, we are
primarily interested in non-uniform particle distributions. In this case an adaptively
refined grid is needed. The grid is recursively refined until the number of pointsin
each leaf box isless than afixed number s. Following the adaptive FMM agorithm,
we give the following definitions (Figure 3.6).

For aleaf box B, the U list L5 contains B itself and the leaf boxes which are
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adjacent to B. For anon-leaf box, the U list is empty.

The V list LE isthe set of the children of the neighbors of the parent of B which
are not adjacent to B.

If Bisaleaf box, the W list L%, consists of all the descendants of B’s neighbors
whose parents are adjacent to B, but who are not adjacent to B themselves. For a
non-leaf box, the W list is empty.

The X list LE consists of all boxes A suchthat B € L§,.

\ \ \' \'
U
U U \' \'
Vv U B U
Ululuw X
Vv U UW[WWIW w
W W|W|W

Figure3.6: Lists L, LE, LE, and L of box B.

For aleaf box B, L5 issimilar to L% in the uniform case, and LE is similar to
LP. Thereis also aconjugate relation on these four lists. Suppose that A and B are
two boxes.

olf Aisin L5, then Bisin L.
olIf Aisin LB, then Bisin L.
olf Aisin L%, then Bisin LY.
olf Aisin L%, then Bisin Li} .

For abox B, the U,V, )W and X lists contain all boxes whose contribution needs
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to be processed by B itself. The contribution from more distant boxes are considered
by B’sancestors. For abox U in LE, adirect computation of the interaction of U’s
source points with B’s target points is necessary since U and B are adjacent. For a
box V' in L{, we compute the interaction from V' to B using M2L translation since
two boxes are well-separated. For abox W in LE,, we can evaluate the potential
directly at B’starget points using the upwards equivalent density of I/, as B isinthe
far range of 1. Finally, for abox X in L%, since B istill in the near range of X, we
represent the potential from X to B by first evaluating the potential at the downwards
check surface at B and then invert it to the downwards equivalent density . The

pseudocode is given in Figure 3.7.
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STEP 1 TREE CONSTRUCTION
for each box B in preorder traversal of the tree do
subdivide B if B hasmore than s pointsin it
end for
for each box B in preorder traversal of the tree do
construct L5, LE, LE and L% for B
end for

STEP 2 UPWARDS PASS
for each leaf box B in postorder traversal of the tree do
evauate uP* at wP* using {;,i € IB}
solve for %% at % that matches u”* at 2% (Equation (3.3))
end for
for each non-leaf box B in postorder traversal of the tree do
add to ' at P the contribution from (“"* for each child C' of B
solve for B at % that matches u”* at 2% (Equation (3.5))
end for

STEP 3 DOWNWARDS PASS

for each non-root box B in preorder traversal of the tree do
add to uP at 2% the contribution from "+ for each box V' in L
add to P4 at 2% the contribution from {¢;,i € IX} for eachbox X in L%
add to u?? at 25 the contribution from ¢, where P isthe parent of B
solve for B4 at 3B that matches v at 2% (Equation (3.6) and (3.7))

end for

for each leaf box B in preorder traversal of thetree do
add to {u;,i € IP} the contribution from 5+
add to {u;, 7 € 12} the contribution from {¢;,i € I} for each box U in L5
add to {u;,i € I/} the contribution from " for each box 1V in LE,

end for

Figure 3.7: Kernel independent FMM algorithm, adaptive case.
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3.34 Implementation | ssues

In the previous section we described the overall structure of the algorithmswith some
implementation details omitted for clarity. These details, however, are very important
for an efficient implementation of any FMM method. The most important issues are
the efficient acceleration of the M2L computation, and the overall memory manage-
ment.

Another aspect of our discussion is the distinction between the setup phase and
the fast summation phase. Many times the particle distributions come from dis-
cretization of integral equations; then, given afixed spatia particle distribution, the
summation is carried many times (i.e., the matrix vector multiplication within an
iterative solver such as GMRES). Many issues that we discuss here are related to

efficient multiple evaluations.

Acceleration techniques. In our complexity analysis, we consider only the uni-
form particle distribution and uniform grids. While analysis of adaptive refinement
is possible it requires assumptions on particle distribution. We refer the reader to
[55]. The most expensive part of our algorithm are the M2L trandations: the evalua-
tion of the contribution to «” of atarget box B from o4 where A is a source box
intheinteraction list of B.

We denote the size of the interaction list by /. For a single box, the complexity
of the M2L tranglationis O(I - p*). The M2M and L2L trandations are applied only
once for each box and their contribution to the overall algorithm is not as important.
Thus, the M2L part needs to be efficiently implemented since it is one of the two
most expensive parts of the algorithm. (The other bottleneck is the computation of

particle-to-particle dense interactions).
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SVD-based acceleration (2D). In 2D, we use an SV D-based acceleration tech-
nique. We first assemble the matrix M of the interaction from y** to 254, We
observe that M is numerically low rank. The number of the significant singular val-
uesof M issmall compared to the dimension of M, and therest of the singular values
are less than the accuracy required by the pairwise interaction evaluation. Suppose
USVT = M isthe SVD of M. We can store only the columns of U and V' which
correspond to the dominant singular values of S and discard the rest. This approach
gives us an efficient representation of M. In 3D this approach does not yield satis-
factory results. Although M2L operators are low rank, in practice the cutoff number
of equivalent density points in which the compression is effective, is very large. For

this reason an FFT-based approach is preferable.

FFT-based acceleration (3D). Suppose box A isin the interaction list of box
B. As mentioned in Section 3.3.2, y* is chosen to be the boundary of A, and the
integration points are the nodes of a Cartesian grid which are on the boundary of
of A. The same is true for 2%<. Therefore, by assigning zero density to the grid
points in the interior of B we can view the evaluation of the potential «”¢ from
the density p4* as a 3D convolution. This convolution can be evaluated efficiently
by FFT. Since we use 3D convolutions, there are O(p?/?) instead of p densities and
targets in each M2L trandation. For each box, we carry out the FFT and inverse
FFT only once, to obtain an O(p*/? log(p)) complexity. The convolution (pointwise
vector multiplication) is applied I times for each box, with O(1 - p*/?) complexity.

Severa acceleration schemes for the M2L trandlation of the analytic FMM have
been proposed in the past. In [25], a 2D FFT based scheme is used to transform

the multipole coefficients to the local coefficients. This scheme gives a O(plog(p))
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complexity for each M2L trandlation. In[36] and [20] exponential representation, an
intermediate representation between multipole and local expansions is introduced.
Based on this new representation, a diagonal transformation is used to transfer be-
tween exponential expansions efficiently. This technique cuts down the complexity
to O(I - p). An essential step of the trandlation to exponential representation is the
computation of some nontrivial kernel-dependent quadrature weights. While both
of these two schemes give asymptotically superior complexity than the O(I - p*/?)
complexity of our FFT based acceleration technique, our FFT based technique only

involves potential evaluations and thus is kernel independent.

Storage compression. Since the M2M, M2L and L2L trandations are used re-
peatedly, we precompute and store the matrices of these operators. Three storage

compression techniques are used to reduce the memory usage.

Homogeneity. Many kernels in the problems we are considering are homoge-
neous. if we scale the distance between the source point and the target point by a
factor «, the potential at the target is amplified by afactor o, where k is a constant.
For example, the 3D Laplace single layer kernel, S(z,y) = ;=2, has this property.
Since the integration points of the equivalent densities of a box are fixed relative to
the box, the trandation operators between different levels of the computation tree
only differ by aconstant, usually a power of 2. Hence, instead of storing the matrices

for each level, we store only the matrices for a single level. Modified kernels, like

modified Laplace, modified Stokes and modified Navier equations, do not have this
property.
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Symmetry. In 2D the integration points are equally spaced on acircle; in 3D
the integration points of the equivalent densities are chosen to be the nodes of a
regular Cartesian grid. In both cases they are symmetric with respect to the z, y
and z axes. For example, if we flip the positive x direction to be the negative x
direction, the positions of the set of the integration points do not change, even though
two integration points might swap their positions. Consider the M2M translation:
Suppose B isthe parent box of two different boxes C; and C';, and we need to evaluate
the potential u”* at z%*, the contribution from ¢ at y“* and from ¢“2* at
y©>*. Further suppose we already have the matrix of the operator from y“+* to
2P, In order to evaluate the contribution from 2 at 254, we first perform a
change of coordinates to move y“2 to y“-*, and then eval uate the contribution using
the operator from 1 to z%*. We then perform another change of coordinates to
move ¢ back to y“2*. The same techniques can be carried out for M2L and L2L
trandations.

The above procedure is only correct in the case of a scalar density and a scalar
potential. In the cases with vector or tensor densities and potentials, the change
of coordinates not only affects the support of the density or potential, but it also
modifies their values. Therefore, arescaling step is necessary after each change of
coordinates. A genera trandation using symmetry involves five steps. (a) forward
change of coordinates, (b) rescaling of density, (c) translation using stored matrix,
(d) rescaling of potential, and (e) backward change of coordinates. This technique
works for all the kernelslisted in the appendix, and gives us a compression factor of

eight in 3D and four in 2D.
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Lazy computation. In the case of non-uniform density distribution, the depth
of the computation tree can be quite large. However, not all the M2L trandations are
actually needed in the computation. Therefore, in our algorithm, the matrix repre-
sentation of aM2L trandlation is only computed where it is actually needed by some
box. This lazy computation strategy results in significant savings on memory usage

in non-uniform density distributions, and modified kernels.

3.35 Complexity

The analysis of the adaptive algorithm is essentially the same, but more involved
and requires assumptions about the particle distribution. For simplicity, we give the
complexities of our method and FMM in [20] for 3D uniform particle distribution.

The number of boxes M is approximately N/s. We use p to denote the number of

coefficients.

Step Our method FMM

S2M translation O(Np + Mp?) O(Np)
M2M trandation O(Mp?) O(Mp3/?)
M2L trandation O(Mp*/?logp + 189Mp3/2) O(20Mp*/? + 189 M)

L2L trandation O(Mp?) O(Mp3/?)

L2T trandlation O(Np) O(Np)

Near Interaction O(27Ns) O(27Ns)

Table 3.2: Complexity comparison of our method and analytic FMM.

The hidden constants in the complexity estimates are approximately the same for
all trandations; 189 isthe number of the M2L boxes and 27 isthe number of boxesin
the near interaction. In practice, s is of the same order as p. Therefore, the S2M and

L2T steps of both methods are of the same order O(Np). Our M2L translationisalso
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of the same order asthat of [20]. The M2M and L 2L steps have higher complexity in
our method, due to the fact that no acceleration techniques are applied in these two
steps. However, in al experiments in Section 3.5, we observe that this does not slow

down our method significantly since these steps are applied once for each box.

3.4 Error Analysis

Given the direct interaction operator G between the sourcesin abox B at level [ and
targets in a well-separated target box A at level m, we examine the error related to
the FMM approximation. First, we show that our FMM acceleration can be viewed
as a factorization of G, provided that all integrations are carried out exactly. Then
we present analysis of the discretization error behavior for homogeneous kernels
from scale invariant PDE in 2D case. The scale invariance means that the PDE only
involves the second order derivatives of the potential variable, such PDEs includes
Laplace, Stokes and Navier equations.

Numerical results indicate that the method works well in 3D and for inhomoge-
neous kernels; we leave derivation of rigorous error bounds in these cases as future
work.

It is important to point out that here we prove an error bound of the FMM ap-
proximation of the interaction operator G. This error is arelative error in the sense
that the absolute error for the computed potential is bounded by the product of the

relative error with the magnitude of the exact potential.



3.4.1 FMM Factorization

FMM can be viewed as a factorization of the operator G. Suppose the M2L tranda
tion operator isapplied at level & when the interaction between A and B is evaluated.
Let B = B, B,_4,..., B be the sequence of ancestor boxes of B up to level k,
and A=A, A, 1,...,A; the sequence of ancestor boxes of A. For our purposes,
it is convenient to consider a single sequence of boxes, By, ... By, Ag, ... A,,, of
length [ + m — 2k + 2; we denote this single sequence {C;},i = 0...n + 1, where
n = [ +m — 2k. With each box C;, we associate an equivalent surface y; and a
check surface x;, with equivalent density ; defined on y; and potential «; defined on
x;. For boxes B; upward surfaces are used, and for boxes A; downward surfaces are
used.

We introduce sequences of operators K; and F; mapping densities defined on
equivalence surfaces to potentials defined on check surfaces. These operators cor-
respond to left and right-hand sides of (3.5), (3.6) and (3.7). We use an auxiliary
operator K[Y — X] : C(Y) — C(X), where Y and X are regionsin 2D or 3D
(typicaly surfaces or boxes). The operator K is defined by

K[V = X1f)(z) = /YG(x,y)f(y) dy for z e X.

Then

K; = /C[yl- - xi], E;, = /C[yz- — $i+1]> L; = EZK;F (3.8)

where Kt = (K; K;) 'K} isthe pseudo-inverse of K;.
Finaly, let D = K[y4* — A], the operator evaluating the density on the upward

equivaent surfaceof A = (), ; a an arbitrary point inside A. Using these operators,

65



evaluation of the potential u4 at the target box due to the sources in B using our
hierarchical decomposition can be written in the following form:

U, = DK B, .. EgKfuP. (3.9)

n+1-n

Asillustrated in Figure 3.8,the first sequence part of the sequence of operators
corresponds to the upward traversal of the tree, with the M2M trandation defined
by (3.5) applied on each step. It is followed by the M2L trandation (3.6) and the
downward traversal with the L2L trandation (3.7) applied on each step. Since the
kernels are homogeneous, the operators K; and E; are level-independent of C; up
to an identical scale factor, and the composition L; = E; K" islevel-independent as
these factors cancel. For such kernels, werescale E; and K; to make them completely

level-independent.

Bl—l ®1 K—>u1 Pp ——— Uy, Am—l
% K l
Lo Ly,
Bl = B 900 L) Uy = uB,u §0n+1KnL> unJrl Am = A
K
M2M trandations Unier  L2L trandations

Figure 3.8: Operators used in the error analysis.
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In comparison, direct evaluation yields
Udirect = ), G, 4:) o
icIB

Expression (3.9) can be viewed as a sequence of transformations of densities,
starting with ¢y = @5 to p,.1 = ¢*9, defined on the sequence of upward
and downward equivalent surfaces. Let {D;} be the sequence of nested open do-
mains with boundaries z;; Ext(zP*) > ... D Ext(zP*) > Int(z?) D
... D Int(z*4) > A (for the upward traversal, we use exterior domains, for the
downward traversal, interior). Similarly we define {F;} to be the sequence of the
nested open domains with boundary y;: B C Int(y?*) c ... C Int(yP»*) C
Ext(y4?) C ... C Ext(y4m?).

It is sufficient to show that the potential «?°! in D; induced by ;, u? = K[y; —
D;]i, is equa to u;’j;’l in D;;; C D;, and that the potential induced by the first
density ¢, isthe same as ug..: in Dy, the exterior of 22, Equivalence of u;._. and
Ugirect INtheinterior of A follows by induction.

The key isthe observation that in the interior of D;, u?* satisfiesthe elliptic PDE
for which the kernel G(x, y) satisfies the underlying elliptic PDE. Therefore, we can
regard it as the solution of the Dirichlet problem with boundary conditions u?°|,, =
u;. The Dirichlet problem is exterior for upward check surfaces x; and interior for
downward surfaces z;. In ether case, from the uniqueness of the solution of the
Dirichlet problem, it follows that the potential is defined uniquely by its boundary
values. The density ;. is computed from o; using K;,10;11 = E;p;, 1.e, the
potentials induced by these densities on x; . ; are required to coincide. It follows that
the potentials coincide in all of D, ;. Similarly, ¢, is computed using the condition

that the induced potential coincides with pP i.e., ug . evaluated at 5% = x;
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therefore, u, coincides with wg;,cc: iN Dy.

3.4.2 Discretization Error

We present aqualitative error analysisin 2D, determining the dependence of the error
on the tree depth [ and the discretization error ¢ introduced at a single trandation
step. In 2D, the equivalent surfaces and check surfaces are chosen to be circles. Our
analysis is carried out in the Sobolev spaces on a unit circle H'[0, 2x| for ¢ > 1,
which we denote H*. We use || - || to denote the H* norm. Since the kernel is C*°
everywhere away from the singularity, u isin H* for any ¢. Although the error is
more naturally measured in L., H' is a more convenient choice for analysis of our
method, as the Nystrom method for integral equations is norm-convergent in H* for
t > 1in 2D. Note that this approach also yields an upper bound for the L, error,
although this bound islikely to be too conservative.

We also define S;, a subspace of H?, with
S; = {K[F; Uy; — z;)(u),u € H'}. (3.10)

Since the potential produced by the density in F; can be represented by the one pro-
duced by the density on y;, we can also write S; to be {Kly; — x;](u),u € H'}.

To simplify the exposition, in our error analysis we omit the last step DK, ,
which introduces an additional fixed error due to solution of K, 1¢,11 = u,. Ex-

pression (3.9) with the last step excluded can be written as

Up = LnLn—l cen Lo’LLD. (311)

We use notation LU*%) for the composition L;L; ; ... L; for j > i; we aso ab-

breviate LU as L), We define LU to be the identity for j < i.
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We use the following four auxiliary resultsin in our error analysis. The proofs of

thefirst two lemmas can be found in the Appendix.

Lemma3.l E;: H — S;;,, K; : H' — S;and L; : S; — S;,; areall compact in
the H' norm.

Lemma 3.2. The H! norm of any operator LU = [;L; y...L; : S; — S;11is
uniformly bounded independently of i and ;.

Lemma 3.3. Suppose P, is a sequence of bounded symmetric operators from H* to

H! with P, — I pointwisely, and D isa compact operator also from H* to H*. Then

sequences P, D and D P, are norm convergent to D.
Proof. Approximate D by afinite dimensional operator. ]

Lemma 3.4. In 2D, the Nystrom method with trapezoidal ruleis H* norm convergent

for second-kind Fredholm integral equations with smooth kernels.
Proof. See Chapter 12 of [47]. ]

The proofs of Lemma 3.1 and Lemma 3.2 are given at the end of this subsection.
As mentioned in Section 3.3.2, we use Tikhonov regularization to invert ;. We

introduce the regul arized operator L; as

Li = Ej(oyI + K} K;) 'K,
and its Nystrom discretization by

K; is the discretization of K; defined by K;f(z) = P, wiG(z,y!)f(y}) for
x € x;, where u; is the number of quadrature points and w] and y; are quadra-

ture weights and discretization points respectively, E; is defined in the same way. It
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isimportant to notice that K; isfrom H* to S; since the quadrature points {y!} stay
on y;. Similarly, E; is an operator from H' to S;,;. Therefore, both L, and L; are
well-defined operators from S; to S;, 1.

It can be shown that closure of S; in H' isthe orthogonal complement of afinite
number of functions. These functions span the null space of K. Therefore, L; can
be extended to be defined over the whole H! by using continuity and assigning L; to
be zero operator on these finite number of functions. The norm of the extension of
L; isbounded by the H* norm of L; on S;. The compactness of L; is also preserved.
Similarly, the same argument appliesto LU, L, and L;. All of them can be defined
over [H'. The goa of our analysis is to estimate the H* norm of L™ — LW =
LoLy y...Loy— LyLy s ... L.

Proof of Lemma 3.1

Proof. First, we prove the compactness of K; and F;. Since y; and z; are digoint,
thekernel GG in K; isC® in both variables. Thus, K;, as a convolution operator with
C*> kernel, iscompactin H' norm. E; isalso compact in H* norm since y; isdigoint
fromx;, .

Now, we prove that L; is compact in H* norm (see Figure 3.9 for the domains
involved). Suppose u; € S; on x;, we can find ¢; € H' ony; suchthat ¢, = K;"u;.

Since Kly; — z](pi) = Kipi = KiK;"u; = u;, Kly; — D;i](y;) isthe solution
of boundary value problem on domain D; with boundary condition «;. On the other
hand, u; 11 = E;(¢;) = Kly; — x;41] isthe solution of this problem on z; ;. Hence,
Li(u;) = E;K;"(u;) = Ei(p;) = u;y1 IS equivaent to the Poisson formula which
evaluatesthe potential at x; . ; from the potential at ;. The kernel in Poisson formula,

which corresponds to the fundamental solution of the PDE with domain D;, is C*
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smooth since x; and x; . ; aredigoint. Thismeansthat the Poisson formularepresents
acompact operator in H' norm for any ¢t. Therefore, L; is a compact operator in H*

norm. O]

Figure 3.9: The domains used in the proof of Lemma 3.1 where L; correspondsto a
M2M trandlation. The grayed region is D;.

To clarify the idea behind the proof, we give the analytic form of the M2M trans-
lation operator for asimplified casefor the singlelayer potential for the 2D Laplacian.
The main reason for the compactnessisthe inclusion of x; in x; ;.

We assume that the three surfaces y;, x; and x;,; are concentric circles such that
their radii pf, p§ and pf, | satisfy the condition 0 < pf < pf < pf. ;.

Standard logarithm expansion and simple algebraic manipulationsyield

- (=" (]y] " ikOy —ik0
log |[x — y| = log |z| + Z ] | ey,

k=—00,k#0 ||

where 6, and 6, are the polar coordinate angles of the position vectors = and y re-
spectively. If we assume that this kernel acts on the space of continuous periodic
functionsin [0, 27| with zero mean and we can drop the log | x| term. As the trigono-
metric functions are orthogonal on L?(0, 27), the above expression is a diagonaliza-
tion of the single layer operator. As the eigenvalues are all positive, they coincide

with singular values.
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First, we solve K;p; = u;. Inthiscase, since |z| = pf > |y| = p, the singular
values decay exponentially, so the problem K;p; = u; isill-posed: small perturba-
tions on the high frequency components of «¢ get exponentially amplified. However,
since u; is the potential induced by the densities in the interior of y;, ; is awell-
defined function with the following relationship on Fourier coefficients:

c\ |kl
@w:«n%(%)aw>

(2

Second, we evaluate u;, with E;p;. The Fourier coefficients of u;,, are given

am%ﬁ$%¥<ﬁ)wmm=(ﬁ)kmw

C C
Pit1 Pit1

This expression actually gives the singular value decomposition of L, using the

by

. . . . e\ Ikl i
trigonometric basis on the circle, where (pp—> are the singular values of ;. The
41
singular values decay exponentially to zero since p§ < pf, ;, therefore L, a compact

operator (with analytic kernel).

Proof of Lemma 3.2

Proof. A product L), with k terms each one being an L operator, represents a se-
guence of M2M trandations followed by a M2L trandation and followed by a se-
guence L2L tranglations. To prove the lemma, we only need to show the existence of
uniform bounds for the cases where L) corresponds to a sequence of M2M transla-
tions or a sequence of L2L trandations. Here we prove the latter case. The proof for
the other caseisthe same.

Suppose L*) transforms v at 24 of box A into v a 2% of box B. Since
L™ only involves L2L trangations, B iscontained in A and itisk level deeper in the
computation tree. Suppose A has halfwidth r, from Section 3.3.2, we know 24 has
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radius (v/2 + d)r and 25+ for any box B is contained in acircle which is concentric
to 244 and hasradius (v2+ 4)r. Hence, 2% isalways away from 2 by adistance
4y, which isindependent of %.

As we pointed out in the proof of Lemma 3.1, the transformation L) can be
viewed in adifferent way: it is equivalent to the Poisson formula which evaluates the
potential at 254 from the potential ©*? at 244, The H* norm of the Poisson formula
grows to infinity only when 224 and 2¢ approach to each other. In our case, since
2P and 24 are separated by a distance 47 which is independent of &, the norm of

L™ is bounded from above uniformly. O

3.4.3 Single Step Error

Our first step isto estimate the error L, — L, for asingle translation step. We split the
error into two parts; L, — L; and L; — L;.

Wetake H* asaHilbert space with the standard scalar product defined by (f, g) =
S, 77 Dif Dig. Since K; is a compact operator in H' (Lemma3.1), for any f €

H' wecan expand K, f as
Kif =) of(f.v])u
r=0

were {u!} and {v!} are orthonormal basesin H* and o are singular values of K.
In operator form, this decomposition can be written as U;S;V;, where V; : H' — [,
is defined by the map from f to the sequence {(f,v/)}, U; : I — H' maps a
sequence of coefficients {a"} to > a"u], and S; : I, — [, is adiagonal operator
with entries o). Clearly, U;U; = I and V;V;* = I because the bases {u]} and {v]}

are orthonormal.
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Then

Li = Bl +K'K) 'K}

As «; approaches 0, U;S?(a;I + S?)~1U; approaches I pointwisely. Since L; is
compact in H norm, L; — L; in H! norm as a; — 0 (Lemma 3.3 applied to the
extensions of L, and L, to H*). Hence, for any fixed ¢, we can choose afixed a; such
that ||L; — L;|| < §.

Since Nystrom’s method is norm convergent for second kind Fredholm integral
equations in H* (Lemma 3.4), as p; increases, («;I + K K;)~! approaches (o, I +

K*K;)~'in H* norm. Therefore, for any fixed e we can find p; suchthat ||L; — L;|| <

[\l

Combining the above estimates we get the following theorem:

Theorem 3.1.

|L; — Lil| < (312)
by choosing «; and p; based on .

Since the kernel is homogeneous and related to a scale invariant PDE, S; and L;
depend only on the relative positions of the boxes C; and C; ;. Therefore, there are
only finite number of operators L; that can appear in the above analysis. 4 from each
of theM2M and L 2L trandationsand 7% — 3% = 40 from the M2L trandations. Aswe
stated before, F; and K; can also be chosen to be level independent. Similarly, there
are only afinite number of F; and K; operators aswell. Therefore, we can choose «

and p uniformly so that the estimate (3.12) appliesfor any L;, K; and E;.
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3.4.4 Total Discretization Error

Using a single step norm estimate of L — L, we can estimate || L™ — L™|| using
Lemma 3.2. We use a constant C' to denote the uniform bound for L) for all
0<j<i<n.Thenforanyi,
||L(i) )||_HZL(H+1) 7 Ej 1) H < Ce( 1+Z”L(] ).
7=0
This expression gives us a recurrence relationship on the norm of || L@)|:
ILO) < C+Ce(1+ ) IL9)))
j=0

Assuming C' > ¢, from the recurrence we obtain
| LW < 2C(1 4 Ce)’
and thus
N n—1
IL™ — L0V < Ce(1+ Y 20(1 + Ce)) = C(2((1+ Co" — 1) +¢).  (313)
§=0

Although this estimate has an exponential dependence on n, it is only an upper
bound and, in our experience, quite pessimistic. Moreover, our numerical experi-
ments show that the uniform bound C' is a small constant both in 2D and 3D for
various kernels. Further, in actual calculations n is likely to be less than 40, and ¢ at
least of order 10~*. Therefore, in practice (1 + Ce)" — 1 behaves as Cne. Finaly, we

have the following theorem:

Theorem 3.2.
HB”’ — L(”>H = O(ne).
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Remark 3.2. Unlike our method, in the original analytic FMM method, thereisno er-
ror associated with M2M, M2L and L2L transformations. The only error introduced
in the analytic FMM are the S2M and M 2T operators.

Remark 3.3. The basic parametersin our approximation are the regul arization param-
eter o and the number of quadrature points p. In general, the regularization parameter
« 1S chosen to filter out the noise or error in the data. I1n our experiments we choose
« to be a constant factor of the desired accuracy of the FMM approximation (¢) and
then we choose the correct number of quadrature points by trial-and-error. The latter
is very inexpensive because is independent of the size of the problem, and thus can

be estimate quickly with a small test case.

Remark 3.4. The error associated with an approximate integral evaluation

isthe quadrature error. In 2D we use the trapezoidal rule on the circle which is super-
algebraically convergent. This enables us to approximate the operator L with L with
asmall number of quadrature points. However, to our knowledge, in 3D there is no
simple integration rule on the sphere that will result in similar high order accuracy;
standard polynomial accuracy algorithms must be used. This is an important dif-
ference with the analytic FMM, which guarantees exponential convergence (on the
number of multipole terms) for the far field approximation. Nonetheless, in our nu-
merical experiments we did not observe noticeable differences between the 2D and

3D version.
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3.5 Numerical Results

In this section we present numerical results for our method. First, we examine the
accuracy of the equivalent density approximation. Second, we present results on the

overall accuracy of the method.

3.5.1 Accuracy on the Equivalent Density Approximation

In this section we present results that indicate that our equivalent density approxima-
tions give good accuracy in both two and three dimensions.

For two and three dimensions we show the results of three kernels: the Laplace
single layer kernel, the modified Stokes double layer kernel and the Navier single
layer kernel (Figure 3.10 and 3.11). For each kernel, the left plot is the accuracy of
the upward equivalent density approximation, and the right one isthe accuracy of the
downward equivalent density approximation. For the upward equivalent density, we
give the error for pointsin the exterior of the source box in the region corresponding
to the interaction list of the box. For the downward equivalent density we give the
error intheinterior of thebox. Inall plots, the sidelength of the box is 2; we calcul ate
the error by taking the maximum norm over asphere centered at the center of the box.
The abscissa of aplot is the radius of the sphere, and the ordinate is the logarithm of

the error.

2D case. Figure 3.10 shows the error of the equivalent density approximation for
the 2D Laplace single layer kernel, the 2D modified Stokes double layer kernel and
the 2D Navier single layer kernel. In all three cases, the source density is located

close to a corner of the box. The regularization parameter « is chosen to be 10712 in
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all plots. Although not reported here, we have generated similar plots for all kernels
givenin Appendix A. All results exhibit similar accuracy. In some plots for 2D case,
the 32-point error curve has larger error than the 24-point error curve. Thisis related
to the regularization: we use 102 for o when solving the inverse problem and this
complicates direct comparisons as we increase p. We do not have a strict analytic
error bound like the analytic FMM algorithm for the Laplace equation. However,

Figure 3.10 shows that our scheme gives comparable accuracy.

3D case. Figure 3.11 shows the equivalent density approximation errors for the 3D
Laplace single layer kernel, the 3D modified Stokes double layer kernel and the 3D
Navier single layer kernel. In each case, the source density is again placed close to

one corner of the cube. The regularization parameter o used in these plotsis 1077.
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Figure 3.10: Results of the equivalent density approximation in 2D. Left: the error
of the upward equivalent density approximation. Right: the error of the downward
equivalent density approximation. The abscissaof the plotsisthe radius of the sphere
R, and the ordinate isthe logarithm of the error ¢,,,,. The solid curveisthe maximum
norm of the potential. The remaining three curves show the maximum norm error for
16-, 24- and 32-point approximation of the equivalent densities. For modified Stokes,
we tested )\ from 1le-3 to 1e+3 and obtained similar error plots. For A greater than
le+3, far field interaction is negligible.
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Figure 3.11: Results of the equivalent density approximation in 3D. Left: the error
of the upward equivalent density approximation. Right: the error of the downward
equivalent density approximation. The abscissaof the plotsisthe radius of the sphere
R, and the ordinate is the logarithm of the error ¢,,,. For each plot, the solid curve
shows the maximum norm of the potential. The rest three plots show the maximum
norm error where the equivalent density is approximated with 56, 152 and 296 points.
These numbers correspond to discretization points that are the boundary nodes of
volume Cartesian grids of size4 x 4 x 4,6 x 6 x 6,8 x 8 x 8 (per box).
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3.5.2 Overall Approximation Error

In this section we give wall-clock time and memory requirements for several kernels.
All experiments were performed on a Sun Ultra 80 workstation with a 450 MHz
CPU. In 3D case, the FFTW package is used for FFT computation. Our code has
been implemented in C++.

In our experiments we assume that the source points and the target points coin-
cide. We use three sets of density distributionsin the cube with range [—1, 1] in each
dimension. Thefirst set isadistribution on a sphere, which istypically non-uniform.
The second set isauniform distribution of density in acube. Thelast set has densities
only at the box corners. The objective of this set of pointsisto check the stability of
multiple M2M and L2L transformations of our method. For all density distributions
the densities are chosen randomly from [0, 1). The three data sets for the 3D case are

shown in Figure 3.12.

Figure 3.12: Three data sets in 3D: Left: densities distributed on the unit sphere,
Middle: densities distributed uniform in the unit cube, Right: densities distributed at
the eight corners of the unit cube.

We organize the tablein away similar to [20]. The columns of every table repre-

sent the following quantities.
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N : the number of points used in computation (we use the same number of source

and target points).
R : the number of levels of the computation tree.
M : the number of boxesin the computation tree.

p : thenumber of discretization points used in the equivalent density approximations.
In 2D examples, we use 16, 24, and 32 points. In 3D examples, we choose the
discretization points to be the boundary nodes of volume Cartesian grids of
Sized x4 x4,6x6 x 6,8 x 8 x 8. These numbers correspond to 56, 152 and
296 points respectively.

s : the maximum number of points allowed in aleaf box of the computation tree.
S : the memory used to store M2M, M2L, and L2L trandlations.
T = therunning time of our algorithm.

Ty - the running time of the direct evaluation. For each table, only the number in
the first line is actualy tested; al other numbers are obtained by extrapola
tion. The error is computed in relative 2-norm. We randomly select £ points
Ty, 9, , Tk, evaluate the potentia u; using our algorithm and the potential

1; using direct evaluation at these k points. The error is estimated using the

k N 1/2
E o Zi:l ’ul _ Ui‘2
= - — ,
> e |

where k is chosen to be 40 in all experiments.

formulafrom [20]:

Below, we report the results on the first two data sets (non-uniform and uniform

distribution) for five different kernels:
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e 2D Laplacesingle layer kernel (Table 3.3),

3D Laplace single layer kernel (Table 3.4),

3D Modified Laplace single layer kernel (Table 3.5),

3D Modified Stokes double layer kernel (Table 3.6),

e 3D Navier single layer kernel (Table 3.7).

Our results from 2D are quite satisfactory since we can compute interactions
between 2 million particlesin 6 digits of accuracy in around 90 seconds, as we can
see in Table 3.3. We discuss relative performance of our method in greater detail in
the 3D case since this is more difficult to implement efficiently. We compare with
results from two papers. the single-layer 3D Laplacian results of Cheng, Greengard,
and Rokhlin [20] and modified single-layer 3D Laplacian results of Greengard and
Huang [33].

In thefirst paper the authors use a 167 MHz Sun workstation and in the second a
440 MHz Sun platform. As mentioned before we are using a450 MHz Sun worksta-
tion. The metric we use for the purposes of comparison is the total number of CPU
cyclesin millions per grid point. We compute this number as

T x CPU
— S 2

n
where 7, and n are the numbers of cycles per particle for the analytic FMM and
and for our algorithm respectively. Thisis a only rough estimate that does not take
into account the difference in chip architecture (e.g., memory bus clock), different
floating point precision of the calculations (most calculations in the first paper were
performed in single precision, all our results are in double precision), and different

input densities.
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N R M p s S (Mb)  Thum (9 Tair () Error
32768 10 2989 16 40 1.52e+00 1.53et00 1.71e+02 2.80e-06
131072 12 11857 16 40 1.91e+00 5.85e+00 2.74e+03 1.24e-06
524288 14 47241 16 40 2.30et00 2.36et01 4.39e+04 1.51e-06
2097152 16 190601 16 40 2.69e+00 9.32e+01 7.02e+05 2.80e-06
32768 9 1597 24 60 297e+t00 1.92e+00 1.71e+02 2.68e-08
131072 12 6505 24 60 3.94et00 7.47et00 2.74e+03 2.84e-08
524288 14 26073 24 60 5.10et00 2.97et01 4.39e+04 3.36e-08
2097152 16 104129 24 60 5.98e+00 1.24e+02 7.02e+05 2.24e-08
32768 9 1493 32 80 5.28et00 2.23e+00 1.71e+02 1.89e-10
131072 11 5053 32 80 6.84et00 1.03et01 2.74e+03 1.77e-10
524288 13 23825 32 80 8.41let00 4.04et01 4.39e+04 7.05e-10
2097152 15 95425 32 80 9.97e+00 1.49%+02 7.02e+05 6.03e-10
The particles are uniformly distributed on the perimeter of acircle.
N R M p s S (Mb)  Thum (9 Tair () Error
32768 8 2837 16 40 1.14e+00 1.45e+00 1.71e+02 5.72e-07
131072 10 12245 16 40 153et00 5.26e+00 2.74e+03 3.71e-07
524288 12 47829 16 40 1.92e+00 2.16et01 4.39e+04 4.46e-07
2097152 14 189717 16 40 2.31et00 8.89et01 7.02e+05 5.24e-07
32768 7 1557 24 60 2.13et00 1.78e+00 1.71e+02 2.05e-09
131072 9 5009 24 60 3.01e+t00 7.21et00 2.74e+03 2.50e-09
524288 11 25557 24 60 3.88et00 2.75e+01 4.39e+04 1.64e-09
2097152 14 104085 24 60 4.85e+00 1.07e+02 7.02e+05 1.48e-09
32768 7 1557 32 80 3.78et00 2.12e+00 1.71e+02 2.83e-11
131072 9 5269 32 80 5.34et00 8.81et00 2.74e+03 2.87e-11
524288 11 23893 32 80 6.91et00 3.54e+01 4.3%9e+04 2.17e-11
2097152 13 95253 32 80 8.47e+00 1.34et02 7.02e+05 6.50e-11
The particles are uniformly distributed inside a cube.

Table 3.3: Performance for particlesinteracting viathe single-layer Laplacianin 2D.



24576
98304
393216
1572864

273 296 250 1.47e+01 1.81e+01 9.74e+01 1.59e-09
1449 296 250 1.47e+01 8.15e+01 1.56e+03 1.40e-09
5073 296 250 1.47et01 3.4let02 2.49e+04 1.10e-09

19161 296 250 1.47e+01 1.38e+t03 3.99e+05 2.81e-09
The particles are distributed on the surface of a sphere.

N R M D s S (Mb) Ty (9 Tair () Error
24576 6 1377 56 60 1.72e+00 5.72e+00 9.74e+01 2.12e-05
98304 7 5049 56 60 1.72e+00 2.38et01 1.56e+03 3.21e-05

393216 8 19065 56 60 1.72e+00 9.51e+01 2.49e+04 6.08e-05
1572864 9 76185 56 60 1.72e+00 3.82e+02 3.99e+05 6.03e-05
24576 5 585 152 150 5.90e+00 1.16e+01 9.74e+01 3.34e-07
98304 6 2289 152 150 5.90e+00 4.76et01 1.56e+03 5.86e-08
393216 7 11193 152 150 5.90et00 2.18e+02 2.49e+04 2.45e-07
1572864 9 44145 152 150 5.90e+t00 8.35e+02 3.99e+05 3.08e-07

4

6

7

8

N R M P s S (Mb) Ty (9 Tair () Error
24576 4 585 56 60 1.72e+00 6.40e+00 9.74e+01 6.64e-06
98304 5 3657 56 60 1.72e+00 3.11et01 1.56e+03 1.27e-05

393216 7 28233 56 60 1.72e+00 1.30e+02 2.49e+04 5.00e-05
1572864 8 88137 56 60 1.72e+00 4.08e+02 3.99e+05 5.84e-05
24576 4 585 152 150 5.90e+00 1.60e+01 9.74e+01 1.54e-08
98304 5 3657 152 150 5.90e+00 9.28et+01 1.56e+03 4.70e-08
393216 6 14409 152 150 5.90et00 3.18e+02 2.49e+04 1.10e-07
1572864 7 37449 152 150 5.90e+00 8.47e+02 3.99e+05 2.13e-07
24576 4 585 296 250 147e+01 3.65e+01 9.74e+01 5.25e-10
98304 4 585 296 250 147e+01 1.11e+02 1.56e+03 4.57e-10
393216 5 3657 296 250 1.47e+01 4.31et02 2.49e+04 6.85e-10
1572864 6 17481 296 250 1.47e+01 1.46e+03 3.99e+05 1.46e-09

The particles are uniformly distributed inside a cube.

Table 3.4: Performance for particles interacting viathe single layer Laplacianin 3D.
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First, we compare Table 3.4 with Tables 1V, V, and VI of [20]. For the three digit
accuracy (Table V) the average n,, is 0.07 for single precision. Our method achieves
an n equal to 0.11 (in double digit accuracy), approximately a factor of 1.5 slower.
Similar conclusions hold for the 6-digit accuracy results(Table V), for which the an-
alytic FMM achieves 5, = 0.15 in single precision, whereas our method achieves
n = 0.23 in double precision. For the modified single layer Laplacian we compare
the 6-digit accuracy entries (Table I, [33]), with Table 3.5 (uniform distribution in a
cube). Inthiscasen, = 0.3 and n = 0.4, which is slightly better than 1.5; the actual
difference in performance is even less, since we achieving about one additional digit
of accuracy (average error 7 x 10~ for the analytic FMM compared an average of
7 x 1078 in our case).

Another reason our method is slower might be related to the dense interactions.
In order to save storage we do not precompute them, and we have found that this
slows down our method by a factor of 2 to 4. The most time consuming part is
computing the 1/ \/W term, which we have found impossible to optimize either
with lookup tables or with special vector routines available from most vendors. For
large problemsthat require several summationsfor the same particle partitionsfurther
running time improvements can be achieved by precomputing and storing all dense
interactions. The memory requirements in this case can be substantial.

In conclusion, it appears that our method compares reasonably well with the an-
alytic FMM by being a factor of 1.5 or less slower. Extending our code from the
Laplacian to the modified Laplacian was very easy as we ssimply implemented a dif-
ferent kernel evaluation. Inspecting the results for the other kernels, we can confirm
the O(N') complexity of our method and the convergence to the exact sum as we

increase the number of quadrature points.
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6144
24576
98304

393216

57 296 250 1.18e+01 6.90e+00 1.15e+01 2.50e-09

273 296 250 2.64e+01 3.00e+01 1.83e+02 1.88e-09

1449 296 250 5.30e+01 1.23e+02 2.94e+03 1.96e-09

5073 296 250 6.99e+01 5.35e+02 4.70e+04 3.71e-09
The particles are distributed on the surface of a sphere.

N R M P 5 S (Mb)  Thnm (9 Tair () Error
6144 5 441 56 60 4.55e+00 1.97e+00 1.15e+01 3.55e-05
24576 6 1377 56 60 6.27e+00 8.24e+00 1.83e+02 7.71e-05
98304 7 5049 56 60 829+00 3.33et01 2.94e+03 3.11e-05
393216 8 19065 56 60 1.00e+tO1 1.28e+02 4.70e+04 8.22e-05
6144 4 225 152 150 1.08e+01 4.38e+00 1.15e+01 2.48e-07
24576 5 585 152 150 1.57e+01 1.99e+01 1.83e+02 9.55e-08
98304 6 2289 152 150 2.26e+01 7.58et+t01 2.94e+03 3.18e-07
393216 7 11193 152 150 2.85e+01 3.39e+02 4.70e+04 3.63e-07

3

4

6

7

N R M P s S (Mb) T (9 Tair () Error
6144 4 585 56 60 3.35e+t00 3.72e+00 1.15e+01 5.28e-06
24576 4 585 56 60 3.35e+t00 1.06e+01 1.83e+02 2.29e-05
98304 5 3657 56 60 5.07et00 4.25e+01 2.94e+03 3.98e-05
393216 7 28233 56 60 8.14e+00 1.64e+02 4.70e+04 4.88e-05
6144 3 73 152 150 5.38e+00 4.09e+00 1.15e+01 2.10e-08
24576 4 585 152 150 1.13e+01 211e+01 1.83e+02 9.86e-08
98304 5 3657 152 150 1.72e+01 1.08e+02 2.94e+03 7.23e-08
393216 6 14409 152 150 2.31e+01 4.14e+02 4.70e+04 4.57e-08
6144 3 73 296 250 1.29e+01 5.87e+00 1.15e+01 7.15e-10
24576 4 585 296 250 2.75e+01 4.39e+01 1.83e+02 6.02e-10
98304 4 585 296 250 2.75e+01 1.98e+02 2.94e+03 4.28e-10
393216 5 3657 296 250 4.22e+01 6.65e+02 4.70e+04 8.24e-10

The particles are uniformly distributed in a cube.

Table 3.5: Performance of our method for particlesinteracting viathe modified single
layer Laplacian in 3D.
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N R M P s S (Mb)  Thum (9 Tair (S) Error
6144 5 441 56 60 8.18e+t0l 2.65e+01 1.04e+02 9.56e-04
24576 6 1377 56 60 1.13e+02 1.02e+02 1.66e+03 1.45e-03
98304 7 5049 56 60 1.49+02 391et02 2.66e+04 1.47e-03
6144 4 152 150 2.00e+02 7.59e+01 1.04e+02 5.66e-06
24576 5 152 150 2.92e+02 2.3%9e+t02 1.66e+03 6.90e-06
98304 6 152 150 4.20e+02 1.01e+03 2.66e+04 1.06e-05
6144 3 296 250 2.16e+02 6.44e+01 1.04e+02 8.77e-08
24576 4 296 250 4.89e+02 3.59e+02 1.66e+03 1.67e-07
98304 6 296 250 9.87e+02 1.69e+03 2.66e+04 1.88e-07
The particles are distributed on the surface of a sphere.

N R D s S (Mb) Ty (9) Tair () Error
6144 4 56 60 6.03et01 6.97e+01 1.04e+02 5.32e-04
24576 4 56 60 6.03et01 1.23e+02 1.66e+03 5.01e-04
98304 5 56 60 9.13e+01 6.09e+02 2.66e+04 7.00e-04
6144 3 152 150 9.87e+01 4.35e+01 1.04e+02 1.77e-06
24576 4 152 150 2.09e+02 3.57e+02 1.66e+03 2.96e-06
98304 5 152 150 3.19et02 2.04e+03 2.66e+04 9.32e-06
6144 3 296 250 2.36e+02 7.63e+01 1.04e+02 3.71e-08
24576 4 296 250 5.09e+02 8.28et02 1.66e+03 8.02e-08
98304 4 296 250 5.09e+02 2.01et03 2.66e+04 9.88e-08

Table 3.6: Performance of our method for particles interacting via the modified dou-
ble layer Stokes kernel in 3D.

In al experiments, we store only the linear operators for M2M, M2L and L2L
trangations, since these operators are applied repetitively in a single pairwise inter-
action evaluation. The dense interactions between adjacent boxes are not stored. The
storage number reported in all tables considers only the memory used by M2M, M2L

and L2L operators, while the storage used to store the densities and potentials (which
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N R M P s S (Mb)  Thum (9 Tair (S) Error
6144 5 441 56 60 155e+01 1.29e+01 5.91et01 8.54e-05
24576 6 1377 56 60 1.55et+01 4.93e+01 9.46e+02 6.71e-05
98304 7 5049 56 60 1.55e+01 1.98e+02 1.51e+04 6.32e-05
6144 4 152 150 5.50e+01 3.29e+01 5.91e+01 1.07e-06
24576 5 152 150 5.50e+01 1.10e+02 9.46e+02 1.66e-06
98304 6 152 150 5.50e+01 4.59e+02 1.51e+04 1.02e-06
6144 3 296 250 1.08et02 3.28e+01 5.91e+01 7.30e-09
24576 4 296 250 1.36et02 1.82e+02 9.46e+02 8.51e-09
98304 6 296 250 1.36et02 8.51e+02 1.51e+04 8.73e-09
The particles are distributed on the surface of a sphere.

N R D s S (Mb) Ty (9) Tair () Error
6144 4 56 60 155e+01 3.41le+t01 5.91et01 3.70e-05
24576 4 56 60 155e+01 6.65e+01 9.46e+02 4.82e-05
98304 5 56 60 155e+01 3.13e+02 1.51et04 6.68e-05
6144 3 152 150 4.94e+01 2.19e+01 5.91e+01 1.81e-07
24576 4 152 150 5.50e+01 1.62e+02 9.46e+02 3.50e-07
98304 5 152 150 5.50e+01 9.48et+02 1.51e+04 4.86e-07
6144 3 296 250 1.18et02 3.78e+01 5.91e+01 2.56e-09
24576 4 296 250 1.36et02 4.22e+02 9.46e+02 3.58e-09
98304 4 296 250 1.36et02 1.00e+03 1.51e+04 4.39e-09

Table 3.7: Performance of our method for particles interacting via the single layer
Navier kernel in 3D.

scales linearly with respect to the number of points and boxes) is not included. This
explainswhy for the results of homogeneous kernels (Tables 3.4 and 3.7), the storage

numbers remain small and do not increase with the number of points and the number

of levels.
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Stability of multipleM2M and L 2L trandations. Herewetest the stability of the
M2M and L2L trandations of our algorithm using the last data set which only has
density distribution at the corners of the cube. Table 3.8 shows the result on this data
set with 2D Laplace single layer kernel. Table 3.9 reports the errors with 3D Laplace
single layer kernel.

N R M p s S (Mb)  Thum (9 Tair (S) Error
524288 18 47449 16 40 2.17et00 2.17e+01 4.39e+04 4.46e-06
524288 18 26041 24 60 4.54e+00 2.63e+01 4.39e+04 1.20e-08
524288 17 23833 32 80 7.91e+00 3.50e+01 4.39%et+04 1.04e-10

Table 3.8: Performance of our method for the 2D single layer Laplacian. In this
experiment the particles are distributed over the boundaries of four circles. These
circles are quite small compared the size of the (square) computational domain, and
located near to the four corners of the domain. In thisway thetreeis“forced” to have
many levels (up to 18). We use this experiment to test the numerical stability of our
M2M and L2L tranglations.

N R M D s S (Mb) Ty (9) Tair (9 Error
196608 12 11057 56 60 1.72e+t00 4.58e+01 6.23e+03 1.75e-05
196608 11 4721 152 150 5.90e+00 1.04e+02 6.23e+03 1.20e-07
196608 10 2225 296 250 1.47e+01 1.50e+02 6.23e+03 1.53e-09

Table 3.9: Performance of our method for the 3D single layer Laplacian. In this
experiment the particles are distributed over the boundaries of eight spheres. These
spheres are quite small compared the size of the (cubic) computational domain, and
located near to the eight corners of the box.
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3.6 Summary

In this chapter, we have described a new kernel-independent fast multipole method,
which generalizes FMM to a broad class élliptic kernels while attaining an agorith-
mic complexity (including constants) which is on par with the analytic FMM. Here

we summarize the main features of our algorithm.

e Our algorithm has the same structure as the original adaptive FMM method.

¢ We have demonstrated that the method performs well for single and double
layers, the Laplacian, the modified Laplacian, the Stokes, the modified Stokes,
and the Navier kernelsin two and three dimensions. By providing just akernel
evaluation routine our method is immediately applicable, as long as the kernel

is associated with a non-oscillatory second-order €elliptic PDES.

e Comparisons of the running times between our method and the best known
FMM implementations, and for same accuracy levels, indicate that our ap-

proach was successful in efficiently extending FMM to other kernels.

e To our knowledge, our results are the first fast summation computations for the

modified Stokes and Navier operators.

e Our method is also directly applicable for derivatives of the kernels we have
presented here. Indeed, we have tested our method on the hypersingular kernels

resulting from differentiating the double layer Stokes and Navier equations.

e The M2L trandationsin our method are suboptimal. In 3D, the analytic expo-

nential translations require O(p), whereas our method requires O(p*/?) where
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p isthe number of coefficients used in the approximation (the number of mo-
ments in the analytic FMM, and the number of discretization points in our

method).

Our method does not have a level independent error estimate that comes with
the original FMM agorithm for Laplacian kernel. However, the error analysis
in Section 3.4 shows that in practice the error can increase with the depth at

most in alinear fashion.
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Chapter 4

Parallel Implementation of Kernel

|ndependent FMM

For large scale problems, even the iterative solvers with fast multipole method ac-
celeration can still be quite Slow on one computer. This brings up the request for
parallel implementation of these solvers. This chapter describes a message passing
based parallel implementation of the kernel independent FMM algorithm described
in Chapter 3. In the Nystrom solver for boundary integral equation, the particle po-
sitions and densities are associated to the discretization of integral equations, and
at each time step the interaction computation (matrix vector multiplication within a
Krylov method) is carried out multiple times. Therefore, our parallel implementation

is designed to achieve maximum efficiency in the multiplication phase.
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4.1 Introduction

To paralelize an FMM agorithm on a distributed memory platform, one faces with
two major challenges. First, the data, including the particles and the octtree data
structure) needs to be stored in a distributed way, since one processor often does not
have enough memory to contain the whole data set. Therefore, we need efficient
schemes to partition the particles over processors and to build a distributed octtree
based on thisdistributed particle set. In our implementation, we use thelocal essential
tree [90] to store the data structure.

Second, the algorithm needs to meet certain communication and synchronization
requirements. (1) Tree-related communication is required to maintain a consistent
global tree. (2) Synchronization at upward and downward pass since there is data
dependence between the equivalent densities of a parent and its child, and these
two boxes can belong to different processors. (3) Communication related to M2L
trandation is necessary since one box needs the upward equivalent density or source
information of another box owned by a different processor. In our implementation
we have logically separated the computation and communication. During the up-
ward and downward passes, a processor performs its own computation ignoring the
existence of other processors. Between them, a single step combines the upward
equivalent density computed by all processors and takes care of the communication.
The advantage of this approach is that no synchronization is required at the compu-
tation passes. A disadvantage is the redundant computation at the nodes which are
close to the root of the global computation tree. However since the number of these

nodes is small, this has negligible influence on the overall computation.
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Related work on parallel tree-codes. Thefirst successful distributed-memory par-
alel implementations for non-uniform particle distributions were obtained for the
Barnes-Hut algorithm by Warren and Salmon [90]. Key ideas in this paper were the
local essentia trees (LETS), which provide aframework for parallelization of Barnes-
Hut algorithm and can be extended to the FMM. The hashed octtree data structures
were first introduced in [91] along with space-filling curves used for partitioning
and load balancing, and further increased efficiency and scalability of tree-codes. A
similar approach for shared memory machines, and one of the first scalable FMM
implementations, isfound in [80], in which a cost-zones partitioning is used with or-
thogonal recursive bisection. A comparison between FMM algorithms, hybrids, and
the Barnes-Hut method can be found in [10]. The main conclusion is that for higher
accuracies, FMM is the fastest method. Another nice comparison between different
platforms and algorithms can be found in Hu and Johnsson [43], in which the authors
report results on up to 100 million particles on uniform particle distributions on a
CM-5.

Recent papers on distributed-memory implementations include FMM for electro-
magnetics [40]; Helmholtz-type problems using optimal M2L translations [59]; and
molecular dynamics FMM implementations that scale to 24 millions of particles on
thousands of processors [56, 57]. Efficient data-structures and discussions on the
theory of partitioning and complexity can be found in [77] and [85].

Other approaches for particle interactions include particle-mesh algorithms like
those used in NAMD-2 [65] which employs FFTs for Ewald summation on regular
grids. Such approaches could be extended to more general kernels, but they are
restricted to approximately uniform particle distributions. Parallel Stokes solvers

were presented in [64], but without FMM or Barnes-Hut accel eration.

95



4.2 TheParalld Algorithm

4.2.1 Data Partitioning and Tree Generation

Our partitioning scheme is fairly straightforward. We take advantage of the fact that
our input is a set of surface patches on which the particles are generated. We first
gather all input surface patches on a single processor, and assign to each patch a
weight which in the simplest case is equal to the number of particlesin that patch.
Second, we partition the clusters into groups with equal weights and assign each
group to one processor. To do this we use Morton curve partitioning. Alternatively,
we could use Morton curve partitioning directly on the particles but we have found
the first approach faster. No additional load balancing information is used besides
the number of particles. Work estimates from a previous time step could be used to
obtain more balanced partitioning.

An essential part inthe FMM algorithm is the generation of the octtree. However,
since our applications require tens to hundreds of interaction computations, we have
adopted a simple but suboptimal tree construction algorithm. An important ideain
parallel tree-based agorithms is the Local Essential Tree (LET) [90], which is the
global tree subset that a processor needs to evaluate the interaction on particles it
owns. In an adaptive FMM agorithm, in order to calculate the interaction at a box
B, we need the information from the boxes in the following four lists ([20],[32]): (1)
U list L5 which contains B itself and the leaf boxes which are adjacent to B if B is
leaf, and it is empty when B is non-leaf; (2) V list LE which contains the children
of the neighbors of B’s parent, which are not adjacent to B; (3) W list LE, which
contains all the descendants of B’s neighbors whose parents are adjacent to B but

who are not adjacent to B themselvesif B isleaf, and it isempty if B isanon-leaf;
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and (4) X list LZ, which contains all boxes A such that B € L{},. Therefore, for a
certain processor P, itsLET first contains the boxes which contains points belonging
to P and second the boxesinthe U, V, W, and X lists of these boxes. For abox B
of the first kind, we say P contributesto B, or equivalently, P isa contributor of B.
If B isof the second kind, we say P uses B or P isauser of B.

In the tree generation, besides LET, we maintain a compact representation of
the global tree by using an array in every processor, which we call the global tree
array. Each entry in the global tree array corresponds to a box in the global tree,
and this array is ordered according to alevel-by-level traversal of the tree. The only
information stored is the global number of particles in the box and the indices of its
children boxes in the array. This representation only contains topological structure
of the tree. In practice, for a 200M points data set with s chosen to be 60, the size
of the array is less than 16M. Our algorithm constructs the local tree and this array
structure level by level. All processors begin at level 0 with the same box which is
large enough to contain the global particle set. At every level [, each processor putsits
local number of pointsin boxes at level | aswell asinto itsloca copy of the global
tree array. Then, an MPI_Allreduce is used over al local copies of the global tree
array to sum up thelocal number of pointsfor each box at level (. After thiscollective
communication, each local array contains the global number of pointsin each box in
level [. By comparing each box’s global number of points with s (the maximum
number of points allowed in each leaf box), each processor can decide whether a
box in level | should be further subdivided. Based on this decision, a processor can
construct the ! + 1 level of itslocal tree and the array representation of the ! + 1 level
of the global tree. After the construction of the local tree, the computation of the

local FMM listsis straightforward by using the global tree represented in the array.
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4.2.2 Interaction Calculation

Before the interaction calculation, we first partition the global tree array, so that for
each box B the owner processor coordinates the communication related to B. If only
one processor contributes to B, then it is the owner of B. If multiple processors
contribute to B, then it can be owned by any processor, and the owner is chosen to
balance the communication load. This can be done as follows. For each processor
P, first we use the global tree array to decide the boxes for which P is the only
contributor, and mark them as “taken”. Second, we use MPI_Allreduce to combine
the information, so that every processor P knows all boxes already taken by some
processor. Third, every processor P uses the same sequential algorithm to assign
unmarked boxes to processors in order to balance communication load. In the end,
all processors have the owner information for any box in the global computation tree.

The interaction calculation part islogicaly separated into three stages. The first
stage is a computation step which performs the upward computation. Each processor
P builds the upward equivalent densities for the LET nodes to which it contributes
(ignoring the existence of the other processors).

The second stage has two components. First, for each leaf box, we need to collect
its source positions and source density (also known as ghost information) from its
contributors and make them available for its users. The gather/scatter procedure for
doing thisis given in Figure 4.1. Second, for each box (leaf or non-leaf), we need
to sum up the upward equivalent densities produced by its contributors and make it
available for its users. The procedure for thisis similar with two modifications. (1)
weiterate over all boxesinthe LET instead of just the leaf boxes, and (2) the owner of
a box sums up the received upward equivalent densities to obtain the global upward

equivalent densities for that box.
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STEP 1 GATHER
for each box B inthe LET do
if P contributesto B then
P sendsitslocal source position/density information of B to the owner of B
end if
if P owns B then
P receivesthe local information of B from all the contributors of B
P combines them into the global position/density information of B
end if
end for
STEP 2 SCATTER
for each box B inthe LET do
if P owns B then
P sendsthe global position/density information of B to al usersof B
end if
if P uses B then
P receives the global position/density information of B from the owner of B
end if
end for

Figure 4.1: Gather/Scatter procedure.

The third stage performs the downward computation. Here, for each LET node
B, to which it contributes, P transforms the source density or upward equivalent
density of the boxesin U, V, W and X lists into local equivalent density or target
potential at node B (ignoring the existence of the other processors again). In our
implementation the upwards traversal is overlapped with the ghost communication;
and the equivalent densities communication is overlapped with the dense and X -list

computations.
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4.3 Scalability Results

We present fixed-size and isogranular scalability analysis. For fixed-size scalability
analysis, we increase the number of processorsfor afixed problem size. Thisanalysis
exposes the grain size (i.e., the number of particles per processor) for which we can
expect reasonable speedups. For isogranular scalability analysis we keep the grain
size fixed and we increase the number of processors (and thus the problem size).
Such analysis reveals communication problems related to the size and frequency of
the messages as well as global reductions and problems with algorithmic scalability.
In our case, however, we expect good algorithmic scalability since FMM isan O(N)
algorithm under reasonable assumptions on the particle distribution [55].

Before we describe our numerical experiments, we emphasi ze two main conclu-
sions from our work on the sequential performance of our method. First, the most
expensive parts of the FMM algorithm are the M2L interactions and the dense inter-
actions, both in the downward traversal of the tree, especialy in three dimensions.
Second, our method achieves al gorithmic speed-ups which are on par with the fastest
known implementations of the FMM for the Laplacian [20] and modified Laplacian
kernels[33].

The problem setup isthe following: Theinput is aset of surfaces, which we then
sample to get the particle positions. We build the hierarchical tree structure and then
we perform several interaction calculations. In this article we always report results
for asingle interaction calculation, averaged over several iterations.

We assume the sets of source and target points to be identical. We use two sets of
density distributions in the cube with range [—1, 1] in each dimension. The first set

is produced by sampling 512 spheres centered at an 8 x 8 x 8 Cartesian grid in the
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unit cube. For relatively low sampling rates, up to 10 million particles, we obtain a
uniform particle distribution. For higher sampling rates the distribution per processor
becomes non-uniform since the sampling over a single sphere is non-uniform. Our
second particle set isanon-uniform distribution of particles clustered at the eight cor-
ners of the unit cube. In al density distributions, the densities are chosen randomly
from [0, 1], and the relative error in all experimentsis 102,

Our agorithm has been implemented in C++. We used the fast exponential,
sguare root and reciprocal libraries in the CXML routines, FFTW [26] for the M2L
trandations, and PETSc [4] for profiling and for its Krylov iterative solvers. All
our tests were performed on the Pittsburgh Supercomputing Center's TCS-1 teras-
cale computing HP Alphaserver Cluster comprising of 750 SMP ES45 nodes. Each
node is equipped with four Alpha EV-68 processors at 1 GHz and 4 Gbytes of mem-
ory. The peak performance is approximately 6 Tflops/s, and the peak performance
for the top-500 LINPACK benchmark is approximately 4 Tflops/s. The nodes are
connected by the Quadrics interconnect which delivers over 500 MB/s of message-
passing bandwidth per node and has a bisection bandwidth of 187 GB/s. In al our

tests we have used 4 processors per node.

Description of results We report wall-clock timings, Gflops/s rates and parallel
efficiency measurements for several problem sizes and kernels. Fixed size scalabil-
ity results for 3.2M particles are reported in Table 4.1, in which we provide timings
for the interaction calculation and for the tree construction, including communica-
tion. We also report aggregate Gflops/s rates. In these examples we have used 3.2
million particles. We report wall-clock time in seconds and flop rates for a single

interaction computation. We also report timings for the tree construction and com-
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munication phases. Here (P) is the number of processors; (Total) is the total time
(averaged across processors) of the interaction phase; (Ratio) is the difference be-
tween the maximum and minimum time across processors, which is an indication
of load imbalance; Comm is the average time spent in MPI communication; (Up)
is the average time spent in the upward traversal of the tree; (Down) is the average
time spent in the downward traversal of the tree; (Avg) is the average Gflops/s during
the interaction calculation; (Peak) is the peak Gflops/s; and (Gen/Comm) is the time
spent in the tree construction phase. Overall, we can observe that we obtain excellent
scalability up to 512 processors. Communication costs however, become significant
once we hit 512 processors or more. In these cases we use less than 6,000 particles
per processor, i.e., too fine agrain size.

In Figure 4.2, we report the aggregate CPU cycles (across processors) per point
for the interaction calculation. These numbers are computed as Z*<*T") ' \here P
is the number of processors; C'isthe clock rate which in our caseis 1GHz; T'(P) is
the wall-clock time on P processors; and N is the number of particles. This metric
is used to measure parallel scalability and can be used to compare among different
machines, clock-rates and problems sizes. However, it hides architecture-dependent
characteristics like cache performance and memory bus speed. There are five stages:
(Up) is the upward traversal of the tree used to built equivalent densities; (Comm)
is the communication of the ghost points and equivalent densities; (DownU) is the
dense interaction calculations for L lists, (DownV) isthe M2L trandations for Ly
lists; (DownX) and (DownW) are the calculations for Lx and Ly, lists associated
with the adaptive algorithm. In the right column, (Avg) is the the average, across
processors, Mflops rate; (Peak) isthe peak rate; and the (Max/Min) indicate the Max-

imum/minimum average rates across processors—an indication of load imbalance.
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The work efficiency is computed using the timings in Table 4.1. The Mflops/s effi-
ciency is computed based on the rates given in the figure. Aswe can see, up to 512
processors the efficiency is quite good: thereisonly asmall increasein the total work
per particle.

We also compute a floating point efficiency as an index of efficient utilization of

the machine. The work efficiency is TZ(}))P and the flop-rate efficiency is computed

as f(P)/f(1), where f(P) isthe flop-rate per processor on P-processors.
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L aplacian kernel

Interaction computation Tree
Time (sec) GFlops/s Time (sec)
P | Total Ratio Comm Up Down Avg Peak | Gen/Comm
139275 1.00 0.00 5841 334.34 0.28 0.31 13.97
4 | 103.67 1.00 0.87 1463 88.30 1.06 1.25 3.81
8| 51.33 1.00 054 742 4348 2.15 2.46 2.27
16| 2549 110 055 369 21.99 4.30 4.96 1.47
64 6.74 110 033 0.96 6.10 | 1653 19.00 0.68
256 167 120 015 024 155 | 6453 7749 0.51
512 110 120 040 0.12 0.74 | 104.89 154.69 0.87
1024 113 120 081 0.07 0.45 | 108.67 258.55 1.09
Modified Laplacian kernel
I nteraction computation Tree
Time (sec) GFlops/s Time (sec)
P| Total Ratio Comm Up Down Avg Peak | Gen/Comm
1|47866 1.00 0.00 75.09 40357 0.31 0.36 13.88
4| 12043 1.00 248 1924 9941 122 1.40 3.74
8| 5958 1.00 062 950 4957 2.49 2.83 2.19
16 | 3032 1.00 046 478 25.82 4.84 5.62 1.35
64 748 110 023 121 6.56 | 19.16 22.19 0.55
256 208 130 022 032 196 | 69.77 83.16 0.59
512 124 120 032 0.16 1.01 | 12529 166.35 0.55
1024 125 120 085 0.10 051 | 127.67 261.21 1.25
Stokes kernel, non-uniform particle distribution
Interaction computation Tree
Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak | Gen/Comm
1|1171.92 1.00 0.00 146.28 1025.64 0.37 0.56 22.95
4| 33269 100 19.17 4163 284.49 1.29 1.97 6.05
8| 155.07 1.00 351 1997 13553 2.76 4.10 2.94
16 78.02 1.00 151 10.02 70.39 5.47 8.28 151
64 2111 1.20 0.75 2.70 1995 | 2047 3171 0.80
256 592 150 0.53 0.74 6.18 | 7277 122.11 0.81
512 329 1.70 0.48 0.40 3.59 | 130.60 237.08 0.73
1024 235 1.80 0.82 0.22 218 | 191.96 446.76 0.96

Table 4.1: Fixed size scalability results.
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Laplacian kernel, uniform particle distribution
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Figure 4.2: Fixed-size scalability results for different kernels. Here 3.2 million par-
ticles were used. The left column shows aggregate CPU cycles per particle; the right
column shows Mflops/s/processor for different stages of the interaction calculation
phase and the flop-rate efficiency.
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In Table 4.2 and Figure 4.3, we report isogranul ar scalability results for 200 thou-
sand particles per processor and for the Laplace and Stokes kernels.

In these examples we have used 200,000 particles per processor. We report the
wall-clock time and Gflops/s for the interaction computation, and timings for the tree
construction and communication phases. P, Total, Ratio, Comm, Up, Down, Avg,
Peak and Gen/Comm have the same meaning as in Table 4.1. For the larger problem
we have a total 400 million particles, which for the Stokes case corresponds to 1.2
billion unknowns. In these experiments we do not report work efficiency because
the algorithm behavior dlightly changes as we increase the problem size and at first
sight it appears that we obtain superlinear speedups. The particles are sampled for
512 spheres regularly arranged in a cube. For small numbers of particles we have
uniform distributions, but for the very large problems the problem locally is non-
uniform. As aresult the number of M2L interactions drops and since this is the most
costly part of the computation it appears that the work efficiency improves. Overall,
we observe that the running time is dlightly decreasing. This is due to algorithmic
changes; the M2L trandlations work (Down) is decreasing. We observe very good
scalability, i.e., low communication costs during the interaction calculation phase;
the increase for 2048 processors, in the non-uniform distribution case is due to the
load imbalance.

As in Figure 4.2 we report total cycles per particle and flop-rates for the whole
interaction calculation and its different phasesin Figure 4.3. The Mflops/s efficiency
is computed based on the rates given in the figure. We are not reporting work ef-
ficiency because the algorithmic behavior of the problem changes with increasing
problem size, due to the increase in non-uniformity of the distribution at finer scales.

In this case the number of M2L trandations decreases, resulting in a overall work
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decrease. In addition, M2L computations run at about 300 Mflops/s, while al other
parts run at about 400+ Mflops/s. This produces apparent superlinear efficiencies,
especialy in the work-intensive Stokes case. Our implementation exhibits excellent
scalability results on thousands of processors. As we can observe from the plots for
the Laplacian kernel we maintain an 80% efficiency on up to 2048 processors. In
the non-uniform distribution (last row) we observe a rather significant decrease of
the efficiency down to 65%. Thisis due to load imbalance, and is something that we
are currently working to improve. Finally notice that that for the largest problem the

peak performance was 1Tflops/s.
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Laplacian kernel, uniform particle distribution

Interaction computation Tree
Time (sec) GFlops/s Time (sec)
P | Total Ratio Comm Up Down Avg Peak | Gen/Comm
1/3056 1.00 0.00 287 27.69 0.27 0.28 0.49
42859 1.00 023 313 2529 1.03 1.16 0.70
16 | 25.97 1.10 106 377 2280 4.17 4.84 1.42
64 | 21.76 1.10 138 373 1826 | 17.04 17.78 3.02
256 | 22.06 1.10 165 348 1954 | 6436 73.89 13.48
1024 | 22.22 110 3.09 384 1839 |247.78 262.64 71.26
2048 | 2354 1.20 096 4.05 21.34 | 488.07 568.89 964.47
Stokes kernel, uniform particle distribution
I nteraction computation Tree
Time (sec) GFlops/s Time (sec)
P| Total Ratio Comm Up Down Avg Peak | Gen/Comm
113326 1.00 0.00 7.38 125.88 0.30 0.49 0.49
4| 166.79 1.00 063 862 157.86 1.03 2.06 0.64
16 | 146.72 1.10 200 12.34 139.38 441 8.46 1.59
64 | 106.00 1.10 213 1074 99.06 | 1886 3321 3.54
256 | 88.06 110 243 1059 8194 | 8157 12791 14.16
1024 | 79.34 1.10 210 1059 7253 | 33856 494.97 69.42
2048 | 76.28 1.10 206 1058 69.36 | 669.99 986.45 936.78
Stokes kernel, non-uniform particle distribution
Interaction computation Tree
Time (sec) GFlops/s Time (sec)
P| Total Ratio Comm Up Down Avg Peak | Gen/Comm
1| 8268 1.00 0.00 1039 72.29 0.34 0.54 1.17
4| 8043 1.00 072 988 70.01 1.39 214 1.37
16 | 7803 1.10 130 975 70.75 5.46 8.51 1.47
64 | 8416 120 402 10.67 7955 | 20.05 3140 2.52
256 | 86.24 150 897 1117 9244 | 7149 119.76 8.21
1024 | 92.60 2.00 420 1255 11493 | 24816 426.40 69.34
2048 | 108.64 250 1232 17.72 139.36 | 453.44 752.03 988.24

Table 4.2: 1sogranular scalability results.
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Laplace kernel, uniform particle distribution
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Figure4.3: Isogranular scalability resultsfor Laplacian and the Stokes kernels. These
charts show the aggregate CPU cycles per particle and Mflops/s/processor for the
different stages of the interaction calculation.
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Finally in Table 4.3 we report results from our largest runs on 3000 processors. In
this set of runsthe geometry isthe 512 spheres and we solve problemsfor the Laplace
eguation with 100K and 230K particles per processor and for the Stokes equations
also with 230K particles per processor. For all the other experiments we have used
rough 60 particles per box, while in this experiment we use 120 particles per box to

dlightly reduce the costs of tree construction.

Interaction computation Tree
Time (sec) GFlops/s Time (sec)
unknowns | Total Ratio Comm Up Down| Avg Peak | Gen/Comm
0.300B | 7.63 15 103 243 5.69|696.8 8022 837.4
0.690B | 21.59 22 323 413 1529 | 789.3 9721 1101
2.070B | 65.97 18 306 987 6210| 1134 1587 1077

Table 4.3: 3000 processor runs. In these examples we have solved three problems
100K and 230K particles per CPU for for the Laplace and Stokes equations all for
the 512 spheres input. For the larger problem we have atotal 700 million particles,
which for the Stokes case corresponds to 2.1 billion unknowns. Notice that for the
interaction calculation we have sustained 1.13 Tflops/s which translates to 25% effi-
ciency compared to the sustained performance for the LINPACK benchmark on the
TCS-1.

Discussion Examination of the performance numbers leads to the following ob-
servations. (1) The code uses about 160 thousand CPU cycles per particle for five
digits of accuracy for the Laplacian kernel and about 200 thousand and 800 thousand
cycles for the modified Laplacian and Stokes respectively. (2) For the fixed problem
size (3.4 million particles) we obtain 80% efficiency for up to 256 processors and then
the communication costs start increasing. (3) In theisogranular scalability good effi-

ciency is maintained up to 2048 processors with peak performance of 1 Tflops/s and
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sustained performance of 0.7 Tflops/s. (4) The communication costs during the in-
teraction computation scale very well. (5) The tree construction and communication
does not scale beyond 1024 processors. (6) Load imbalance for highly non-uniform
distributions is significant. (7) In our largest runs we have obtained 1.13 Tflops/s
sustained performance and 1.6 Tflops/s peak performance for 2.1 billion unknowns.
It is apparent that we get better performance for the Stokes kernel. The reason
is that the scalar kernels like the Laplacian and modified Laplacian have less work
per particle and less communication than the Stokes kernels. We have observed an
increase in the flop-rate for the Stokes kernel albeit the higher communication costs.
We should note that our implementation of the tree construction and load bal-
ancing is not optimal; our focus was on efficient implementation of the interaction
computation, which we apply severa times before we update the particle positions.
Tree construction and load balancing are well isolated parts in our code and known
techniques can be used to improve their efficiency. We plan to incorporate more effi-
cient algorithmsin the near future. In particular, we plan to use workload information
from previous time steps for load balancing. In addition we are currently changing

our level-to-level tree construction in order to obtain acompletely scalable algorithm.

44 Summary

In this chapter, we have presented a MPI-based scalable and platform-independent
paralel implementation of our kernel independent fast multipole method.

Our parallel implementation has several important features. First, our MPI-based
parallel implementation logically separates computation and communication to avoid

synchronization in upward and downward pass, and to exploit maximal computation
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and communication overlapping. Second, we verified that the method scales up to
3000 processors and achieves very good per processor sustained performance (up to
480 Mflops/s). Asaresult, we were ableto reach 1.13 Tflops/s sustained performance

for a Stokes flow problem with 2.1 billion unknowns.
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Chapter 5

Nystrom I ntegration

5.1 Introduction

In this chapter, we describe the Nystrom discretization method for the numerical

solution of the integral equation

1

5P(a) + (Dy)(x) = f(2).

As we mentioned earlier, this equation is solved using a Krylov space iterative lin-
ear solver, such as GMRES. The essentia step of this solver is the evaluation of
(Dy)(x), which is required to be accurate and efficient. In the following sections,
we first present the discretization scheme and quadrature rule of our Nystrom solver.
Then, we prove its error bounds and give the complete algorithm for the evaluation
of (Dy). We also describe how to extend this algorithm to evaluate other related
physical quantities such as pressure p and stress s. Then, we present an accurate
and efficient way to evaluate velocity, pressure and stress at any point inside the do-
main 2. Finally, we comment on how to extend the algorithms to other equations,

including the Laplace's equation, the Navier's equation and their modified version.
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In this chapter, the boundary I" of the computation domain is represented with the
surface representation scheme introduced in Chapter 2. The basic ideas are motivated

by the work of Bruno and Kunyansky [16].

5.2 Discretization and Singular Integral Evaluation

for Velocity
By using the surface representation scheme in Chapter 2, the boundary I' is covered
by several patches P, fori =1, - - - , K, each smoothly parameterized over achart C;
(Figure5.1).

Figure 5.1: Parameterization of boundary.

Two sets of functions are essentia to the discretization scheme described in this

chapter:
e g; : C; — R3 which parameterizes the domain boundary using chartsin 2D.

e w,; : ' — R which provides a partition of unity (POU) of the boundary I" and

the support of w; isin P;. Following the convention of [16], we call w; the
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fixed partition of unity, since it does not depend on the point = at which the

integration is evaluated.

We first rewrite the integral (Dy)(x) in terms of the domain C;:

(Dg)(a Z / Dz, g (ex) ol guen)) (g (cx)) Julex) de,

where J,. denote the Jacobian of map g,.. We define

Ur(cr) = wi(gr(cr))p(gr(ck)) Jr(ck)

which isafunction vanishing at the boundary of C; since w;, does so. Then, we have

Z D LL’ gk Ck )¢k(ck) de (51)

We discretize each domain C, with a Cartesian grid with uniform spacing h.
The set of grid points inside C; is denoted by {c;;}. The union of al grid points
Ule {ck.i} isthe Nystrom points used in the numerical approximation of theintegral
Dy(z). By ¢, we denote the value of function ¢ at points ¢y ;, 1; the value of v,
and z;,; the position gy (cx,;). The goa of the integral solver isto find the values ¢y, ;.
At each step of the GMRES solver, we need to approximate (D) (zy ;) efficiently
and accurately using the values ¢y, ;.

We now consider the integralsin (5.1) one by one. By dropping the index &, the

integral over asingle chart is of the following form
| D.glehie)de 52)
C
Non-singular part. If x ¢ g(C), then D(z, g(c)) isnon-singular for any point ¢ €

C', and theintegrand D(z, g(c))(c) and its derivatives vanish at the boundary of C'.
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Such afunction can be regarded as a periodic function on arectangular domain which
contains C. Therefore, the trapezoidal rule with weights 22 at points c; gives super-
algebraic convergence if the function «» (and equivaently ) isinfinitely smooth. If

v isaCM function, the trapezoidal rule gives an error of order O(h™).

Singular part. If z = g(¢) for some ¢ € C, we introduce a C* function 7,

defined by
lc—¢|

nc’(c> = 0( \/ﬁ )

where § : [0,00) — [0, 1] isanon-increasing C'* function satisfying 6(r) = 1 for

r<tandf(r) =0forr > 1and]|-|isthe Euclidean distancein 2D. By definition,
n. isaradial function with support in adisk of radius v/ centered at ¢. Wecall 1, a
floating partition of unity (following [16]), since its support depends on the position

of z. Using the function 7., we rewrite (5.2) into two parts:

/C D(g(c'), g(c))o(c)de = /C D(g(c'), 9(c))(1 = ne(c))p(c)de  (5.3)

= [ D s@meue e (6

(5.3) isnot singular since 7. (c) vanishes in the neighbors of ¢, thus we integrate it

using the trapezoidal rule as we did before for the non-singular part. To integrate

(5.4), we transform the domain into a polar coordinate system centered at . Let
qg=c—c = (pcos(f), psin(d)), the second integral is equivalent to:

[ 0 [ Dty atctp. o2l yutctr oppa
o ) PR O

(notice here we allow p to be negative in order to make the integrand a periodic

function). We choose the Cartesian grid in polar coordinates
1 27
a—=)-hb-2n/[—
<< ) b2/ Wﬂ)
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asthe quadrature points, where a and b range over the integers where these points are
in the integration domain (Figure 5.2). The number of quadrature points is of order

O(5) and the grid is fully symmetric in the polar coordinates.

A9

Figure 5.2: Integration points in Cartesian and polar coordinates.

We will show in the next section that the above algorithm gives a high-order
quadraturerulefor theintegral (5.2) for z € g(C'). However, the quadrature pointsfor
(5.4) are on a Cartesian grid in polar coordinates, instead of the quadrature points x;
in the Cartesian coordinates. This necessitates an efficient and accurate interpolation
procedure to obtain the values of v at the polar-coordinate quadrature points from its
values at the Cartesian quadrature points. The method we use, which is similar to the
onein [16], hastwo steps: the preprocessing step and the evaluation step.

In the preprocessing step, we perform the following procedure for each chart Cy.
Since v, is a periodic function on a rectangular domain which contains z;; as its
Cartesian grid, wefirst use a 2D fast Fourier transform (FFT) to calculate the Fourier
coefficients of v, from the values ¢, ; at ;. ;. We then use these Fourier coefficients
to approximate the value of v, on a new grid, which is much finer than the original

grid again by means of an FFT. The spacing of the new grid is chosen to be 8 times
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smaller than the spacing of the old grid. If the function v, isinfinitely smooth, these
approximation values are super-algebraically close to the true value of .

The evaluation step is as follows. Given a point x, for each patch C), such that
x € g(Cy), we need to interpol ate the values of ), at a polar-coordinate grid centered
at the preimage of = in Cj,.. For each point on this polar-coordinate grid, we collect
the values of 1, on the 4 x 4 subgrid (of the refined grid), which contains the point
in the center cell, and use Lagrange interpolation to approximate the value of .

This interpolation procedure is highly efficient due to the periodicity of ¢ which
enables us to use the fast Fourier transform. In practice, we find 8-fold refinement
gives approximation error of order 10~8, which is much smaller compared to the
other error introduced in the overall algorithm, thus we can safely neglect the error
from this interpolation procedure.

Compared with the discretization scheme in [16], our algorithm differs in two

major ways.
e The support of the floating partition of unity 7. is of size v/h.

e The integration grid for the singularity is fully symmetric in the polar coor-
dinates. As a result, 2D fast Fourier transform is used in the interpolation

procedure.

The first change enables us to give strict error bounds for the integration error. The

second change alows us to integrate integrals with a higher order of singularity.
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5.3 Error Analysis

In this section, we derive the error bounds for the procedure described in Section 5.2

for the integration of
| gl de

when © = ¢(c¢’) for some ¢ € C. We assume that the interpolation procedure ex-
plained in the previous section introduces no error, and the functions ¢ is C* con-
tinuous for some M > 2. Our plan is to show that the integration schemes for both

(5.3) and (5.4) are high-order accurate.

Lemma 5.1. Suppose D C R? and functionsa € C (D) and b € CM(D) satisfy

the following conditions.
m+s
< Cutm) (=) =0

and

) 1 m+t
b'" | < Co(m) | —= m=0,---,M

wheres > 0and ¢ > 0, then

(m) 1 m—+s+t
ab)'" || < C3(m) | —= m=0,---, M.
@)™ < Caon) (1)
Here (4, C; and (5 are all constants depending on m.

Proof. UseLeibnizruleon (ab)™ form =1,---, M. N

Lemma5.2. Assume D isa bounded open setin R? and f : D — R can be written

into the following decomposition.

)S(q) qeR?

-
—
=

|

|
—

|
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where H is a homogeneous function, and S is a C function that vanishes on the

boundary of D. Then the error of the trapezoidal rule with spacing / on function

[ raa- 9(%))@

is O(h%), where 7, is the floating partition of unity at the origin.

Proof. Since 1 — 9(‘7'5) is equal to zero in the neighborhood of the origin and S
vanishes at the boundary of D, we obtain the following estimate for the error e of the

trapezoidal rule:

e < Co(M)RM]|(f(1 - 9%))%”%.
Now we estimate || (f(1 — 0(LL)) 0] If |g] < 2, (f(1-6(12)) ) (q) = 0 since
o) = 1.

Now suppose |¢| > */TE We have the following estimates:

@) € Colm)(=)™ w0
from f’s decomposition, and
a-ohym ) < cuomm m—1

since ¢ is afixed function. Using Lemma5.1, we have

(FL— e(%»)(m(q)\ < Cy(m)(

Takem = M, we have

)erl

e < Co(M)RMCy(M)(
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M—-1

Lemma 5.3. The trapezoidal rule on (5.3) with spacing ~ gives O(h™z ) accuracy

if o isCM continuous.

Proof. Using the definition of D(x,y), we can write

where H isahomogeneous function. Suppose z = g(¢’) andy = g(c¢) for cand ¢ in

the chart C'. By letting ¢ = ¢ — ¢ and ¢ = |¢|, we can write

mwmﬂmzéﬁﬁﬁrm

where H' isahomogeneousfunction on chart C'and 7" isan infinity smooth function.
Since p isCM continuous, ) is C* continuous and vanishing on the boundary of C.

Therefore D(g(c’), g(c))w(c) can be rewritten as:

Lo 4

where S’ = T" is C™ smooth and vanishes at the boundary C. Using Lemma 5.2,

we proved that the trapezoidal ruleis O(h™'z ) accurate for

AD@MWO—%@W@M.
[]

Lemma5.4. Suppose f : R — Risa C™ function. Then the trapezoidal rule with

spacing h has O(h%) accuracy on the integral:

/ﬂﬂ»%ﬂm
—\/Ep\/ﬁp
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Proof. The proof is similar to the one for Lemma 5.2. The trapezoidal rule gives
error

cothe(%)noo-

We can bound the magnitude of the Ath derivative of §(LL) by h. Therefore, the

>

error is of order O(h'2 ). O

Lemma 5.5. The polar-coordinate trapezoidal rule on (5.3) gives O(h%) accuracy

if o isCM continuous.

Proof. First we make two observations: (1) the function D(z, g(c(p,0)))p isanin-
finitely smooth function in the polar coordinates parameterization (even at the neigh-
borhood of the origin), and (2) the function «(c(p, #)) is C* continuous since ¢ is
continuous.

Let us define

50)- | " D glelp 00 (el 00 .
Vi ’ Vh ’

Since D(x, g(c(p,0)))v(c(p, 0))p is a smooth function, from Lemma 5.4 we know
that the trapezoidal rule with spacing h on the variable p can integrate the function
B(6) for any fixed thetawith O(h's ) accuracy.

We notice that B(6) itself isalso a periodic function defined on 6 € [0, w]. Using

the trapezoidal rule with spacing v/1 gives accuracy h% on the followi ng integral

/0 " B(6) a0,

The values of B(6) used for integration are not exact. There is an O(h® ) error
between the actual value of B(#) and the approximation value computed from the

trapezoidal rule integration in the p direction. Nevertheless, since all the quadrature
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weights for the trapezoidal rule are positive, the error on the values of B(6) can
introduce errors at most of the same order. Thus, the overall error is again O(h%).

O
Now we can state the overall error estimate of our quadrature algorithm.

Theorem 5.1. Our quadrature rule for the integral (D f)(x), evaluated at any = on

M-—-1

the boundary I gives O(h ™2 ) accuracy if  is C* continuous.
Proof. Combine Lemma5.3 and Lemma5.5. O

In the following, we prove an additional result which is necessary in estimating

the singular integral evaluation for other kernels.

Lemma5.6. Supposethat / : R — R can be written in the following form:

_ P

where S isa CM function. Then the trapezoidal rule with quadrature points at (k —

1)h gives O(h%) accuracy on the integral

0(—=)d
/_ \/Ef(p) ( \/ﬁ) p
which is understood in the Cauchy sense.

Proof. We use the singularity subtraction to reorganize the integral:

s Il o ) Wl
/_@ ’pPS(P)H(\/ﬁ)dp = /_@ ’pP(S(p) s(g))g(\/ﬁ)dﬁ

vh
( /. #9(%)@) 50

The integrand of the first integral is a actually a C~! (due to the singularity sub-

traction) and periodic function. The trapezoidal rule with quadrature points (k — %)h
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M—-1

givesO(h™z ) accuracy by using Lemma5.4. The second integral is a Cauchy inte-
gral with principal value zero, and the trapezoidal rule with (k — %)h as quadrature

points produces zero as well, since the quadrature points, the function 6( and the

|
%)
integration domain are all symmetric around the origin.
Therefore, the trapezoidal rule with symmetric quadrature points (k£ — %)h gives

the overall error O(h%) on the principal value of the integral. O

Theorem 5.2. Suppose a kernel K can be written into the following form

K(z,y) = —H(—)S(r),

rl?
wherer = x—y, H isahomogeneous function and S isan infinitely smooth function.

Then the quadrature rule described for Dy gives O(h%*l) accuracy on (Kp)(z) at

any z on T if p isCM smooth.

Proof. We separate the integral into two parts using a floating POU at the preimage

of .
/Dmmmu—w@www+/Dmamw@w@@
C C

Following the argument of Lemma 5.3, we can show that our quadrature method for
thefirst integral givesthe order O(h%—l) error. Using Lemma 5.6 and following the

M—-1
2

argument of Lemma 5.5, we can show our quadrature method gives O(h ™z ) error

for the second integral. Therefore the overall error is of order O(h= ~1). O

All the error estimates proved in this section are under the condition ¢ is C* con-
tinuousfor M > 2. In the case where ¢ isa C* function, following the same argu-
ments, it is straightforward to show that our quadrature rule achieves super-algebraic

convergence.
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5.4 Efficient Implementation

In this section, we show that the quadrature algorithm described can be implemented

in ahighly efficient way without compromising the accuracy proved in the previous

section.

For each z on T", we have

Z D (x, g (k)i (k) deg,

which can be written as the sum of three parts.

D(x, gi(ck))ibr(ce) de (5.5
kxgng(Ck)/C k\Ck k\“k k
/ D(l’, gk(Ck)>(1 A (%))%(Ck) dey, (56)
kizegy (Cy) ¥ Ok
D(z, gr(cx))ne, (ce)vr(cr) de (5.7)
k;xe%;(c'k)/ck k(Ch k) Uk(cr) deg

where ¢}, is the preimage of x in the chart C), under the map g,. (5.7) is evaluated
using the trapezoidal rulein local polar coordinatesat ¢ (5.5) and (5.6) are the non-
singular parts of the integral. They are approximated by the trapezoidal rule on the

quadrature points ¢y, ; in the forms:

Z ZD(xagk(ck,i>>wk7ih2

k:xdgr(Cy) @

and

Z Z D(z, gr(cri))(1 — Uc;(ck,i)%,ihg

kxegr(Cr) 1

Summing them up, we have

Z Z D(, gr(crq))brih® — Z Z D(x, g (cr))1el (cr)tbrih®
koo

k:zegr(Cy) @
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In the first summation, the sources v, ;4* are independent of the evaluation point z.
In this case, we can use the kernel independent fast multipole method described in
Chapter 3 to evaluate the value for all quadrature points = efficiently without com-
promising the accuracy. For every point z, the second summation only involves the
points c; ; where 7., is positive, which is of a small number since the support of 7.,

islocalized into adisk with radius v/A. The algorithm is given in Figure 5.3.

Calculate v, ; = wy i Ji(ck ;) for each zy ;.
Evaluate u;; = -, ; D(71, T )x :h* using the kernel independent FMM.
for each z; ; do
for each C), suchthat z; ; € ¢, (Cy) do
Calculate Y, D(215, gr(cr.i) e, (cr.i)¥r:h* and subtract the resulting value
from v ;.
end for
end for
Preprocessing the grids v, ; for high-order interpolation.
for each z; ; do
for each Cy, such that z; ; € ¢, (Cy) do
Integrate fck D(z, gr(cx))ne (cx)¥r(cx) dey, using the trapezoidal rulein po-
lar coordinates and adding the resulting value to w; ;.
end for
end for

Figure 5.3: Singular integral for velocity.

We denote by NV the total number of quadrature points ;. In general, we have

N = % where K is the total number of patches covering the boundary I". Since

K remains constant as we refine 1, we have N = O(5%). The computation cost of

different stages of the algorithm islisted as follows:

1. Thekernel independent FMM algorithm has complexity O(N).
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2. Inthefirst doublefor loop, for each z; ; and each Cj;, since the support of float-
ing POU is of size h, the number of quadrature points at which the evaluation
isrequiredis O(v/N). Therefore, the overall complexity O(N3/?).

3. The preprocessing procedure has complexity O (N log N) due to the efficiency

of fast Fourier transform.

4. The second double for loopisalso O(N?3/2) since for each the z; ; and each C,

the number of polar-coordinate quadrature pointsis of order O(+) = O(V/'N).

Summing up over al stages of the algorithm, we have shown that the complexity of
our quadrature algorithm is O(N?3/2).

In practice, we notice several important points. First, the constant in the complex-
ity analysis of the kernel independent FMM algorithm is large, despite the fact that
the algorithm itself is O(/N'). Second, the dominant complexity from the correction
steps (subtraction and addition) is highly related to the radius of the floating POU.
We have chosen the radius to be /A, but by using a POU which shrinks faster (e.g.
h*/%), we can lower the complexity of the algorithm at the cost of decreasing the ac-
curacy. On the contrary, by using a POU which shrinks slower (e.g. h'/4), we can
lower the error bound but the complexity of the algorithm will increase. In practice,
we observe that the FMM computation step is dominant for large values of / while
the correction steps are dominant for small values of 5.

We denote this quadrature algorithm by an operator Y, associated with kernel

D. To summarize,

o YD isefficient: it has complexity O(N?/2).

e Y2 isaccurate: (Y2p — Dy)(x) isof order max(h" 2z, ¢) for 2 on T, where

e isthe error tolerance used in the kernel independent FMM step.
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5.5 Singular Integration for Pressure and Stress

The previous sections described the numerical quadrature algorithm Y2 for the high-
order and efficient evaluation of Dy (x) for z € T'. With Y2 available, we use iter-
ative linear algebraic solvers (such as GMRES) to solve for the double layer density
pin

1
—p+ Dy =f.

2
In this section, we describe the algorithms to evaluate the limit pressure p and stress
s onthe boundary I" from the solution . These quantities are of great importance for
practical applications of the Stokes equations. We first present the integral formula-
tionsfor p and s on I in terms of the double layer density . Similar to the velocity
field u, each formulation invol ves aterm which represents the jump of the pressure or
stress across the interface, and asingular integral (with higher order singularity). We
then derive the jJumps and present an algorithm to evaluate the jumps with high-order
accuracy. Finally, we present the algorithms to evaluate the related singular integrals
using the operator Y.
Let o bethedoublelayer density onT'. For x € €, the double layer representation

for pressure p(z) is

mwzmwmzlﬂ+ﬂ—ﬁiﬁmmwm@,

2m " |r[? |l
wherer = x — y and K is used to denote both the kernel and the integral operator.

The double layer representation for stress s(x) is

dmzwwm:/iwwwwmw,

r
where 7" is quite complicated and given in Appendix B. It isimportant to notice that

both K and T have singularities of order #
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In order to derive the formulafor = on the boundary I', we use the following fact
from the potential theory of the Stokes equation: if ¢ = c¢ is a constant, then the
velocity field « in € generated by ¢ is again a constant, and correspondingly, the
pressure field p and the stress field s are both zero [47, 69, 70]. Suppose z' €

approaches to the boundary point = € I, then the following is aso true:

zmwz‘AM%ww@—ﬂ@mmm
sw>=‘Anﬂww@rwu»®@.

However, these two integrals have the same singularity type as the integral formula-
tion for the velocity field w. If 2’ would be on the boundary T, these integrals should
be interpreted in the Cauchy sense. We know that for this kind of kernels, the inte-
rior limits of p(z’) (denoted by p(z)) and s(«’) (denoted by s(x)) have the following
integral form:

pa) = 5lle)+ [ Klenlet) - o) ds) 59
@) = 3ll0e)+ [ Tl s)elo) - pla) dsty). 59

where [[p]] is the difference between the interior limit and the exterior limit of p at
x, and [[s]] the difference of s. Notice, both integrals are interpreted in the Cauchy

sense, and the integrands depend on the evaluation point. We sometimes also write

pa) = )+ [ KGee) dsty).
@) = 3l + [ Tl dsiy),

where the integral is understood in the Hadamard sense [39].

We derive the jump [[p]](x) and [[s]](x) in terms of the double layer density (.
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We are equipped with three conditions:

[[u]] = o,
[[(—pI + p(Vu + Vul))n]] =0 Lyaponov-Tauber condition,

[divu]] = 0.

We choose a local orthonormal frame «, 6 in the tangent plane at x.

derivative with respect to o and 5 in (5.10), we get

[Vulla = ¢a  [[Vu]]B = ¢
This can be extended into the following six equalities:
[Vulla = alp, o'[[Vu]]8 = alps,

B[Vulla = 8o B[Vu]]8 = B'ps,

n'[[Vulla =n'ee  n'[[Vu]]3 = n'pgs.
Multiplying (5.11) with o and /3, we get two equalities:

o ([[Vul] + [[Vul)n =0 B'([[Vu]] + [[Vu]]')n = 0.

(5.10)
(5.11)

(5.12)

Taking the

Since divu = tr(Vu) and tr(A) = tr(ABB™') = tr(B~'AB), we have

tr((ev, 8,n) [[Vull(a, 8,n)) = 0.
Thisis equivalent to
o [[Vulla + B [Vu]]8 + n'[[Vulln = 0.
From these nine equalities, we get immediately:

at(pa a/tgpﬁ —N Pq

HVU’H = (a,ﬂ,n) ﬁt(,@a ﬂtwg —ntgpg (Oé,ﬁ, n)t.

ntgoa ntcpg —Q Py — ﬁts%

130



The jumpsfor p and s are

[Pl = —2u(a’¢a + B'op)
and
da'pa + 205 a'ps+ Bloa 0
[s]] = wle, B,n) | alos+ Bloa  2atpn + 485 0| (@5, n)".
0 0 0
To evaluate the jumps [[p]](x) and [[s]](z), we need to evaluate ¢, for a unit
direction « in the tangent plane at an arbitrary point = from the values of ¢ at the
quadrature points = ;. One method is the following. First, we pick a patch C; such
that = = gx(c},) for some ¢}, € C), and calculate the direction ¢ such that Vg, (¢, )q =
a. Then, weinterpolate the gradient of ¢ in the direction of ¢ using the values of  at
the Nystrom pointsc;, ; in chart Cj,. However, since ¢ isnot aperiodic function on Cy,
thisinterpolation procedure in general can only be local. Moreover, the interpolation
accuracy is limited when ¢, — the point at which we interpolate — is close to the
boundary of the domain C}, since the interpolation now becomes an “ extrapolation”
procedure.
To achieve high-order accuracy for the ¢, we use the partition of unity. We write

Pa(T) = Z (wWip)a().

k:zegr(Cy)

For each £, since wy isnow a periodic function in domain C. Therefore, on each
C}. we can use an interpolation procedure similar to the one we developed for inter-
polating ) to approximate (wxp),. 1N our implementation, a preprocessing step is
performed for each function ¢ to build an eight-fold refined grid for interpolation. At

the evaluation stage, we use Lagrange interpolation again to approximate the value

of (Wgp)a-
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We now explain the algorithm for the evaluation of the singular integralsinthein-
tegration formulation of p(z) and s(x). Here we present the pressure evaluation as an
example, and the case for the stress is the same since they have the same singularity.

First we observe that in the integral

/F K(2,9)(0(y) — o(z)) ds(y),

the integrand K (z,y)(p(y) — ¢(x)) hasthe form

r

Wmi)sm,

I

where H is a homogeneous function, and S isa C™ function. Theorem 5.2 guaran-
teesthat, by using our numerical integration operator Y% on the double layer density
¢ — o(z), the result at point z is O(hz ~1) accurate. Notice that ¢ — () depends
on the target point x, and the result from using Y* on ¢ — () is only valid for
the pressure at the point x. However, evaluating the operator Y once for each z is
clearly too expensive and not acceptable. The algorithm we propose usesthe linearity
of Y& to evaluate (K¢)(xz) at al points x much more efficiently.

We write

Y8 —p@) = Y —-Y"p(z)
= Yo —Y"( e e)p(a)
= V- (YRel YR Y Ee)p(a),
wheree!, e? and e? arethe constant vector functionsdefined on T with value (1, 0, 0)?,
(0,1,0)" and (0,0, 1)" respectively. The most important point here is: athough

Kp(z) isnot defined for ageneral function ¢ (it isonly defined for asmooth function

o which vanishes at ), Y X ¢(z) is defined for all points » asanumerical integration
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operator. The complete algorithm to integrate K'¢(x) for a set of points x on I is
givenin Figure5.4.

Evaluate g¢ = Y&ed ford = 1,2, 3.

Evaluatep = Y.

for each evaluation point = do

p(x) < p(x) = (9'(2), ¢°(2), g°(x)) o ().
end for

Figure 5.4: Singular integration for the pressure.

Since the operator Y% has complexity O(N?3/?), it is obvious that the current al-
gorithm also has complexity O(NN3/?). For afixed combination of evaluation points
and the Nystrom discretization points, the first step of the algorithm only needs to be
done once, and can be reused for different double layer density function . This al-
gorithm depends on the idea of cancellation: both the values (Y% ¢) and Y& (z) at
point x are “wrong”; however, their difference gives the correct value. Thisindicates
that the algorithm may potentially suffer from floating point errors due to cancella-
tion. In our numerical experiments which al use double precision floating point, we
have not observed the degradation of the accuracy.

The algorithm for the stress s is exactly the same, since the integral formulation
of s has the same order of singularity as the one of p. To summarize, the algorithm
in Figure 5.4 has O(IN3/2) complexity and gives O(hz ') accuracy for the pressure
and stress if the double layer potential ¢ is C* continuous. If ¢ isinfinitely smooth,

the algorithm described is super-algebraic convergent.

133



5.6 Evaluation of Nearly Singular Integrals

In this section, we present the algorithm to evaluate the velocity w, pressure p and
stress ¢ at an arbitrary point x in the domain. We explain the algorithm in terms of
the velocity field u, and comment on the algorithms for p and s at the end of this

section. For z € 2, the integral formulation of « is

u() = (Dy)(x) = / D(z, y)o(y) dy.

The integrand is not singular since D(z,y) isnot singular when = € Q. If z isof a
constant distance away from I', then we can bound the derivatives of the integrand.
Using the trapezoidal rule on each chart C, k = 1,--- , K with quadrature points
ki gives high-order accuracy. The difficult part is when « approaches the boundary
', inwhich case D(x, y) can become nearly singular and oscillatory, and there are no
a priori bounds for the derivatives of D(z,y) as = approaches I', and thus the error
bounds on the trapezoidal rule do not apply anymore.

The main task of the algorithm described in this section is to evaluate (D) (x)
at any point x € €2 with uniform high-order accuracy and with high efficiency, given
the values of a smooth function ¢ at the Nystrom quadrature points z ; onI'.

Theidea of our algorithm isto partition 2 into different regions and use different
schemes for integral evaluation for each region. Given the discretization spacing h,

we partition the domain €2 into three regions:
o O = {z € Qldist(z,T) € (Vh,o0)},
o O = {z € Qdist(x,T) € (h,Vh]},

o Oy = {x € Qldist(z,T) € (0,h]},
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Figure 5.5: Evaluation of nearly singular integrals. Left: different regions based on
their distance to the boundary. Right: evaluation procedure for = € €2,.

(see Figure 5.5).

Thealgorithm worksasfollows. If x € g, we usethetrapezoidal onthe Nystrom
points =, ; with weights v, ; (which is computed by scaling ¢, ; using fixed POU and
the Jacobian) to evaluate Dp(x).

For the points = € 2, in each chart C}, we resample the function ¢, on arefined
Cartesian grid with spacing h3/2 using the values v, ; at the old grid z;,; (which has
grid size h). Since both grids are Cartesian and v, is periodic function on CY, the
resampling can be done by first computing the discrete Fourier transform of ¢/, then
padding the higher frequency with zeros, and finally using inverse Fourier transform
to compute the values on the refined grid. Both the Fourier transform and the in-
verse Fourier transform can be done using FFT. With ¢),’s values on the refined grid
available, we use the trapezoidal rule on the new grid to evaluate Dp(z).

For each point = € ., wefirst find apoint z, € I" such that

r — 2o

-n(xg)| >

9

| — w0
where « is less than but close to 1. This basically states that © — z is amost or-

thogonal to the tangent plane at z,. We can achieve this by using a Newton-type
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nonlinear solver to maximize the quantity in the equation above. In practice, the
nonlinear solver finds such a point z, in a smal number of steps. We then define
pointsx;,l =1,--- ,L by

T — X9

h

iL‘l:l’o—i‘l'
|z — x0]

where (3 is a constant which satisfies« - 5 > 1. Since « iscloseto 1, we can choose
[ to be close to 1 as well. We then use the singular integral algorithm described
in Section 5.2 to evaluate L¢(xz) + Dy(xo) which is the limit of Dy at 2. The
points {z;,l = 1,--- L} arenow in ; since« - # > 1, and we evaluate them using
the trapezoidal rule described above. Finally, we use these values to perform a one
dimensional Lagrange interpolation to obtain the value of Dy at x. In practice, we
choose L to be equal to 3 (see Figure 5.5).

We now prove that the procedure described gives high-order convergence.

Lemma 5.7. For = € Qy, the procedure described gives O(h'z —1) error if ¢ is CM

continuous.

Proof. For afixed z, we can write
1
9(y) = D(z,y)e(y) = WS(T)
where S isaC™ function. Since z isat least v/h away from T, we have the following
estimates for the M th derivatives of g:

1
B M/2+1

199 |0 < Co <Gy

|7~|M+2 -
where C, isaconstant. The error from the trapezoidal rule is then bounded by

M

lg" | - ¥ = O(R=).
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Lemma55.8. For = € 4, the procedure described gives O(h%‘Q) error if pisCM

continuous.

Proof. For afixed x, we write again

1
9(y) = D(z,y)p(y) = WS(T)
where S isaC'™ function. Since z isat least v/h away from T", we have the following

estimates for the Mth derivatives of g:

1 1

M
Hg( )“oo < Co‘r’Jv1+2 < COhM+2

where Cy isaconstant. The values of ¢/ (which are computed from ) on the refined
Cartesian grid themselves have at most O(hM) error since the FFT based refining
scheme achieves the maximum accuracy possible. The error from the trapezoidal

rule on the refined grid with spacing 2/? can be bounded by

g0 - B3M/2 = O(h% 2).
]

Lemma5.9. For = € Q,, the procedure described gives O (b (M/2=2.L)) error if

isC'M continuous.

Proof. Thelimit velocity at zo, 54 (o) + D (o), is O(h'z ') accurate from Theo-
rem 5.1. From the previous lemma, we know (D) (z;),l = 1,--- , L are O(h’z ~2)
accurate. The error introduced by the Lagrange interpolation procedure is of order

O(h"). Therefore, the overall error isat most O (h™(M/2=2,1)), u

Combining these lemmas, we are ready to state the following theorem:
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Theorem 5.3. For any z € 2, the procedure described gives O (R™™M/2=2.L)) error

if o isCM continuous.

This procedure can be implemented efficiently. Given aset of X C (2, the algo-
rithm to evaluate the velocities at al = in X isgiven in Figure 5.6. The complexity
of thisalgorithm is O(N3/2).

Partition the pointsin X into three sets X, X; and X, depending on which region
(Q0, 27 or ) they belong to.

Evaluate Dy(x) for points in X, using trapezoidal rule on grid points x; with
FMM acceleration.

Use FFT to interpolate » onto arefined grid with spacing 73/2.

Evaluate Dp(x) for pointsin X using trapezoidal rule on the refined grid with
again FMM acceleration.

For every point = € X,, find its correspondent zo and z;,l = 1,--- , L,

Evaluate %90 + Dy at dl points z, using the algorithm in Section 5.2, again accel-
erated by FMM algorithm

Evaluate Dy at al points x; using the refined grid with FMM acceleration.

Use Lagrange interpolate to calculate the velocity at zsin Xo.

Figure 5.6: Nearly singular integration for velocity.

The algorithm to evaluate the pressure p and the stress s at arbitrary point x in €2
is similar to the presented algorithm for . The only difference is that since p and s
has a high-order singularity, the error bound for the velocity of pointsin regions 2,
and ), has alarger estimate, and it is observed in practice. To improve the accuracy,
we can apply the idea of singularity subtraction here: for apoint = in €, or 2o which
iscloseto I', wefind its nearest point x, on the boundary. Then instead of evaluating

the pressure using

/F K (2, 9)0(y) ds(y),
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we use
/F K (2, 9)(0(y) — olzo)) ds(y).

The integrand in the later is much smoother. Efficient implementation for the second

integral follow the ideasin Section 5.5.

5.7 Singular and Nearly Singular Integral Evaluation
for Other Equations

In this section, we briefly describe how to adapt the algorithms described in this
chapter to other equations, including the Laplace's equation, Navier's equation, and
their modified versions. We discuss first the case of singular integral evaluation, then
the case of nearly singular integral evaluation.

For the Laplace equation, we can use the operator Y to evaluate the double layer
formulation for the potential, since its kernel has the same singularity property as
the double layer kernel for the velocity of the Stokes equations. For the potential
gradient, the algorithm described in Section 5.5 can be used. The only differenceis
the jump, which isgivenin Appendix B.

For the Navier equation, the double layer representation for displacement is an
integral of the Cauchy type. As stated in Theorem 5.2, the numerical integration
operator Y can till be used. The double kernel for the stress has the same order of
singularity as the one for the Stokes equations, and thus the same agorithm can be
used. The jump formula are given in Appendix B.

For the modified Stokes equations, since the kernel for the velocity field u has

the same singularity behavior as the one for the Stokes equations, Y can be used
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without any modification. The algorithm for evaluating the pressure p and stress s
is different, as we explain as follows using p as an example. We denote by K the

modified pressure kernel. It can be decomposed into
KM — KS + KD,

where K isthe pressure kernel for the Stokes equation, and their difference K has

no singularity. We now have for = € 2,

plz) = (KMy) /W%y w®@+AW%wM@®@,

Thefirst integral is equivalent to

Akﬁuwxww—wmwm@»

Following the same argument in Section 5.5, then we have the following representa-

tion for the pressure limit at aboundary point z € T

) = 5000 + [ K@) o) = @) ds(o) + | K Gp)el) dsly).

We use the operator Y to integrate both integrals numerically, though for the second
integral asimpler procedure would suffice. The approximation to both integralstakes

the following form:

(V¥ (o = p(a)) (@) + (V7 0) (x)
= (Vo)) - (Y p@)(@) + (Y 9) ()
= (Y +Y ) (@) — (V" (@) ()
= (Vo) (@) — (Y p(@)) ().
Here we use the fact that Y is anumerical integration operator defined for any func-

tions ¢ as opposed to a singular integral operator which is only defined on specific
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kinds of functions. The algorithm to perform the above integration is similar to the
one in Figure 5.4 with the only difference that the correction functions ¢ are com-
puted using the kernels from the Stokes equation. Thejumpsfor p and s are the same
as the ones for the Stokes equations.

The algorithms for the modified L aplace equation and the modified Navier equa-
tion are modified in the same way as we described for the modified Stokes equations.

Finally, we point out that, with the available agorithms for evaluating singular
integrals, the algorithms for evaluating the nearly singular integrals for the modified

eguations are identical to the ones for their non-modified versions.

5.8 Summary

In this chapter, we presented several algorithms to integrate the singular integrals
coming from the boundary integral formulation. The singular integral was partitioned
into two parts: the non-adjacent part and the adjacent part. The smooth non-adjacent
part was integrated using the trapezoidal rule. The singular adjacent part was inte-
grated in polar coordinate to remove or decrease the singularity. Our agorithm has
high-order efficiency, low complexity, works on the kernels coming from a range
of equations without any modification, and has proved error bounds. We aso pro-
posed efficient and accurate algorithms to handle the nearly singular integrals which
emerges from the evaluation of the boundary integral anywhere in the computation

domain.
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Chapter 6

Results and Applications

6.1 Results

In this section, we present the numerical results of our 3D boundary integral solver
in several examples. All the algorithms described in Chapter 5 have been imple-
mented in C++. Thetimings cited are the wall-clock time and all the experiments are
performed on a Pentium 1| 650MHz machine.

In every example, we use an exact solution to specify the velocity on the domain
boundary which is represented using the high-order surface representation. We then
perform several runs with several increasing discretizations.

For afixed discretization, we carry out the following steps:

e Solve for the double layer density ¢ on I'" from the specified velocity u. We

choose the error tolerance of the FMM algorithm to be 10e-6.

e Select aset of V points on the boundary, where NV isthe number of discretiza-

tion used in solving ¢, and compute the velocity « and pressure p on these
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points. This step is used to test the accuracy of our algorithms for the singular
integration.

e Select another set of N points in the domain but close to the boundary, and
evaluate u and p on these points. This step is used to test the accuracy of our

algorithms for integrating nearly singular integrals.

For both the singular and nearly singular integral evaluation, we use the following

formulasto test the accuracy of our algorithm:

. 1/2
o — (Zij\i1|ui_ui|2>
u N ~ )
Ei:l ||

N ~ 1/2
e — <Zzl |ps —Pz‘|2>
p = N -

Zi:l |Pi‘2

where u; and p; are the velocity and pressure computed by our algorithms and «; and

p; are those of the exact solution.
For each example, we organize the table into three parts corresponding to the
three steps of thetests. In thefirst part which reports the computation time for solving

©, the columns of the table represent the following quantities:

e Discretization: the number of charts and the size of Cartesian grid used for

discretization in each chart.
e iters: the number of iterations used in the GMRES solver for ¢.
o T, /iter: thetime used to evaluate Dy in each iteration.

o Tt /iter: the time spent on the FMM computation for the non-adjacent in-

tegration in each iteration.
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e T,..q/iter: the time spent on integrating the local singular integral in each
iteration, including subtracting part of the FMM computation, and adding the

results by integration in polar coordinates.

The second part reports the time and error of evaluating « and p on the boundary T'.

The columns besides Discretization are:
e T, thetime used for evaluating velocity.
e ¢, theerror of the evaluated velocity.
e T, thetime used for evaluating pressure.

e ¢, the error of the evaluated pressure.

The last part of the table reports the time and error of evaluating v and p in the
domain. The columns have the same meaning as the ones in the second part of the
table.

The associated figure consists of three plots. Thefirst plot reports the relationship
between the time spent on each GMRES iteration and the number of discretization
point N. In the second and third plots, we show the errors of our algorithms for
different discretizations, where S =~ O(5) is the number of discretization points in
each direction of the 2D Cartesian grid used for discretizing every chart.

The boundaries of the domains used in the examples are shown in Figure 6.1.

Every boundary is contained in the cube with range [—1, 1] in every dimension.

Example 1. This simple example is an interior problem with the first surface in

Figure 6.1 as the domain boundary. The exact solution used is

u=(y—%%0,0" and p=—2puz.
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Figure 6.1: Domains.

The results are shown in Table 6.1 and Figure 6.2.

Example 2. We use the second surface in Figure 6.1 as the domain boundary. This

isan interior problem and the exact solution is

3

u=(y’z, 2%z, 2%)" and p=6uryz

The results are shown in Table 6.2 and Figure 6.3.
Example 3. In this example, the domain is a unbound region with boundary as the
second surface in Figure 6.1. The exact solution for this exterior problem is a unit

Stokeslet centered at the point (0.1,0.1,0.1)". The results are given in Table 6.3 and
Figure 6.4.
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Discretization

iters

T;Sotal /’it@?“

T /iter

Tonoa/iter

8 x 12 x 12
8 x 24 x 24
8 X 48 x 48
8 %X 96 x 96

~N N ©

4.70e+00
2.25e+01
1.31e+02
7.67e+02

3.59e+00
1.43e+01
6.17e+01
2.28e+02

1.04e+00
7.88e+00
6.54e+01
5.36e+02

Discretization

Ty

€y

T

P

€p

8 x 12 x 12
8 x 24 x 24
8 x 48 x 48
8 X 96 x 96

4.68e+00
2.19e+01
1.28e+02
7.90e+02

8.90e-04
1.15e-04
1.51e-05
1.74e-06

1.52e+00
7.76e+00
3.98e+01
2.46e+02

1.84e-01
5.64e-02
1.21e-02
3.14e-03

Discretization

Ty

€y

T,

p

€p

8 x 12 x 12
8§ x 24 x24
8 X 48 x 48
8 x 96 x 96

7.94e+00
6.31e+01
5.12e+02
4.36e+03

1.41e-03
1.62e-04
2.03e-05
2.41e-06

2.84e+00
2.14e+01
1.84e+02
1.44e+03

2.34e-01
6.14e-02
1.51e-02
4.45e-03

Table 6.1: Results of Example 1.

log,
/

Figure 6.2: Results of Example 1.

As shown by the results, the time 7,,,, spent on FMM in each iteration of the

GMRES solver increases linearly with N — the number of discretization points,
while the time T,,,4 Spent on the local integrator for the singularity increases as
O(N?/?).

This matches with the complexity analysis of our algorithms. In our
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Discretization iters Tiga/iter Tipm/iter Theq/iter
32 x 12 x 12 15 229%+01 1.44et+01 8.16e+00
32 x 24 x 24 15 127et02 5.71et01 6.65e+01
32 X 48 x 48 14 7.71et02 2.37e+02 5.17e+02

Discretization T, €u T, €p
32x12x 12 219+01 3.19e-03 7.35e+00 1.82e-01
32 x 24 x24 1.23et02 4.07e-04 4.24et01 4.64e-02
32 x 48 x 48 7.63e+02 4.32e-05 2.62et+02 6.65e-03

Discretization T, €u T, €p

32 x12x 12 3.44e+01 4.05e-03 1.13et01 2.59e-01

32 x 24 x24 267e+02 5.24e-04 9.04et01l 6.98e-02

32 x 48 x 48 2.12e+03 6.76e-05 7.15e+02 8.39e-03

Table 6.2: Results of Example 2.
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Figure 6.3: Results of Example 2.

examples, for coarse discretizations, the FMM part takes more time than the local
integrator, while for finer discretizations, the situation is reversed. We note that the
point where this transition happens depends on various parameters used in our a-
gorithms, most notably, the tolerance of the FMM algorithm and the support of the
floating partition of unity (POU).

The time used on checking « and p on the boundary I is proportional to the time

used by every iteration of the GMRES solver. The error plots show that convergence

147



log,(T)
w A U1 O N © OV O

rate of u isroughly A3, whilethe convergencerate of p isabout 42, Thisdemonstrates
the high-order behavior of our algorithmsfor singular integrals. We noticethat for the
coarsest discretization with 12 points per dimension, the error for p isrelatively large,
usually of order 10e-1. The reason is that, in such case, the number of discretization
points is too low for the interpolation procedure for the jumps of the pressure to
approximate even the derivatives of the fixed partition of unity, which is used in our

surface representation. One of the possible solutionsis to use a smoother partition of

Discretization

iters

T;Sotal /’it@?“

T iter

Tonoa/iter

32 x12x 12
32 x 24 x 24
32 X 48 x 48

17
17
16

2.46e+01
1.31e+02
7.44e+02

1.47e+01
6.10e+01
2.37e+02

8.35e+00
6.39e+01
4.91e+02

Discretization

1.

€y

T,

p

€p

32 x12x 12
32 x 24 x 24
32 X 48 x 48

2.35e+01
1.19e+02
7.87e+02

1.70e-03
2.38e-04
2.91e-05

7.44e+00
3.99e+01
2.54e+02

1.73e-01
4.39e-02
6.08e-03

Discretization

1.

€y

T,

p

€p

32 x12x 12
32 x 24 x 24
32 X 48 x 48

3.40e+01
2.73e+02
2.02e+03

2.87e-03
3.37e-04
4.29e-05

1.12e+01
9.08e+01
7.19e+02

2.51e-01
7.08e-02
7.84e-03

Table 6.3: Results of Example 3.

log,(e)

4.5 5
log,(S)

Figure 6.4: Results of Example 3.

148




unity.
Thetime used by the checks of u and p inthe domain 2 growslike O(N?3/2). Most
of the computation time is spent on the evaluation at points in regions 2; and €25,

where an FMM evaluation on afiner discretization with spacing O(h*/?) is required.

6.2 Applications

In this section, we presents several applications which use the our boundary integral

solver.

Embedded boundary integral solver. This is a method for the solution of the

Stokes equations with distributed force. The equations are given by:

—puAu+Vp = b in Q
divu = 0 in T, (6.1)

u = f on T,

where b is aknown forcing term.

Following [52], we split the solution of the problem into several steps asfollows.
Wefirst embed 2 in adomain €2’ which can be discretized easily, typically arectangle
(Figure 6.5). By linearity we decompose (6.1) into two problems: one problem that
has an inhomogeneous body force and zero boundary conditions for €)’; the other on

Q2 has no body force, but nontrivial boundary conditions:

—pAuy +Vpr = b in Q]
divu; = 0 in IV, (6.2)

/
u; = 0 on IV,
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where I is the boundary of €', and
—puAus +Vpy = 0 in Q,
divus = 0 in T, (6.3)
uy = f—u; on T.
For (6.2), we discretize the domain €' by a regular grid and use the Q1-Q1 finite

element method to solve the equation. For (6.3), we use the boundary integral solver

described in thisthesis. The solution of the original problem (6.1) isu = u; + uy and

D = p1+ p2.

\__/

Figure 6.5: Domains in the embedded boundary integral solver. Left: the origin
domain Q with boundary I'. Right: €2 is embedded into arectangular domain €2’ with
boundary I".

I nteraction between Stokes fluid and rigid body objects. The simulation of the
motion and dynamics of arigid object immersed in a viscous fluid is important to
various applications in biomedical engineering (Figure 6.6). We use the linear inte-
gral formulation of the Stokes equation to model the viscous fluid. The motion of
the objects are modeled by the rigid body dynamics. The interface conditions are
the balance of the force and the continuity of the interface velocity. We use semi-

implicit time discretization: at each time step, we first update the position of therigid
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objects using the old velocity, then we solve a coupled nonlinear system (including
the boundary integral equation for the Stokesian fluid, the rigid body equations and
the coupling conditions) to compute the interface quantities (including the velocity

and force).

Figure 6.6: Interaction between viscous fluid and rigid body objects. Left: fluid and
object domains. Middle and Right: frames from the simulations of fluid and rigid
object interaction.

151



Chapter 7

Conclusion

7.1 Summary

In thisthesis, we have presented an efficient and high-order boundary integral solver
for the Stokes Equations in complex 3D geometries. Our solver uses indirect bound-
ary integral formulation and discretizes the equation using the Nystrom method to
achieve high-order accuracy. Although it is developed for the Stokes equations, we
have shown that it can be used for other elliptic PDEs with minima modification.

The three major components of our solver are:

C* Surface Representation. We have presented a simple method to model C'>°
surfaces. We first use polynomials as bases to construct local geometry on each C'*°
smooth chart, then blend them together to obtain the global geometry using aC'*> par-
tition of unity. The generated surfaces are C'°°-continuous with explicit nonsingular
(> parameterizations, have high-order flexibility at control vertices, depend linearly

on control points, have fixed-size local support for basis functions, and demonstrate
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good visua quality.

Kernel Independent Fast Multipole Method and its Parallel |mplementation.
We have developed a kernel independent fast multipole algorithm, which general-
izes FMM to a wide range of kernels. We use “equivalent densities’ to replace the
multipole and local expansions, and develop translation procedures which only use
the kernel evaluation. In the 3D case, the trandation procedure is implemented using
FFT to achieve maximal efficiency. Our algorithm is adaptive and has the same struc-
ture as the origina FMM algorithm. It exhibits comparable efficiency and accuracy
results with the best published FMM implementation and has a proved error bound.
We also provide an MPI-based parallel implementation for distributed memory ar-
chitectures. Our implementation achieves computation and communication balance

and demonstrates good scalability results.

High-order efficient Nystrom Integrator. We have presented algorithms to in-
tegrate with high-order accuracy the singular integrals coming from the boundary
integral formulation. The singular integral is partitioned into two parts: the adjacent
part and the non-adjacent part. The non-adjacent part is smooth and we integrate it
using the trapezoidal rule. The adjacent part is singular and we integrate it in polar
coordinates to remove or decrease the singularity. Our algorithm haslow complexity,
works on the kernels coming from arange of equations without any modification, and
has proved error bounds. We aso proposed efficient and accurate algorithms to han-
dle the nearly singular integrals which emerge from the evaluation of the boundary

integral anywhere in the computation domain.
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7.2 FutureWork

High-order Surface Representation. Our construction can be improved in avari-
ety of ways, as most of the components were identified empirically: in particular, to
get good behavior for higher order derivatives, one needs a better partition of unity.
As some alternatives mentioned in Section 2.3.6, it is quite possible that there are
better charts, fewer or lower degree polynomials to be used for geometric functions,
or entirely different geometric functions which can yield better results.

Another direction is to generalize our construction to model manifolds with
boundaries, crease edges or even corners. Although most of these extension are
straightforward, they are the first step to extend our boundary integral solver to do-
mains with non-smooth boundaries.

For most of the current applications, the domain boundary is represented with
either a piecewise linear triangle mesh or adensely sampled point cloud, even though
the boundary itself is high-order or even infinitely smooth. A common example is
the sphere, which is C'* smooth but usually represented by a triangle mesh in most
of the finite element or boundary element simulations. An interesting but challenging
problem is to transform these triangle meshes or densely sampled point clouds into

high-order representations like our scheme.

Kernel Independent Fast Multipole Method and its Parallel |mplementation.
In our kernel independent FMM algorithm, we have focused on second order con-
stant coefficient PDEs with non-oscillatory solutions. However, our method is not
restricted to such systems. It should be straightforward to generalize it to higher
order systems like the biharmonic equation. In such cases, the Dirichlet problem in-

volvesfirst and second derivatives of the underlying field. We can either differentiate
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the kernel to obtain the derivatives or use a set of two check-point surfaces. We plan
to explore this approach in the future.

Another class of problems is related to second order PDEs with oscillatory so-
lutions or Helmholtz-type problems. For low frequencies we have performed pre-
l[iminary tests (on the M2M and L2L transformations) that indicate that our method
works asis. An implementation for this class of problemsis under way.

Although our parallel implementation exhibits good scalability results, two prob-
lems in our implementation are the tree construction algorithm and the inefficient
load balancing algorithm which create problems for more than 1024 processors. We
are currently working on adaptations of our algorithm for applications such as molec-

ular dynamics, where efficient tree construction is much more important.

High-order efficient Nystrom Integrator. Our Nystrom integrator successfully
integrates the singular and nearly singular integrals from the boundary integral for-
mulation with high efficiency and high-order accuracy. However, our choices on
some parameters of the algorithm (e.g., the radius of the floating POU) are not opti-
mal. One can study how to choose these parameters depending on the efficiency and
accuracy required for thereal life applications.

In our algorithm, we discretize each chart of the boundary using an evenly spaced
Cartesian grid. In most of the problems, however, in order to be more efficient, one
needs to take an adaptive approach: to discretize the boundary based on the com-
plexity of the geometry and the behavior of the boundary condition. One approach
is based on the idea of the partition of unity. Instead of using one POU function at
each chart, one can use several POU functions which cover regions with different

geometric complexity. The chart is then sampled with several overlapping Cartesian

155



grids with different spacings, one for each POU. The spacings are chosen based on
the behavior of the geometry and boundary function at the support of each POU.
The idea behind our Nystrom integrator can be also readily extended to integrate

singular and hyper-singular volume integrals.

Boundary Integral Solver. The boundary integrals of the second order have the-
oretically good spectral properties which make iterative methods the standard ap-
proach to solve these equations. However, when we deal with domains with high
curvature and/or complexity topology, the condition number can grow quickly to a
point that plain iterative solvers can still be quite slow. Our Nystrom solver can be
adapted into the existing two-grid and multi-grid preconditioners simply by discretiz-
ing the charts using coarser Cartesian grids.

The solver proposed in this thesis does not handle boundaries with crease edges
or corners. To handle these sharp features, one method is to use the charts which are
degenerate at these features. All components of our Nystrom integrator remain the
same except we need to increase the radius of the floating POU around these features
in order to achieve high-order accuracy. However, the complexity of this method
will increase substantially. A challenging problem is to develop integrators which
are both efficient and accurate for boundaries with these sharp features.

We have mentioned the approach of using the Galerkin method with wavelet de-
composition to solve boundary integral equations of the second kind. Our surface
representation makes the wavelet design easy in this case: we simply define wavel ets
of periodic domain in the chart first and then lift them onto the surface. One interest-
ing direction is to develop a Galerkin method solver based on this kind of wavelets

and compare its efficiency and accuracy with the Nystrom solver described in this
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thesis.
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Appendix A

Kernels Tested with FMM

In thisappendix, we give asummary of the kernelstested with our kernel independent
fast multipole method. In the following formulas, y is the location of the singularity,
x isthelocation the evaluation point, n isthe surface normal directionat i, r = x—y.

We use S to stand for the single layer kernel and D for the double layer kernel.

L aplace Equation.

—Au =0,
Lint (2D) —LL(r-n) (2D)
S(ey) =47 " D(wy)={ "
Ll (3D) ~pp(ron) (3D)
M odified L aplace Equation.
au — Au =0,
1 A ki(Alr])
s=ko(Alr[) (2D) —5r o (1 n) (2D)
S(y) =1 D(z,y) = 2% " 7
Ll (3D) ~ (4 ) o) (3D)

where \ = /a.
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Stokes Equation (Incompressible creeping flows).

—pAu+Vp=0, divu =0

(ln =1+ T@IZ) (2D) —%%(r -n) (2D)

" D(z,y) =
[+55%) (D) —fE(rn) (D)

S($’y) =

87w<|7“\

M odified Stokes Equation (Unsteady incompressible creeping flows).
au— pAu+Vp =0, divu =0

S(z,y) = % G+ H(r)(r @ 1)),

D(z,y) = A(lr) ((r- )l + n@7r) + B(|r|)(r @ n) + C(|r))(r-n)(r @),

where
G(s) = ~f(s) ~ (d -2,
H(s) = f’;(;) B f;(;)’
YR LC R O I O]
) = <+ 228 o)
o Qf'"g )l gl
and S
P R . TN EE . T
(=™ (D) i (3D)
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Navier Equation (Elastostatics).

7

1_2yv'dlvu:0

—uAu —

1 3—4v 1 1 (rer)
s (sit e () + s ) (2D)

S(z,y) = o
1 3—4v 1 1 r®r
M <167r(1—y)m T Tort=w) [P ) (3D)

1—2v ((r-n)I+n®r) (r®n) 2 (rn)(rer)
Ar(1—v) <_ [r|? + T'r|2 T 12w |T'|Z ) (2D)

D(z,y) =

1—2v ((r-n)I+n®r) (ren) 3 (rn)(rer) .
8m(1—v) (_ [r|3 + BE = GE > (3D)

Modified Navier Equation (Elastodynamics).

1
1—-2v

au — pAu — V.divu =0

S@w%=%@ﬂml+HWﬂ&®ﬂ%

D(z,y) = A(lr]) ((r- )l +n@7) + B(|r|)(r @n) + C(|r))(r-n)(r©7),

where
Gls)=f — 1)+ (41— )T,
(s = 72 g7,
A = ")+ 2 1 (- )
B(s) = (8 — 1)f///(s> 4 20 +y(8 —1)(d - 1>f//<8) +
Oy = 2 77() = 2 1) + 22 7 (s,
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and

seoe= (ko(ns) — ko(Xs))  (2D)

fls) = :
1 —ns _ %6_)‘8) (3D)

1
o= (5€

\— « - 1-2v « 5= 1 2w
Vo = 21 —v) u’ 2(1—v) T o
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Appendix B

Jumpsand Integrals

In this appendix, we give a summary of the boundary integral formulas for severa
elliptic PDEs and their associated jumps across the boundary. For the jumps, we

choose orthonormal directions o and 3 in the tangent plane at point .

Laplace Equation. Potential:

Gradient of potential:

Vu = %[[Vu]] +/T(x,y)30(y) ds(y)

r

([Vu]] = (@a, 5. 0) (@, 3,n)'
T(x.y) = 1 (n(y) _3(r~,n)r)

Cdm \ P r[?
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Stokes Equations. Velocity:

) = 1)) + [ D)) asty

[u]] = ¢
6 rer
D(z,y) = ETRRE (r-n(y))

Pressure:

1

) = 310 + [ K)o sty
[Pl = —2v(a’pa + B'¢p)
v (n(y) ,(r-n(y)r
e =52 (5 -5

Stress:

1

() = 51500 + [ Tlag)el) asto)
dotpa +28'05 g+ Blpa 0

[[S]] = M(au ﬁ7 ’I’L) OKtSOg + 615%0& 20ét80a + 4Bt§05 0 (Oé, 67 n)t

0 0 0

T(z,y)ply) =

6y { (r@ey) +ely) @r)(r-nly)
8T r

(ren(y) +ny) @r)(r-p(y))

+

_ o) n(y)r® 7“}

Navier Equation. Displacement:
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1w f (o) enen) ()
Di.y) 87r(1—1/){ BE BT
3 (T'n(y))(r®7’)}

Y BE
Stress:
s(0) = 5[06) + [ Ten)e() sty
750 Pa T 575,85 ‘o + Blpa 0
[[s]] = (v, B, n) oaog + Bpa s alo, + 52 Blps 0| (@, B,n)
0 0 0
T(w.9)oly) = 81;»:(11—_ 22?) {_n(y) ® so(y)|:|390(y) ®n(y)

+ 1__6;V (r- o) n(y)|;+|5n(y) or

N 1__6;,(7“ ()2 w(y)’:’;@(y) 7
(2— 8v(r-n(y) 6 (r-n(y)(r- sa(y)))[

1—2v  |r)? 1—2v 7[5
. (_6n(y?r-|;p(y) - iOQV (r- n(?ﬁ&?g : w(y))(r@)r)}_
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