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Abstract

Multi-Experiment Studies (MESs) is a type of computational study in

which the same simulation software is executed multiple times, and the result of

all executions need to be aggregated to obtain useful insight. As computational

simulation experiments become increasingly accepted as part of the scientific

process, the use of MESs is becoming more wide-spread among scientists and

engineers.

MESs present several challenging requirements on the computing system.

First, many MESs need constant user monitoring and feedback, requiring simul-

taneous steering of multiple executions of the simulation code. Second, MESs

can comprise of many executions of long-running simulations; the sheer volume

of computation can make them prohibitively long to run.

Parallel architecture offer an attractive computing platform for MESs.

Low-cost, small-scale desktops employing multi-core chips allow wide-spread

dedicated local access to parallel computation power, offering more research

groups an opportunity to achieve interactive MESs. Massively-parallel, high-

performance computing clusters can afford a level of parallelism never seen

before, and present an opportunity to address the problem of computationally

intensive MESs.
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However, in order to fully leverage the benefits of parallel architectures,

the traditional parallel systems’ view has to be augmented. Existing parallel

computing systems often treat each execution of the software as a black box,

and are prevented from viewing an entire computational study as a single entity

that must be optimized for.

This dissertation investigates how a parallel system can view MESs as an

end-to-end system and leverage the application-specific properties of MESs to

address its requirements. In particular, the system can 1) adapt its scheduling

decisions to the overall goal of an MES to reduce the needed computation, 2)

simultaneously aggregate results from, and disseminate user actions to, multiple

executions of the software to enable simultaneous steering, 3) store reusable

information across executions of the simulation software to reduce individual

run-time, and 4) adapt its resource allocation policies to the MES’s properties

to improve resource utilization.

Using a test bed system called SimX and four example MESs across dif-

ferent disciplines, this dissertation shows that the application-aware MES-level

approach can achieve multi-fold to multiple orders-of-magnitude improvements

over the traditional simulation-level approach.
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Näıve run shown on left, application-level knowledge enabled run

shown on right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Relative error in Pareto frontier approximation as measured by

the Hausdorff distance metric, in performance space . . . . . . . 178

6.3 Scaling behavior of Bridge Study . . . . . . . . . . . . . . . . . 178

6.4 Scenario A scaling and breakdown . . . . . . . . . . . . . . . . . 191

6.5 Scenario B scaling and breakdown . . . . . . . . . . . . . . . . . 195

6.6 Scenario C scaling breakdown . . . . . . . . . . . . . . . . . . . 197

6.7 SimX response time in Animation Study . . . . . . . . . . . . . 201

6.8 SimX response time in Animation Study . . . . . . . . . . . . . 202

6.9 Helium validation study scheduling graph, Configuration O1 . . 216

6.10 Helium validation study scheduling graph, Configuration C . . . 216

6.11 Helium validation study scheduling graph, Configuration D . . . 218

6.12 Helium validation study scheduling graph, Configuration E . . . 218

xiv



List of Tables

3.1 Summary of multi-experiment computational studies discussed

in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Versions of SimX in the example Multi-Experiment Studies. . . 94

4.2 API of SimXManager module in SimX/SCIRun . . . . . . . . . 102

4.3 SimX interface to the sampler code. . . . . . . . . . . . . . . . . 104

4.4 SimX interface to the Task Queue. . . . . . . . . . . . . . . . . 106

4.5 FUEL interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Interface of the spatially-indexed shared object space layer (SISOL).118

4.7 Number of lines of code in SimX, broken down by modules . . . 122

5.1 Summary of result reuse types . . . . . . . . . . . . . . . . . . . 140

5.2 Arches scaling behavior: run time per timestep . . . . . . . . . . 158

5.3 Summary of application-aware system techniques . . . . . . . . 167

6.1 Bridge design study runtime on 128 worker processes . . . . . . 173

6.2 The number of experiments required by the AS+C configuration 174

xv



6.3 Average per-simulation run times (in milliseconds) of the first

1600 simulations, in 200 simulation increments, based on a 128-

processor run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4 Response time of Scenario A, as a function of the amount of

change in the performance metric parameter. . . . . . . . . . . 186

6.5 Response time in Scenario B, as a function of the percentage

completion of the first slice. . . . . . . . . . . . . . . . . . . . . 187

6.6 Response time in Scenario C, as a function of the displacement

of the back electrode. . . . . . . . . . . . . . . . . . . . . . . . 188

6.7 Average per-simulation and per-solver run time in Scenario D, as

a function of the change in electrode voltage. . . . . . . . . . . 189

6.8 Scaling behavior in Scenario A . . . . . . . . . . . . . . . . . . . 192

6.9 Scaling behavior in Scenario B . . . . . . . . . . . . . . . . . . . 194

6.10 Scaling behavior in Scenario C . . . . . . . . . . . . . . . . . . . 196

6.11 Animated scene quality from animation study . . . . . . . . . . 205

6.12 SimX performance on helium model validation study using 32

worker processes . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.13 SimX performance on helium model validation study using 64

worker processes . . . . . . . . . . . . . . . . . . . . . . . . . . 211

xvi



Chapter 1

Introduction

1.1 Motivation

Software applications are rarely run in isolation. Across the fields of sci-

ence, engineering, and art, the computer user often needs to execute the same

software multiple times and only obtains scientific, engineering, or artistic in-

sight by aggregating the results over all of the executions. This type of software

usage pattern, where the same software is executed many times and only the ag-

gregate result is useful, is referred to in this dissertation as a Multi-Experiment

Study (MES).

As computer simulations become increasingly accepted as part of the sci-

entific process, supplementing the traditional dyad of theory and experiments,

more and more research groups turn to MESs made up of multiple computa-

tional experiments to obtain scientific and engineering insights. For example,

a civil engineer may need to execute a bridge deformation simulation multiple

times, each time using a different bridge structure, in order to find the optimal

bridge design. Similarly, a medical device research group may need to execute

multiple software runs to simulate defibrillation shocks, each time using a dif-

1



ferent configuration, in order to find the optimal defibrillator configuration for

a given patient. Or, a group of chemical engineers may need to run a helium-air

mixing simulation multiple times, each time using different model parameters,

in order to discover the best set of model parameters that match real-life exper-

iment results. MESs are so named because each software run often represent

a computational experiment — e.g., the deformation of a bridge design, the

activation of a heart due to a defirillation shock, or the formation of a helium

plume shape — but each individual experiment does not convey the whole in-

formation. It is the aggregate information — the best support structures, the

optimal electrode placement, or the most accurate model parameter — that is

of ultimate interest to the user.

This usage pattern is not limited to scientific applications. An animator,

for example, could run a physical simulation software of an animation scene

many times, each time using a different setup, to discover the most artistically-

satisfying setup for a physically-realistic scene. MESs can be found in diverse

fields such as medicine ([5, 71, 85, 16]), engineering ([73, 28, 44, 6, 54]), finance

([68, 67, 31, 84]), and computer graphics ([43, 81]).

The widespread utility of MESs makes them an interesting area of inves-

tigation, to understand what type of computational system infrastructures are

best suited to run MESs. In this regard, MESs present several challenges. First

of all, many MESs require constant user monitor and feedback in order to steer

the direction of a study as it is being conducted. Most traditional interactive

systems, however, are focused on the steering of one individual experiment at

2



a time, rather than the steering of an entire MES that is made up of those

experiments. For example, the defibrillator designer could specify the cardiac

characteristics of different patients while the defibrillator MES runs, and the

MES would provide the optimal electrode placements for each patient interac-

tively. An interactive MES will need to gather partial information from multiple

executions — often hundreds — of the software, aggregate those information,

present the aggregated information to the user, receive user feedback, and dis-

seminate that information to currently-running or yet-to-run executions. The

second problem MESs pose is the sheer amount of computation needed. On a

production system, often times a single simulation could take days on a multi-

hundred way parallel cluster. For MESs built on such simulation codes, even a

modestly-sized MES consisting of dozens of such executions could take up weeks

of computational resources. The sheer volume of computation needed can make

the time to completion for the MES prohibitively long.

Through the 80s to the early part of 2000s, the Moore’s Law rate of growth

in computational power has largely been realized by the continual improvements

in processor clock speed ([63]). However, as transistors are packed ever more

densely onto processor chips, transistor density approaches the physical density

limit, and processor clock speeds have stalled. As a result, the growth in com-

putational power is now increasingly being provided through parallelism, both

at the chip-level and the cluster level. The shift from clock speed to parallelism

manifests itself in different ways, each with its implications on computer system

design.

3



Since Multi-Experiment Studies are made up of multiple independent exe-

cutions of the same application code, they can be made embarrassingly parallel,

making them an attractive candidate for massively-parallel systems. Recent

trends in parallel architecture design appear to be a good match for addressing

the challenges of MESs. On one end, widely-available, universal, low-cost com-

puting resources like commodity processors have shifted their emphasis away

from pipeline parallelism to instruction-level parallelism, as evidenced by the

advent of multi-core processors, such as the Intel Cell, GPUs with support for

general-purpose computing, and heterogeneous multi-core chips. This trend

enables small groups of researchers or even individual researchers to have dedi-

cated access to large amounts of parallel computational power previously only

available to users of super computing centers. This availability of small-scale

parallel computing resource opens up new usage models for parallel comput-

ing, such as interactive MESs. On the other hand, massively parallel com-

puter architecture has shifted its focus from connecting a modest number of

high-performance chips, such as multi-hundred way parallel cluster of SMPs

(e.g., [86]), to connecting tens of thousands of inexpensive slower processor

nodes using a dedicated high-performance interconnect (e.g., [78]). This new

type of configuration allows for a level of parallelism never seen before. MESs

made up of long-running simulation code are example of workloads that can

take advantage of the computing power in this type of architecture.

However, in order to enable interactive parallel MES, and to effectively

utilize the computational resources at hand, one needs to reconsider how paral-

4



lel software systems are structured and how resources are managed. Specifically,

traditional parallel computing job scheduling software, most of which are based

on the batch execution mode, treat each execution of the software as a black

box. As such, they are prevented from viewing an entire computational study

as a single entity to be optimized for. Thus, when running MESs on such sched-

ulers, the execution sequence of the simulation software is either pre-determined

(e.g., in sweeping over a parameter space), or is prescribed by the user serially,

where the system runs one execution at a time, and the user manually deter-

mines which experiment to execute next based on the results from the previous

simulation. MESs on traditional systems are thus unable to effectively interact

with the user on the study-level, adapt to changing goals of the study, and take

full advantage of the available computational resources.

To aid the execution of MESs effectively, the parallel system needs to be

able to do the following. For interactive MESs, the system must be able to:

1) collect and aggregate execution results and display them to the user, and 2)

receive user inputs while a MES is ongoing, interpret those inputs, and distribute

the user inputs to subsequent executions. To effectively utilize computational

resources, the system must be able to: 1) schedule all the executions within an

MES as a single unit, based on the (potentially dynamically changing) goals of

the MES, and 2) re-distribute computational resources from one execution to

another as needed. To avoid redundant calculation across multiple executions

of the simulation software, the system needs to: 1) re-use partial or completed

results from an early execution in order to speed up subsequent executions, and
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2) store and share data across multiple executions of the software.

In order to address the needs of MESs on parallel systems, a new system

structure is needed. This thesis investigates a new approach to conducting

MESs on parallel architectures. In this approach, the parallel runtime systems

take the responsibility to conduct an entire computational study (i.e., collection

of experiments), instead of just executing simulation experiments individually.

The system can thus provide scheduling decisions (which, and in what order,

are computational experiments run), resource allocation decisions (how many

processing elements to assign to each experiment), storage layer support (for

storing information that can be reused across different experiments), and a

study-level interface for user interaction, in a way that optimizes the execution

of the computational study as a single unit.

1.2 Approaches

This thesis focuses on MESs that use multiple executions of the simulation

code to explore the space of input parameters to the simulation code. Most

MESs fall into this category, referred to in this disseration as Design Space

Exploration (DSE). In DSE, the user executes the simulation code multiple

times, each time using a different set of input parameters. Then, based on the

results of those executions, the user identifies a “region of interest” within the

input parameter space, i.e., a region of the input parameter space that has some

desirable qualities. For example, in a defibrillator study, the user would look

for a set of input parameters to the defibrillation simulation code (placement of

6



defibrillator electrodes) that results in optimal activation, while in an animation

design study, the user wants to find the inputs to the physical simulation engine

(placements of objects in an animated scene) that results in an aesthetically-

pleasing and physically-realistic animated sequence. This “region of interest”

can only be identified if all of the executions’ results are known, and thus reflects

an aggregation of the results of individual simulations.

Some DSEs’ goal is to discover a single region of interest, but in other

DSEs, the region of interest changes dynamically as the user interacts with the

study (e.g., the defibrillator study user can interactively define the patient’s

characteristics and find a new set of optimal defibrillator designs). Moreover,

some DSE’s region of interest is defined by the user’s subjective taste (e.g., the

animator’s region of interest is defined by his aesthetic tastes of what constitutes

an interesting animation sequence). These DSEs require constant user feedback

and interaction.

Since a DSE consists of multiple executions of the same code, often times

the same or similar computations are replicated in different executions (e.g., the

bridge simulation code may end up solving slightly different non-linear systems

for slightly different bridge designs). If some partial results can be stored, they

can be reused in later simulations (e.g., a solution to a Newton solve for one

execution could be used as an initial guess to another execution). This way,

the latter simulations will only be computing the “delta” between experiments,

which are often less computationally intensive than computing from scratch.

Thus, a DSE system should be able to dynamically receive user input, and,
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based on those inputs, dynamically generate a collection of simulation experi-

ments to be conducted, manage to run the experiments on parallel computing

resources, receive the results, aggregate them, identify the region of interest,

and display the aggregate result back to the user. In addition, a system should

ideally have some sort of storage facility that allows sharing of information

across different executions of the simulation code. Ideally, the system should be

able to bring all these considerations together — user interaction, scheduling

and resource allocation, and data reuse — to make optimal progress toward the

DSE’s goals.

The optimal way to conduct a particular DSE, unfortunately, often de-

pends on the properties of the specific DSE being conducted. For example, the

defibrillator study, where the region of interest is clearly defined, has very dif-

ferent requirements from an interactive animation scene design study, where the

region of interest is more subjective. As another example, an DSE comprised of

a small number of long-running simulation experiments have different resource

requirements from an interactive DSE comprised of thousands of short-running

experiments.

This thesis shows that, in order to conduct DSE-like Multi-Experiment

Studies efficiently on parallel architectures, the parallel run time system needs

to make policy decisions that are informed by application-domain knowledge.

The system must treat an MES as a single entity in order to exploit optimiza-

tion opportunities that become available from the study context. Only then

can MESs be conducted efficiently on parallel architectures, enabling the next
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level of scientific discovery. Current parallel systems, however, are inadequately

positioned to meet such challenge.

The parallel runtime system described in this thesis leverages domain

knowledge in multiple ways. The domain knowledge can be used to optimize

the execution time of a single execution of the application code, to reduce the

number of executions required, to enable user-steering, or to improve resource

management. Specifically, with a study-level view, the runtime system is able

to take advantage of the following opportunities that are not used in traditional

systems:

• Aggressive reuse of results from one execution of the applica-

tion code to another. In many applications, knowing the result from

one execution can reduce the computational cost of a similar execution,

because only the ”delta” between those two runs needs to be calculated.

For example, an application that uses an iterative solver can use the re-

sult of a previous solve to reduce the number of iterations needed for

a different solve: if the two systems are similar, the solution should be

similar as well, so, by using the solution of one as the initial guess to the

iterative solver of another, one should be able to reduce the number of

iterations needed. In some applications, the same intermediate states

may be calculated during different runs. If these intermediate states

can be stored from one execution, they can be retrieved and reused in

subsequent executions, eliminating the need to recalculate them.

• Aggregation of information from earlier executions to inform
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later scheduling decisions. In some MESs, the aggregated results

from early runs are used to determine which of the later runs are re-

quired to complete the study. For example, some Design Space Explo-

ration algorithm may use early runs to identify important parts of the

design space associated with the region of interest, so that later runs

are only needed if they explore those parts. This technique can reduce

the actual number of subsequent executions needed.

• Display of the aggregate information to the user. In interactive

MESs, the system needs to display the aggregate study-level result to

the user while the study is on-going (as opposed to displaying the results

of individual executions of the application). That way the user can

monitor the progress of the MES as it is being conducted. Therefore it

is crucial that the system can gather the results of completed executions

while the study is still on-going, and translate the results into useful

information to be displayed to the user.

• Collection of user input while the MES is being run, and dis-

semination of the input to subsequent executions. Analogous to

collecting and displaying aggregate results, an interactive MES system

must be able to collect the user’s study-level directives from the user

interface, translate them into inputs of the individual executions of the

application, and relay the inputs to the individual executions of the

application code.
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• Scheduling of executions to maximize result reuse potential.

As discussed above, the results from an execution can be beneficial

to subsequent executions. However, in some MES, not all executions’

results are equally beneficial. For example, some application code can

only reuse the results from a run whose input is similar enough. A

system that schedules the runs early whose results have a higher result

potential can maximize the benefits it can give to later runs.

• Intelligent scheduling based on the scaling behavior of the ap-

plication code. For MESs built out of application code that can run

on multiple processors, the system also needs to determine the level of

parallelism to allocate to each execution of the application code. As

shown above, not all executions have equal priority: it is desirable, for

example, to complete runs with high result potentials early, and it is

also desirable to complete executions early that can produce the most

useful aggregate information for the user in interactive MESs. It is

therefore desirable to schedule more computational resource to these

”high-priority” runs. However, because of scaling overhead, it is not

clear whether the advantages gained from putting more resources in

those high-priority runs are offset by parallelism overheads. The opti-

mal way to schedule the executions thus depends also on the scaling

characteristics of the application code.

• Redistribution of computational resources. On MESs whose ap-

plication code has checkpoint mechanisms, the system should be able
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to make a decision to reallocate computational resources that are freed

up by executions: should the freed resource be used to start new execu-

tions? Or should it be reassigned to ongoing executions, in which case

the ongoing execution has to be stopped and then restarted from the

checkpoint using more resources? The system needs application-specific

knowledge, such as the scaling behavior of the application code, and the

expected work between checkpoints, in order to make such a decision.

To test this thesis, a parallel runtime system framework containing the

above-mentioned strategies was built for conducting MESs. The system is

called System Software for Interactive Multi-Experiment Computational Studies

(SIMECS, or SimX for short). The central feature of SimX is that it contains a

number of APIs which allows application-specific knowledge to be passed into

the system, enabling SimX to make informed policy choices that are specific to

the MES being conducted.

SimX is designed to be run on clusters of hundreds of nodes, and uses

standard TCP/IP and MPI APIs for communication. For easy integration with

existing frameworks, it is packaged in three forms: as a stand-alone library

for MESs with stand-alone application code, as a collection of components in

the SCIRun Problem-Solving Environment ([50, 49]) for interactive MESs, or

as part of the Uintah component-based framework ([27, 60]) for MESs with

component-based application code.

To evaluate the approach and techniques used in SimX, we take the four

MESs across different disciplines introduced above — one in mechanical en-
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gineering (the bridge design study), one in chemical engineering research (the

helium gas mixing study), one in bio-medical device design (the defibrillator

study), and one in computer animation (the animation scene design study) —

and investigate how SimX’s use of domain-specific knowledge can improve the

performance of these MESs. These studies represent a range of system require-

ments: they vary in their user interactivity requirements (two are interactive,

two are not), simulation code properties (three are serial code each taking sec-

onds of run time, one is parallel code taking hours), and study objectives (three

have well-defined regions of interest, one has a subjective region of interest).

1.3 Contributions

This thesis shows that, by applying application-specific domain knowledge

to guide the runtime system design and decision-making process, a parallel sys-

tem can efficiently manage the collection of experiments in a Multi-Experiment

Study to achieve its goals: enabling user-interactivity at a study-level and re-

ducing the overall run time.

In particular, this thesis proposes an API that can be used to import the

application-specific knowledge into a parallel run time system. Through the

API, the user can specify the goals of the MES to guide the system’s scheduling

descisions, reducing the amount of computation required. The user can also use

the API to specify how to aggregate execution results from, and disseminate

user inputs to, multiple executions of software, thus enabling steering of the

entire computational study. Additionally, the user can use the API to store
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information across executions of the software, enabling the reuse of computation

results across the different executions. Finally, the user can use this API to

specify the simulation code’s scaling behavior, and reuse behavior, so that the

system can adapt its resource allocation policies to improve resource utilization.

Finally, this thesis quantifies the benefits shown by each type of domain-

specific knowledge on the performance of four example Multi-Experiment Stud-

ies. Using SimX as a test bed, and the four MESs as test cases, this thesis

shows that the approach it describes can achieve multi-fold to multiple-orders-

of-magnitude improvements over the traditional approach.

1.4 Thesis Organization

Chapter 2 describes related work in the area of parallel runtime systems,

on many of which this thesis is based. Chapter 3 presents a formal description

of our motivating problem, Design Space Exploration, and describes in detail

the four example applications, which serve as running examples in this the-

sis. Chapter 4 describes the system that was built to test this thesis, SimX.

Chapter 5 describes in detail how application-specific knowledge can be used

by SimX in each of the four example MESs. Chapter 6 presents the experiment

results of using SimX to conduct the example studies. Chapter 7 summarizes

and generalizes what is learned in this thesis, and presents ideas for future work.
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Chapter 2

Related Work

The problem addressed in this thesis is related to efforts undertaken in a

number of research areas related to parallel runtime systems, including parame-

ter sweep applications on computational grids, steerable and interactive parallel

applications, as well as component-based problem solving environments. This

chapter presents an overview of the most important works in each of these areas.

However, as discussed below, these prior efforts do not adequately address key

properties of the Multi-Experiment Study problem, namely, study-level inter-

activity, data reuse across experiments, resource allocation, and the interaction

between these concerns.

2.1 Grid Parameter Sweep Applications

A large body of work has been devoted to exploring the idea of using com-

putational grids to conduct parameter sweep-based Multi-Experiment Studies.

Examples include Nimrod [2], Nimrod/O [1], Condor [80], Globus [10],

NetSolve [18], VI-Steering [33], and Condor DAGMan [79].

In such systems, a computational grid — a group of loosely-coupled, likely
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heterogeneous computers whose membership can be dynamically changed ([36])

— is used as the execution platform for the MES. The grid scheduler system

steps through the input space of the simulation experiment, effectively sweeping

through all the possible input parameters of the code.

These systems deal with a problem that is similar to, but different from,

the problem addressed in this thesis. Both use parallel computers to explore a

parameter space. However, typically, grid parameter sweep systems deal with

the loosely-coupled nature of the grid, and pay little attention to how the prop-

erties of a particular MES can be leveraged to conduct it more efficiently.

There are exceptions. VI-Steering, Nimrod/O, and Condor DAGMan,

for example, leverage knowledge of specific MESs and apply them to the grid

architecture. In the subsections below, we first discuss grid schedulers in general,

and then discuss some of the MES-specific Grid-based parameter sweep systems.

2.1.1 Grid Schedulers

The basic grid scheduler system are concerned with coping with problems

arising from the loosely-coupled nature of the grid resources. This subsection

looks at the architecture of two such systems, NetSolve and Globus, to illustrate

the ideas behind their designs.

NetSolve [18] is an early example of a grid system scheduler. The grid in

NetSolve consists of a loosely-coupled set of machines, each running a NetSolve

computational service or communication service, or both. The machines com-

municate through TCP/IP, and use the External Data Representation Standard
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protocol ([45]) for exchanging data. The machines running the communication

service are called NetSolve agents, and are responsible for much of the communi-

cation, book-keeping, and system-level decisions. The NetSolve agents provide a

directory service that locates machines providing computational services. The

user, using a NetSolve client, can dynamically add or remove computational

servers to the computational grid through agents. Then, when the client needs

to submit a job, it can ask the agent for a list of computational servers that the

client should submit to. The NetSolve agents keeps track of the computational

power, workload, and network link characteristics of each computational servers

it knows about, and decides which computational server to return to the client

with the objctive of balancing the load on the grid. It uses a rudimentary model

to estimate the performance of a given job on a given computational service,

taking into account the computational power of the server, the complexity of

the algorithm used in the job, the size of the problem in the job, the workload of

the server, and the latency/bandwidth of the network link to the server. Apart

from directory service and load balancing, the agents are also responsible for

detecting failures of computational servers, and removing them from the list of

available servers when a failure happens. NetSolve thus addresses the under-

lying problems of grid computing: load-balancing, directory service, and fault

tolerance.

In the Globus architecture [37], there are no separate agent processes. In-

stead, each Globus server can provide both computational and communication

services. Globus uses Web Services ([11]) to define its interface and structure
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its components. Here, the grid is composed of machines providing a number

of services. Some of these services are application-specific, implemented by the

application developer on Globus service container components to perform use-

ful application-specific functions. These services are analogous to the services

provided by NetSolve computational servers. Other services are provided by

pre-packaged Globus components to solve infrastructure-level problems. These

services are analogous to the services provided by the NetSolve Agents, and

they cover the areas of execution management, data management, monitoring

and discovery, and security. Execution management services allow a client to

dispatch tasks, control the tasks’ resource consumption, restart a task in the

event of failure, and even run MPI processes on grid resources. Data man-

agement services provide tools for the client and grid machines to transfer files,

replicate and manage data, locate data replica, and provide access to data. Mon-

itoring and Discovery services dynamically collect and aggregates information

about which machine provide which services. Security components implement

multiple credential formats and protocols to provide message protection, au-

thorization, authentication, delegation, and auditing functions. Globus users

can access all these services using a set of Globus client libraries. Application

developers using the Globus infrastructure can utilize these services to suit the

needs of their applications.

As is exemplified by NetSolve and Globus, the goal of basic grid systems

is to manage a loosely-coupled, dynamically changing set of computational re-

sources via a set of service provided by these resources. Their main concern is to
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provide fault-tolerance, load-balancing, discovery and directory services. More

sophisticated systems provide security and data replication features. Other grid

systems may have more specific goals. For example, in Condor, a grid machine

may not be dedicated exclusively to running jobs from the grid, and only wishes

to make itself available to the grid when it is idle. Condor can be configured to

opportunistically detect idle CPUs on those machines, and special functionality

is added in so a machine can add itself to the grid when it is idle, and removes

itself from the grid when it detects non-Condor activities.

2.1.2 Parameter Exploration on Grid Systems

In the Grid systems described above, the policies governing some of the

system services, such as data replication and load balancing, should be in-

fluenced by requirements of the applications being run. In order to search a

parameter space using only these tools, one needs to determine a priori which

parameter points to explore (i.e., which computational experiments to run),

submit those points to the system, and rely on the system to load-balance and

distribute the jobs to computational elements on the grid.

More specific tools such as VI-Steering and Nimrod/O show that, by in-

troducing more application-knowledge into the system policies, it is possible

for the grid system to make better choices. Specifically, the decision of which

tasks to execute can be determined dynamically by the system. This flexibility

enables the system to more efficiently explore the parameter space and react

to user actions. These application-specific grid-based parameter search systems
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are built by adding a layer on top of the grid systems described in the previous

subsection.

Nimrod/O [1] is a tool based on Nimrod, and is used for one specific

type of MES, namely, MESs that perform a single-objective optimization on a

parameter space. Here, each computational experiment corresponds to a func-

tion evaluation, and Nimrod/O tries to find a point on the parameter space that

minimizes that function. The user only needs to use a declarative language to

indicate the parameter space he wishes to explore, and Nimrod/O’s job control

module will determine, based on the search algorithm chosen by the user, which

tasks need to be executed. These tasks are sent to Nimrod for execution on the

grid, and the execution results (function values) are stored in a data cache as

well as sent back to the job controller. Nimrod/O’s job controller supports four

search algorithms: parallel BFGS (Broyden-Fletcher-Goldfarb-Shanno) method,

the Simplex method, Simulated Annealing, and a Divide-and-Conquer heuris-

tic. In essence, Nimrod/O makes use of the domain knowledge of its target

application to enable efficient scheduling decisions. Without Nimrod/O, the

user would need to perform a parameter sweep using Nimrod, which is much

less efficient.

VI-Steering [33, 17] is a framework for conducting interactive steerable

parameter sweep studies on distributed machines. It tries to solve the same

problem as Nimrod/O: optimization of a function within a parameter space,

where the function is evaluated by executing a simulation code. Instead of using

a pre-determined search algorithm, however, VI-Steering takes the approach of
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using the user’s interaction to guide its search of the parameter space. In VI-

Steering architecture, there are three main components: the VI Daemon, the VI

Database, and the VI Interface. The VI Interface is responsible for receiving the

user’s inputs, which indicates the parameter space he wishes to explore. The

VI Interface then communicate this space to the VI Daemon, which translates

the parameter space specification into a list of tasks by sweeping the selected

parameter space, and off-loads the tasks on a grid service. The grid service

executes the tasks, and returns the function evaluations to the VI Daemon. The

VI Daemon updates these function evaluations into the VI Database, which the

VI Interface can access and analyze. The structure of VI-Steering is designed to

enable to user to look at partial result of the MES — the function evaluations

of early experiments — while some tasks are still being executed on the grid.

This way, the user can interactively specify to the system sub-regions of the

parameter space that seems to him worthy of more exploration. The user can

view the partial study-level result, dynamically select a new region of parameter

space to explore, and the VI-steering system will immediately start sweeping

the new parameter space region. VI-steering thus represents some elements of

study-level steering.

Both VI-steering and Nimrod/O make use of application-level knowledge

to provide system-level support for scheduling and user interaction. Thus, they

point a way to solving the problem presented in this thesis. Unfortunately, both

of these systems are geared toward one specific type of problem (single-objective

optimization), whereas this thesis aims to find a more general way of expressing
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application-specific knowledge in MESs. In addition, these systems are designed

to run on grids, which have very different communication/computation charac-

teristics from the systems investigated in this thesis: tightly-coupled massively

parallel clusters and chip-level parallel systems. In particular, the interaction

between scheduling, data reuse, resource allocation, and user interaction are

vastly different when it is easy to move data between computational elements,

and easy to dynamically form and reform process groups from computational

elements.

2.2 Steering of Parallel Computations

As VI-steering shows, it is important for some MESs to have the ability

for the user to actively engage in the parameter space exploration while the

study is still going on — viewing the partial result of the study, and changing

the specification of the study interactively. Effectively, the user can dynamically

control which experiments are issued, and by doing so, steer all the machines

on the grid simultaneously.

One of the goals in this thesis is to investigate an API that can be used to

enable study-level user steering of MESs. While VI-steering demonstrates one

way to conduct a specific kind of study-level steering, this section looks at the

topic of enabling the user to simultaneously steer multiple machines running a

single computation. This topic has received a fair amount of attention in prior

work, in systems including Falcon [46], CUMULVUS [41] [55], Computa-

tional Steering Environment (CSE) [56], Mirror Object Steering Sys-
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tem [30], Distributed Laboratories [69], DISCOVER [59], WEDS [22],

GViz [48], and RealityGrid [13].

2.2.1 Parallel Steering Systems

A class of parallel steering systems focuses on the technique of steering

computations on tightly-coupled parallel machines — how to gather data from

processing elements and present it to the user, and how to disseminate user

interaction to the processing elements. These systems, including Falcon, Mirror

Object Steering System, CUMULVUS, and CSE, are concerned mainly with

controlling the latency with which messages can travel between the user and

the parallel machines, and devising an appropriate API with which the user can

specify how the steering can be done.

As an example, Falcon uses a steering server in its run time system to

facilitate the communication between the user and computation nodes. To run

his application on Falcon, the application developer must have access to the

source code of the application program. The developer first declares which vari-

ables in his application program can be monitored and/or steered. Then he

uses Falcon’s instrumentation tool to modify his program, inserting probes and

sensor codes, after which he recompiles his program. He then starts the Fal-

con run time environment. The instrumented application program runs on the

compute nodes of the parallel machine, while a Falcon steering server is run on

a front-end. The instrumented application code can, at run time, communicate

with the Falcon Steering server to relay the variable’s status back to the user,
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or to set those variable’s value based on the user’s actions. At the front end,

Falcon presents a graphical user interface to the user to display the values of

the variables, as well as receive users’ inputs.

Other similar systems are variations on Falcon’s idea: first the user in-

struments his code to insert logic to communicate with the user’s front end

through an agent. Then, he deploys the instrumented application code on the

processing elements. Then he launches the user interface and the steering agent

(which can itself be a separate process or a component within the user’s front

end process) to remotely steer the collection of machines. CUMULVUS uses the

same idea, and takes a data-centric view (where variables are declared in ad-

vance and the user can monitor and set them interactively), whereas CSE uses

the same idea, but takes a function-centric view (where handler functions are

declared in advance and the user can cause them to be executed interactively).

The difference between these systems and the problem dealt with in this

thesis is that in these systems, all the variable changes are global: when a user

changes the value of a variable, the change is visible to all processing elements.

As a consequence, Falcon, and other basic parallel steering systems, are good

for steering single executions of parallel software, rather than MESs, which can

contain many executions of potentially parallel codes.

2.2.2 Grid-based Steering Systems

While CSE, CUMULVUS, Mirror Object Steering, and Falcon are tar-

geted toward steering of parallel applications on tightly-coupled parallel ma-
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chines, other parallel steering systems target steering on computational grids.

VI-steering is one such example, which was discussed earlier. RealityGrid, Dis-

tributed Laboratories, DISCOVER, WEDS, and GViz are other middleware

layers designed to solve the problem of steering a grid-based computation. They

differ from VI-steering in that they are geared toward more general applications,

rather than just one specific type of application (single-objective optimization

MES).

In these systems, the grid-based applications are composed of multiple

computing resources, each providing a different piece of service. The steering

system needs to coordinate between these computing resource to ensure a con-

sistent view. These steering systems are built on top of existing grid infrastruc-

tures. For example, RealityGrid is built using Open Grid Service Infrastructure

(OGSI) [32], while WEDS is built on the Web Services Resource Framework

(WSRF) [35].

In WEDS (WSRF-based Environment for Distributed Simulation), spe-

cial web services are deployed on the grid to facilitate such coordination. When

a user launches an application, a broker service is selected on the grid, which

connects with the various component services of the application to coordinate

its execution. These component services could include machine services, which

provide the actual computation, wrapper services, which act as a communica-

tion gateway between the machine services and the outside world, file services,

which runs on the user’s machine and is responsible for moving data stored on

files, and visualization service, which interacts with the user. Each of these
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services may run on different machines, and the WSRF framework is used to

coordinate the communication between them. These grid-based steering frame-

work can also be used for monitoring and checkpointing grid-based applications.

They take a data-centric approach: only certain parameters in an application

are monitored and steerable, and they are to be declared in advance.

These grid parallel steering problems share many characteristics as the

problem investigated in this thesis: the need to coordinate data coming from

multiple machines, aggregating the data and displaying to the user, receiving

user action, and disseminate the user’s action to the machines. However, the

computation resources considered in this thesis are more tightly-coupled, and

typically more homogeneous. So, the service-oriented architecture in a grid

parallel steering system is forgone in favor of the instrumentation approach

used in more traditional parallel steering systems. Also, the grid scheduler

is more constrained in where it can schedule a task: for example, the broker

service on a grid can only choose to schedule a particular task on a machine

that provides the service, whereas in a more homogeneous environment running

an MES, the tasks are (mostly) identical, and the system has more flexibility

on how to schedule them. As a result, in this thesis, performance concerns such

as load balancing and resource utilisation can be used to guide this decision.

Moreover, the problem in this thesis is more focused, namely, we are only looking

at MESs. So, it is possible to use application-specific knowledge to facilitate

the scheduling and resource management. Finally, in this thesis, the user has

more control over the computational resources: unlike the grid, he is guaranteed
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access to the parallel computation resources, because he either has an allocation

on a data center, or he owns the parallel desktop machine. As a consequence,

he has more flexibility on how the computational elements are grouped together

and used.

2.3 Scheduling and Resource Management Techniques in Parallel

Runtime Systems

In addition to parameter sweep applications and parallel steering systems,

many scheduling and resource management techniques in traditional system

research are applicable to this thesis’s problem.

2.3.1 Scheduling of sequential tasks on parallel machines

One class of research focuses on scheduling inter-dependent sequential

tasks on parallel machines. Many of these works utilize heuristics to map these

tasks onto processing elements in order to minimize the total makespan of the

group of dependent sequential tasks.

In one example, a simple model to describe fine-grain scheduling on

multi-threaded multi-processors was proposed in [23]. Here, scheduling is done

in units of ”quanta”, representing a fixed amount of work. Using this quanta

model, the scheduler is able to take a dataflow-based computation graph and

construct a schedule — the mapping of tasks onto distributed computing re-

sources. This way of scheduling minimizes the overall run time, taking into

account the time it takes for data to travel, the time of each task’s execution,
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and the dependency between tasks.

In another example, ICC++ [52] offers a hierarchical approach to load

balancing threads on a distributed platform. It groups threads into subsets and

load balances each subset independently. This hierarchical approach simplifies

the scheduling problem on a distributed platform, at the cost of requiring user

intervention to identify subsets and give the scheduling policy for each subset.

The Multiprocessor Scheduling Problem [40] has also been studied

extensively as a theoretical topic. In MPS, a system tries to allocate process-

ing elements to a group of inter-dependent tasks while minimizing the total

makespan of the entire group of tasks. The tasks are arranged into a graph:

each task is represented by a vertex, and data dependency between the tasks

are represented by directed edges. The communication costs are represented

by the weight of the edges. Many heuristics are surveyed in [40]. Critical

path-seeking heuristics such as Highest Level First with Estimated Time and

Coffmann-Graham algorithms (both greedy algorithms) works well when there

is no communication costs, while the Extended List Scheduling algorithm can

accommodate communication costs by starting from assuming there is no com-

munication costs, and inserting them into the resultant schedule later. Clus-

tering algorithms seek to simplify the graph into clusters and schedule entire

clusters on processors. Linear Clustering decomposes the task list into linear

clusters (sub-graphs which involve only vertices that have one incident edge and

one out-going edge), and schedule entire clusters onto the same processors. In-

ternalization algorithms create clusters by merging adjacent vertices with heavy
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edges in an attempt to reduce communication cost. The optimal heuristics de-

pends on the situation — the connectivity of the task graph, the distribution

of edge weights, and the number of processing elements available.

The work in this thesis can be thought of as extensions to the work men-

tioned above. Even though MESs consist of collections of independent tasks,

some of the optimization techniques used in this thesis introduce dependen-

cies between them, creating a group of inter-dependent tasks. Hence, our sys-

tem then needs to solve the problem of minimizing makespan of a group of

inter-dependent tasks. One difference between the work in this thesis and the

above-mentioned systems, however, is that the tasks in the MESs discussed

in this thesis are dynamically formed. In fine-grain scheduling, for example,

static analysis is performed, i.e., all the pieces of the application has to be

known before hand, whereas in MES, the dataflow and resource requirements

are dynamically-determined. Another difference is that the tasks in this thesis

can potentially be run in parallel. So, there is an extra dimension of deciding

how much parallelism each task should receive.

2.3.2 Scheduling of parallel tasks on parallel machines

Another class of research focuses on scheduling parallel tasks on paral-

lel machines. Here, the system needs to decide not only what order, and on

which processing element the tasks ought to be scheduled, but also how many

processing elements should be assigned to each particular task.
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Affinity Scheduling [38, 19] is a language extension and runtime system

that allows programmers to specify affinity of functions and data within a single

distributed application consisting of many inter-dependent parallel tasks. The

programmer can specify, in his program, that particular functions (which the

runtime system translates into tasks) ought to be executed on a particular set

of machines, or that a particular distributed data structure ought to be placed

on a particular set of machines. The runtime system takes hints from these

affinity specifications, and performs the scheduling decisions that would satisfy

the users’ constraints. This provides a mechanism for the user to gain fine-level

control of each execution of his application code, but leaves the runtime system

with a reduced flexibility to balance the load. The system balances the load by

assigning processors to tasks and data whose affinity hints are are not specified

by the user, and by job-stealing, where idle processors steal jobs from busy

processors.

Research on the scheduling of moldable jobs [76, 77] has been conducted

on large scale parallel systems. These works come from the research of tradi-

tional batch scheduling systems, where the goal is to improve individual jobs’

turn-around times. Moldable jobs are jobs that can be run on a variable num-

ber of processors, so a moldable job batch scheduler needs to decide the amount

of parallelism that is allowed for each job, such that the turn-around time —

queue time plus execution time — of the average job in the system is minimized.

These works introduce the Fair Share policy, where a job is assigned the number

of processors such that the fraction of processing resources it is assigned ver-
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sus the total amount of resource in the system is comparable to the fraction of

job-weight (total number of processor-seconds requested) of the job compared

to the total job-weight of the rest of the jobs in the system. This fraction is

called the weight-fraction. Depending on the system’s workload distribution,

and the parallelization overheads of the tasks in the system, variations of the

Fair Share policy have been shown to be beneficial. Submit-time fair share and

schedule-time fair share make the assignment of computational resources at the

time when the job is submitted and when the job is scheduled, respectively.

Some Fair Share variants modify the definition of weight fraction, calculating it

using the square root of the job’s job-weights. Some variants set aside a number

of processors to handle small and quick-to-finish jobs, so as to reduce those jobs’

queue time. The idea of Fair Share policy has been found to be beneficial in

the work in this thesis also, however, it needs to be adapted to accommodate a

different goal. In traditional research on moldable jobs, the number of jobs are

fixed, and its objective is to optimize for average turn-around time of individual

jobs, while in MES, the number of jobs can dynamically change at runtime, and

the goal is to optimize the total execution time.

2.4 Component-Based Problem-Solving Environments

A prototype system, SimX, was built to test the ideas presented in this

thesis. For easy deployment, SimX is interfaced with two component-based

Problem Solving Environments (PSEs). This section describes the two PSEs in

detail, in order to facilitate the discussion of SimX in a later chapter.
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2.4.1 SCIRun

SCIRun [65, 66, 21]) is an interactive graphical Problem Solving Envi-

ronment (PSE), where the user can create interactive scientific applications out

of component modules. It is based on a dataflow model, and designed for ease of

use and interactivity, but not for large-scale parallel programs or MESs. With

the exception of one variant ([62]), the applications composed in the SCIRun

PSE are designed to run in the SCIRun graphical run time environment on a

single computer. A typical application is described in [58], where an interactive

application for bio-electric field calculation is built out of SCIRun components.

This application forms the basis of the defibrillator design example MES de-

scribed later in this thesis.

In SCIRun, common functionalities for scientific computing, visualization,

and steering are encapsulated into components. The components’ interfaces are

specified as ports. Each component may have input ports, which specify inputs

to the component, and output ports, which specify the results computed by the

component. For example, Figure 2.1 shows the solver component, which solves

a system of linear equations Ax = b. It has four input ports, shown on the top

of the component. The four ports correspond to the inputs: the stiffness matrix

A, the RHS vector b, an optional preconditioner matrix, and an optional initial

guess to its iterative solver. There are two output ports, corresponding to the

solution vector x, and the preconditioner matrix computed for A.

When using SCIRun, the user mixes and matches these components through

a graphical user interface. He connects the output ports of some components
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Figure 2.1: SCIRun Solver component
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to the input ports of other components in order to construct a workflow that,

when executed, computes the functionality he needs. Figure 2.2 shows a SCIRun

workflow net, annotated with labels of functions of each part of the workflow.

Once the workflow is constructed, the user can then specify inputs to this work-

flow using the components’ UI. The UI is a way (in addition to input ports)

for components to receive inputs. However, unlike ports, which receives inputs

from another components’ outputs, the UI receive inputs from the user directly.

Figure 2.3 shows the UI of the solver component. In the UI, the user can specify

information to the component directly, such as the residual tolerance, iterative

solver, and iteration limits of the solver. Each user action in the UI of a compo-

nent causes the workflow net to which the component belongs to execute. So, if

the user uses the UI of a component upstream to change the value of the RHS

of the solver component, the solver component will be executed as a result.

To display simulation results to the user, SCIRun provides visualization

and rendering components. When these components are connected to a work-

flow net, that can transform the outputs of the workflow net into an image of

an object in 3D space. Figure 2.4 is an example of a visualization component

which shows the bio-electric field inside a human torso. When the user changes

the inputs to the workflow net via UIs in the net’s components, he causes the

workflow net to be re-executed. As a result, he can observe the new output from

the visualization components as SCIRun executes the workflow. Each time he

specifies a new input, a new workflow execution is triggered, and the visualiza-

tion component shows the updated image. In this fashion, SCIRun enables the
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Figure 2.2: SCIRun workflow net.
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Figure 2.3: User Interface of the SCIRun Solver component
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user to interactively control the application.

Using SCIRun, a scientist or engineer can interactively steer a single ap-

plication on a serial computer. The work in this thesis uses SimX’s API to

extend SCIRun’s capability to allow it to steer and monitor entire computa-

tional studies. In addition, a SimX/SCIRun interface is also developed so that

any SCIRun workflow applications can easily be incorporated as the simulation

code in an MES. Section 4.2 shows how SimX extends SCIRun to enable the

steering of entire computational studies on a parallel cluster.

2.4.2 Uintah

Like SCIRun, Uintah [26, 42] is a component-based, workflow-based

Problem Solving Environment. Unlike SCIRun, however, it is not designed

for real-time user interaction, and thus does not have a graphical user interface

for the purpose of steering an execution. Rather, it is designed for composing

large-scale parallel simulations out of reusable components.

There is no graphical user interface and no component UIs in Uintah.

Instead, the Uintah user connects output ports and input ports using Uintah

components’ C++ attachPort() interface. By calling this interface on various

components in his driver code, the user can implicitly set up a workflow. The

component’s interfaces (input ports and output ports) are specified in the form

of component XML files. When the user starts a Uintah run, he supplies a

problem specification XML file as an argument to the driver executable. The

problem XML file contains the input data required by all the components in the
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Figure 2.4: SCIRun visualization component shows the electric potential in the
torso during a defibrillation shock.

38



workflow, and is parsed by the Uintah run time at the start of a Uintah run.

Each of the components within the workflow net interpret their own blocks in the

XML files. The Uintah runtime then takes care of the execution of components

in the Uintah workflow net, moving data from output ports to connected input

ports.

Uintah is designed to run on parallel clusters. Uintah components have

access to an MPI communicator, so each component can potentially be exe-

cuted in parallel. In addition, some components have access to common high

performance libraries like PETSc ([7, 8]) or Hypre ([34]).

There are no visualization or rendering components in Uintah. In their

places, a data archiver component is used. All components that have some

information to return to the user would write their outputs to the data archiver.

The archiver then writes this information in the form of several XML files. Each

data archive dump is put into a separate sub-directory, and the XML files are

written into the sub-directory. Visualization is performed off-line.

Uintah applications proceed in timesteps. At each timestep, the Uin-

tah run time determines the timestep size, advances the simulation domain by

executing the workflow, and then determines whether the timestep has to be

retaken (if, for example, the timestep size was too big). Finally, it determines

whether it needs to write the data archive out to the file system. Uintah is in-

telligent in that it would skip executing a component if its inputs are unchanged

from the last timestep.

Uintah is designed for long-running workflows on massively parallel clus-
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ters. The data archives can be re-used: if the user specifies a data archive to

his driver code instead of an input XML file, Uintah can pick up from the data

archive and continue the simulation. I.e., data archives can be used as check-

points. As will be seen, this ability to restart a simulation from a checkpoint is

especially useful for reusing simulation states across different experiments.

Using Uintah, a scientist or engineer can easily compose parallel check-

pointable applications by connecting existing software components. In this the-

sis, an SimX/Uintah interface is constructed so that Uintah as be used as a

substrate by which we can investigate resource allocation and scheduling issues

in MESs that are composed from parallel simulations. In particular, the driver

code in Uintah is modified so that it acts as a “shell” that treats the Uintah

workflow as if it were a simulation experiment that makes up an MES. Sec-

tion 4.2 shows how SimX extends Uintah to enable the execution of an entire

computational study.

2.5 Summary

This chapter has provided an overview of research efforts related to the

area of interactive parallel Multi-Experiment Studies. Various approaches con-

tain promising ideas, and some are found to be beneficial. Parameter sweep ap-

plications on computational grids provide insights into how to conduct MESs on

distributed resources, but the different network characteristics of computational

grids and parallel desktops and clusters means that not all of the techniques are

tranferrable to this thesis. Interactive and steerable parallel application frame-
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works provide a model using which an MES system can monitor and steer an

MES on distributed resources, but the fact that they are designed for steering

single parallel application limits their applicability to the MES problem, which

requires a more flexible steering mechanism to deal with multiple experiments.

Other works in traditional run time system research also deal with scheduling

and resource management of inter-dependent serial jobs on parallel computers,

but the static nature of these analyses limit their applicability to the dynamic

nature of interactive and adaptive MESs. Most importantly, with few excep-

tions, none of the above systems takes the approach of using application-specific

information in aiding their system decisions.
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Chapter 3

Problem Statement

To demonstrate the challenges and requirements faced by Multi-Experiment

Studies, this thesis looks closely at the four MESs as running examples. Each of

these MESs have a different set of requirements — some consist of a large num-

ber of short-running simulation experiments, some consist of a small number

of long-running simulation experiments, some require constant user input, and

some have ill-defined goals. These motivating examples are intended to show,

in concrete terms, the challenges posed by MESs, and also to serve as a test

bed for the system techniques proposed in this thesis.

In each of the following sections, a detailed description of each of the four

example MESs is given. A description for the simulation code that makes up

the study is given first, then the studies’ objectives are explained, followed by a

discussion on the requirements and challenges posed by the study on the system

used for conducting them.

In the last section, a formal formulation of MESs is given. This formu-

lation puts all MESs into a framework around which a parallel system can be

developed specifically to address their requirements.
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3.1 2D Bridge Design

The first computational study is from the domain of engineering design.

MESs are frequently used in the engineering design domain ([73, 28, 44, 6,

54]). Often times engineering design MESs aim to look for trade-offs in design

parameters of particular structures.

This example is a model civil engineering design problem. Suppose a strut

bridge is being designed to be built across a river. There are many design choices

the engineer has to make: the placement of the struts, the width of the span,

the material used, etc... To make these decisions, many considerations have

to be taken: the traffic requirements on the bridge, and load requirements of

the bridge, the climate condition, the cost of construction (which itself depends

on the cost of material and shape of the riverbed), etc... These considerations

often can be translated into design objectives: minimize the deformation of the

structure under normal traffic load, minimize the cost of construction, etc.

To make a given design choice, the engineer may need to employ repeated

runs of a simulation software. He would need the software to find out, for

example, the stresses and deformations of various designs under various loads.

The results of this software can help him make the design choices that will best

meet the design objectives.

Often, however, the design objectives conflict with each other, e.g., a

thicker span provides more support but is more expensive to construct, so there

is not one obvious design choice: rather, there is a number of equally good

design choices that represent the trade-off between the objectives. It is the goal

43



of the MES to discover this set of design choices among all the possible design

choices the designer could make.

In this first MES, we simplified the bridge design problem on several

fronts. First, we use a simplified version of the bridge simulation code. Instead

of using a full-scale strut simulation, we use a simplified 2D version. This allows

the study to be performed in a reasonable amount of time. Second, we limit

our design choices to the placement of two struts only. Third, we limit our

design objectives to two dimensions: the deformation of the bridge and the cost

of construction. This version contains many of the same properties as the full

version — a simulation code involving a non-linear solver, conflicting design

objectives, and multiple design choices. Thus, a full version is expected to be a

scaled versions of the one described.

Figure 3.1 illustrates the simplified design problem. In this simplified ver-

sion, the user tries to design an elastically deforming bridge with four supports,

two of which are fixed at the endpoints, and the placement of the other two is

to be decided. The MES tries to find a set of placements of the two non-fixed

supports r0 and r1 in order to minimize both the cost of construction f(r) as

well as the maximum deformation of the bridge under uniform load. The spe-

cific problem is relatively straightforward, and the individual simulations are

relatively fast — typically taking 7 seconds each. At the same time, it captures

many essential features present in a real-life engineering design situations, e.g.,

one involving simulations of a car body or a more complex structure.
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Figure 3.1: The bridge design problem
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3.1.1 Simulation software

The simulation code used in this study simulates the bridge’s deformation

under uniform load. The supports at the endpoints are fixed and clamped, but

the remaining two supports are modelled as columns made of a homogeneous

elastic material. The bridge itself is modeled as a one-dimensional finite ele-

ment rod elastically deforming in two dimensions. The four support points are

modelled as boundary conditions to the finite element problem. A nonlinear

model is used to model the bridge.

Mathematically, the problem is described by the potential energy for the

bridge, the boundary conditions, and a predefined cost function for the con-

struction of the non-fixed supports.

The bridge is discretized into a number of degrees of freedom that control

the actual material points. The reference (initial) position is first defined as

a straight horizontal rod. The potential energy is defined as the sum of five

terms on each material point: the bending energy, which depends on the dis-

tance between two material points, the membrane energy, which depends to the

curvature at a material point, the potential energy due to gravity, which is pro-

portional to the displacement of the material point from its reference position,

and the potential energies due to the two elastic supports, which are modelled

as simple elastic springs of high stiffness, but only applied to material points

near to where the elastic supports are placed. A Dirichlet boundary condition

is set at the fixed support at both end points.

The simulation starts from the undeformed position, then a Newton search
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is conducted to find the deformed configuration that minimizes the potential

energy of the rod. To solve the nonlinear problem, we use the Newton method

with cubic line search. We solve the linear system in the interior loop of the

linear solver using a direct LU solver.

We use a simple nonlinear discretization of the problem. The parameter

t is the distance from a material point to a reference point; t0 and t1 are the

endpoints. The rod’s displacement p(t) is discretized at points pi = p(t0 + hi),

where i = 0 . . . N and h = (t1 − t0)/N . The discretized energy of the bridge is

given by:

N−1∑
i=1

(
2θ2

i

li + li+1

+ ρgpy
i ) +

N−1∑
i=0

(li/h− 1)2 +Kc(p
y
r0

)2 +Kc(p
y
r1

)2

where li = |pi+1 − pi|, and θi is the angle between segments (pi−1, pi) and

(pi, pi+1). One can show that for small displacements, this is equivalent to

using piecewise linear basis functions to discretize the membrane energy and

piecewise quadratic functions to discretize curvature. In addition, we assume

supports of the bridge to be elastically deformable, modeling them as simple

elastic springs of high stiffness. Kc is the effective elastic stiffness of the sup-

porting columns, and r0 and r1 are the indices corresponding to the location of

the intermediate elastic supports. The forces and force derivatives are obtained

by differentiating the energy with respect to the degrees of freedom.

The boundary conditions for the problem are fixed at the end points of

the rod: p(t0) = (t0, 0), p(t1) = (t1, 0).

Once the deformation is determined, we run the evaluation code to deter-

mine its maximum deformation F1, as well as the cost of construction F2. The
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maximum deformation of the bridge is simply the displacement of the material

point furthest from its reference position. The cost of construction is the sum

of constructing each of the two elastic supports, where the cost of constructing

each elastic support is defined by a user-defined cost function. This function

can be thought of as being dictated by the shape of the riverbed as shown in

Figure 3.2, which dictates the difficulty of constructing a support. The deeper

the support has to reach the bottom of the river, the higher the cost.

For support positions r0 and r1 and the corresponding deformed configu-

ration of the bridge p(t), F1 and F2 are given by:

F1(r0, r1) = max
t0≤t≤t1

|p(t)− p̄(t)|,

where p̄(t) = (t, 0) is the undeformed configuration.

F2(r0, r1) = f(r0 − t0) + f(r1 − t0)

The simulation code is implemented serially in C++, and uses a widely

used scientific computing library (PETSc) ([8, 7]) to solve the discretized sys-

tems. There are 2000 degrees of freedom, so the data set for each simulation

result is about 50KB. Each simulation takes about 7 seconds to run.

3.1.2 Study objectives

As discussed in the previous subsection, in this simplified form of the

bridge study, the user tries to find the placement of the two non-fixed supports

(r0 and r1) in order to simultaneously minimize the cost of construction (F1)

and the maximum vertical deformation of the bridge (F2). In general, an MES
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Figure 3.2: Support cost as the function of the distance to the left endpoint.
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could have a larger number of design choices, as well as a larger number of

design objectives.

As is often the case in multi-objective design, the two objectives in our

bridge study work against each other. For example, placing the supports near

the riverbanks can minimize the cost of construction, but the large unsupported

span in the middle of the bridge will yield a larger deflection. A desirable

placement of the support would thus trade off among the two objectives.

The goal of this bridge MES is thus to run as many configurations of

as needed in order to find a set of configurations that meet the objective. In

particular, this MES employs the multi-objective optimization technique called

Pareto Optimization to achieve this goal.

3.1.3 Pareto Optimization

The general form of this problem, which explores a design space spanned

by multiple design parameters (in this case, the placement of the two elastic

supports) in order to optimize for multiple performance metrics (in this case, the

cost of construction and maximum bridge deformation) that span a performance

space is commonly found in many disciplines. Two of the other example MESs

in this thesis take the same form of multi-objective optimization (see Sections

3.2 and 3.4).

A typical strategy for multi-objective optimization is Pareto optimization

(e.g. [61, 85, 12, 47, 57]). Pareto optimization seeks to find a set of optimal

designs, with each Pareto-optimal design corresponding to a different trade-off of
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design preferences, e.g., two bridge designs may be equally desirable, one for its

lower deformation and the other for its lower cost. A Pareto-optimal point has

the property that improving one measure can only be achieved at the expense

of another, e.g., a bridge design is Pareto-optimal if the cost of construction

cannot be improved while holding the maximum deformation fixed, and vice-

versa. This set of optimal points is the Pareto Frontier.

Formally, the Pareto Optimization problem can be defined as follows.

Consider design and performance spaces with n and m dimensions respectively.

A design space point, x = {x1, . . . , xn}, has an associated performance measure,

p(x) = {p1(x), . . . , pm(x)}. A point x1 dominates another point x2 (we write

x1 � x2) if and only if

∀1≤i≤m [pi(x2) ≤ pi(x1)]

Note that the domination relation is a partial ordering, i.e., it is possible

(and common) that neither x1 � x2 nor x2 � x1 holds.

The Pareto frontier is the set of all undominated design space points. As-

sume that the design space has been sampled at a finite number of points, yield-

ing a discrete finite set, V , of evaluated designs. The discrete approximation

of the Pareto frontier is the subset, R ⊆ V , containing only the undominated

points.

R = {xi ∈ V |(@xj ∈ V )[xj � xi]} .

Figure 3.3 illustrates the Pareto Frontier concept in the context of the

bridge design study. At the top, the set of possible designs is sampled evenly

on the design space, which, in this study, is two-dimensional. Each point on
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the design space corresponds to a design, i.e., a placement of the two supports.

Notice that the diagonal part of the design space is unexplored: we do not

permit the two supports to be placed too close to each other. The correspond-

ing performance metrics are plotted at the bottom on the performance space,

which, in this study, is also two-dimensional. The simulation code can thus

be thought of as a function that maps a point on the design space to a point

on the performance space. The Pareto Frontier is highlighted in red circles on

both the design space and performance space. Notice that, on the performance

space, the Pareto Frontier is characterized as the North-East boundary of the

cloud of points. This is a characteristic of Pareto-optimal point: if a design is

on the Pareto Frontier, there is no other design that can perform better in both

performance metrics, i.e., mapped to the point’s North-East region.

3.1.4 Requirements and Challenges

Even though this bridge MES is a simplified version, the user requirements

pose challenges to the parallel system design. These challenges are representa-

tive of the larger real-world MESs.

The first challenge is the sheer volume of computation. In order to achieve

the target resolution of the design space (320x320) using brute force parameter

sweep, over 100K simulations are required. At 7 seconds per simulation, close to

200 hours of CPU time will be needed. For a research group running a small 128

processor cluster, the time-to-result is over 90 minutes, which would too long

if the group wishes to conduct MESs at an interactive rate. So, an exhaustive
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search of the design space is no longer an option. The challenge for the runtime

system is how to schedule and run the simulation experiments so as to minimize

the required computation.

The second problem is providing the user with study-level feedback. Even

though the MES takes 100K simulations to complete, at any point in time dur-

ing the study, by examining only the results of the simulations that are already

completed, it should be possible for the system to provide the user with an

incomplete or imprecise, but still accurate snapshot of the approximation of

Pareto Frontier, so the user has the option to make some initial decisions before

the entire MES is completed. In order to produce this incomplete snapshot,

the system needs to be able to aggregate the result of simulation experiments

dynamically, rather than of doing it all at once after all simulations have com-

pleted. To ensure this snapshot provides the most useful information to the

user, the system needs to order the simulation experiments so that at any point

in time, looking at the completed experiments can yield maximum information.

3.2 Defibrillator Design

The second example study is from the domain of medical device design.

In the field of medicine, while deciding a course of treatment for a patient, there

are many variables in the treatment plan that can be controlled, each affecting

the outcome of the treatment. The treatments may have many conflicting goals

as well, so much work needs to be done to ensure the treatment plan can meet

these conflicting goals. For example, in using radiotherapy to treat a cancer
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patient, the dosage, angle of radio rays, time of exposure, etc., can all affect the

outcome of the treatment. The ideal treatment plan should maximize energy

delivered to the cancerous tissues but minimize damage to healthy tissues, even

though the two goals are often conflicting. Similarly, an implantable defibrillator

device has many design variables — placement of the electrodes, shape of the

electrodes, voltage of the defibrillation shock, duration of the shock, the shape of

voltage curve, etc. It also has conflicting goals: activating as much of the heart

tissue as possible, while damaging as little tissue as possible. There can also be

additional goals such as the ease of implantation and cost of manufacturing the

device.

This second MES is a simplified version of the defibrillator device design

problem. In this simplified version, we limit the design choices to only decide

the placement of electrodes and strength of voltage, and we limit the study’s

goals to three dimensions: to maximize activation, minimize damage, and max-

imize voltage uniformity. Due to the complex design space, new techniques are

required in order to allow the user to interactively explore the design space.

This study represents an interactive Pareto optimization problem.

3.2.1 Simulation software

This study uses a bio-electrical simulation software called DefibSim ([72,

71]) from the Scientific Imaging Institute at University of Utah to simulate the

effect of a defibrillation shock on the human torso. DefibSim takes, as its inputs,

1) a 3D mesh representing the conductivity of the human torso ([53]), 2) the
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positions of two electrodes, one placed in the front and one at the back of the

torso, and 3) the voltage potential difference between the electrodes. It can

then calculate the electric potential generated by the defibrillation shock inside

the torso mesh. Figure 2.4 from Chapter 2 was generated from the DefibSim

application.

Mathematically, the simplified version of the DefibSim problem is gov-

erned by the Poisson equation relating the local conductivity tensor, the voltage

over the domain, and the current source:

∇.σ∇Φ = −Iv

where σ is the local conductivity tensor, Φ is the voltage over the domain, and

−Iv is the current source inside the domain. For the defibrillator simulation,

the current source is set to zero.

The discrete form of the equation approximates the divergence of the

electric field with the stiffness matrix A and the voltages at the torso mesh

nodes with the vector Φ. They yield a zero current source on the RHS:

AΦ = 0

The electrode at the back and front are modeled as Dirichlet Boundary

conditions. To add the boundary conditions, the stiffness matrix and a RHS

are re-computed to eliminate the nodes with known potentials from Φ.

A′Φ′ = b
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Here A′ is the new stiffness matrix, b is the new RHS, and Φ′ is the set of

unknow electric potentials in the torso.

For each electrode placement, DefibSim solves three systems of the form

A′Φ′ = b. The three systems correspond to setting the boundary condition of

the front electrode at each of the three surface mesh nodes closest to it. The code

then solves the three systems, and takes the distance-weighted combination of

the three Φ′s to produce the weighted average torso voltage potential Φ̂ for that

simulation. Every time the user alters the position or strength of the electrodes,

the new set of stiffness matrices A′ and RHS b are re-calculated, and the new

systems are solved and the new Φ̂ re-calculated.

Once a Φ̂ is re-calculated, the DefibSim can determine the “goodness” of

the configuration by extracting the following information:

• Damage level, defined as the percentage of heart tissue that experi-

ences a current flow above a pre-specified threshold (called the damage

threshold),

• Activation level, defined as the percentage of heart tissue that experi-

ences a current flow above a pre-specified threshold (called the activa-

tion threshold), and

• Uniformity, defined as the ratio of the maximum voltage gradient found

in the heart to the average voltage gradient in the heart.

These performance metrics are used by the study to evaluate how desirable

a given configuration is. Note that these performance metrics depend not only
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on Φ̂; they also depend on the damage threshold and activation threshold.

An evaluation code is used to calculate these three performance metrics.

Every time a new Φ̂ is calculated, or a new damage threshold is specified,

or a new activation threshold is specified, the evaluation code calculates the

differential of Φ̂, i.e., the electric potential gradient of the torso from the voltage

shock. From D(Φ̂), the current flow through the heart is then extrapolated, and

the uniformity, activation level, and damage level can be calculated.

DefibSim is implemented on the interactive Problem Solving Environment

SCIRun. The SCIRun workflow net shown in the previous chapter, Figure 2.2, is

an annotated SCIRun workflow net of the DefibSim application. It is broken into

four parts: the user interface subnet, the simulation subnet, the visualization

subnet, and the evaluation subnet. In the user interface subnet, the user has

the ability to dynamically change any of the design parameters: placements of

the front and back electrode, as well as the voltage strength. A change made

by the user results in new data being sent down the data links. The simulation

subnet responds to new data by re-calculating the torso’s potential based on the

user’s input. The new torso potential is sent to both the visualization subnet

and the evaluation subnet. The visualization subnet uses SCIRun’s built-in

visualization macros to show the torso potential to the user (Figure 2.4). This

torso potential is also fed into the evaluation subnet. In the evaluation subnet,

the user specifies the activation threshold and damage threshold. Every time

the user changes them, or when a new torso potential has been calculated, the

evaluation subnet will re-calculate the the current flowing through the heart.
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Figure 3.4: Visualizing individual simulations: this screen shows the region of
the heart (colored in red) damaged by a particular defibrillator design.

Regions of the heart that are damaged or activated are then displayed to the

user (Figure 3.4). DefibSim runs relatively fast — it typically takes less than

two seconds to respond to a user action. There are 9000 nodes in the torso

model, so the simulation result (the torso’s potential) is about 60KB.

3.2.2 Study objectives

The objective of the study is to find the optimal placements of electrodes

and voltage strength that will satisfy multiple conflicting criteria: maximize

activation level, minimize damage level, and maximize uniformity. A high volt-

age shock close to highly conductive organs can increase activation, but also

increase damage, and vice versa.

Thus, like the bridge design study, the defibrillator MES is a multi-

objective optimization study. However, there are two characteristics that make

the defibrillator design study different from the bridge design study. First, the
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design space is five-dimensional (two dimensions for each electrode placement,

plus one dimension for the voltage strength), which is more difficult to explore in

a completely automatic fashion. Second, the presence of the activation thresh-

old and damage threshold means that the behavior of the evaluation code is

dependent on these performance metric parameters — input parameters not to

the simulation code, but to the evaluation code. That means that every combi-

nation of these performance metric parameters defines a new evaluation criteria,

and thus essentially defines an entirely new study.

In order to cope with those added complexity, user interactivity is required.

In an interactive setting, the user would fix the performance metric pa-

rameter (the activation and damage thresholds), fix some of the study’s design

space dimensions (e.g., the voltage strength, the placement of the back elec-

trode), and identify a region for exploration for the remaining design space

dimensions (for example, an area in the front of the chest for the placement

of the front electrodes). The system will show him the Pareto frontier at the

region of exploration in the given fixed setting (e.g., optimal placement of the

front electrode). The user can then interactively explore the design space by

changing either the performance metric parameters, the value of the fixed de-

sign space parameters, or the region of the remaining design space parameters

to examine (e.g., he may increase the activation threshold to model a patient

with a more difficult-to-activate heart, or increase the defibrillation shock volt-

age, or examine the region near the diaphragm instead of the front of the chest).

The system should then respond to the action by showing him the new Pareto
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frontier interactively.

As discussed above, each time the user fixes the value of the performance

metric parameters, he is essentially defining a new study. Also, each time he

fixes some of the design space parameters, he is actually selecting a subspace,

or slice, of the design space, resulting in a Pareto optimization problem with

a reduced design space dimension. Thus, each user action essentially defines a

non-interactive, mini-study, whose Pareto Frontier needs to be calculated and

displayed to the user. Each mini-MES corresponds to a unit of interaction —

each user action defines a mini-MES, and causes a new Pareto Frontier to be

calculated and displayed back to the user.

Figure 3.5 shows a series of Pareto Frontiers as a result of the user in-

creasing the activation threshold. As the user increases the activation threshold

voltage (bottom zoomed-in view, from left to right), the system responds by

discovering and displaying the Pareto optimal from electrode placements inter-

actively. Figure 3.6 shows two Pareto Frontiers as a result of the user changing

the placement of the back electrode. Note that each Pareto Frontier is caused

by a single user action, but each Pareto Frontier is the aggregated results of

multiple executions of DefibSim. This is what defines an Interactive Multi-

Experiment Study: a single user action (e.g., increasing activation threshold,

moving back electrode) causes multiple executions of the simulation code, and

it is the aggregated result of those executions (Pareto Frontier) that is presented

to the user in an interactive fashion.
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Figure 3.5: Interactive Design Space Exploration

Figure 3.6: Pareto optimal points before (left) and after (right) the back elec-
trode is moved.
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3.2.3 Requirements and Challenges

The interactive nature of the defibillator MES poses additional require-

ments and challenges to the system. Firstly, there is again the sheer amount of

computation. To resolve the Pareto Frontier for each study at the desired res-

olution (256x256) using brute force, 65K simulations are needed. At 2 seconds

per simulation, it would take more than 36 hours on one CPU to complete a

study. Even with 128 processors, that would take 17 minutes. So, every time the

user performs a user action, he would need to wait 17 minutes before the system

provides him with feedback, which does not meet the interactive requirement.

Secondly, the system needs to present a user interface with which the

user can steer the MES at the study level. In other words, at any point in

time during a study, the system must be able to aggregate the results from

completed simulations and present a coherent representation of the study up to

that point to the user. In addition, the system must be able to receive user’s

action from the UI, interpret those actions as study-level steering actions, decide

how that action affects the subsequent conduction of the study, and disseminate

the changes to individual simulations.

Finally, even though the user is interested in study-level results, he would

still require to look at individual simulation results (e.g., he might want to

find out, for one particular defibrillator configuration, which part of the heart it

activates). The system is thus required to store the individual simulation results

in a way that can be easily called up for visualization, even though individual

simulations may be conducted in distributed computational elements.
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3.3 Animation design

The third computational study comes from animation design. To create

more physically-realistic animated scenes, animators often use physics simula-

tion engines to help them design the scenes (e.g., [9]). The resulting problem

often takes the form of an MES.

For example, in order to animate a scene where a piece of cloth being

carried by the wind is caught by a tree branch (an unlikely occurrence), the

animator may run a fluid dynamics simulation many times, and each time, the

animator would change the settings of the simulation — the viscosity of air,

wind speed, shape of the cloth, etc., — in order to produce a scenario that

achieves the unlikely result of the cloth getting caught. The resulting scene

would be physically realistic (because the simulation is based on physics), but

also achieves an unlikely occurrence.

In this type of MES, the user is exploring the design space not to optimize

for some metrics, but rather to search for a region in the space that meets certain

requirements. In addition, the animator could discover multiple versions of

the scene where the physical objective is achieved. In those cases, in order to

choose from among the multiple version of the scene, the animator would need

to rely on his aesthetic tastes and judgements. Therefore, this type of MES

has a secondary goal: to help the user explore the design space, guided by his

aesthetic tastes.

In this thesis, we focus on an example animation study. In this study,

the animator uses a rigid-body simulation to help design a physically-realistic
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scene where a single buggy and some pieces of debris are allowed to roll down

an unevenly-shaped terrain. The terrain is shown in Figure 3.7. At the start

of the simulation, the buggy is placed at the top of the slope, and it rolls down

the slope in a straight line as the simulation progresses. If the number of debris

pieces is large, the buggy is unlikely to make it to the bottom of the slope

without being knocked off its course by one of the debris pieces. The goal of

the animator in this study is to find the initial placement and orientation of all

of the debris pieces in such a way that would achieve the unlikely outcome of

having none of the pieces come into contact with the buggy. As a secondary

objective, he would also want these debris pieces to miss the buggy in some

visually-interesting manner, e.g., come into close proximity of the buggy, pass

by it in with high velocity, etc., but never making contact with it.

3.3.1 Simulation software

The simulation is implemented using the Open Dynamics Engine (ODE)

[74]. The buggy and the debris are represented as rigid bodies under the influence

of gravity and collision. The buggy is represented by a rectangular box with four

spherical wheels, and the debris are simple geometric objects: spheres, cylinders,

and rectangular columns. At each timestep, data structures that restrict the

movement of rigid bodies (called joints) are formed dynamically to account for

collisions between rigid bodies. During each timestep, the linear and torsional

accelerations of each rigid body is calculated, based on the influence of joints

and gravity. Then the timestep advances by updating the objects’ velocities
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Figure 3.7: A buggy rolls down a terrain in the animation design study.
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and positions. The simulation terminates when a piece of debris hits the buggy,

or when the buggy reaches the lowest point of the terrain.

In the particular implementation used in this MES, 15 pieces of debris are

used: five spheres, five cylinders, and five rectangular columns.

ODE is a real-time physics simulation engine, so the simulation is rela-

tively fast — it takes at most four seconds to complete a simulation with UI

enabled, and with UI disabled (as it will be when the code is run on the cluster

nodes), it takes on average half a second to run on a sequential processor.

3.3.2 Study objectives

The objectives of this MES are relatively simple. The primary goal is

to find initial placements of the debris field such that the buggy can reach the

lowest point of the terrain without coming into contact with any of the debris

pieces. In order to keep track of whether debris pieces come into contact with

the buggy, each debris piece carries a history of its distance to the buggy. At

each timestep, the debris’ distance to the buggy is calculated and stored. An

admissible simulation is one in which none of the debris pieces’ distance-to-buggy

history contains a zero.

A secondary goal of the MES is for the user to choose, among the admis-

sible simulations, the most aesthetically pleasing ones. This depends on a user

interface that constantly receives user input to determine which simulations are

more aesthetically pleasing.
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3.3.3 Requirements and Challenges

The animation MES is different from either of the Pareto Optimization

MESs described earlier, and presents unique challenges. Firstly, this study has

a large number of design space dimensions. The user needs to decide, for each

debris piece, its initial position (3 dimensions), orientation (3 dimensions), and

time of release (1 dimension), so there are seven design dimensions for each

debris piece. With fifteen debris pieces total in the study, there are 105 design

space dimensions.

Secondly, the performance metrics are ill-defined — they depend on the

animator’s subjective taste in what constitutes an interesting animated scene.

One animator may consider debris pieces missing the buggy by small margins

to be visually appealing, while another animator may enjoy debris missing the

buggy by larger margins, but travelling at faster velocities. Another animator

might tolerate larger missing margins and lower travelling velocities, but like

that the debris pieces fall more evenly around the buggy to create a sense of

the buggy being surrounded. However, there are common preferences adopted

by all animators, i.e., that all debris must come within a certain distance of the

buggy at some point during the scene, and that the debris must not touch the

buggy.

As a result, this kind of MES requires an animator to drive this study.

The system needs to provide the user with constant updates on the progress of

the study, and the user needs to provide the system constant steering action so

as to guide the study in the direction he wishes to go.
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One possible way of framing a user-driven MES is by treating the MES as

an exploration of a search tree. In this study, the fifteen debris are grouped into

five groups of three, with one sphere, one cylinder, and one rectangular block

in each group. The study is conducted in stages, and in each stage, the user

decides the placement of one debris group. In the first stage, the placement of

the first group of debris is decided, and in the next stage, the placement of the

next group is decided, and so on. At each stage, the user is shown a number of

possible choices of the placements of the debris group to be decided, and he is

allowed to look at the animation of the partially-completed scene of each of the

possible choice. Out of these choices, he can select one, and that will complete

the stage, and begin the next one. Figure 3.8 shows the state of the animated

scene at various stages of a study.

This way of framing presents the MES as an exploration of a search tree,

where each level represents a stage of the study, and each node represents a

partially-completed scene. For a node on level l, l debris groups’ placements are

fixed. Its first l − 1 debris groups have the same placement as its parent. The

root node (level zero) has no debris placed, each leaf node (level 5) has all 15

debris placed, representing a completed scene.

The advantages of framing the MES as a tree-exploration is that there is a

clearly-defined notion of a partial result of the study in the form of internal nodes

of the search tree. In our case, these partial results correspond to partially-

complete animation scenes, which can be visualized. So the user’s guidance

can come in the form of selecting a child-node for exploration. Essentially, the
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Figure 3.8: As the animation study progresses (left to right, top to bottom),
more debris groups are added into the animated scene.

70



user is steering the system to explore the search tree. At any point during

our MES, the animator is exploring a non-leaf node of the tree (the current

node). The system would continuously provide him with new child nodes to the

current node that correspond to admissible simulations. The animator can then

animate the partially-completed scene corresponding to these child nodes, and

choose to: 1) pick one of the child nodes and move the exploration to it, thus

making it the current node, 2) wait for the system to discover more possible

child nodes, or 3) move the exploration to an entirely different node altogether

(back-tracking). When the animator conducts the study, he starts on the root

node. The study terminates when the animator finds one or more satisfactory

leave nodes.

From the system’s point of view, these user-driven tree-exploration type

MESs present additional challenges. Firstly, the user could, at any point in time

of in the study, examine any of the explored nodes on the tree. So, the system

must be ready to present the user with visualization of any of the partial results

found thus far. Secondly, the users’ heavy involvement means that the system

must be responsive: it must constantly provide the user with new information

as the exploration continues, and be ready to accept user inputs and change the

direction of its subsequent explorations by disseminating the user’s action to

individual simulations. Finally, in addition to being able to provide the user with

a visualization of partial results, the system must be able to constantly present

the user with an updated version of the high-level view of the exploration, so

that the user can make global as well as local decisions.
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3.4 Helium Model Validation

The fourth computational study used as an example in this thesis is from

the discipline of chemical engineering. Chemical engineers often rely on complex

computational models to describe complex chemical and physical phenomenons.

In cases where these phenomenon involve multiple models, the resulting coupled

model need to be validated and verified as a whole.

On such example is pool fires, which involve combustion, turbulent air-

mixing, heat transfer by radiation, and conventional fluid flow. A complex

computational model was developed at the University of Utah Center for the

Simulation of Accidental Fires and Explosions (C-SAFE) to simulate pool fires.

The model is implemented in an application known as Arches ([75]), which

is built using the Uintah Problem Solving Environment ([25]). Arches’s com-

ponents include a Navier Stokes solver to determine the gases’ pressure and

velocity, a chemical reaction module to model changes in chemical species of

the gaseous mixture, a heat transfer module to model the distribution of tem-

perature, and a turbulence solver to model turbulent gas flow.

Software like Arches contain many “knobs” that the user can control to

produce a different outcome. These include model parameters, such as the

Prandtl number, the turbulent mixing model, or the Smagorinsky coefficient;

simulation parameters, such as the resolution of the simulated domain, the solver

used in timestepping, and if the solver is an iterative one, its residual tolerance;

and experiment parameters, such as the gaseous fuel’s gas velocity, or the size

of the inlet. The type of numerical models used, the numerical method used,
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the model parameters can all affect the accuracy of the simulation.

In order to ensure that a model can accurately describe the physical phe-

nomenon, the scientists are often required to run the software multiple times,

each time using a different model/numerical method/model parameter combina-

tion, and compare the simulated results against the results obtained in real-life

experiments. Their goal is to find, if possible, the set of inputs that matches

most closely with real-life experiment results. This process is known as model

Verification and Validation ([64]).

3.4.1 Simulation software

For this thesis, we look at one piece of the validation problem on Arches.

As part of pool fire simulation, Arches needs to simulate the turbulent mixing

of gases of different densities (e.g., helium and air). To validate the turbulent

mixing model, Arches can be configured to perform simulation experiments

where it only simulates helium gas mixing with air in a controlled environment.

To validate the gas flow model, the experiment is replicated in real-life, and

the real-life experiment results are then compared to the simulated experiment

results ([28]).

In the experiment, helium is pumped into a cube-shaped container from

an inlet at the bottom of the container. Due to the buoyancy of helium and the

velocity with which the helium gas is pumped into the container, the simulated

domain undergoes a “puffing” motion (Figure 3.9). Due to the “puffing” motion,

the gas at the central part of the simulation domain is pushed upwards, resulting
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in a velocity profile like Figure 3.10. The centerline gas velocity profiles are then

measured at two heights. These velocity profiles are used to gauge the accuracy

of Arches simulations.

Arches simulates this phenomenon in a three-dimensional domain using a

numerical technique called Large Eddy Simulation (LES). A brief explanation

is given here; the detailed explanation, as well as the discretization scheme, is

presented in [28] .

Mathematically, LES separates out the large eddies in the fluid from

smaller-scale motions. Large-scale motion is modeled by the Navier Stokes

equations, and small-scale motion is modeled by a turbulence model. A filter-

ing operation is used to separate out the motions. A filtered variable, denoted

by the overbar operator, is defined as

f =

∫
D

f(x′)G(x− x′)dx′

where D is the entire domain and G is the filter function. Arches uses the sharp

Fourier cut off filter:

G(x− x′) = G(k) =

 1 ifk < π/4

0 otherwise

where 4 is the grid size. This size determines the size and structure of small-

scale motions that are eliminated from f and hence require separate modeling.

The filtered Navier-Stokes equations become:

∂ui

∂xi

= 0

∂ui

∂t
+
∂(uiuj)

∂xj

= −1

ρ

∂p

∂xi

− ∂τij
∂xj

+ v
∂2ui

∂xi∂xj
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Figure 3.9: Visualizing the helium plume. Image courtesy of Chemical Reaction
Simulation group, University of Utah
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Figure 3.10: Comparing the velocity profiles of two input configurations at two
heights.
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The term τij is the subgrid scale stress (SGS) tensor that represents the

small-scale motions that are filtered out by the filter operator. In this thesis,

the Smagorinsky model is used to approximate the SGS. In the Smagorinsky

model, τij is given by:

τij = −2vTSij +
δij
3
τkk

where τkk = u′ku
′
k, Sij is

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
and vT is

vT = (Cs4)2
(
2SijSij

) 1
2

Cs is the Smagorinsky coefficient, and is one of the inputs to the Arches simu-

lation code.

The initial condition has the domain filled with air at zero velocity. As

the simulation progresses, the helium inlet acts as a boundary condition with

helium gas flowing in at constant speed, and the Navier-Stokes equations are

solved to find the pressure and velocity in the rest of the domain. The tur-

bulence model is then applied to the domain to adjust for the SGS. Finally,

the gaseous mixture at the domain is updated, so the buoyancy forces can be

applied to the next timestep’s Navier Stokes solve. The timestepping is then

repeated. Arches writes checkpoints (the pressure, velocity, and gaseous mix-

ture) to disk periodically. The total kinetic energy of the system is monitored

at each timestep, and the timestepping stops when the KE of the system has

settled into a steady state.
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Arches is a Uintah application, and like other Uintah applications, is built

up out of components. Uintah components perform common operations, such

as mathematical operations like Navier-Stokes solves, chemical reactions, heat

transfers, turbulence models; and system operations such as writing checkpoints

and load balancing. By connecting the outputs of components to inputs to other

components, a user of Uintah can compose workflows that perform his applica-

tion. Uintah components are designed to run on parallel clusters using MPI, and

use a shared file system to store the simulation result and checkpoints. Uintah

applications proceed in timesteps. At each timestep, the application advances

its simulation domain according to a workflow determined its components.

The time to execute an Arches run depends on the per-timestep run time

and the number of timestep required to reach the steady state. More specifi-

cally, it depends on the input parameters of the particular run — simulation

parameters like grid resolution and residual tolerance affect the per-timestep

run time, and model and experiment parameters such as the Prandtl number or

Smagorinsky coefficient affect the time it takes for the system to settle. A full

version of Arches (200x200x200 resolution) could take tens of hours to run on a

512-processor cluster. However, in this thesis, a lower-resolution run (48x48x48)

is used, which takes about half an hour to complete on a 32-processor cluster.

3.4.2 Study objectives

In the real-life experiment, the gas velocities along the centerline at two

heights are measured at approximately 100 evenly-spaced points. To evaluate
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how “good” an Arches run is, the simulated gas velocities at these heights in

the simulated domain are interpolated to these points. Then, for each height, a

vector difference between the measured and simulated velocities is taken. The

goal of this study is for the user to find the model parameter of Arches so

that the simulated results matches most closely with real-life results, i.e., to

minimize the velocity profile difference at both heights. Figure 3.10 shows the

centerline velocity profiles produced by running Arches twice, each time using

a different set of input parameters (or configuration). The velocity profiles

of the two configurations are overlaid on top of the measured velocity profile.

Configuration A is clearly superior to Configuration B at height=0.2m, as its

velocity profile is a better match for the measured profile, but at height=0.4m,

the two configurations are more evenly-matched.

In the simplified form of the study, we only consider two input parame-

ters: the Prandtl number and inlet velocity. This simplified version preserves

the properties of the full version; the only difference is that there are fewer de-

sign parameters. The principles learned from designing the runtime system to

support this simplified version are applicable to the full system.

Since the goal of the helium validation is to minimize the velocity profile

difference on multiple heights simultaneously, it is a multi-objective optimiza-

tion. It is also possible for input parameters that match the profile from one

height well to match the profile on another height poorly, i.e., the two objectives

can be conflicting. So, like the bridge study, it can be framed as a Pareto op-

timization study. Here, performance metrics are the velocity profile differences
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at each height, and the design space dimensions consist of the Prandtl number

and the inlet velocity.

Figure 3.11 shows the Pareto Frontier of the simplified validation study.

The design space (top) is sampled on a regular grid, and the performance metric

is plotted on the performance space (bottom). The Pareto optimal designs are

circled in red in both plots.

3.4.3 Requirements and Challenges

Unlike the other MESs discussed thus far, the Arches validation study

is special in that the simulation code is long-running (multiple-hours rather

than seconds), but a relatively small number of simulations are needed (dozens,

instead of thousands). Therefore, the goal is no longer interactivity, but rather

the reduction of study completion time.

The simulations in Arches can be run in parallel. Therefore, in addition to

the usual concerns in the MESs — how to schedule and order the experiments

— there is an additional challenge of needing to decide the level of parallelism

assigned to (i.e., the amount of resources allocated for) each experiment.

The system needs to use the scheduling and resource allocation decisions

to reduce the overall run time of the MES. It needs to increase the utilization

rate of computing resources — by not letting processor nodes sit idle waiting

for an experiment to be assigned to it, and also by reducing the parallelism

overhead within a single simulation. However, as will be seen, the parallelism

requirement often intersects with other considerations like enabling early user
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feedback, therefore, the parallelism requirement is an additional dimension to

the MES system.

3.5 Problem Formulation

All four examples used in this thesis fall into a category of Multi-Experiment

Study known as Design Space Exploration (DSE). As should be clear from the

descriptions above, DSEs from different disciplines share many common traits.

In this section, we factor out the common traits from our four DSEs in order to

formulate an abstract description of DSEs. With an abstract formulation of the

DSE, it is then possible to design a generic parallel system to target conducting

DSEs. This formulation will be adhered to in the rest of this thesis.

At the highest level, a DSE is an application that runs a simulation soft-

ware many times, each time using a different input, in order to find, by measur-

ing the output of the software, the subset of inputs that are somehow desirable.

Formally, we can think of a DSE as consisting of the following:

Simulation Code: This is the code which takes a set of simulation

parameters, runs a simulation, and returns a simulation result. The DSE runs

this code multiple times, each time with different input parameters, in order to

discover the “best” input parameters. In the context of the bridge study, the

simulation code corresponds to the non-linear solver that calculates the bridge

deformation. Its input parameters are the positions of the two columns. In

the context of the defibrillator study, the simulation code corresponds to the

portion of DefibSim that computes the torso potential. Its input parameters are
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the coordinates of the front and back electrodes, as well as the voltage difference

between them. In the context of the animation design study, it corresponds to

the rigid-body simulation code that animates the scene. Its input parameters

are the placements of the debris pieces. In the context of the helium model

validation study, it corresponds to Arches. Its input parameters are the Prandtl

number and inlet velocity.

Evaluation Code: This code takes the output of the simulation code,

and optionally a set of performance metric parameters, and evaluates the per-

formance metric for the simulation. The DSE uses this code to evaluate the

“goodness” of the designs. In the context of the bridge study, the evaluation

code corresponds to the code that evaluates the cost function and extracts the

maximal displacement of the bridge. In the context of the defibrillator study,

the performance metric evaluation code corresponds to the portion of Defib-

Sim that computes the percentage of heart tissues that are above the activation

threshold (activation level), the percentage of heart tissues that are above dam-

age threshold (damage level), and calculates the uniformity of the potential

gradient distribution. In the context of the animation design, the evaluation

code is the code that extracts the information about the closest distance each

piece of debris has come to the buggy. In the helium validation study, the eval-

uation code is a script that reads the Arches output and the real-life experiment

data, and calculates the gas velocity vector difference at each height.

Design Space: This is the space of possible inputs to the simulation

code. For the bridge design study, the design space is two dimensional, each
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dimension corresponding to the placement of one support. In the context of the

defibrillator study, the design space is a 5 dimensional space: back electrode

placement (2 dimensions), voltage (1 dimension), and front electrode placement

(2 dimensions). In the animation study, the design space corresponds to the

105 dimensions that determine the placement of all 15 pieces of debris. In the

context of the helium mode validation study, the design space consists of the

space spanned by the Prandtl number and inlet velocity.

Performance Space: This is the space of all possible outputs of the

performance evaluation code. In the bridge design study, the performance space

is spanned by the cost of construction and the maximal deformation of the

bridge. In the context of the defibrillator study, the performance space is a 3-

dimensional space, spanned by uniformity, damaged level, and activation level.

In the animation study, the performance space is a 15-dimensional space, each

dimension corresponding to the closest distance each debris piece has come to

the buggy. In the helium model validation study, the performance space is a

two dimensional space, each dimension corresponding to the centerline velocity

vector difference on each height.

The simulation code/evaluation code pair can be thought of as a function

that maps points from the design space to performance space.

Regions of interest: The ultimate goal of design space exploration is

to identify points on the design space that are of interest, representing optimal

design strategies, for example. In the bridge design, defibrillator design, and

helium model validation studies, the Pareto Frontier represents the region of
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interest. In addition to the Pareto Frontier, the user can specify admissible

regions. Admissible regions are regions in the performance space which the

user specifies a priori and that any design points must satisfy in order to be of

interest. In the animation design study, the admissible region is used to filter

out animation scenes where the buggy comes into contact with a debris (the

debris’s closest distance to the buggy is 0), and where there is a debris piece

that does not come closely enough to the buggy for the scene to be interesting.

In the most abstract terms, the goal of a DSE is to discover points from

the design space that will get “mapped” by the simulation and evaluation codes

to the regions of interest.

Note that this DSE formulation is applicable not just to the four examples

motivating this thesis. In fact, DSEs adhering to this formulation, as a type of

computational study, are used in many contexts, including, but not limited to,

medical treatment planning ([5]), medical device design ([71, 85]), automotive

design ([73]), chemical engineering ([28]), processor design ([44]), finance ([68,

67, 31]), drug design ([16]), computer graphics ([43]) and animation ([81]).

3.6 Summary

Table 3.1 summarizes the properties of the four computational studies

used in this thesis. Each of these characteristics pose its own set of challenges

to the system.

Two of the studies are interactive, i.e., provides constant user feedback

at interactive speed and can respond to user input while the study is on-going.
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Bridge Defibrillator Animation Helium Model
Design Design Design Validation

Interactive? No Yes Yes No
Design
Space 2 5 105 2

Dimension
Performance

Space 2 3 15 2
Dimension

Parallel No No No Yes
Simulation?
Time of 1
simulation 7 sec 2 sec < 1 sec 6.5 hours
on 1 proc
Region of Pareto Pareto Subjective Pareto
Interest Frontier Frontier measure Frontier

Table 3.1: Summary of multi-experiment computational studies discussed in
this thesis.
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Studies that are interactive require constant user input and feedback, so the sys-

tem must have a way to aggregate the simulation results as well as disseminate

user actions to individual simulations.

Three of the studies are Pareto optimizations. As was shown above, it is

impractical for the system to resolve the Pareto Frontier by brute force param-

eter sweep. Instead, the system must schedule the simulation runs intelligently

to discover the Pareto frontier with fewer experiments. Additionally, the system

should order the runs so as to maximize the amount of information available to

the user when he looks at the results of a partially-completed study.

One of the studies has an ill-defined, subjective region of interest. These

studies require the system be able to constantly update the user on the progress

of the study, and to provide the user with a readily available visualization of

any of the partial results of the study. It also must respond quickly to user’s

actions — the user’s actions needs to produce an immediate effect on the study’s

direction.

One of the studies is made up of simulations that can itself be run on

parallel. Studies like this pose an additional concerns to the system, namely,

that the system needs to decide not only the scheduling, but also the resources

allocated to each simulation experiment. The system needs to minimize par-

allelization overhead within each experiment, but at the same time improve

processor nodes’ utilization rate.

On the most abstract level, for all of the studies, the main goal of the sys-

tem is to intelligently make scheduling, resource allocation, and user interaction
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decisions that reduce the users’ wait time from user action to useful information.
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Chapter 4

SimX Testbed

System Software for Interactive Multi-Experiment Computational Studies

(SIMECS, or SimX for short) ([89, 90, 87, 88]) is a system framework designed as

a test bed to explore the techniques a parallel system can use to conduct Multi-

Experiment Studies on parallel clusters. This chapter provides the architectural

details as well as the implementation details of the SimX system.

As discussed in Chapter 3, an MES can be described in the abstract as a

collection of simulation and evaluation code executions that search for regions

of interests within the design and performance spaces that meet the study’s

objectives. Since these executions are independent of each other, they can be

conducted in parallel, so parallel platforms are a natural choice for running

MESs. However, as discussed in Chapter 2, parallel systems that manage col-

lections of simulation runs on a parallel machine so as to make progress toward

overall study goals have not been extensively studied yet, and with the growing

availability of parallel machines, the need for such a system is apparent.

SimX is such a system. SimX targets the MESs that fit the formulation

described in Section 3.5. SimX is structured in a way that allows easy imple-
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mentation of the techniques described in later chapters aimed at addressing the

requirements of MESs, as represented by the four examples discussed in this

thesis. In particular, SimX’s functionalities are accomplished by a set of differ-

ent modules running on different processes. Each of these modules is designed

to achieve a different functionality: interacting with the user, choosing the ex-

periments from a design space, scheduling the chosen experiments, assigning

computational resources to the experiments, running the experiments, storing

and retrieving reusable information across experiments, communicating between

processes, and aggregating experiment results. As will be seen in later chapters,

each module can then be independently adapted to serve the particular type of

MESs being conducted.

4.1 Architecture

An architectural overview of SimX is presented in Figure 4.1. It shows

three types of processes. The manager process runs on the front-end of the

cluster and interacts with the user. The worker processes run on the compute

nodes of the cluster and run the actual simulation code. The Spatially-Indexed

Shared Object Layer (SISOL) servers run on the compute nodes and facilitate

the sharing of data between worker processes.

In a typical SimX run, after the user receives an allocation of a partition of

the cluster, one or more allocated nodes are selected to run the SISOL servers.

The rest of the nodes run the worker processes. The user then starts the manager

process on the front-end machine.
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Figure 4.1: SimX architecture
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The user employs the UI module on the manager to specify the compu-

tational study he wants to perform: how many design space dimensions there

are, where is the admissible region, what is the range of exploration, and what is

the region of interest. In addition, if the study is interactive, he would also use

the UI to update the slice of design space (for interactive Pareto explorations)

or current search-tree node (for tree-exploration MESs) he wishes to explore

while the study is still going on.

Once the UI module receives information about the computational study

the user wishes to perform, SimX needs to decide which simulations need to

be run in order to complete the study. The Sampler module translates the

UI module’s study specification into a list of simulations, or computational

experiments, that needs to be executed in order to explore the design space.

The Sampler module puts the list of computational experiments it issues

onto the Task Queue. The order of execution of the issued experiments is

decided there. Depending on the study, the task queue could be a FIFO queue

or a priority queue.

The Resource Allocator module takes the contents of the task queue

and assigns the tasks to available worker processes. It decides which worker

process runs which experiment. If the simulation code is parallel, it also decides

how many worker processes should run a given experiment, and coordinates the

selected worker processes so that they can form into a worker process group.

Communication between the manager process and worker processes is

handled by the Frame/Update Exchange Layer (FUEL). FUEL is an ex-
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tensible communication protocol written on top of TCP/IP. Marshalling and

unmarshalling in FUEL is done by handlers — pieces of associated code that

gets executed when a piece of information needs to be sent or received. The user

can adapt FUEL to his computational study by implementing the handlers.

The Simulation Container module running on the worker process is

responsible for receiving the experiment sent from the Resource Allocator via

FUEL. Once it receives the experiment, it acts as the substrate on which the

simulation and evaluation code is run. It coordinates the running of the simula-

tion and evaluation code, and optionally performs optimization routines based

on the computational study. It is also responsible for sending the performance

metric back to the manager process via FUEL when the simulation is done.

As the manager process receives simulation results, they are sent to the

UI to update the user of the progress of the study, as well as to the Sampler

module so it may adjust the contents of the Task Queue.

As will be seen in later chapters, capturing and sharing information from

past experiments between worker processes is a key technique essential to meet

the study requirements. The Spatially Indexed Shared Object Layer

(SISOL) provides implicit communication between simulation workers and the

manager process. Objects are stored in SISOL as object sets, with objects iden-

tified as an <object set ID, spatial index> tuple. Almost all the objects stored

in SISOL are indexed by their design space coordinates, and often a nearest-

neighbor query is needed. Therefore a spatially-indexed database is the interface

of choice.
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Manager Worker
Process Processes

Bridge Design Standalone Standalone
Defibrillator Design SimX/SCIRun SimX/SCIRun
Animation Design SimX/SCIRun Standalone

Helium Model Validation SimX/SCIRun SimX/Uintah

Table 4.1: Versions of SimX in the example Multi-Experiment Studies.

4.2 Implementation

As part of this thesis research, three implementations of SimX have been

developed: a standalone version, where SimX is packaged as a set of shared

libraries, a SimX/SCIRun version, where SimX is packaged as a set of SCIRun

modules, and a SimX/Uintah version, where SimX is packaged as modified Uin-

tah components. Some modules are implemented the same way across different

versions, but others have version-specific interfaces. In all versions, SimX is

implemented in C and C++.

The inter-process communication protocols (FUEL and SISOL) are the

same across different versions, therefore it is possible to use one SimX version’s

manager process and another version SimX version’s worker process, and both

can talk to each other and to the same SISOL servers. The SimX/Uintah

version, for example, does not have a manager process, which means the user

will use a Standalone or SimX/SCIRun version’s front-end when he uses the

SimX/Uintah worker process. Table 4.1 shows which version of SimX each of

the four example computational studies use.
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The rest of this section provides the implementation and interface details

to each of the modules and versions described above.

4.2.1 User Interface

The UI interface is the means by which the user informs the manager

process the locations of the worker SISOL processes. In addition, it is also

the means by which the user controls an ongoing computational study. The

implementation and interface are different in the Standalone version and the

SimX/SCIRun version. The SimX/Uintah version does not have a UI module.

In the standalone version, the UI module reads the user preferences from

several config files. There are three major pieces of information required by

the UI: SISOL-related information such as the SISOL discovery server’s address

and object IDs used in the SISOL server, FUEL-related information such as the

worker processes’ addresses and TCP ports, and problem-related information

such as the design space dimension, and ranges of the region of interest. These

information are passed to the UI module via three config files. A typical set of

config files for the bridge design problem is shown in Figure 4.2.

Since the Standalone version does not support interactivity, there is no

mechanism for the user to steer the study once it starts.

SCIRun provides a means for SimX to steer the computational study

interactively. In the SimX/SCIRun version, this interactive UI is realized by

the SCIRun module called the SimXManager (Figure 4.3). The user can specify

the address of worker processes in the SimXManager’s UI. SimXManager also
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Figure 4.2: Standalone SimX UI: three configuration files
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has an input port, which receives information about the current computational

study — the design space dimension, the slice to be explored, the region of the

slice to be explored, the values of the performance metric parameters, and the

ranges of the admissible region. This input port continuously receives updates

via SCIRun’s interactive steering mechanism, so, by sending new data through

this port, the user can specify a new slice of design space or tree node to explore

as the computational study is going on. The application developer can thus

use SCIRun’s existing modules to allow intuitive specification of the design

space slice. For example, Figure 4.4 shows how the slice of the design space is

controlled by the user. He uses the SCIRun-provided frame widget to specify

the range of front electrode placement he is interested in, the point widget to

specify the placement of the back electrode, and a text UI to specify the voltage

strength. The SCIRun net gathers all this information and translates them into

a SCIRun Matrix object which can be sent to the SimXManager via its input

port.

An example of that matrix is shown in Figure 4.5. This particular example

specifies a slice of the design space in the defibrillator study. The matrices sent

to the SimXManager input port have seven columns. The first column specifies

the study’s setup: the total number of design space and performance space

dimensions in the computational study, and which design space dimensions are

fixed for the particular slice the user wishes to explore. Our example has seven

design space dimensions: four for electrode placements, one for shock voltage,

and two for the performance metric parameters (here, the performance metric
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Figure 4.3: SimXManager module and UI
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Figure 4.4: Using SimXManager for interactive computational study-level steer-
ing
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parameters are counted as design space dimensions). The second and third

columns specify the indices and values of the fixed design space dimensions. In

our example, dimensions 2 to 6 are fixed: dimensions 2 and 3 are the placement

of the back electrode, set here to 200 x 100mm off the torso’s center; dimension

4 is the voltage strength, set to 150V; dimensions 5 and 6 are the activation

and damage threshold respectively, set to 0.5 and 5 Vcm−1. The fourth and

fifth columns specify the range of exploration for the non-fixed design space

dimensions. In our example, the unfixed design space dimensions are dimensions

0 and 1, which represent the placement of the front electrode, and the user wishes

to explore the rectangle bounded by (-100mm,0mm) and (100mm,200mm) off of

the torso’s center. Finally, columns five and six represent the admissible region.

In our example, the user only admits simulations whose performance metric 0,

the activation level, is above 80%, the performance metric 1, the damage level,

is below 10%, and the performance metric 2, the uniformity, is any value.

SimXManager also contains a set of APIs with which the user can retrieve

study-level information. They are listed in Table 4.2. These APIs gives the user

an easy way to retrieve aggregated information of a study, and present that

aggregated information to the user.

4.2.2 Sampler

The Sampler module has the same implementation across all versions of

SimX. The goal of the Sampler is to translate the specifications of a study (be

it the entire computational study, a slice of a design space, or a node in the
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Figure 4.5: Matrix format to SimXManager’s input port
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Signature Function
bool getAllExpr
(MatrixHandle study,
vector <pair<Values, Values> >&
result,
string& msg)

Fills the result vector with
<experiment,result> pairs
conducted for the given slice (or
study). Returns true on success,
otherwise msg contains the error
message.

bool getPareto
(MatrixHandle study,
vector <pair<Values, Values> >&
result,
string& msg)

Fills the result vector with only
experiments that are currently in
the region of interest

bool getIsDone
(MatrixHandle study,
bool& result,
string& msg)

Save to result whether the the
sampler has finished exploring the
given slice.

bool getNumOfExpr
(MatrixHandle study,
int& numExprs,
string& msg)

Save to numExprs the number of
experiments finished for the given
slice

Table 4.2: API of SimXManager module in SimX/SCIRun
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search tree) into a list of experiments to be run. The sampler interface is given

in Table 4.3.

As is discussed in later chapters, in some types of computational studies,

e.g., Pareto optimization, the Sampler module can take advantage of the un-

derlying logic of the study by issuing the simulations in stages. Therefore, the

interface is structured in a way where only one experiment is issued at a time

(getNextPointToRun()), and there is a mechanism where the performance metric

of the simulations are passed back to the Sampler (registerResults()).

SimX provides three built-in implementations of the Sampler, and the user

can specify which one to use in a computational study (using the SamplerType

option in the API) to tailor its behavior to the type of computational study he

wishes to perform. In addition, the user can build their own custom Sampler

module by implementing the Sampler API. The three built-in sampler types are

as follows: 1) the Grid sampler, which samples the design space on a regular

grid; 2) the Random sampler, which samples the design space randomly; and

3) the Active sampler, which is used for Pareto optimization, and samples the

design space in stages of increasingly refined grids. The use of different types

of sampler is discussed in Section 5.1.

4.2.3 Task Queue

The Task Queue is the temporary area that stores experiments that are

issued by the Sampler but not yet executed by a worker process. When the

Resource Allocator tries to find a simulation to issue to its worker processes, it
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Interface Explanation
SimXExploration(int N, int perfN) Initializes an exploration object, to

be run in a design space with N
dimensions, and a performance
metric parameter space with perfN
dimensions.

struct StudyID
{vector<int>

fixedDimensionIndices,
vector<double>

fixedDimensionValues,
vector<int>

nonFixedDimensionIndices,
vector<range>

nonFixedDimensionRanges,
vector<double>
performanceMetricParameterValues,

SamplerType,
InitialSamplerOptions}

A data structure to identify a
study. The first five arguments
defines the region/slice of
exploration. The last two
arguments defines the type of
sampler used to conduct this study.

SetCurrentStudy(StudyID) Sets the current study. If an
existing study is not found, add
create a new sampler for it.

GetEvaluated(StudyID) Gets a list of results (<parameter
metrics, design space points>
tuples) for this study.

SetSamplerOptions
(StudyID, SamplerOptions)

Sets the study’s sampler options.
The options, (e.g., initial grid
resolution, target refinement, etc.)
depends on the sampler used in the
study.

IsCurrentStudyDone() Tests whether the current study is
finished.

registerResults(Experiment, Result) Registers the result (performance
metric) of an experiment.

getNextPointToRun
(bool* hasPointReaady)

Gets the next experiment to issue
from the current study.

Table 4.3: SimX interface to the sampler code.
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has the freedom to choose among the tasks on the Task Queue.

There are two implementation of the Task Queue: as a simple FIFO queue,

or as a priority queue.

In the FIFO version, the task queue is implemented as a simple STL list,

and the tasks are issued from the Task Queue in the same order they are issued

by the Sampler.

In the priority queue version, a subset of the tasks on the Task Queue is

selected into a batch. The batch consists of experiments that are determined by

application-domain knowledge to be more important, and thus need to finish

early. The Task Queue will then issue the tasks that are batched first. When

all tasks in a batch are executed, a new batch is selected. If no task is available

then (i.e., the Task Queue is empty), then the Task Queue will ask the Sam-

pler to issued more experiments. The application developer who creates the

MES can implement the Task Queue’s API (Table 4.4) to tell SimX how the

experiments on the Task Queue ought to be batched, as well as the computa-

tional resources that should be assigned to each experiment in the batch. When

the user conducts the MES on SimX, the experiments will receive the correct

priority.

4.2.4 Resource Allocator

The Resource Allocator is responsible for assigning the batched tasks from

the Task Queue to the worker processes. If the simulation code is serial, the

Resource Allocator merely waits until the next worker process is available, and
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Interface Explanation
AddTask
(Experiment)

Called by the Sampler. Adds an experiment to the
Task Queue.

CreateBatch
(set<Experiment>*)

A customizable function that selects a subset of
the tasks on the Task Queue and mark them as
being in the current batch.

GetIdealGroupSize() The user uses this function to tell the Task Queue
the ideal number of processors to be assigned to
each task on the current batch. All task in the
batch get the same number of processors.

AssignNextTask
(groupID)

Called by the Resource Allocator. Removes a task
from the current batch and assigns it to the worker
process group identified by groupID)

Table 4.4: SimX interface to the Task Queue.
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sends the next task on the task queue to it.

However, if the simulation code can be run in parallel, i.e., the user is

using the SimX/Uintah version of worker processes, the Resource Allocator is

also responsible for configuring the worker processes so that they can be formed

into process groups to run individual simulations in parallel. The Resource Al-

locator tries to adjust the sizes of process groups so they will be as close to the

requirements of the task (corresponding to the return value of GetIdealGroup-

Size()) as possible. SimX normally manages this module without the user’s

intervention. However, the user can override the default SimX policy and cre-

ate their own worker process groupings by calling the Resource Allocator API.

This API consists of the following function:

reconfigure(const int* assign)

which creates one or more worker process groups and destroy old ones.

The assign array is an array of length N, where N is the total number of worker

processes involved in the computational study. The worker processes’ new group

assignments are stored in this array, indexed by their global processor ranks.

Worker processes with the same assignments will form themselves into the same

process group. Section 5.5 discusses how application-specific knowledge is used

in the reconfigurations of worker process groups.

4.2.5 FUEL

The inter-process communication between the manager process and the

worker processes is performed by FUEL. FUEL has the same implementation
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across different versions of SimX (hence the interoperability between processes

of different SimX versions).

As discussed before, FUEL is handler-based. When a user starts up SimX,

he provides several handler functions to specify how to marshal and unmarshal

objects (Table 4.5). The information sent by the worker processes to the man-

ager process is called a frame; the information sent by the manager process to

the worker processes is called an update. Instead of bytes, however, in FUEL,

all information travelling across the wire are vectors of double precision num-

bers, so there is no need for the user to worry about endian conversion. The

rationale is that, since information exchanged between worker processes and the

manager process are design parameters or performance metrics, they can always

be represented by vectors of doubles.

The execution model of FUEL handlers is different on manager process

and worker processes. On the manager process, the FUEL handlers are asyn-

chronous, so multiple handlers may be called at the same time, and the user

must make their handlers thread-safe. The handler calls are triggered by arrival

of a frame from a worker process. On the worker process, the FUEL handlers are

synchronous, so the worker processes must call a special function (arbitrate())

explicitly in order to trigger the execution of the worker-side FUEL handlers.

FUEL tries to hide the communication cost by overlapping the commu-

nication of an experiment with the execution of the last. This way, the worker

processes can be kept busy at all times and not have to wait for the manager

process to process its last experiment’s performance metric before receiving the
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Operation Signature Function

Typedefs of
handler
methods on
workers

typedef void*

(*ARBITER CNXTINITMETHOD)();

Init method. Called during
initialization. Should return an
opaque pointer representing an
application-specific context.

typedef void
(*ARBITER UPDATEMETHOD)
// input update vector
(const double *, int,
// output frame vector
const double **, int*,

/*context*/ void *);

Update method. Gets an
update vector and applies it to
the simulation, and extracts
next frame vector from the
simulation.

typedef bool
(*ARBITER TRIGGERMETHOD)
// input frame vector
(const double*, int,

/*context*/ void *);

Trigger method. Gets a frame
vector, and return true if the
frame should be sent to the
manager.

typedef void

(*ARBITER CNXTDEINITMETHOD)

(void*);

DeInit method. Reclaim the
memory pointed to by the
opaque pointer.

Usage on
worker
processes

void registerSatellite
(int satelliteType,
ARBITER CNXTINITMETHOD

pCnxtInit,
ARBITER CNXTDEINITMETHOD

pfCnxtDeinit,
ARBITER UPDATEMETHOD

pfUpdate,
ARBITER TRIGGERMETHOD

pfTrigger);

Register a collection of handlers
function (known as a
“Satellite”).

void arbitrate(); Called by the worker process to
send back the last frame and
receive the next update.

Typedef of
handler
methods on
the manager

typedef void
(*SATELLITE CALLBACKMETHOD)
// input frame vector
(const double *, const int,
// output update vector
const double **, int*,

/*context*/ void*)

Asynchronous call back method
on the manager. The function
should process the frame vector
sent by the worker process and
initialize the update vector.

Usage on
manager
process

Satellite(int satelliteType,

SATELLITE CALLBACKMETHOD

callback);

Creates a Satellite object,
which is used to connect to the
worker processes

void Satellite::addArbiter
(const char* hostname,

unsigned int port, void* cntxt);

Spawns a handler thread to talk
to the arbiter on the given host.

Table 4.5: FUEL interface.
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next simulation to run. Figure 4.6 shows two of the ”FUEL cycles” where

two experiments are performed on the worker process while two are issued by

the Manager process. Boxes in yellow indicate activities on the worker process;

boxes in white indicate activities on the manager process; boxes in blue indicate

activities on the network.

4.2.6 Simulation Container

The Simulation Container is the wrapper code that runs on the worker

process.

In the Standalone version, it provides a substrate on which the simulation

and evaluation codes are run. It is provided as a shared library and only does

a few things. It calls FUEL’s arbitrate() to send the performance metric of the

last simulation to the manager and receive the next simulation from it; it calls

the simulation code to run the simulation; it calls the evaluation code to extract

the performance metric. Optionally, it may also write and read intermediate

state of the simulation code to and from SISOL for optimization opportunities.

In the SimX/SCIRun version, the Simulation Container is packaged into

two modules: the BoundarySatellite module, and the BoundarySatelliteResultStore

module. When the worker process (which, in the case of SimX/SCIRun, is just

a SCIRun workflow net with the BoundarySatellite and BoundarySatelliteResult-

Store module in it) receives a simulation, the FUEL handler function provided

in SimX/SCIRun would automatically unmarshall the experiment specification

into the form of a SCIRun matrix. This Matrix is fired off from the output port
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Figure 4.6: Communication pattern in FUEL
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of the BoundarySatellite module, causing the workflow net downstream from

it to execute. This execution corresponds to the execution of the simulation

and evaluation codes. When the execution and evaluation subnet completes,

the simulation’s performance metrics are sent to the input port of the Bound-

arySatelliteResultStore module. This module uses shared memory and pthreads

to communicate with the BoundarySatellite module, which causes the Bound-

arySatellite to call arbitrate() to send the experiment’s performance metric back

to the manager (using, again, SimX/SCIRun-provided FUEL handler to mar-

shall the SCIRun Matrix), as well as receive the next experiment, which causes

the simulation and evaluation net to execute again (Figure 4.7).

In the SimX/Uintah version, the Simulation Container has an additional

responsibility. All Uintah applications are MPI-based and thus can run in par-

allel, thus the Resource Allocator can potentially instruct the worker processes

to form themselves into process groups to run a particular experiment in paral-

lel. The Simulation Container is the module that handles these reconfiguration

directives.

In SimX/Uintah, each worker process is part of two MPI communicators:

the global communicator (i.e., MPI COMM WORLD), and a sub-communicator

actually used to run the simulation. Initially, the sub-communicator is a du-

plicate of MPI COMM WORLD. When a Simulation Container receives an in-

struction from the Resource Allocator to form a group, it destroys its worker

process’s old sub-communicator, and rebuilds a new MPI sub-communicator

with the other processes making up the same group. The Simulation Container
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Figure 4.7: Simulation Container modules in SimX/SCIRun
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does this in a multi-step process. It starts by duplicating MPI COMM SELF.

It then uses the duplicate to create an MPI intercommunicator with another

process in the same group (identified via the reconfiguration directive sent from

the Resource Allocator, and reached through the gloabl communicator), and

merges the MPI intercommunicator to form a new MPI intracommunicator. It

repeats the communicator-merging process until the MPI COMM SELF’s of all

the processes in the same group are merged into the same communicator. This

communicator then becomes the sub-communicator for the process group. The

Resource Allocator thus acts as a global coordinator: by sending reconfigura-

tion directives only to the worker processes involved in a reconfiguration, it can

form and destroy groups without involving the other worker processes. Once

the process group is formed, the Simulation Container hands over the thread

of execution over to the simulation code. In SimX/Uintah, the simulation code

may periodically return control to the Simulation Container to check if there is

a need to terminate the simulation early.

When the simulation is finished (or terminated early), the Simulation

Container optionally writes the simulation result into SISOL to enable their use

in optimizing future simulation runs. It also executes the evaluation module

to calculate the performance metric for the experiment just conducted. It then

sends the performance metric back to the manager process by calling arbitrate().

In SimX/Uintah, the Simulation Container is implemented as a modified

Uintah component. This modified component sets the correct MPI communi-

cators and data archives, so that the rest of the Uintah workflow can proceed
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with no changes required.

4.2.7 SISOL

SISOL is used for implicit communication between worker processes, as

well as between worker processes and the manager process. While FUEL handles

the sending and receiving of design parameters and performance metrics, SISOL

handles the storing of the simulations’ intermediate internal states and final

results, and, in case of SimX/Uintah, a database of idle worker processes. They

facilitate reusing of simulation’s results, for visualization of simulation results,

and for checking for the existence of idle worker processes.

SISOL is implemented as a collection of standalone servers communicating

with a client library via TCP/IP.

There are two types of SISOL severs: the directory server and the data

server. Only one directory server is run during a computational study, but

multiple data servers may be run. The data servers are where the actual data

is stored. Typically they are spawned on the cluster nodes, so the bandwidth

between them and the worker processes is high. The data servers store the

objects in volatile memory, and each data server can handle read/modify/write

consistency — conflicting read/writes are serialized, and reading or writing non-

existent objects returns an error.

The single SISOL directory server maps objects to the data server where

they are stored. It also decides how the index space is partitioned between data

servers. The directory server acts as the single point of access to guarantee
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read/modify/write data consistency across the whole SISOL layer.

An optimistic protocol is used to guarantee the directory server’s consis-

tency. When a worker process wishes to access an object, it asks the directory

server where this object is located. If the object already exists, the directory

server points the worker process to the data server hosting it. Otherwise, the

directory server decides which data server the object “should” be located at,

and points the worker process to that. The worker process then contacts the

data server to access the object, and the data server would respond as required

by the nature of the operation. If the operation is a insert operation, the data

server would additionally notify the directory server for permission to create

the object. The directory server would either grant permission and update its

objects-to-server mapping, in case such an object doesn’t already exist, or, in

case such an object already exists on another server (as is the case when another

worker process wishes to insert a conflicting version of the same object concur-

rently, and the directory server had pointed it to a different data server), deny

the permission. If the insert operation is denied, the data server will return the

denial to the worker process, which will retry the operation. During the second

try, the directory server will be able to point the worker process to the correct

data server.

In the Standalone and SimX/Uintah versions, the SISOL client is provided

as a library. Table 4.6 shows the SISOL interface. Split-phase read and write

operations guarantee data consistency on the same object. The marshalling

and unmarshalling of data is performed by user-provided functions declared
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using the interface in Figure 4.8, and referenced by the typeID argument in the

CreateSet function.

The SimX/SCIRun version provides two SISOL client wrappers, one to

store SCIRun::Field objects to SISOL, the other to store SCIRun::Matrrix ob-

jects. Both Field and Matrix objects datatypes included in the SCIRun core

library. A Matrix object represents a dense matrix, while a Field object con-

sists of a geometric mesh and a set of data values. The SISOL interface in

SimX/SCIRun is realized in four modules: SISOLFieldWriter, SISOLFieldReader,

SISOLMatrixReader and SISOLMatrixWriter (Figure 4.9). All SISOL modules

require the user to enter the SISOL discovery server address and port number

using the UI, as well as the object ID. They also take a Matrix input port,

which specifies the spatial coordinate of the object stored. The reader modules

have an output port, where the stored object is injected into the workflow down-

stream; the writer modules have an input port where the object is read from the

workflow upstream and stored in the SISOL. In addition, a QueryClosestObject

module allows SCIRun to lookup the coordinates of the object in an object set

that is closest to a coordinate provided.

Figure 4.9 shows the SISOL modules being used for in the context of

simulation result reuse (see Section 5.3). This is an expanded version of the

net shown in Figure 4.7. The Simulation Container modules are shown on the

left. The simulation net is shown here as two separate subnets. One subnet is

connected to the Simulation Container modules, and consists of a SISOLField-

Reader and a ReuseFieldConditionalExecute module. The other subnet, on the
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Operation Signature Function

Initialization int CreateSet(int setID, int typeID, int arity,
double *weights, int capacity)

Create object set
of arity dimensions
to store objects of
type typeID. The
weights array
specifies a
weighted Euclidean
distance metric.

Registration int RegisterSet(int setID, void** objSet) Registers client as
participant;
retrieves object set
metadata in objSet.

void UnregisterSet(void* objSet) Unregisters client.
Access void Insert(void* objSet, double* coords,

void* obj)
void Remove(void* objSet, double* coords)

Insert/remove an
object into/from
an object set.

void* StartRead(void* objSet,
double* coords)

void* StartWrite(void* objSet,
double* coords)

void EndRead(void* objSet,
double* coords, void* obj)

void EndWrite(void* objSet,
double* coords, void* obj)

Start/end a
read/write
operation on an
object.

Query void QueryClosest(void* objSet,
double* coords, int numToLookup,
int* numRetrieved, double** retrCoords)

Query for up to
numToLookup
closest neighbors

Table 4.6: Interface of the spatially-indexed shared object space layer (SISOL).
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Figure 4.8: Object Type declaration interface in SISOL
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Figure 4.9: SISOL modules in use in SimX/SCIRun
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right, is executed only if the ReuseFieldConditionalExecute module does not re-

ceive a SCIRun Field object from the SISOLFieldReader module. The subnet

on the right also writes the result of the simulation net into the SISOL layer

via the SISOLFieldWriter module. Note that the simulation’s parameters here

(the SCIRun Matrix links) are used as the spatial coordinates for the SISOL

modules.

4.3 Summary

This section presents the SimX system, a suitable platform to conduct

Multi-Experiment Studies on parallel platforms. Its modular structure sepa-

rates out key functionalities in an MES — user interaction, sampling, schedul-

ing, resource allocation, sharing data, coordinating computational elements,

and inter-process communication — such that optimization techniques can be

adapted onto each module independently, as dictated by the needs of the partic-

ular MES being conducted. This adaptability, as will be seen in later chapters,

is key to achieving high-performance MESs.

In total, the three versions of SimX — Standalone, SimX/SCIRun, and

SimX/Uintah — contain over 10,000 lines of C++ code and represent three

years of engineering work. SimX interfaces with networking protocols and com-

munication APIs such as TCP/IP and MPI, as well as scientific libraries such

as PETSc. Table 4.7 gives a sense of the complexity of the SimX system by

showing a breakdown of the number of lines of codes written for each module

in each version of SimX.
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SimX Version
Standalone SimX/SCIRun SimX/Uintah

UI N/A 832 N/A
Sampler 2634 974 N/A

Task Queue 709 628 N/A
Resource Allocator N/A 485 N/A

FUEL 1093
Simulation Container 406 585 883

SISOL 3746

Table 4.7: Number of lines of code in SimX, broken down by modules
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Chapter 5

Using Application-Level Knowledge

As discussed in previous chapters, Multi-Experiment Studies present a

special set of challenges to parallel system software. The tradition system ap-

proach of running a collection of simulation experiments on parallel machines,

which treats each experiment as a separate black box, is too inefficient to cope

with the requirements of MESs: a realistic response time under heavy com-

putational load, and study-level user interactivity. As part of this research, a

number of techniques have been developed to cope with these challenges.

All of these techniques benefit from the system leveraging some knowledge

about the particular MES being conducted to make policy choices to optimize

for its goals. In the following sections, each technique is described in detail.

The general underlying principle which enable the technique is discussed first,

followed by a detailed description using the formulation used in Section 3.5.

Finally its implementation on the SimX system described in Section 4.2 is given.

These techniques can be generalized into three broad categories. The

first group (Sections 5.1 and 5.2) aims to minimize the number of experiments

required in a study, either automatically (Section 5.1) or in a user-driven fashion
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(Section 5.2). The second group (Sections 5.3 and 5.4) focuses on reusing results

from computation done in an earlier part of a study to speed up the later

parts, either at the individual experiment level (Section 5.3) or the study level

(Section 5.4). The final group of techniques (Sections 5.5 and 5.6) uses resource

allocation and scheduling decisions customized to the characterisitcs of the MES

at hand, to ensure efficient progress towards study goals.

5.1 Using Early Aggregate Results to Schedule Pareto Optimiza-

tions

The first technique is designed for MESs that are optimization studies.

The main idea is to incorporate search algorithms in the system’s sampling

logic to cut down the number of experiments required.

5.1.1 Principle

Many MESs are conducted to solve optimization problems, where each ex-

ecution of an experiment corresponds to a function evaluation, and the goal of

the study is to optimize that function. Using the terminology from Section 3.5,

the simulation code/evaluation code pair corresponds to the function evalua-

tion, the design space corresponds to the search space, the performance metrics

correspond to the optimization metrics, and the region of interest corresponds

to the optimal points in the design space where the function is optimized. In

optimization MESs, experiments can be selected to sample the performance

space, and the function evaluations at these sample points can then be used
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to identify the region where the functions achieves the desired optimal values.

Optimization MESs are a common occurrence; some examples can be found in

[85, 47, 57, 16, 5].

Three of our four example MESs are optimization studies. As discussed

in Chapter 3, the bridge design, defibrillator design, and helium model vali-

dation studies are examples of Pareto optimization. The particulars of Pareto

Optimization was discussed in Section 3.1. By scheduling the simulations intel-

ligently as described in this section, the Sampler module can decrease the total

number of simulations required to discover the Pareto frontier.

In general, if the system has the knowledge that the particular MES it is

conducting is an optimization study, it can be free to utilize more intelligent

sampling techniques. Instead of application-unaware grid scheduling like tra-

ditional systems ([2, 18]), the parallel system can incorporate parallel search

algorithms — such as parallel genetic algorithms ([15, 14]), simulated annealing

([70, 29]), parallel line searches, etc. — in its scheduling decisions, and tailor

the algorithm to suit the MES being conducted.

In effect, the search algorithms help the system reduce the number of

experiments required to conduct the study. Compared to the näıve approach,

which covers the entire search space in an evenly-spaced grid, search algorithms

can cut down the number of function evaluations needed for an optimization

problem. In MESs, this translates into a reduced number of experiments needed,

and thus improved study response time.
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5.1.2 Description

For the three Pareto Optimization MESs in this paper, we use an Active

Sampling algorithm that is designed for multi-objective optimization problems.

A variety of techniques have been developed for discovering Pareto fron-

tiers (e.g. [24, 61, 20]). We use a hierarchical approach which requires no specific

information about cost functions other than an evaluation procedure.

Recall the definition of the Pareto Optimization problem in Subsection 3.1.3.

The Pareto frontier is a subset of points in the design space that contains

only undominated points. A point x1 dominates another point x2 (denoted

by x1 � x2) if, for all the performance metrics, x1’s metric is better than x2’s.

In a discrete setting, assume that the design space has been sampled at a finite

number of points, yielding a finite subset, V , of the design space points. The

discrete approximation of the Pareto Frontier is the subset R ⊆ V that contains

only the undominated points.

The Active Sampler’s goal is to choose samples V such that R rapidly

converges to the continuous Pareto frontier. In general, the Pareto frontier is

a low-dimensional subset of the design space, therefore uniformly sampling the

design space would be inefficient. Instead, our algorithms tries to walk along

the frontier once an undominated point is discovered.

We start by discretizing the design space into a coarse lattice, and proceed

as follows. Seed the computation by evaluating the coarse lattice points, always

adding evaluated points to V . Every time a change is made to V , incrementally

update R. If a point is added to R, then the sampler requests evaluation of
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all lattice-neighbors of the new point. This effectively walks along the Pareto

frontier: lattice-neighbors that are off the frontier will be dominated, hence

will not propagate further; neighbors on the frontier will be added to R, thus

advancing the walk. At all times, R represents the best approximation to the

Pareto-frontier given current data. At the end of this computation, R is the best

approximation of the Pareto frontier at the current lattice resolution. When we

reach this point, we refine the Pareto approximation: resolution is increased and

points on a finer lattice adjacent to points in R are evaluated. This procedure

is repeated until the desirable refinement is achieved.

In effect, the Active Sampler uses the experiments on the coarse-level lat-

tice to identify promising regions of the design space, and explore the promising

region in higher detail using the finer-level experiments. In other words, the

coarse-level experiments are used to prune uninteresting regions of the design

space early in the study.

The Active Sampler strategy is illustrated in Figure 5.1. A Pareto Frontier

on the two-dimensional design space is shown in the figure, and the Active

Sampler tries to approximate the frontier, which is shown as a curve through

the design space. Initially, the Active Sampler issues nine experiments on a 3x3

grid (top left; issued experiments shown in black dots). After the results have

returned, a first-level Pareto frontier can be identified (top right; Pareto optimal

points shown in red crosses). The Active Sampler then refines the grid to a 6x6

grid, but only issues experiments that are neighbors of Pareto optimal points on

the first-level (middle right). After the results of the second level have returned
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(middle left), it repeats the refinement process on a 12x12 grid (bottom left and

bottom right). The result is a progressively-refined approximation of the Pareto

Frontier after each level.

5.1.3 Implementation

The Active Sampler is implemented as a SimX sampler module. It can be

plugged into the SimX architecture by implementing the APIs listed in Table 4.3.

The Active Sampler module keeps an internal representation of V , R, as

well as a list of points to be added to V (the to-do list). At initialization (the

SetCurrentStudy() call), the Active Sampler module populates the to-do list with

points on the initial coarse lattice. Every time the sampler is asked for the next

experiment (the getNextPointToRun() call), it returns the next point on the to-

do list. When experiment results arrive (the registerResults() call), the Active

Sampler examines the performance metric of the newly-evaluated design space

point d. It adds d to V , and, if d is not dominated by any point in R, updates

R by removing from it the points that are dominated by d, and adding d to R.

During refinement (which can either occur when the to-do list is depleted, or

when all outstanding experiments are completed), the Active Sampler refines

the lattice, examines the points in R, and adds their nearest neighbors to the

to-do list.

The Active Sampler signals the completion of a study when a sufficient

number of refinement steps have occurred. At that point, R contains the final

Pareto Frontier approximation at the desired level of detail.
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Figure 5.1: Illustration of the Active Sampling technique
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5.1.4 Challenges

The Active Sampler must efficiently and correctly resolve the Pareto fron-

tier in the setting of multiple worker processes. This is an inherently difficult

task consisting of conflicting goals: optimal sampling dictates using all infor-

mation at hand in choosing the next evaluation point; full loading requires that

every worker process have queued jobs.

To ensure full loading of worker processes, the sampler is required to

provide a worker process with an evaluation point whenever it is available to

receive one. Sometimes this means issuing evaluation points in the absence of

complete knowledge. In those cases, the active sampler must issue simulations

based only on known completed simulations (in effect, treating pending simu-

lations as if they would be dominated). When new information may indicate

that a previously issued evaluation is (in retrospect) in excess, this may lead

to a truncation of search stemming from the excess evaluation. Therefore, in

comparing a parallel to a sequential implementation, we expect (and observe)

that some evaluations, issued with incomplete knowledge, would not have been

issued under complete knowledge. These excess evaluations are inevitable to

ensure full loading. As the number of worker processes increases, the number of

pending simulations in the system also increases, and so more experiments are

issued with incomplete knowledge. Therefore, the amount of excess evaluations

increases with the level of parallelism.

To ensure optimal sampling, the sampler is required to have complete

knowledge before it issues the next evaluation point. In particular, the Active
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Sampler cannot issue an evaluation point unless all information that could affect

the issuing of that point has arrived. If a worker process is ready to receive an

evaluation point, but the Active Sampler is unable to ascertain whether it can

issue the next point (because simulations are still being run on other worker

processes), the worker process will be forced to stay idle. This synchronization

overhead among worker processes is inevitable to ensure optimal sampling. As

the numer of worker processes increases, more worker processes are likely to

stay idle, thus the synchronization overhead also increases.

The trade-off between full loading and optimal sampling depends on the

MES being conducted. Full loading is preferable in MESs where the penalty for

sampling on incomplete knowledge is small — i.e., where individual simulation

experiments are fast-running relative to the total amount of computation in

the MES, because the wasted experiments incur a relatively small performance

penalty. Conversely, optimal sampling is preferable when the individual sim-

ulation experiments are long-running. There are thus two versions of Active

Sampler implementation in SimX. One version of the Active Sampler ensures

full loading, and the other ensures optimal sampling. The full loading version is

used in the bridge and defibrillator studies, where the MESs are made up of a

large number of short-running experiments, while the optimal sampling version

is used in the helium model validation study, where the MES is made up of a

small number of long-running experiments.

In contrast to the active sampling technique discussed above, a näıve pa-

rameter sweep sampler does not use gathered information in choosing evaluation
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points. While this allows relatively trivial parallelization, the sweep sampler’s

disregarding of available information results in one or more orders of magnitude

of wasted simulation experiments. As we describe in Chapter 6, compared to

the Sweep Sampler, the Active Sampler reduces the number of experiments that

needs to be run to resolve the Pareto frontier at the finest level by anywhere

from 33% (in the helium model validation study) to 94% (in the bridge design

study).

5.2 User-directed Sampling

The technique described in Section 5.1, i.e., incorporating search algo-

rithms in the system’s sampling logic, is one way for the system to automatically

prune the design space during its exploration. This works well when the MES’s

region of interest is clearly defined and when the design space has a manageable

dimensionality. However, in MESs where the design space is too large, or where

the region of interest does not have an objective definition, automatic pruning

is not sufficiently effective, or possible. Instead, the system needs to rely on the

user to direct the pruning of the design space.

5.2.1 Principle

There are two main categories for interactive user involvement in selecting

experiments as part of an MES. The first category is for MESs with a large

number of design spaces dimensions. In such MESs, it is often practical for

users to explore and visualize only slices of the design space — a lower dimension
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subspace — at a time. For example, a two-dimensional Pareto Frontier is easier

to visualize and interpret than a five-dimensional one. However, the selection of

slices is most efficiently directed by the user, because the user can base the slice-

selection decisions on the study-level results of previous slices, and he can also

react to incomplete results of a slice, e.g., he could choose a new slice before

the exploration of the current slice is completed. By giving the user control

over the slice selection, but retaining automatic exploration of a slice once it

has been selected, the system enables interactive and efficient exploration of a

design space that is otherwise too large for either the system or the user alone.

The second category of interactive user involvement is when the MES’s

region of interest is not clearly-defined. This happens often in MESs where

a user’s subjective sense is needed to define the region of interest, such as in

our example animation study. In that setting, user’s input is essential to the

forward progress of the MES. These MESs would execute a number of scaled-

down versions of the simulation, and present a group of candidate scaled-down

results for the user to choose from. The user would review these results, and

select one of the candidates as being worthy of further exploration. Based on the

users’ choice, the system would continue the study in that particular direction,

adding more details to the chosen candidate in order to generate the next set of

candidates. This way, the user has direct control over the direction in which to

take the MES. Note that the system cannot make forward progress without the

user: its job is simply to collect the candidates based on the user’s preference.

In both categories of user involvement, the system is required to aggregate
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the partial results (of the slice or of the collection of candidate results) and

present the study-level result to the user, receive the user’s decision, and change

the direction of the MES by disseminating that information to worker processes.

5.2.2 Description

As described in Subsection 3.2.2, the defibrillator design study requires

user interaction because of its high number of design space dimensions. So, it

fits the first category.

In the defibrillator design study, the user continually selects slices of the

design space for the system to explore, and SimX has to explore the slice and

present the slice’s Pareto frontier to the user at an interactive rate. SimX uses

aggregation methods to display the Pareto frontiers to the users, allowing them

to steer the exploration toward slices that are particularly promising. Further-

more, because the Active Sampler can provide a coarse-level approximation of

the Pareto frontier early, users are given the choice to move to an alternative

slice of the design space even though only an incomplete or fuzzy frontier is dis-

covered for a given slice, further reducing computational cost. Both aggregation

and fuzzy localization make the underlying computational study interactive: the

user looks at the frontier as it is evolving and makes decisions about how to steer

the study to refine specific slices of the design space to the desired accuracy.

The animation design study, described in Subsection 3.3.3, fits the second

category. In the animation design study, SimX relies on the user to make forward

progress. At all time during the study, SimX displays the current search tree to
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the user, representing all the nodes it has explored, and the one it is currently

exploring. The user is given the choice to animate any of the nodes in the search

tree in order to see what each of the partially-completed scenes corresponding

to the nodes look like. While the user is viewing the scene, SimX continuously

explores the current node using the RandomSampler (4.2.2). At any point, the

user can choose to animate another node, or tell SimX to explore another node,

or just wait until more child nodes are available to view. Figure 5.2 shows one

instant during the animation study. The search tree is printed in the background

in text form, the UI of the buggy scene design SCIRun module is displayed as

a dialog window, and the preview window that shows a partially completed

scene is shown at the back. The user is currently exploring node 17, and has

chosen to preview the partially-completed scene corresponding to node 51. He

could now choose to continue exploring node 17, in which case he just waits

and refreshes the tree, or animate a different node, in which case he would type

in the ID of the node he wishes to preview and click the preview button, or

explore a different node altogether, in which case he would type in the Node ID

and click the “execute” button, which will update the SimXManager module

(not shown) of a change in the current node. In addition, SimX gives the user

the ability to backtrack in the search tree. When the user moves on to explore

a different node, the SimX would store all intermediate information about the

current node in a database, so that when the user wants to resume exploring

the current node, SimX can retrieve the information and continue.
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Figure 5.2: Animation designer steering the animation design study
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5.2.3 Implementation

In between each user interaction in an interactive MES, the system is

in effect conducting a mini-, non-interactive MES with a more confined design

space. Each slice of the design space, or stage in a user-driven study, can be

thought of as a mini-MES in itself — the system is still issuing experiments

to explore a design space, but that design space is a constrained version of

the design space of the overall study. The design space of the mini-MES is a

subspace of the overall design space, constrained either by the currently selected

slice (in the first category), or by the partially-completed candidate (in the

second category).

Interactive MESs are supported only on the SimX/SCIRun version. In

order to accommodate an interactive MES, the SimXManager module includes

a meta data structure that stores multiple samplers. Each sampler is created as

a result of the users’ action. When the user performs an action, the manager

first decides the specification of the non-interactive mini-MES that corresponds

to that action. Then it looks up the sampler store to see if the same mini-

MES had already been conducted before. If not, the manager will create a new

sampler, store it in the sampler store, and start conducting that mini-MES. If

the same mini-MES had been conducted before, the manager can look it up

from the store, and continue that mini-MES from where it had left off.

As shown in Table 4.3, the StudyID data structure uniquely identifies a

mini-Study’s specification. Thus it is used by the manager to lookup and store

the sampler objects. A new user action results in the manager creating a new
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StudyID object, and invoking the SetCurrentStudy() call. The sampler for the

mini-MES will be either created or looked up, and that sampler will be regarded

as the current sampler — i.e., where the getNextPointToRun() call is made —

until the next user action occurs.

In the defibrillator study, each slice is still being explored by the Ac-

tive Samplers, so the sampler store contains a set of Active Samplers module

instances. In the animation design study, each stage is explored by the Ran-

dom Sampler, so the sampler store contains a set of Random Sampler module

instances.

5.2.4 Challenges

The StudyID structure is designed to encapsulate all the information in

the specification of a mini-MES, i.e., it captures all the information specified

by a user’s action. However, the remaining challenge is to translate the user’s

action translate into a StudyID object.

Study-level user interaction is only supported on the SimX/SCIRun ver-

sion. It leverages SCIRun’s user interface and component model to enable user

interaction with SimX (see Section 2.4.1). SimX/SCIRun allows the user to

steer the progression of an entire computational study by using an application-

specific User Interface module. The UI module can 1) retrieve, aggregate, and

display simulation results, and 2) collect user input and translate them into a

study specification.

More specifically, the UI modules, implemented as SCIRun modules, use
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the API in Table 4.2 (e.g, getPareto()) to retrieve aggregate results from SimX.

The retrieved results are then displayed to the user via SCIRun’s visualization

components. The UI modules also use SCIRun’s GUI mechanisms such as wid-

gets and Tk/Tcl scripts to allow the user to specify, on the visualization screen,

which slice he wishes to explore. Once a user makes a selection, the UI modules

then package those preferences by creating a SCIRun matrix as described in

Section 4.2.1, and send this matrix downstream to the SimXManager module’s

input port. The SimXManager then translates the matrix into a StudyID object,

and uses SimX’s SetCurrentStudy() to change the MES’s direction.

5.3 Reusing Experiment Results

In Multi-Experiment Studies, many similar experiments are issued. Be-

cause the calculations are so similar, the result of one experiment — be it the

final result, or an intermediate internal state of the simulation code — can of-

ten be used to speed up the execution of experiments whose input parameters

are similar. If these results can be stored during one experiment, they can be

retrieved later to be re-used during another experiment.

5.3.1 Principle

There are many sources of result reuse in MESs. The ability to reuse

the results of earlier experiments stem from the numerical properties of the

simulation code and the code structure of the simulation experiment. Thus, de-

pending on whether an MES’s simulation code has certain numerical properties
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Type Result Reused Applicability
Checkpoint reuse Simulation code Time-stepping simulation code,

output Iterative solver
Preconditioner reuse Preconditioner Iterative solver
Intermediate result Internal states Simulation code with

reuse of simulation code shared intermediate states
Simulation result Simulation code Interactive MESs

reuse output
Performance metric Evaluation code Interactive MESs

reuse output

Table 5.1: Summary of result reuse types

or structure, it can take advantage of one or more forms of experiment result

reuse. Table 5.1 summarizes the types of result reuse discussed in this section.

MESs made up of simulation codes that use an iterative solver to solve

a non-linear system can often benefit from result reuse. Assuming that exper-

iments that are close by each other on the design space are expected to have

similar systems, the solutions to the two systems should be similar as well.

Therefore, using the solution to the same system from an earlier experiment

as the first guess to the iterative solver is expected to reduce the number of

iterations needed to reach the solution. This results in a reduced number of

iterations required by the solver, which reduces the run time of the later experi-

ment, which in turn reduces the overall run time of the study. This form of result

reuse takes advantage of the checkpointed result from a previous experiment,

so it is called checkpoint reuse.

In addition, MESs made up of simulation codes that use an iterative solver
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to solve a linear system can benefit from reusing the preconditioner. Assuming

that the two systems of two close-by experiments are similar — in particular, if

the stiffness matrices are similar — the preconditioner calculated for one stiffness

matrix could be useful for the other system. The preconditioner from an earlier

experiment, even though it is not the one calculated for the present experiment,

can still reduce the number of iterations compared to the unpreconditioned

system, but not as much as the “correct” preconditioner. However, as long as

the cost of calculating the “correct” preconditioner outweighs the penalty of

using the readily available but “incorrect” preconditioner, it will be beneficial

for the MES to reuse the preconditioner from an earlier experiment. Since this

technique reuses the preconditioner in a different experiment, it is referred to

as preconditioner reuse.

Some other MESs are made up of time-stepping simulation codes. Usu-

ally, these MES require that the simulation codes to timestep until a certain

condition is satisfied — e.g., when the system enters a steady state, or when

the energy in the system dissipates. These MESs present another possibility

of result reuse. Assuming that the solutions of two close-by experiments are

similar, it is sometimes possible to use the final state of one experiment as the

initial state of another. Depending on the numerical method, the timestepping

simulation code can reach the same final state regardless of what the initial state

is. If the simulation code has this property and the MES uses the final state

of a close-by experiment (which has already reached the termination condition)

as the initial state of another, the number of timesteps required by the later

141



experiment to reach the termination condition will be reduced. This speeds up

the later experiment, and thus speeds up the overall study. This type of reuse

also takes advantage of the checkpoint result from a previous experiment, and

is a variant of checkpoint reuse.

Some MESs are made up of simulation codes with multiple intermediate

states. These intermediate states often have specific physical meaning. More-

over, simulation codes close by to each other often share the same intermediate

states. If these intermediate states from one experiment can be stored, they can

be retrieved and re-used in a close-by experiment that is executed subsequently,

thus saving the later experiment the need to re-calculate the intermediate state.

We refer to this type of result reuse as intermediate result reuse.

One particular example of intermediate result reuse is applicable to all

MESs that fits the formulation specified in Section 3.5. There, the output of

the simulation code itself can be considered an intermediate state, because the

simulation code’s output needs to be fed into the evaluation code to produce

the “real” result that the MES cares about: the performance metrics. In the

presence of interactivity, it is possible that a user could create a new mini-MES

by changing only the performance metric parameters. In those cases, the inputs

to the simulation code remain the same, but only the evaluation code need to

be re-executed. If the outputs of the simulation code are stored for the first

mini-MES, some of them can be reused in the second mini-MES, saving the

time it takes to re-execute the simulation code. This type of result reuse is

referred to as simulation result reuse.
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Also due to user interactivity, sometimes the system needs to execute

the same experiments for different mini-MESs. This could happen if the user

merely shifts the region of exploration, but keeps the same slice. Then some

experiments in the overlapped region could be issued by the new mini-MES,

but may have already been completed by the first mini-MES. A MES system

that stores all experiment results generated by any mini-MES can simply look

up those results instead of issuing them to the worker processes. We refer to

this special type of result reuse as performance metric reuse.

As may be apparent, the levels of reuse range from generic to specific, with

performance metric and simulation result reuse being most generic: any interac-

tive multi-experiment study fitting into the formulation described in Section 3.5

can take advantage of them. Checkpoint reuse, intermediate result reuse, and

preconditioner reuse require the simulator code to store and retrieve information

specific to the application.

We note that although the specifics may differ somewhat, the overall no-

tion of result reuse is broadly applicable beyond our context of computational

studies. Any parallel workload which involves the repeated execution of similar

kinds of computation can benefit from a similar approach, where one focuses on

the “delta” of computation that needs to be performed beyond what already

exists as opposed to computing the result from scratch.
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5.3.2 Description

Examples of result reuse can be found in the example bridge design study,

defibrillator design study, and animation design study.

The bridge design study is an example of an MES made up of simulation

codes that use an iterative solver to solve a non-linear system. Here, the simu-

lation code spends the bulk of the time in a Newton iterative solver. Normally,

the first guess to the Newton solver is a zero vector. However, if we consider

two simulations that are close by on the design space — i.e., the placements

of the columns are close by — the stiffness matrix and RHS to the non-linear

system should look similar, with only a few rows that are different. Therefore,

if we used the solution of one system as the initial guess of another, we can

reduce the number of Newton iteration required to solve the second system.

Our experiments have shown an order of magnitude decrease in the iterations

needed when checkpoint reuse is enabled.

The defibrillator design study presents an example with intermediate re-

sult reuse. As discussed in Subsection 3.2.1, the DefibSim simulation code solves

three linear systems, each corresponding to setting the boundary condition of

the front electrode to the three surface mesh nodes nearest to it. In Figure 5.3,

for example, two front electrode placements, one represented in red and one in

green, are explored on the torso’s surface mesh. To solve the body potential

caused by the green placement, DefibSim needs to solve the three system sur-

rounding it, namely, Aax = ba, Acx = bc, and Adx = bd. Each of the stiffness

matrices A and RHSs b corresponds to placing the boundary condition on the
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corresponding nodes. Once the three solutions x are calculated, a weighted av-

erage is taken, based on the distance between the mesh node and the placement.

As is apparent, when the user wishes to explore the placement represented in

red, DefibSim has to solve two of the same systems as in the green placement.

By storing the solutions of these systems in SISOL, and the simulation code can

look up the solutions and skip solving those systems that had previously been

solved.

As an interactive MES, the defibrillator design study also provides an

example of simulation result reuse. A new slice of design space could be selected

by the user changing only the performance metric parameters. E.g., a user

may fix the back electrode placement and voltage shock, select an area for the

placement of the front electrode, and discover the Pareto frontier of the front

electrode placement. Then he may raise the activation level to try to find the

Pareto frontier for a patient whose heart is harder to activate. In these cases,

many of the simulations are already done when the user was exploring the

first slice because the input to the simulation code — placements of electrodes

and shock voltage — remain the same across the two slices. The only difference

between the two slices are the performance metric parameters, which only affects

the behavior of the evaluation code. The Simulation Container can detect when

such cases occur and by-pass executing the simulation code.

Besides multiple intermediate states, each solve of the system Ax = b in

the defibrillator design study uses an iterative solver. Thus, it is possible for

the defibrillator code to reuse the preconditioner from one system for another.
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Figure 5.3: Intermediate result reuse in DefibSim
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The helium model validation study provides an example of checkpoint

reuse based on timestepping code. As discussed in Section 3.4, Arches’s execu-

tion time depends on the per-timestep run time and the number of timesteps

required to reach a steady state. An inherent characteristic of Arches’s timestep-

ping method is that, if two simulations with the same inlet velocity are run, it is

possible to use one simulation’s final state as the initial condition of another. By

using the first simulation’s final state instead of the default initial condition, the

second simulation can reach its steady state with fewer number of timesteps.

As we describe in Chapter 6, on average, without reuse, Arches takes 2900

timesteps to reach the stable state; with reuse, it takes 1641 timesteps. How-

ever, as pointed out above, only simulations with the same inlet velocity can

reuse each other’s results. We refer to experiments that can reuse each other’s

final states as belonging to the same reuse class.

5.3.3 Implementation

Result reuse is mainly supported using the SISOL component in SimX. In

all the reuse scenarios described above, the system needs to store intermediate

results across different executions of the computational experiments. Since the

SISOL implementation is supported on all three versions of SimX, result reuse

is a technique that can be exploited in all versions.

To take advantage of result reuse across the MESs, the reusable objects

are grouped into SISOL object sets. E.g., all preconditioner objects created in

an MES belong to one object set, all iterative solver’s solution belong to another
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object set, and all outputs of the simulation code belong to a third object set,

etc. Object sets are assigned, a priori, an object set ID.

SISOL’s spatial index naming system is well-suited to distinguish objects

within an object set because the objects are created by the execution of simula-

tion code using inputs from a point on the design space, so the spatial coordinate

of the design space point can uniquely identify an object within an object set.

Therefore, the <object set ID, spatial index> tuple can uniquely identify an

object.

In some types of reuse the exact coordinate of the object to be reused

is unknown. E.g., to take advantage of preconditioner reuse, the Simulation

Container needs to find the preconditioner calculated for the closest numerical

system, but doesn’t know the exact design space coordinate of that system. The

spatial index system supports neighborhood queries, which allows for nearest-

neighbor lookups, becomes useful for such reuse types.

In the bridge design study, when the Simulation Container finishes exe-

cuting the bridge deformation code in the bridge design study, the simulation

result, which is a PETSc vector, is written into a ResultSet in SISOL (with

ObjectSet ID of 0), using the design space parameter of the simulation as the

spatial index. When the Simulation Container executes the next experiment,

it looks through the previously-stored ResultSet in SISOL using NearestNeigh-

bour query to find the closest solution.

In the defibrillator design study, intermediate state reuse is realized using

the SISOL SimX/SCIRun modules. The relevant simulation net is shown in
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Figure 5.4. The coordinates of the surface node, along with the position of the

back electrode and the strength of the voltage shock, is calculated by a collection

of modules upstream (top right) and used as the spatial index of the SISOL-

MatrixReader module. The module uses the spatial index and attempts to read

an object associated with that spatial index from the IntermediateResultSet (it

has the Object ID of 1) from the SISOL layer (top). The result is passed down

to the ConditionalExecute module (middle left). The ConditionalExecute module

will cause the solver sub-net on the right to fire only if the input matrix port is

empty (i.e., the intermediate result isn’t already stored in SISOL). Otherwise, it

passes the result of the SISOL lookup directly to the module downstream (bot-

tom right). On the solver sub-net, a module constructs the stiffness matrix and

RHS, and the two are passed into SCIRun’s SolveLinearSystem module (right).

The SolveLinearSystem solves the linear system, and fires the solution on its

output port. The solution is written to SISOL for future reuse (bottom right),

and also passed back to the main workflow net (bottom right).

In the helium model validation study, since Arches already writes the

checkpointed result onto disk, the Simulation Container only needs to write

the disk location of the checkpoint into the ResultSet, using the experiment’s

design space point coordinates as the spatial index. Later on, when the Simula-

tion Container is about to executes another simulation, it uses SISOL’s nearest

neighbor query to extract the simulation result closest to the simulation it is

about to run. During result reuse, the Simulation Container needs to addition-

ally check that the retrieved result belongs to the same reuse class. The “nearest
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Figure 5.4: DefibSim net conditionally executes the solver subnet
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neighbor” query in helium model validation is therefore heavily weighted for the

Inlet Velocity dimension in order to guarantee that, if a result with the same

inlet velocity already exists, the nearest neighbor query will return it first.

5.3.4 Challenges

With result reuse, during each execution of the simulation code, multiple

objects can potentially be written into SISOL: all the intermediate results, the

output of the simulation code, preconditioners and solutions of every system

solved. The network requirements can therefore become arbitrarily large.

The latency problem can be mitigated by overlapping the writing of SISOL

objects with the execution of the next experiment. Since the correctness of the

MES is not affected by delaying the writing of SISOL objects, it is possible for

the Simulation Containers to receive the next experiment without waiting till

the SISOL objects associated with the previous experiment are all written. The

penalty for delaying the writing of SISOL objects is that the objects may not

be available for reuse as early. Therefore, there is a trade-off between making

reusable objects available as soon as possible and taking a performance delay of

waiting for the objects to be written to the SISOL layer. The writing of SISOL

objects should be delayed to overlap with the execution of the next experiments

if the performance penalty of waiting for the SISOL layer is higher than the

performance penalty of not having the benefits of the reuse of all of the objects.

It is highly dependent on the MES: the wait time of SISOL writes is a function

of the object sizes, but the performance gain of having reuse is a function of the
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characteristics of the problem.

Even though the latency problem can be mitigated on the worker pro-

cesses by hiding it with the next experiment, the SISOL layer can still become

a performance bottleneck on the server. In runs consisting of a large number

of worker processes, all processes would simultaneously try to read and write

multiple objects into SISOL. The SISOL servers would have to service more

simultaneous requests for checkpoints, and the SISOL data servers could be

overwhelmed by requests and become a performance bottleneck. At an inflec-

tion point, the time that worker processes spend waiting for the SISOL data

server could be large enough that the reduction in per-experiment run time is

negated. SimX deals with this challenge by using multiple SISOL data servers,

and uses the single directory service to direct traffic. Worker processes need to

lookup from the directory service which data server an object resides on, and

perform the actual transferring of objects by directly communicating with the

data servers. This way, the bandwidth requirement to any one data server is

reduced to a level that does not impede the worker processes’ progress, and the

bandwidth requirement of the single directory server is minimal, because it only

serves object IDs and server IDs. As the number of worker process increases, it

is possible to simply add more data servers to retain the per-data server load.

As discussed in Subsection 4.2.7, SISOL data servers store objects in

volatile memory. If the size of objects stored on a data server exceeds its mem-

ory capacity, the server will experience a severe performance degradation due to

thrashing. To prevent data servers from exceeding their capacity limit, SISOL

152



enforces a per-object-set per-data-server cap on the number of objects stored.

The cap is specified by the user, and is dependent on the data server’s memory

capacity. The user can start as many data servers as needed in order to obtain

the overall storage capacity required by the MES.

5.4 Reusing Study-level Results

As discussed in Section 5.3, an individual experiment’s simulation result

may be reused to speed up another experiment if the two experiments are close

to each other. In the same vein, in an interactive MES, if two design space slices

are close to each other, the aggregate results of one mini-MES may be used to

speed up the execution of another mini-MES.

5.4.1 Principle

In an interactive MES, when the user elects to explore two design space

slices that are close to each other, their regions of interest are expected to be

similar. The two mini-MESs may have identical specifications but a slightly

different performance metric parameters, or their fixed design space dimensions

maybe slightly different, or their specifications are the same, but the regions of

exploration overlap with each other.

In such cases, it may be beneficial to use the region of interest in the first

mini-MES as the starting point for the exploration of the second mini-MES.

Recall that, in the Active Sampling strategy (Subsection 5.1.2), the aggregate

result of early experiments, which are issued on design space points correspond-
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ing to a coarse lattice, is used to guide the exploration of later experiments,

which correspond to a finer lattice on the design space. If there is an exist-

ing mini-MES that has completed, one could use the region of interest of this

other mini-MES, instead of experiments on the coarse lattice, to guide the ex-

ploration of the finer lattice. This way, the system can skip having to re-issue

the experiments corresponding to a coarse grid, and immediately work on ex-

ploring the fine-level grid. This can potentially enable the system to focus on

the “interesting” region of the second mini-MES sooner.

By using the first mini-MES as a guide, this strategy allows the system

to by-pass the coarse-level exploration of the second mini-MES, and potentially

resolve the region of interest with fewer number of experiments.

5.4.2 Description

In the defibrillator design study, if a user performs an action that causes

the system to switch from exploring one slice to another slice (e.g., changes a

performance measure parameter such as the activation threshold), the system

can take the approximation of the Pareto frontier obtained in the first mini-MES

to act as the initial Pareto frontier approximation for the second, reducing the

total number of experiments needed.

This type of reuse effectively uses the Pareto frontier of the first slice as

the initial approximation to the Pareto frontier of the second, thus removing

the need to run the coarse-level exploration in the second mini-MES. This type

of reuse is particularly beneficial in situations where the second mini-MES is a
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refinement of the first (as is typical for design space exploration).

5.4.3 Implementation

Since study-level reuse is only applicable to interactive MESs, study-level

reuse is only supported on the SimX/SCIRun version. As discussed above,

the SimXManager keeps a meta data structure to store multiple samplers. To

enable study-level reuse, these samplers are indexed in a spatial database, using

the specification of the mini-MESs as the spatial index. (This database is not

SISOL, because it is not accessible from worker processes).

When the user performs an action that creates a new mini-MES, SimX

translates its specification into a spatial index, and looks up the closest mini-

MES from the database. If it determines that the two mini-MESs are “close

enough”, it can query the existing mini-MES’s sampler for the region of interest

it has discovered. When it creates the sampler for the new mini-MES, it uses

the old sampler’s result to “seed” the new sampler. This “seeding” of the

second mini-MES’s sampler is accomplished by the SetSamplerOptions() call in

the SimX sampler interface. This way, the new sampler will by-pass the coarse-

level exploration and immediately begin exploring its design space at the finest

level.

5.4.4 Challenges

The difficulty with this approach is that there is no easy way to know, a

priori, whether two mini-MESs are close enough to each other to make study-
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level reuse worthwhile. To deal with this problem, in the current implementa-

tion, SimX uses user-defined heuristics to decide whether to enable study-level

reuse. The user can specify the distance between two mini-MESs (as defined by

the spatial indexes of their specifications) that the mini-MESs must fall within

in order for SimX to enable study-level reuse.

5.5 Parallelism-driven Resource Allocation

In computational studies where the simulation code can be run in parallel,

the system has the ability to decide how many, and which, processing elements

are assigned to each simulation. This is especially important in scenarios where

the number of processing elements is greater than the number of experiments.

5.5.1 Principle

In general, most parallel codes do not scale perfectly because of paral-

lelization overhead. The non-linear scaling behavior has several implications.

Firstly, in order to minimize parallelization overhead within each process

group, the system should aim to schedule “long-and-thin” scheduling graphs —

many executions running concurrently on relatively small process groups. How-

ever, when the number of processing elements is not a multiple of the number

of outstanding experiments, the processing elements cannot be divided evenly

among the experiments, so the question of how many and which experiments

get higher priority becomes an issue.

In this thesis, experiments are grouped into batches, and only the exper-
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iments inside the same batch are allowed to, but not required to, execute con-

currently. The algorithm to select a batch from a pool of experiments to be run

is called the batching policy. By controlling which experiments can be grouped

into the same batch, the system can adapt its parallel scheduling algorithm to

suit the requirements of the MES it executes.

The batching policy is influenced by a variety of factors, all of which are

specific to the MESs being conducted. These factors include sampling policy,

scaling characteristics of the simulation code, and result reuse. This section dis-

cusses the influence of sampling policy and scaling characteristics; the influence

of result reuse is discussed in Section 5.6.

A second implication is that, when multiple experiments are issued con-

currently, some experiments might finish earlier than others. What to do with

the freed-up processing elements becomes an issue. Does the system issue new

experiments onto them? Or does the system expand existing experiments to fill

them out?

It is not clear at the outset whether preempting an ongoing simulation and

expanding it onto the idle processes will be beneficial — this depends on the

preemption’s overhead and the parallelization overhead of the simulation code.

In SimX, the user is given control over whether preemption happens. In the

default implementation, SimX provides a simple heuristic explained below.
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No. of CPUs 4 8 16 32 64
Run time (s) 1.95 1.14 0.80 0.60 1.82

Table 5.2: Arches scaling behavior: run time per timestep

5.5.2 Description

The most important factor influencing batching policy is the scaling be-

havior of the simulation code. To explain how the batching policy works, con-

sider the helium validation study. The time it takes Arches to execute a single

timestep on different numbers of processors is shown in Table 5.5.2.

The parallelization overhead of the simulation code is used to decide the

optimal batching policy. For example, consider a case when 32 processors are

assigned to conduct a study, and 6 simulations with the scaling behavior shown

in Table 5.5.2 need to be run. Assume for the moment that they all take the

same exact number of timesteps, n. The optimal batching strategy would be

to issue two simulations concurrently first, and then issue the remaining four.

That way the total time will be 0.8n seconds to execute the first batch (each

simulation getting 16 workers), and 1.14n seconds to execute the second batch

(each simulation getting 8 workers), totaling 1.94n seconds. However, if there

are 7 simulations to be run, it’s better to issues all 7 in a single batch, and finish

in 1.95n seconds (each simulation getting 4 workers, with 4 workers left idle).

The optimal way of grouping experiments in batches can be found by

dynamic programming. Let Tm,n be the time to complete n jobs with m batches

or fewer. T1,j can be looked up from Table 5.5.2.
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Then, for 2 ≤ m:

Tm,n = min1≤i≤n(Tm−1,i + Tm−1,n−i)

Here, i represents the “dividing point” of the batch: the n jobs are divided

into two sub-batches of i jobs and n− i jobs, which themselves could be further

sub-divided. The optimal way to schedule the n jobs can then be looked up

from the dividing points used to calculate the Tm,n table.

Unfortunately, the “ideal” batch sizes assumes that every simulation ex-

ecutes the same number of timesteps. Since simulations do require different

timesteps, particularly when SimX employs optimizations such as checkpoint

reuse, there will always be “holes” left on the scheduling graph.

This is where preemption becomes important. Like most checkpointing-

capable MPI applications, Arches is not only moldable (can run on different

number of processes) but also malleable (can adjust to changing allocations at

run time). Arches leaves checkpoints periodically, so when idle worker processes

are detected, it is possible to preempt an ongoing simulation, assign the idle

processes to the process group that has been working on the simulation, and

restart the simulation from the last checkpoint using the resulting process group,

now with a larger number of worker processes. This preemption policy fills up

the “holes” on the scheduling graph by “spreading out” existing simulations, at

a cost of having to re-do the work that the original process group has done from

the time it left the last checkpoint up to the time it was preempted.

In the default implementation of SimX/Uintah, the scaling behavior is

used to decide when it is beneficial to preempt an existing simulation. Suppose
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a simulation has completed a fraction σ of work between the last checkpoint

and the next (0 < σ < 1), and some worker processes become available at that

time. Let α be the speedup ratio between the original process group and the

expanded process group (i.e., for perfect scaling, α = original group size / ex-

panded group size). Then, in order for the preemption to be beneficial, the time

it takes for the new process group to advance to the next checkpoint from the

last checkpoint must be smaller than the time it takes for the original group to

advance to the next checkpoint from where the simulation currently is (other-

wise, the preemption should performed at the next checkpoint). Therefore, for

preemption to be beneficial, the following inequality must hold:

α < 1− σ.

To estimate σ, we assume that the number of timesteps per simulated

second is the same, so σ is just the fraction of completed simulated time and

expected simulated time between checkpoints.

5.5.3 Implementation

Support of parallelism-driven resource allocation requires co-operation be-

tween SimX/SCIRun’s manager process and SimX/Uintah’s worker processes.

To enable batching, the priority queue version of the Task Queue module

must be used. During initialization, the priority queue version Task Queue loads

the scaling behavior of the simulation code, and calculates the ideal batch sizes

using the dynamic programming algorithm mentioned above.

During the study, the SimXManager “looks ahead” at the experiments
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that the sampler wants to issue. It calls getNextPointToRun() repeatedly until

the sampler cannot issue more simulations without knowing more evaluation

results. It calls the Task Queue’s AddTask() interface to store the return values

of the sampler. Once the experiments are stored in the Task Queue, SimXMan-

ager calls CreateBatch() to gather the next group of experiments to be issued

concurrently. The Task Queue then tries to batch the tasks according to the

ideal batch sizes.

This CreateBatch() call is customizable, so the batch creation algorithm

can be adapted to the particular requirements of the MES. In the default version,

the call simply picks a number of random experiments from the queue to match

the number of ideal batch size.

Once the SimXManager determines the batch membership, it calls Task

Queue’s GetIdealGroupSize() interface to determine the ideal number of proces-

sors to assigned to each group. Normally the Task Queue would divide the

processing elements evenly among the processing elements, a la the Fair Share

policy used in traditional parallel systems with moldable jobs ( [76, 77]). Then

SimX creates an assignment vector and calls the Resource Allocator’s reconfig-

ure() function to ensure that the processing elements arrange themselves into

processor groups with the ideal group size. From there on, the rest of the system

would assign the experiments to the worker process groups concurrently.

To help carry out the preemption strategy, a database is kept in SISOL

to keep track of idle process groups. Every time a process group finishes its

simulation and is not assigned a new one, the SimX manager process writes the
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process group’s information about its processors into the database.

As discussed previously, while Arches runs, it may periodically return

control to the Simulation Container. When that happens, the Simulation Con-

tainer would look for idle worker processes on the SISOL database and decides

whether to claim them according to the rule described in the last section. If it

decides to claims the processors, it sets a flag in the database, terminates Arches

early, and sends back a “claim ticket” to the manager process. On the manager

process, when the Resource Allocator recognizes a claim ticket, it sends a re-

configuration directive to the claimed processes. The claimed processes and the

original worker processes then form themselves into a new process group, which

continues the original simulation from the last checkpoint left on disk.

5.5.4 Challenges

To enable the default optimal batching policy, SimX needs to know the

scaling behavior of the simulation code. In the current implementation, it re-

quires the user to explicitly specify the scaling behavior of the simulation code,

with the expectation that offline profiling is performed with the simulation code

to prepare this table. A more sophisticated implementation of SimX, however,

should be able to infer the scaling behavior automatically by performing test

runs of Arches during the study’s initialization.
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5.6 Scheduling to Maximize Reuse Potential

As discussed in Section 5.5, the optimal batching policy is determined by

the scaling overhead of the simulation code. However, it may also be influenced

by concerns of result reuse. As discussed above, not all simulations can reuse

all other simulations’ results. For example, in the helium model validation

MES, only experiments in the same reuse class can reuse each other’s result.

In order to maximize the reuse potential of experiments (and thus reduce the

overall study run time), a parallel system conducting an MES needs to schedule

experiments in a way that enables the most result reuse to take place. The

batching policy is the most direct way to accomplish this.

5.6.1 Principle

Because an experiment can only reuse a result from another experiment

that has already been executed, the system should ideally avoid executing

groups of experiments concurrently with the following characteristic: the ex-

periments within the group can potentially reuse each other’s results, but there

are no previously-completed results in the system that the experiments can

reuse. If the system executes those experiments concurrently, all of the experi-

ments would be unable to reuse any result, because at the time of issuing, none

of the experiments have been executed yet. Yet, if the system schedules one

experiment from that group first, and then issues the rest concurrently, all of

the rest of the experiments would be able to reuse the first experiment’s results.
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5.6.2 Description

In the helium model validation study, the knowledge of reuse classes is

incorporated into scheduling decisions.

At any one moment, there is a set of experiments that are determined by

the sampling algorithm to require execution. Of those experiments, some will

be the first of their reuse class seen by the system, so, there are no checkpoints

stored in the system whose reuse can benefit the experiments. In order to ensure

that reuse potential is maximized, the MES needs to ensure that the result store

is populated by checkpoints from all reuse classes as early as possible. To do so,

it would select one “representative” out of each first-time reuse classes, and give

them the highest priority. This ensures that these experiments are executed

ahead of the remaining experiment in the reuse class, and possibly concurrently

with the high-priority experiments from other reuse classes. This way, the

system can ensure that all subsequently-issued experiments have a result to

reuse.

Another benefit to this policy is that it ensures that all of the experiment

issued concurrently either all have a checkpoint to reuse, or all do not have a

checkpoint to reuse. Since experiments with checkpoints are faster, the exper-

iments issued together will have more comparable run times, limiting the sizes

of “holes” on the scheduling graph.
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5.6.3 Implementation

In order to ensure that the maximum reuse potential is realized, the user

can customize the implementation of the CreateBatch() call in the Task Queue

module to modify the batching policy.

In the helium study, the Task Queue keeps track of all completed experi-

ments. During the CreateBatch() call, it scans the list of unissued tasks, groups

the tasks into reuse classes (i.e., those with the same inlet velocity), and finds

out which reuse classes do not already have a representative in the completed

experiment set. If there is at least one such resuse class, the Task Queue selects

one experiment from each previously-unseen reuse class and adds the experi-

ment to the batch. Otherwise, it adds all experiments on the queue to the batch.

In effect, it searches for first-time reuse classes, and executes one representative

from each concurrently with highest priority. This way, subsequent batches are

guaranteed to find completed experiments from their reuse classes.

This strategy ensures that the system has the most complete set of re-

sults for reuse, but at the same time maximizes the number of experiments

concurrently executed.

5.7 Summary

In this chapter, a number of system technique are presented that would

help MES reach its goal of user interactivity and reduced run time. They

leverage application-specific knowledge to help the system make better decisions

to decrease the number of experiments required, reduce the per-experiment run
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time, and improve resource utilization rate.

Table 5.3 summarizes these techniques, the application-level knowledge

each requires, the source of benefits, and the studies that each technique is

applicable to.

In Chapter 6 we investigate the performance benefits of these techniques

obtained in our four example MESs in this thesis.
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Techniques Knowledge Benefits Applicable to:
Required

Sampling MES type Reduce Bridge Design
number of Study,

experiments Defibrillator
Design Study,
Helium Model

Validation Study
User MES type Reduce Defibrillator

Direction number of Design Study,
experiments, Animation

Enable Design Study
Subjective
Steering

Result Intermediate Reduce per- Bridge Design
Reuse results experiment Study,

run time Defibrillator
Design Study,
Helium Model

Validation Study
Study-level MES type Reduce Defibrillator

Result number of Design Study
Reuse experiments

Parallelism- Scaling Improve Helium Model
Aware behavior resource Validation Study

Scheduling utilization
Reuse Reuse Reduce per- Helium model

Maximization classes experiment Validation Study
run time

Table 5.3: Summary of application-aware system techniques
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Chapter 6

Evaluation

In order to evaluate the approaches and techniques described in Chap-

ter 5, we performed the four example Multi-Experiment Studies using SimX

on two available computing clusters. This chapter presents and discusses the

experiments and results of each study. Specifically, it discusses what part of

application-level knowledge in these MESs helped improve their run-time and

interactivity performances, and how.

In each of the following four sections, a recap of an example MES is

given, then we describe the experiments conducted using the MES to evaluate

the techniques presented in this thesis, and the results of those experiments are

next presented and discussed.

6.1 Bridge Design Study

The bridge design study is a Pareto Optimization MES, with a two-

dimensional design space and two-dimensional performance space. It is non-

interactive, and its simulation codes are run serially. It demonstrates how an

MES can benefit from the use of Active Sampling (Section 5.1) to reduce the
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overall number of executions needed to complete the study, as well as the reuse

of the final checkpoint of one simulation to speed up the execution of another

(Section 5.3).

The experiments for this MES aims to 1) measure the overall benefits

of the techniques used in SimX, 2) quantify the benefits of the active sampler

technique for Pareto optimization MESs, 3) quantify the benefits of result reuse,

and 4) measure the scalability of the resulting system.

6.1.1 Methodology

The bridge design study was conducted on a homogeneous IBM eServer

cluster comprising 256 nodes, each with two 64-bit 2.2 GHz PowerPC 970 pro-

cessors and 2 GB RAM, interconnected via a Myrinet network. The standalone

version of SimX is used both on the manager process and the worker processes.

A single manager process is run on the front end machine, a varying number

of SISOL data server processes (from 1 to 4) are run on the cluster nodes, and

a varying number of worker processes (from 1 to 128) are run on the cluster

nodes. All processes are assigned their own physical nodes, so there is no one

physical node that is shared among SISOL data processes and worker processes.

To measure the benefits of the techniques described in Chapter 5, we

conduct the bridge design study on the above system using four configurations.

The GS configuration (standing for Grid Sampler) represents the base-

line comparison. In this configuration, the system issues 102400 experiments,

covering a 320x320 grid on the design space.
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The AS configuration (standing for Active Sampler) is used to measure

the benefits of the active sampling technique. In this configuration, the system

uses the Active Sampler module, beginning with a 40x40 grid and refining it

three times. This results in a Pareto Frontier equivalent to the one resolved by

the grid sampler on a 320x320 grid.

The GS+C (standing for Grid Sampler with Checkpoint reuse) configu-

ration uses the same grid sampler as the GS configuration, but also enables the

reuse of previous results following the techniques described in Section 5.3.

The AS+C (standing for Active Sampler with Checkpoint reuse) config-

uration uses the Active Sampler as the AS configuration, but also enables result

reuse.

The overall benefits of these techniques can be seen by comparing the GS

and AS+C configurations. We compare the Pareto Frontiers obtained by these

two configurations to ensure the application-specific techniques are correct. We

also measure the improvement in run time.

We then look closer at the source of these benefits. We quantify the

benefits of active sampling in two ways. To quantify the benefits of active

sampling in terms of reducing needed experiments, we compare the number of

experiments required by the GS and AS configurations. To quantify the benefit

of active sampling in terms of providing early feedback to the user, we measure

how quickly the partial Pareto Frontier approximation of the GS+C and AS+C

converge onto the final answer over time. To quantify the benefits of reusing

checkpoints, we compare the run times — overall runtime, per-level runtime,
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and per-simulation run time — of the AS and AS+C configurations. Finally,

to measure the scalability of the system, for each of the GS, AS, and AS+C

configurations, the study is conducted using 1 to 128 worker processes, and the

response time of the system is measured.

6.1.2 Results and Analysis

6.1.2.1 Overall Benefits of Application-Level Knowledge

We compare the GS and AS+C configurations to demonstrate the overall

benefits of application-specific knowledge in the bridge design MES.

First, to demonstrate the correctness of AS+C, we examine the result

provided by GS and AS+C configurations. They are presented in Figure 6.1.

Figure 6.1 shows two series of plots on the design space, representing the evo-

lution of the Pareto Frontier in the two runs. The evaluated points are colored

in grey, and the Pareto Frontier is colored in blue. On the left is the frontier

discovered by the GS configuration, and on the right is that discovered by the

AS+C configuration. The Pareto Frontier (blue dots) are the same on both

sides, which means the AS+C configuration yields the same results as the GS

configuration, so the correctness of the system is preserved.

Table 6.1 shows the time required to achieve the frontiers shown in Fig-

ure 6.1 using 128 worker processes. For the GS configuration, the time it takes

to generate the Pareto frontier grows as the square of the level of refinement. At

the finest level, it takes 5678 seconds to resolve the frontier. For the AS+C ver-

sion, it only takes 13.6 seconds to resolve the same frontier. One can conclude
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First Level Pareto Frontier Approximation

Second Level Pareto Frontier Approximation

Third Level Pareto Frontier Approximation

Final Level Pareto Frontier Approximation

Figure 6.1: Time evolution of the Pareto frontier in Bridge Design study. Näıve
run shown on left, application-level knowledge enabled run shown on right.
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Time (in seconds) to reach level
Configuration 1 2 3 4

GS 97.48 360.91 1407.76 5678.22
AS+C 6.62 8.9 12.26 13.63

Table 6.1: Bridge design study runtime on 128 worker processes

that, by combining active sampling and checkpoint reuse, SimX can reduce the

run time of the bridge study by more than 400-fold.

The following subsections look closely at the source of this performance

gain, by studying separately the benefits of active sampling, result reuse, early

feedback, and scaling.

6.1.2.2 Reduced number of experiments issued

In Figure 6.1, it can be seen, qualitatively, that the AS+C configuration

issues fewer experiments — the sparsity of grey points on the right shows that

active sampling successfully prunes uninteresting regions of the design space

early on in the study. This subsection looks quantitatively at the reduction in

experiments issued due to active sampling.

As discussed in Subsection 5.1.4, the AS and AS+C configuration of the

bridge design study uses a full-loading variant of the Active Sampler. Depend-

ing on the amount of parallelism, the Active Sampler only requires 4000–5000

experiments. As the number of worker processes increases, the overhead due to

wasted experiments also increases.

Table 6.2 shows the total number of experiments issued by the AS+C
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Num. of 1 2 4 8 16 32 64 128
Worker

Processes
Num. of 4125 4224 4284 4353 4380 4394 4392 4490

Experiments

Table 6.2: The number of experiments required by the AS+C configuration

configuration. Compared to the GS configuration, which takes a näıve approach

of issuing all experiment on the finest grid (i.e., 3202 = 102400 experiments),

the Active Sampler issues two orders of magnitude fewer experiments.

We have also experimented with the original non-optimistic variant of the

Active Sampler, which kept the number of experiments issued at 4125, but due

to dependency between experiments of different levels, gave a slightly worse

overall run time performance.

6.1.2.3 Improved per-simulation run time by result reuse

As explained in Section 5.3, the bridge simulation code can take advan-

tage of the result of a previous run to reduce the number of Newton iterations

required. The solution of the Newton solve from one experiment can be used

as the initial guess of another experiment. Moreover, we expect that, the closer

the two experiments are on the design space, the closer the two solutions will

be, and thus the greater the benefits of result reuse.

This benefits of result reuse is demonstrated in two ways. We first compare

the time it takes to discover the first-level Pareto Frontier with (AS+C config-

uration) or without (AS configuration) checkpoint reuse turned on. Without
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checkpoint reuse, to resolve the first level Pareto Frontier, it takes 97.5 seconds

and 1735 experiments on 128 worker processes, i.e., 7.2 seconds per simulation.

With reuse, it takes 6.62 seconds and 1725 experiments on 128 worker processes,

i.e., 0.49 seconds per simulation. Using the checkpoint of a close-by experiment

to jump-start another one yields an order of magnitude improvement in per-

simulation run time.

The second way to demonstrate the benefits of checkpoint reuse is through

the reduction of the per-simulation run time as the study proceeds in the AS+C

configuration. As the study progresses, more checkpoints are being accumulated

in SISOL, so that any given experiment is more likely to find a nearby completed

experiment whose checkpoint it can reuse. Table 6.3 shows the average time it

takes for the worker process to execute an experiment as a function of when the

experiment is issued. It shows that as the study goes on, the time it takes to

execute one single simulation decreases. The largest improvement is shown in

the second group (3.8 ms), because the first 128 experiments do not have any

result to reuse, bringing up the average per-simulation time of the first group

(7 ms). This mean that while a closer result is a better candidate for reuse than

a further result, any result is better than having no result to reuse.

6.1.2.4 Early user feedback based on incomplete results

Besides reducing the number of experiments required to complete a study,

the Active Sampling technique also has the advantage of being able to present

the user early feedback of a fuzzy, low-resolution Pareto Frontier approximation,
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Simulation # Average time Simulation # Average time
0–200 7.069 800-1000 2.652

200–400 3.714 1000-1200 2.467
400–600 3.231 1200-1400 2.461
600–800 2.681 1400-1600 2.372

Table 6.3: Average per-simulation run times (in milliseconds) of the first 1600
simulations, in 200 simulation increments, based on a 128-processor run.

before the Pareto Frontier is fully resolved. This enables the user to make

decisions based on the low-resolution frontier early.

We demonstrate this benefit by measuring the Hausdorff distance between

the fully-resolved Pareto Frontier and the Pareto Frontier approximations ob-

tained by the study as it is being run. The Hausdorff distance is defined as

the number d such that, for every point p on the approximated Pareto Frontier,

there is at least one point on the fully-resolved Pareto Frontier that is d units

away from p. This distance measures the similarity of two shapes.

The Hausdorff distance is measured at regular time intervals, thus we

obtain a profile of how the Pareto Frontier approximation approaches the “real”

frontier over time. We measure the same metric twice, once during a AS+C

configuration run, and once during a GS+C configuration run. We compare

the two time-evolutions in Figure 6.2. Notice the time axis is in log scale.

The plots show that, in order to achieve the same Hausdorff distance as the

AS+C configuration, it takes the GS+C configuration approximately an order

of magnitude more time.
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6.1.2.5 Scaling

The use of application-specific knowledge in the AS+C configuration can

cause potential scaling problems. As discussed in Subsection 5.1.4, the excess

simulation or synchronization overhead of the Active Sampler introduce par-

allelization overhead in an otherwise trivially parallelizable problem. Also, as

discussed in Subsection 5.3.4, in supporting result reuse, the SISOL layer could

become a performance bottleneck if it is overwhelmed by object requests.

In contrast, the GS configuration is trivially parallelizable, and it is ex-

pected to speed up linearly with the number of worker processes. Therefore, as

the number of worker processes increase, the system could reach an inflection

point where the benefits of application knowledge is negated by the parallelism

overhead. At the inflection point, the performance of the GS configuration could

overtake the performance of the AS+C configuration.

However, our scaling experiments show that the AS+C configuration is

scalable up to 128 worker processes, and we do not appear to have hit the

inflection point in our experiments. Figure 6.3 shows that the AS+C configura-

tion scales almost linearly up to 128 worker processes. Moreover, it shows that

SISOL and the manager process pose negligible overhead, since the bulk of the

time devoted to the study is spent by the worker processes running the simula-

tion code, and not on communication with the manager process or interacting

with SISOL.

177



  

Grid 
Sampler

Active 
Sampler

N
or

m
a l

iz
ed

 H
au

sd
or

f f
 D

is
ta

nc
e
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6.1.3 Conclusion

This section has demonstrated that, in the bridge design study, by in-

corporating application-specific knowledge in system decisions can result in an

over 400-fold improvement in terms of run time. In particular, active sampling

results in a two-orders-of-magnitude improvement, and the reuse of previous

results adds another multi-fold improvement. Despite of the potential paral-

lelization overhead and performance bottleneck, the system can scale linearly

up to 128 worker processes.

6.2 Defibrillator Design Study

The defibrillator study is an interactive Pareto Optimization MES, with

a five-dimensional design space and three-dimensional performance space. The

goal of the MES is to allow the user to interactively select and explore two-

dimensional slices within the design space, and to resolve the Pareto Frontier

on each slice at a 256x256 grid resolution.

As described in Subsection 3.2.2, in this study, the user would select a

region in the front of the human torso to place the front electrode, a position

in the back of the torso to put the back electrode, and a voltage strength.

In addition, he would choose a the activation threshold and damage threshold

beyond which the heart tissue is considered activated and damaged. The system

would run the DefibSim application multiple times, and then inform the user

about the Pareto optimal placement of the front electrode within the region he

has chosen.
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In order to achieve interactive rates, many of the system techniques dis-

cussed in Chapter 5 are applied to this MES. In particular, active sampling

(Section 5.1), various types of experiment result reuse (Sections 5.3) and study-

level result reuse (Section 5.4) are heavily employed. In this section, we evaluate

and discuss the benefit of each of the system techniques.

The SimX/SCIRun version of SimX is used to conduct this study.

6.2.1 Methodology

All performance numbers reported in this section are collected from the

same cluster that conducted the bridge design study (Section 6.1). In these

experiments, SISOL is always served by four data servers and one directory

server, and the manager process is represented by a SCIRun process running a

performance evaluation workflow net which simulates the user’s action.

To test how application-level knowledge can permit the defibrillator study

to be conducted at an interactive rate, we created four usage scenarios. In each

scenario, the user discovers the Pareto Frontier of a slice of the design space,

and initiates an action to define another slice of the design space. The time it

takes for the system to discover the Pareto Frontier of the new slice is measured

as the response time of the system to this user action. The four scenarios are

listed as follows:

Scenario A: Setting the activation threshold voltage. In this sce-

nario, the user fixes the position of the back electrode, the voltage, and defines

the area where the front electrode can be placed. As his action, the user changes
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the activation threshold (in order to model, for example, a patient with heart

tissues that are difficult-to-activate). One can see that the Pareto optimal points

move closer to the center (Figure 3.5). The amount of reuse possible (i.e., the

distance between the two slices) thus depends on the amount of change in the

activation threshold.

Scenario B: Moving the explored region. In this scenario, the user

fixes the position of the back electrode and the voltage, and defines the area

where the front electrode can be placed. As his user action, the user slides the

area of exploration downwards to a new (but overlapping) area. The amount

of reuse depends on the amount of overlapping area between the two areas of

exploration.

Scenario C: Moving the back electrode. In this scenario, the user

fixes the voltage and the placement area for the front electrode. As the user

action, the user moves the back electrode toward the right shoulder (Figure 3.6).

The amount of reuse depends on the distance with which the back electrode is

moved.

Scenario D: Increasing the shock voltage. In this scenario, the

user wishes to get a coarse idea of how the Pareto-optimal placement of the

front electrode is affected by the shock voltage. He fixes the back electrode’s

coordinates, selects a voltage setting, and performs a parameter sweep of the

front electrode placement across the entire area in front of the torso. The user

changes the shock voltage and performs the sweep again.

Each of the above scenarios are designed to model typical user actions
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in this MES, and highlight the advantages of one or more of the application-

aware system techniques discussed in Chapter 5. A brief recap of each technique

evaluated is given below:

Active sampling: Discussed in Section 5.1, this technique is applicable

to all Pareto Frontier optimizations, including the defibrillator study. In partic-

ular, the Active Sampler is used to explore the mini-MES defined by each slice

of the design space. This technique is applicable to all four scenarios. Each

sampler is instructed to start with a 16x16 lattice, and refine its Pareto frontier

approximation four times to achieve the equivalent of 256x256 resolution.

Inter-study reuse: This is the reuse technique discussed in Section 5.4.

In this type of reuse, the system uses the Pareto frontier of a design space slice

as the initial Pareto frontier approximation of another slice. This technique is

applicable to all four scenarios.

The following techniques are various forms of inter-study result reuse dis-

cussed in Section 5.3:

Performance metric reuse: Recall from Section 3.5 that the user in-

puts during design space exploration can consist either of changes in perfor-

mance metric parameters, establishing new admissible performance space, or

requesting exploration of a different region of the same design space slice. In

the latter two scenarios, it is possible that the same simulation can be re-issued

with the same performance metric parameters for a different slice. This tech-

nique is applicable in Scenario B, where the user explores the same design space

slice but changes the region of exploration. For the area overlapped by the the
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two regions, the same experiments with the same simulation parameters and the

same performance metric parameters would have been performed. When that

happens, the manager module can simply look up the performance metrics from

the list of previously-completed experiments, and thus cut down the number of

experiments that need to be issued to the worker processes.

Simulation result reuse: In Scenario A, the user defines a new slice by

only changing the performance metric parameters. It is possible that the same

simulation can be re-issued with different performance metric parameters for

a different slice. In such cases the worker process can look up the simulation

result from a list of previously-completed simulations instead of re-running the

simulation code, and re-compute only the performance metrics. One expects

the total number of experiments issued to stay the same, but the total number

of simulations run by the worker processes to decrease.

Intermediate result reuse: As discussed in Subsection 5.3, some ex-

periments may share the same intermediate results, specifically, the solutions to

the three non-linear systems. The system can store these intermediate results

into an object store and retrieve them later for a different experiment. This

technique is applicable to all four scenarios.

Preconditioner reuse: Even if the solution of the exact linear system

is not available, reuse is still possible. Each system in the defibrillator MES is

solved using an iterative solver with a preconditioner, a compact approximation

to the matrix inverse. The result of a simulation from a nearby point in design

space can be used to initialize the iterative solver, decreasing the number of
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iterations required. If, for different points in design space, the system matrices

are similar (e.g. nearby electrode placement on torso) or identical (same place-

ment, but different voltage distributions), we can use a previously computed

preconditioner, assuming it was saved along with the results.

In order to quantify the benefits of those techniques, we compare the

performance of the configuration where all the techniques are enabled to the

performance of configurations where one or more of the system techniques are

turned off. The goal in this evaluation is to measure 1) the sensitivity of each

type of reuse to the richness of the performance history in each scenario —

how much performance history is needed in order for the various types of reuse

to become useful? — and 2) the benefits of each reuse technique, in terms of

response time, as the number of worker processes is scaled from 1 to 128.

In order to understand the sources of performance benefits, we also mea-

sure the number of experiments issued, number of times the simulation code is

run, number of times the solver net is fired, and the average time taken by an

experiment, during the discovery of the second Pareto frontier.

6.2.2 Results and Analysis

6.2.2.1 Performance History

We first investigate the sensitivity of reuse to the richness of performance

history. We expect the benefits derived from reusing past computation to de-

pend on the performance history of the past computation, as well as to the

similarity between the past slices of exploration to the current exploration. In
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these experiments, for each scenario, we vary the amount of change that the

user action introduces, and measure the amount of benefits from reuse. For

baseline comparison, we also conduct a run where the user explores the second

slice without exploring the first slice first (a ’cold’ run), and a run where the

system turns off all application-aware techniques (a näıve run. All performance

results presented in this sub-subsection are obtained from runs conducted with

32 worker processes.

Scenario A: In this scenario, the user changes the activation thresh-

old and discovers the new Pareto Frontier based on the new threshold. Here,

inter-study reuse and simulation result reuse are applicable. To determine the

sensitivity of the system to performance history, we conducted the scenario six

times, each time using a different activation threshold in the first slice in order

to control the amount of information that can be reused in the second slice. As

expected, the number of times the simulation code needs to be run is reduced

as the change of threshold becomes smaller. The results are shown in Table 6.4.

With maximal reuse, we see up to an 80x improvement in response time over

the sweep sampler.

Scenario B: In this scenario, the explored region is moved with an 81%

overlap. The experiments in the overlapped areas can be avoided (performance

metric reuse). We vary the percentage completion of the first slice and observe

the benefits of the reuse from an increasingly rich performance history in Ta-

ble 6.5. As expected, due to performance metric reuse, the more complete the

exploration of the first slice, the fewer simulations need to be issued for the
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Change in Number of Response
Activation required Time
Threshold simulations (sec)

sweep 16385 1633
cold 1665 213.6
57% 1381 141.9
43% 1158 126.1
30% 423 44.69
20% 444 40.89
11% 260 27.32
3% 248 23.30

Table 6.4: Response time of Scenario A, as a function of the amount of change
in the performance metric parameter.
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Number of Response
% Completion required Time

simulations (sec)
0 4467 238.5

18% 3521 176.7
37% 2725 139.7
56% 2112 113.6
74% 1292 84.20
93% 304 49.20
100% 13 16.80

Table 6.5: Response time in Scenario B, as a function of the percentage com-
pletion of the first slice.

second slice.

Scenario C: In this scenario, the back electrode is moved. The amount of

change between the two Pareto frontiers depends on the amount of displacement

of the back electrode. Table 6.6 shows that the higher the displacement, the

less benefit is derived from inter-study reuse. In fact, for displacements that are

too large (50mm or more), inter-study reuse actually results in a higher number

of experiments being issued. This behavior is due to a core assumption for this

type of reuse being violated, namely, that the Pareto frontiers of the two slices

are similar. When the two frontiers are sufficiently different, it is more efficient

to use a coarse grid to identify the interesting region instead of using the Pareto

frontier of another slice.

Scenario D: This scenario is designed to demonstrate the benefits of

pre-conditioner reuse. We find an improvement in the time it takes to solve

individual systems (Table 6.7). As the change in shock voltage decreases, the
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Displacement Number of Response
of back required Time

electrode (mm) simulations (sec)
sweep 16385 646.855
cold 7284 129.775
60 7666 154.108
50 7381 142.283
40 6762 130.37
30 6884 132.08
20 6868 127.14
10 6867 122.981

Table 6.6: Response time in Scenario C, as a function of the displacement of
the back electrode.
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Increase in shock Avg. run Avg. solve
voltage (V) time (secs) time (secs)

cold 5.53 4.30
30 5.37 4.125
20 5.15 3.854
10 4.89 3.79

Table 6.7: Average per-simulation and per-solver run time in Scenario D, as a
function of the change in electrode voltage.

linear systems solved by the two slices become more similar, and hence the

preconditioner from the first slice become more “useful” for the systems in the

second slice. However, the amount of time spent on solving individual systems

is only a fraction of time spent by the simulation code. Additionally, when

coupled with the other types of reuse, which aim to minimize the time spent on

the simulation code, the time spent on the simulation code is only a fraction of

time spent in the overall study. Therefore, the time spent in solving individual

systems is not a significant part of the overall response time, and pre-conditioner

reuse, which yielded only a 11% improvement in simulation code in the best case,

did not register a significant improvement in the overall response time.

6.2.2.2 Scaling

To see how different types of reuse scales in the defibrillator study, we

performed usage scenarios A, B, and C, and measured the response time of the

system. For each scenario, we vary the type of system techniques enabled, and

also vary the number of worker processes.
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Figure 6.4 shows the scaling characteristics in Scenario A on the top plot.

The bottom plots shows the number of experiments issued in the run involv-

ing 128 workers process. The data from the scaling plot is replicated in Ta-

ble 6.8. The baseline configuration corresponds to a run using no application

level knowledge: brute force sweep sampling, with no result reuse. With 65000

experiments issued, each taking 2 seconds, with perfect scaling, it takes about

1000 seconds on 128 worker precesses to complete the exploration of the slice.

With active sampling, the number of experiments is reduced to 1600. How-

ever, due to dependency of experiments between levels, the scaling is no longer

linear. At 128 worker processes, active sampling only results in a 8-fold improve-

ment in response time, taking 126 seconds. With inter-study reuse (shown as

“cross-study” reuse in the figure), the number of experiments required is further

reduced to 1200. With intermediate result reuse, which stores and reuses the

solutions of linear solves in the simulation code, the per-experiment run time

is reduced to 1.5 seconds. Combining intermediate result reuse and inter-study

reuse results in a 4.5 times improvement in response time, resulting in a system

response time of 28 seconds. Finally, turning on simulation result reuse, which

eliminates the running of redundant simulation codes, the per-experiment run

time is reduced by a further 5 times, to 0.3 seconds. However, SimX runs into a

scaling bottle neck at 32 worker processes, and the response time at 128 worker

processes is 18 seconds.

In Scenario A, combining all types of application-level knowledge results

in a reduction of response time from 1000 seconds to 18 seconds on 128 worker
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Run time (in seconds)
for configuration

Number of Baseline + Active + Study-level and + Simulation
worker Sampling Intermediate Result

processes Result Reuse Reuse
2 2580.18 1096.55 478.78
4 1295.76 535.81 213.02
8 10632.9 666.71 239.77 90.52
16 5324.63 346.00 110.12 43.36
32 2673.3 201.60 64.43 23.30
64 1348.12 131.66 37.46 19.33
128 781.52 126.35 28.62 17.98

Table 6.8: Scaling behavior in Scenario A

192



processes, a two orders of magnitude improvement. Furthermore, at 32 worker

processors, before SimX runs into the scaling bottle-neck due to overly-reduced

workload, the improvement resulting from application-level knowledge is over

100 times, from 2700 seconds to 23 seconds.

Figure 6.5 shows the scaling characteristics in Scenario B on the top plot,

while its bottom plot shows the number of experiments issued in the run in-

volving 128 workers process. The data from the scaling plot is replicated in

Table 6.9. One notices that, in the version where all types of reuse are enabled,

it does not matter how many worker processes are available: the response time

is always about 15 seconds. This is because when performance metric reuse is

applicable for studies with large overlapped region, the number of experiments

required decreases dramatically: in Scenario B, with performance metric reuse,

fewer than 15 experiments are required to explore the second slice. There are

simply not enough experiments to divide up between the worker processes, so

adding additional worker processes does not change the overall run time. Other

than this anomaly, the scaling figures are as expected: the brute-force no-reuse

version takes 65000 experiments at 2 seconds each, resulting in a 1000 second

response time on 128 worker processes. Active sampling reduces the number of

experiments required to 4800, and improves the response time by an order of

magnitude at lower number of worker processes, but due to dependency it does

not scale linearly and only improves the response time by 60% at 128 worker

processes. Inter-study and simulation result reuse further reduce the number

of experiments to 3600, and the per-experiment run time to 1.16 seconds, im-
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Run time (in seconds)
for configuration

Number of Baseline + Active + Study-level and + Performance
worker Sampling Simulation Metric

processes Result Reuse Reuse
2 6605.2 1483.34 16.49
4 3292.5 738.79 14.56
8 10655.7 1701.0 381.33 13.58
16 5335.79 930.11 203.1 15.01
32 2680.38 540.2 107.71 16.81
64 1353.46 316.47 63.19 19.48
128 792.00 305.12 42.45 17.04

Table 6.9: Scaling behavior in Scenario B

proving the response time by another order of magnitude. Finally, performance

metric reuse can reduce the number of experiments to 15 and improve the re-

sponse time by a further 50% on 128 worker processes.

In Scenario B, combining all types of reuse results in a two orders of

magnitude improvement on 128 worker processes, from 1000 seconds to 16.8

seconds.

The scaling characteristics in Scenario C is shown in Figure 6.6’s top

plot. Its bottom plot shows the number of experiments issued, as well as the

total number of linear systems the workers have to solve. The data from the

scaling plot is replicated in Table 6.10. Here, the brute-force approach takes

1000 seconds on 128 worker processes to execute 65000 experiments at 2 seconds

each. With active sampling, the number of experiments required is decreased

by 9 times, to 7300. This results in an improvement in the response time only
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Run time (in seconds)
for configuration

Number of Baseline + Active + Study-level and
worker Sampling Intermediate

processes Result Reuse
2 11249.9 6365.26
4 5609.91 3184.8
8 10724.9 2854.19 1603.78
16 5369.6 1453.67 664.89
32 2704 773.50 342.91
64 1370.26 422.69 185.83
128 812.16 349.43 122.98

Table 6.10: Scaling behavior in Scenario C

by 60% on 128 worker processes, again due to non-linear scaling in the active

sampler. Finally, inter-study reuse reduces the number of experiments needed

further to 6500, and intermediate reuse improves the per-experiment execution

time by 25%, to 1.5 seconds, resulting in a response time of 120 seconds, which

is 8 times faster than the brute-force version.

In Scenario C, combining all types of reuse results in an order of magnitude

reduction in the number of experiments issued, and a 25% improvement in per-

experiment execution time. However, due to dependencies introduced between

experiments, the total improvement in response time is limited to an 8-fold

decrease.

As the data shows, while using application-level knowledge in the defib-

rillator design study can introduce scaling problems, such as introducing de-

pendencies between experiments, and reducing the problem size by such a wide
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margin to render parallelization useless, the benefits outweigh these drawbacks,

as demonstrated by the 8 to 100 times improvement in total response time of

the system. In particular, application-level knowledge enabled SimX to conduct

Scenarios A and B with a 10- to 20- second response time, which is within the

interactive rate. While a response time of 120 seconds in Scenario C is not com-

pletely interactive, it is much closer to interactivity than the original 17-minute

response time.

6.2.3 Conclusion

In this section, we have demonstrated that, by incorporating active sam-

pling and result reuse techniques in the defibrillator study, the system can

achieve interactive rates to enable the user to steer the entire study. In ad-

dition, the performance history and scaling studies show that 1) the system

should exploit only the types of reuse that are likely to yield benefit in a given

situation, 2) more than one type of application knowledge needs to be exploited

to yield overall response times that support interactivity, and 3) despite intro-

ducing dependencies in a parallel workload that did not have any to start with,

the exploitation of application-level knowledge achieves dramatic reductions in

response time while still leaving behind enough parallelism to productively em-

ploy a moderate-sized parallel machine.
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6.3 Animation Scene Design

The animation scene design study is a user-driven study where the user

interactively drives the construction of an animated scene. As discussed in Sub-

section 3.3.3, the study is conducted in stages, with each stage representing a

partially completed scene. The system automatically explores possible continu-

ations at each stage, from which the user chooses which extension to pursue. In

effect, this formulation frames the MES as a search tree. The system automati-

cally discovers viable children of the tree node chosen by the user, and the user

guides the system through the tree by selecting a node from among the available

ones, until he finds a leaf node, which represents a completed animated scene.

This MES showcases the importance of user interactivity. In particular, it

shows that by combining automatic exploration, random sampling, admissible

region filtering, and interactive user guidance, the MES can construct aestheti-

cally interesting scenes in a reasonable amount of time. The goal in this MES

is to demonstrate the responsiveness of SimX, and the importance of utilizing

user guidance to advance the study.

This study uses the standalone version on worker processes, and the

SimX/SCIRun version on the manager process front-end.

6.3.1 Methodology

To evaluate SimX’s interactivity, we measure the rate with which SimX

can provide the user with timely feedback. In particular, we conduct two ses-

sions of animation scene design, and measure the rate at which the system dis-
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covers admissible tree nodes at each level as an indication of the responsiveness

of the system.

To measure the impact of user interactivity, we created two baseline con-

figurations of the animation design study that do not require user interaction.

The first configuration (Configuration A) explores the entire design space in a

single stage. The second configuration (Configuration B) explores the design

space in stages, but instead of using the user’s guidance to select tree nodes,

it chooses tree nodes at random. We use two metrics to measure the aesthetic

quality of scenes collected from these configuration, and compare them against

the scenes obtained from the two interactive sessions.

All experiments in this section are conducted with a partition of 12 pro-

cessing elements on the same cluster as the bridge design study (Section 6.1),

with 11 running the worker processes and one running the SISOL servers.

6.3.2 Results and Analysis

6.3.2.1 System responsiveness

Figures 6.7 and 6.8 show the number of available tree nodes at each level

as the system responds to user actions in two interactive sessions. In both plots,

the user actions that direct the study are indicated by call-out boxes.

The detailed description of Session 1 is as follows. (The progress of Ses-

sion 2 is similar.) When the study begins, the system discovers admissible

first-level nodes at a rate of one node per 15 seconds. The user looks at each

of these partially-complete scenes, and decides at the 75th second to select one
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Figure 6.7: SimX response time in Animation Study
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Figure 6.8: SimX response time in Animation Study

202



of them as being most interesting and worthy of further exploration, thereby

completing the first stage of the study. The system then supplies the user with

admissible second-level nodes at the same rate. The user takes 60 seconds to

decide on the second-level node to explore. The system then supplies him with

admissible third-level nodes at the rate of one node per 5.7 seconds. The user

takes 120 seconds to decide on a third-level node, and selects the node roughly

270 seconds into the study. The system then supplies him with fourth-level

nodes at the rate of one node per 3.2 seconds. The user takes 80 seconds to

decide on a fourth-level node to explore. The system then supplies leaf nodes

at the rate of 1 node per 5 seconds. However, after waiting and looking at the

completed scenes for 150 seconds, he is dissatisfied with the scenes, so he “back-

tracks” at the 514th second: he selects another third-level node, and continues

the exploration from there. This time the system supplies him with admissible

fourth-level nodes at 4.2 nodes per second. He takes 90 seconds to decide on

a new fourth-level node (at the 600-second mark of the study), after which the

system supplies him with a new batch of leaf nodes at the rate of one node every

five seconds. Of these he chooses four to be “good” designs and terminates the

study at the 840th second. In all, this first session requires 19251 executions of

the buggy simulation code and lasted 14 minutes. The second session requires

16000 executions and lasted 11 minutes.

Note that, in both sessions, the user is kept busy at all times: if he is not

looking at partially-animated scenes, he is making decisions about which tree

node to explore.
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The system is able to provide the user with new admissible tree nodes

within seconds. This is because the system can automatically explore the node

the user has chosen while automatically filtering out inadmissible scenes such

as those where the buggy is knocked off course. Without the automatic ex-

ploration, the user would have needed to construct and view more than 15000

partially-completed scenes, which is clearly not practical.

6.3.2.2 Impact of Interactivity

As discussed above, the regular sessions took 11 and 14 minutes to discover

viable and interesting animated scenes. In contrast, in Configuration A, where

the system completely automates the study by exploring the entire design space

using one stage, the study ran for an hour without discovering a single admissible

scene.

For Configuration B, we configured the system to discover 15 child nodes

at each stage, and select one child node from the 15 at random. We run twenty

sessions of this configuration, and measure the “aesthetic quality” of the resul-

tant scene from each run. We use two metrics to measure how aesthetically

desirable a scene is: the average closest distance that each debris piece is to the

buggy (a closer distance is considered more interesting), and the average speed

at which the debris piece is travelling when it comes into closest proximity with

the buggy (a higher speed is considered more interesting). The results, along

with the number of simulations and time required to discover the scene, is listed

in Table 6.11.
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Configuration Session Time # sims Avg. closest Avg. speed
(mins) distance at distance

Interactive 1 14 19281 0.292 3.42
2 12 16117 0.234 1.2
1 16 19054 0.295 3.41
2 7 8783 0.349 2.16
3 15 16843 0.324 0.50
4 12 13430 0.392 0.94
5 11 12606 0.250 1.27
6 15 17419 0.278 1.25
7 12 14419 0.281 3.90
8 12 14564 0.328 3.33
9 9 10428 0.286 7.38

Configuration B 10 10 10859 0.366 1.25
11 19 23033 0.334 1.63
12 11 13141 0.321 2.63
13 15 16322 0.311 1.77
14 12 13723 0.288 2.82
15 26 20849 1.111 0.69
16 12 10480 0.309 2.85
17 22 23450 0.198 1.90
18 12 13450 0.284 0.79
19 19 21066 0.323 1.78
20 8 8778 0.314 1.20

Table 6.11: Animated scene quality from animation study
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As shown in Table 6.11, by randomly choosing children nodes, it is some-

times possible to obtain an interesting scene, such as Configuration B’s sessions

1, 7, 9, and 17 (highlighted in the table in boldface). These sessions achieve

completed scenes with aesthetic metrics that are comparable to the scenes con-

structed from the interactive sessions. In sessions 1, 7, and 9, the debris pieces

come to within an average of 0.3 units of the buggy while travelling at above 3

units of speed, which is similar to the scene constructed in interactive session

1. In session 17, the debris pieces come to within 0.2 units of the buggy, and

is the only scene with a better distance metric than the scene discovered in

interactive session 2. However, the rest of the scenes chosen by the random

configuration are inferior to the two chosen by interactive sessions. Therefore,

there is no guarantee that a non-supervised exploration can result in a ”good”

scene. It is only by continuously monitoring the progress of the study that the

user can guide the system to discover a scene that satisfies his aesthetic sense

and judgement.

6.3.3 Conclusion

In this section, we demonstrated that, by quickly responding to user’s

actions, the system can enable a user to guide the exploration of a search tree

and construct an animated scene within a reasonable time frame. In addition,

we also demonstrated that both user guidance and automated exploration are

essential to accomplish this goal — without user guidance, there is no way to in-

ject aesthetic qualities into the exploration, and without automated exploration,
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the user would need to view an impractically large number of scenes.

6.4 Helium Model Validation

The Helium Model MES is a Pareto Optimization MES, with a two-

dimensional design space (Prandtl number and Inlet Velocity) and a two-dimensional

performance space (velocity profile difference at two heights). It requires a rela-

tively small number (dozens) of long-running experiments (each taking about a

half-hour). The Pareto Frontier for the Helium Model is shown in Figure 3.11.

In this MES, the individual simulations are themselves parallel tasks.

Therefore, in addition to deciding which experiments to run, and in what or-

der, the system also needs to decide how many processing elements are assigned

to each experiment. This added dimension poses additional challenges and

provide additional optimization opportunities for the system. As discussed in

Sections 5.6 and 5.5, the system has the conflicting goals of both minimizing

the parallelization overhead in any single experiment, and at the same time

obtaining information from early experiments soon enough in order to inform

the execution of later experiments.

Five of the application-aware techniques discussed in Chapter 5 are ap-

plicable to this MES — namely, active sampling (Section 5.1), checkpoint reuse

(Section 5.3), scaling behavior-aware batching (Section 5.5), result reuse-aware

scheduling (Section 5.6), and preemption (Section 5.5). The goal in this eval-

uation is to quantify the impact of each of these techniques on the running of

the helium validation MES.
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All the results reported in this section are based on experiments conducted

on a cluster of 2.4GHz Intel Xeon nodes, each with 2GB memory, connected by

a 1 Gigabit Ethernet interconnect. The SimX/Uintah version of SimX is used

on the worker processes, and the SimX/SCIRun version is used for the manager

process front-end.

6.4.1 Methodology

To measure the impact of application-aware techniques listed above, we

created five configurations (Configurations A-E below), each one enabling the

use of subsets of application-specific knowledge. In addition, two base-line con-

figurations (O1 and O2) are defined and their behaviors are estimated based on

experiment run times obtained from the other configurations. The configura-

tions are defined as follows:

Configuration O1: Does not use any application-level knowledge: uses

brute force sweeping sampling, without result reuse. Maximizes parallelism by

allocating one worker process to each experiment.

Configuration O2: Does not use any application-level knowledge: uses

brute force sweeping sampling, turn off result reuse. Minimizes per-experiment

run time by always allocating 32 worker processes to each experiment.

Configuration A: Same as Configuration O2, but turn on Active Sam-

pler (Section 5.1). No result reuse. The Task Queue issues one simulation at a

time to 32 worker processes. No preemption.
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Configuration B: Same as Configuration A, but enable result reuse (Sec-

tion 5.3). The Task Queue issues one simulation at a time to 32 workers. No

preemption.

Configuration C: Same as Configuration B, but the Task Queue issues

simulations according to the optimal batch size based on scaling behavior (Sec-

tion 5.5).

Configuration D: Same as Configuration C, but the Task Queue gives

the first member of each reuse class higher priority (Section 5.6).

Configuration E: Same as Configuration D, but enable preemption (Sec-

tion 5.5).

For each configuration, we conduct the study twice, once using 32 worker

processes, and once using 64 worker processes. In both cases, we use one man-

ager process, one SISOL directory server, and one SISOL data server. All

worker processes are spawned on independent nodes, so there is no contention

for network or memory resources between worker processes. We record the total

wall clock time it takes to complete the study, the worker process utilization

rate, and the average run time of a single simulation. To achieve the desired

resolution of the design space (6x6) using brute force, the study requires 36

experiments. With active sampling enabled (Configurations A to E), the study

requires 24 experiments.
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Configu- Total time Utilization Avg. simulation
ration Rate run time

O1 12 hr 35 min 56.25% 6 hr 17 min
O2 20 hr 35 min 100% 34.3 min
A 13 hr 44 min 100% 34.3 min
B 9 hr 52 min 100% 24.7 min
C 6 hr 10 min 71.08% 63.4 min
D 5 hr 10 min 71.29% 39.7 min
E 4 hr 27 min 91.81% 33.5 min

Table 6.12: SimX performance on helium model validation study using 32
worker processes

6.4.2 Results and Analysis

The times it take to complete the helium validation study under the var-

ious configurations are listed in Tables 6.12 and 6.13. The rest of this section

discusses in length the performance impacts of the application-aware techniques

by comparing the performance data from different configurations.

6.4.2.1 Parallelization Penalty

Comparing Configurations O1 and O2 shows the parallelization penalty

of the Arches code. Configuration O1 out-performs O2, even though in O2

individual simulations finish much faster, and the utilization rate of the worker

processes is much higher. This is because, when using 32 workers to execute

Arches, the parallelization overhead creates extra work for each worker process

to do, resulting in a higher per-experiment-per-worker cost. The scheduling

graph for Configuration O1 on 32 processes is shown in Figure 6.9. The X-axis
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Configu- Total time Utilization Avg. simulation
ration Rate run time

O1 6 hr 17 min 56.25% 6 hr 17 min
O2 10 hr 53 min 100% 36.3 min
A 7 hr 55 min 92.74% 36.3 min
B 6 hr 0 min 93.33% 26.8 min
C 4 hr 3 min 60.60% 36.1 min
D 3 hr 37 min 70.00% 27.0 min
E 3 hr 41 min 93.67% 25.8 min

Table 6.13: SimX performance on helium model validation study using 64
worker processes
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shows the time, and the Y-axis lists the 32 worker processes. The graphs show,

for each worker process, which experiment it is working on at any moment. Each

experiment is shown in a different color, so that the worker processes working on

the same experiment show up as a same-colored block. On 32 worker processes,

Configuration O1 performs the study in two stages: in the first stage, all 32

workers are busy, each performing one experiment, and in the second stage,

only 4 workers are busy performing the remaining four experiments, while the

other 28 are idle. Therefore, the worker processes utilization rate is only slightly

higher than 50%.

6.4.2.2 Active Sampling

Comparing Configurations O2 and A shows the benefits of Active Sam-

pling. Even though Configuration O2 performs its experiments serially, and

thus incurs high parallelization overhead within experiments, there are poten-

tial benefits. One of the benefits is that we can now enable active sampling

to cut down the number of experiments required. By withholding experiments

until some earlier experiments’ results have returned, one can decide, using the

active sampling technique, whether the later experiments need to be executed.

Active Sampling cuts down the total run time by 33% on 32 workers and 27%

on 64 workers. Since Configuration A requires 24 instead of 36 experiments,

on 32 workers, Configuration A is estimated to be 33% faster. On 64 workers,

however, since Configuration A always uses 32 workers per experiment, when

there is only one experiment left in the system, half of the workers are idle,
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hence the non-100% utilization rate and lower-than-33% speedup.

6.4.2.3 Checkpoint reuse

Comparing Configurations A and B shows the benefits of checkpoint reuse.

While Configuration A shows improvement over Configuration O2, it is still

slower than Configuration O1. However, by performing the experiments serially,

more application-specific optimizations are made possible. Namely, it enables

the ability to reuse previously-computed results in later experiments. This

benefit is derived from the reduced average per-simulation run time: down to

24.7 mins for 32 worker runs and 26.8 mins for 64 worker runs. That translates

to a 28% (32 workers) and 26% (64 workers) reduction in the study’s run time.

Configuration B out-performs Configuration O1, so, with active sampling and

result reuse, SimX already can recover the performance penalty incurred due to

parallelization overhead.

6.4.2.4 Scaling behavior-aware resource allocation

Comparing Configurations B and C shows the benefits of ideally batching

experiments based on their scaling behavior. Configuration C uses application-

specific knowledge to decide the amount of parallelization each experiment

should receive. More simulations are being issued concurrently, each on fewer

processors. This increases individual simulation run times, but reduces the over-

all amount of work because less time is spent in the communication overhead

in individual simulations. The overall run time of the study is reduced by a
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further 38% on a 32-worker run, and 33% on a 64-worker run.

6.4.2.5 Resource allocation to maximize reuse potential

Comparing Configurations C and D shows the benefits of using the knowl-

edge of reuse classes in batching decisions. Figure 6.10 shows the scheduling

graph of Configuration C on 32 workers, where the experiment numbers are

annotated on the graph. It shows that sometimes worker processes are kept idle

while waiting for some long-running experiments to finish, such as experiment

no. 13. While waiting for it to finish, the system leaves 28 worker processes idle

for almost 50 minutes, reducing the utilization rate. This is because no. 13 is

an experiment that cannot reuse a previously-computed checkpoint, while ex-

periments 11 and 14 through 18 all reuse a checkpoint, and thus all finish much

sooner than experiment 13. This unevenness of run time can be addressed by

separating out start-from-scratch or start-from-checkpoint experiments. Sepa-

rating reuse classes increases the utilization rate by ensuring that concurrent

simulations are all start-from-scratch or all start-from-checkpoint. The schedul-

ing graph for Configuration D on 32 workers is shown in Figure 6.11. Experi-

ments 0, 1, 2, 9, 10 and 11 all start from scratch, and are shown to require more

worker-processor-minutes than the other experiments. By separating them from

the rest of the experiments and scheduling them concurrently, the system can

ensure that the experiments scheduled to run at the same time have compara-

ble run times, thus reducing the size of “holes” on the scheduling graphs. As

a result, the utilization rate is improved by 10% on 64 workers. Separating
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out reuse classes also reduces the average per-simulation run time by maximiz-

ing reuse potential. In Configuration C (Figure 6.10), experiments 1, 2, and 4

could have reused each others’ results, as could experiment 5, 7, and 8. Unfor-

tunately, because SimX scheduled them to start together, they all have to start

from scratch, because none of their simulation results are available at the time

of their starting. The reuse potential is thus lost. Configuration D schedules the

first members of each reuse class concurrently, resulting in higher reuse poten-

tial. In Figure 6.11, experiments 3 to 8 reuse the results from experiments 0 to

2, and experiments 12 to 23 reuse the results from experiments 0 to 2 and 9 to

11. By maximizing reuse potential, SimX improves the average per-experiment

run time on 32 workers by 37%. Combining the benefits of increased utilization

rate and maximized reuse potential, the knowledge of reuse classes results in

the overall run time showing a further 16% (32 workers) and 10% (64 workers)

improvement.

6.4.2.6 Preemption

Comparing Configurations D and E shows the benefits of preemption.

Even though separating start-from-scratch or start-from-checkpoint experiments

alleviates the problem of uneven run times of concurrent experiments, the

scheduling graph of Configurations D still shows that many worker processes are

kept idle while waiting for some long-running experiment to finish on another

worker process group. In Configuration E, these long-running experiments may

be preempted by the idle worker processes so they may be “spread out” to
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Figure 6.10: Helium validation study scheduling graph, Configuration C
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those idle worker processes. Configuration E’s scheduling graph (Figure 6.12)

shows that, long-running experiments can fill in the “holes” in the scheduling

graph, like experiment 16, which started on 4 workers and eventually spread

itself out to all 32 workers. Configuration E improves processor utilization rate

back above 90%. On 32 workers, this translates into a 14% improvement of

the overall study run time. On 64 workers, however, this improvement is offset

by the overhead required to perform the reconfigurations, and Configuration E

shows no improvement over Configuration D.

6.4.3 Conclusion

In this section, we showed that, by adding application-specific knowledge

to the scheduling and resource allocation decisions in our helium model vali-

dation study, the system can achieve a 78.4% and 64.6% reduction in overall

run time over the baseline configurations on 32 worker processes, and a 66.8%

and 42.4% reduction in overall run time over the baseline configurations on 64

worker processes.

6.5 Summary

This chapter has demonstrated that Multi-Experiment Studies can be

performed efficiently on a parallel runtime system that exploits their charac-

teristics. Interactive MESs can respond to user input at an interactive rate,

while the run time of non-interactive MES can be reduced by several times

to several orders of magnitude. To enable these gains, the system makes use
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Figure 6.11: Helium validation study scheduling graph, Configuration D
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of multiple techniques that leverage the knowledge of the application: active

sampling uses the goal of the MES to automatically prune the design space;

user interactivity leverages the user’s input to guide the study; result reuse

uses the result from earlier experiments to speed up the execution of later ex-

periments; parallelism-driven resource allocation maximizes resource utilization

while minimizing parallelization overhead within each experiment; and reuse-

driven scheduling ensures maximum result reuse potential. These techniques

work in tandem to reduce the number of experiments required, reduce the run

time of individual experiments, and improve resource utilization rate, resulting

in a 400-fold run time improvement in the bridge design study, up to a 100-fold

response time improvement in the defibrillator design study, interactive steering

for the animation design study, and up to a 75% improvement in the run time

of the helium model validation study.
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Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, we have motivated why Multi-Experiment Studies (MESs)

are expected to become more prominent users of parallel clusters in the near

future (Chapter 1). We have identified the challenges posed by the problem

of conducting MESs on clusters (Chapter 3) and techniques that can be bor-

rowed from existing systems to deal with this problem (Chapter 2). We have

developed a new approach to the problem: by viewing the entire MES as a sin-

gle entity, and taking advantage of application-specific knowledge when making

system-level decisions (Chapter 5). We have presented the SimX system (Chap-

ter 4), a run time system that conducts MESs on parallel clusters using that ap-

proach. We have also quantified the benefits of each type of application-specific

knowledge: by demonstrating the performance benefits obtained in four example

MESs (Chapter 6), we have shown the importance of applying application-level

knowledge in their executions.
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7.1.1 Performance

The techniques proposed in this thesis yielded a multi-order of magnitude

improvement in the run time of two of the example MESs, achieved multi-fold

improvement in the run time of one example MES, and realized interactive

steering of two example MESs.

In order to achieve this, it was essential to incorporate different types of

application-level knowledge in system decisions:

• Reuse: The system can improve its performance by reusing the inter-

mediate result or simulation result of earlier experiments to speed up

later experiments (Sections 5.3 and 5.4). For interactive studies, the

system can reuse aggregate results from early units-of-exploration to

inform the conduct of later units-of-exploration. SimX demonstrates

that result reuse can achieve an order of magnitude improvement in the

bridge design study’s response time, an 8x to 100x improvement in the

defibrillator design study’s response time, and a 26%–28% improvement

in the helium code validation study’s response time.

• User interactivity: By allowing the user to steer the entire MES

instead of one single experiment at a time, the system allows the user

to explore complicated design spaces by breaking them down into slices,

or to guide the exploration of a search tree by using his subjective

judgement (Section 5.2). The defibrillator design study and animation

design study show that, by coupling SimX’s interfaces with SCIRun, it
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is possible for a user to interactively steer entire computational studies.

SimX achieves study-level response rate in the order of seconds.

• Sampling: In sampling (Section 5.1), the system schedules experiments

in a way such that the result of early experiments can inform the sys-

tem as to whether some of the later experiments are needed, thereby

cutting down the total number of experiments required by the study.

By using sampling strategies that conforms to the goal of the MESs,

we have demonstrated a 33% to a two-orders-of-magnitude reduction

in the number of experiments needed by the Pareto frontier discovery

studies.

• Resource Allocation: When conducting an MES composed of simu-

lation code that themselves can run in parallel, the system can allocate

processing elements to experiments according to the scaling behavior

and reuse properties of the simulation code to minimize parallelization

overhead within individual experiment runs while maximizing resource

utilization, and at the same time maximize result reuse potential. Using

application-aware resource allocation techniques, SimX is able to bring

about a 42.4% to 4.6 times improvement in the run time of the helium

validation study.

These improvements are only possible because SimX is able to take advan-

tage of application-specific knowledge and use it in its system policy decisions.
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7.1.2 Applicability

We have demonstrated that application-aware techniques can be imple-

mented in a convenient fashion using an architecture that can be easily inte-

grated with existing execution frameworks and problem solving environments.

The standalone implementation of SimX presents SimX as a set of libraries; a

user needs to re-write and re-compile his simulation code with calls to the SimX

library in order to incorporate it into an MES. The SimX/SCIRun version pack-

ages SimX as a set of SCIRun modules; the user can include those modules into

existing SCIRun applications to turn their SCIRun nets into MESs. Finally, the

SimX/Uintah version packages SimX as modified Uintah components; the user

can turn his Uintah workflow into an MES by attaching the SimX component

into the existing Uintah workflow.

The four examples MESs used in this thesis cover a large range of proper-

ties that one expects to find across different computational studies. The exam-

ples cover MESs that: 1) are composed of both serial and parallel experiment

code, 2) have per-experiment runtime that range from milli-seconds to hours, 3)

require experiment counts that range from dozens to tens of thousands, 4) have

varying reliance on user input, 5) have both concrete and subjective definitions

of their study objectives, and 6) have dimensionality of the exploration space

that range from two to over a hundred. Therefore, the results obtained in this

thesis is expected to be applicable to other MESs.

223



7.2 Future Work

As described in Chapter 2, this thesis was built upon numerous previ-

ous efforts related to parallel steering, parameter sweep, and parallel runtime

systems. This thesis also opens up a number of future research areas.

Interaction between search algorithm, resource allocation, and

reuse: One important insight presented in this thesis is that the scheduling and

resource allocation strategies often can inform each other. For example, in active

sampling, by scheduling coarse grid experiments first, one can narrow the search

space of finer levels. In studies with moldable experiments, this insight presents

more interesting implications. We have shown in the helium study, for example,

that it is actually worthwhile to incur the parallelization overhead of the Arches

code by running the code on all 32 worker processes instead of running each

experiment on their own worker process, because the speed up due to result reuse

and active sampling can outweigh the parallelization penalties. In general, when

running an MES, one may want to assign “importance” to some experiments

over another, due to these experiments’ reuse potential, or due to them being

expected to give important information for the search algorithm. How such

importance should be assigned is not immediately clear. For example, when

conducting an MES to search a large design space using a genetic algorithm,

the user may want to give more computational resources to offsprings of well-

performing parents, or he might want to give more resources to offsprings formed

from mutation in order to explore new strands.
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Study-level steering interface: Much previous work has been done to

show how a user can steer a single parallel code. The animation study and

defibrillator design studies showed that it is possible for a user to steer an

entire computational study consisting of thousands of simultaneous individual

simulations. While these results are promising, much work remains in under-

standing how users should interact with MESs in general. In particular, what

are the modes with which humans perceive aggregated information from mul-

tiple sources, and how do they steer multiple executions at once? It is likely

that eventual solutions to this problem will require participation from multiple

sub-areas within computer science, including systems and Human-Computer

Interaction.

Automated collection of application-specific information: On the

more system-oriented side, some of the application-specific knowledge used in

this thesis can conceivably be automatically generated. The scaling behavior

required for optimzal batching in the helium model validation MES, for exam-

ple, can conceivably be collected by SimX automatically. Self-optimizing code

like FFTW or Atlas ([39, 83, 82]) conducts test runs to determine the infor-

mation about the hardware it is running on. When FFTW is being installed

on a platform, for example, it performs test runs to determine the hardware’s

characteristics, such as the cache size, register bank size, cache line block size,

etc. It then installs a version of itself optimized for that particular platform

based on those characteristics. In a similar vein, a SimX-like system should be

able to perform test runs on the application code to determine information such
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as the code’s scaling behavior or even the expected benefits of result reuse, and

adapt itself to the application as the computational study is being conducted.

In order to accomplish this automated collection of application-specific infor-

mation, a well-defined API has to be designed, and additional work is needed

to identify what type of information can be obtained automatically, and what

has to be supplied by the user.

Using application-domain knowledge in storage systems: The cur-

rent TCP server-based SISOL implementation is only one way to implement a

shared object system. In all four of our example MESs, the SISOL has not

become a bottle-neck — when it did we simply increased the number of SISOL

data servers. However, other MESs may put more pressure on their shared ob-

ject layer. In those MESs, a more efficient shared object layer may be needed.

There, the shared object layer could make use of application-domain knowledge

to optimize its performance. For example, it could use the notion of a priority

region, where some objects are known to be more important than others (more

likely to be reused, for example), and give special treatment to them (cached

in SISOL clients, has extra index for lookup in SISOL servers, etc) in order to

improve the performance of operations pertaining to high-priority objects. Also,

in the current implementation of SISOL, the user has to set aside a number of

processing elements on the cluster to run the SISOL servers. These processing

elements thus cannot be used to run worker processes. To put these processing

elements into the worker process pool, the feasibility of a distributed cooperative

store implementation (e.g., [51]) of SISOL can be investigated. Here, SISOL has
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to contend with the simulation code for CPU power and with FUEL for net-

work bandwidth, and the knowledge of the simulation code — when the code

enters phases of intense CPU usage or intense network usage — can be useful in

wisely scheduling the resources of a single processing element. Furthermore, the

shared object layers could be made to be non-volatile, i.e., the objects stored

can survive beyond the life time of the entire computational study. That way

the user can checkpoint entire studies. This will come in useful for conducting

long-running computational studies where each individual run of an experiment

itself could last beyond the length of an allocation of nodes on the cluster.

Defining simulation-level and system-level component interfaces:

The Common Component Architecture (CCA) [4, 3] is a set of standard inter-

faces that allow application developers to package common scientific operations

into components. Users can then take these components to compose applica-

tions. One possible use of CCA is to design components that perform operations

to conduct Multi-Experiment Studies. Such MES components would require an

interface similar to that of SimX’s. The component-based versions of SimX —

SimX/SCIRun and SimX/Uintah — represent one set of possible interfaces for

such an MES component. An MES component would take SimX’s interface and

make them compliant with CCA. The SimX experience, including the type of

application-specific knowledge that are found to be beneficial, can inform the

design of such a component.
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7.3 Conclusion

Incorporating application domain knowledge to guide its decision-making

process, a parallel runtime system can efficiently manage the collection of ex-

periments in a Multi-Experiment Study, achieve user-interactivity at the study-

level and reduce the overall run time. With an end-to-end system view that

encompasses the execution platform, the application being executed, and the

requirement of the computational study, the system can take advantage of op-

timization opportunities that are not available when it focuses on one or two of

these elements alone.

In particular, the study’s goal can dictate scheduling decisions with an end

result of reducing the number of experiments needed, user interactivity can help

drive the study and allow subjective steering, the experiment code’s internal in-

termediate states can be reused to reduce the per-experiment run time, and the

experiment code’s scaling behavior and reuse pattern can influence the resource

allocation decisions to maximize resource utilization and reuse potential. For

example, without knowing that the bridge design study is Pareto Frontier ex-

ploration, active sampling would not be available; without knowing the internal

structures of DefibSim, intermediate result reuse would not be applicable; with-

out user interactivity, the animation design study could not make meaningful

progress; and without knowing about reuse classes, the system would not be

able to schedule the experiments in a way that maximizes reuse opportunities.

Therefore, it is important for system designers not to treat each execution

of the code as separate black boxes, but rather to consider the inner structures
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of the application codes, as well as the purpose and intent of the users who

run those application codes on their systems, often multiple times. To do so,

they need to rethink how the system-application interface are designed: how to

design a system API that allows the system to obtain and take advantage of

application-specific knowledge? What system-level optimization opportunities

are afforded by such application-level knowledge? With a well-defined interface,

the system designer can obtain the view of the entire end-to-end system, rather

than just one or two sub-parts of it, and then take advantage of optimization

opportunities that are only present with that view.

SimX is only one example of such a system. In order to efficiently take

advantage of the amount of parallelism available both in massively parallel archi-

tectures as well as small-scale parallel interactive applications, more SimX-like

systems are likely to be designed and deployed.
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