
Automatic Verification of Parameterized Systems

by

Jiazhao (Jessie) Xu

A Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2005

Advisor: Amir Pnueli

c
�

Jiazhao Xu

All Rights Reserved, 2005

Dedication

To my parents and

the memory of the late Dr. Robert Paige

iv

Acknowledgements

The road leading to the Doctor’s Degree of Philosophy in Computer Science has been a

long and winding journey for me. It started with the encouragement of my parents who

inseminated in me the love of science and intellectual fulfillment. At times when I was

in serious doubt about my academic choices and was near the point of giving up all my

research it always came back to this very basic point.

The reality of being a graduate student can be harsh at times, and the experience of

being a part-time Ph.D. student and a full-time working mother is a once in a lifetime

adventure, and I am very glad that I had it. For that I owe abundance of thank-yous to

my husband Cris, whose insistence upon completing the course made me carry on, whose

sharing of child-caring and house work gave me most precious time, and whose sense of

humor and good spirit melt away my frustrations yet spared me no nonsense. Another per-

son whose life and encouragement moved me so much was the late Professor of computer

science at NYU, Dr. Robert Paige. The last few months of his life was an inspiration to us

all. Even at the very late stage of his lung cancer he still cared about his students’ future

like mine more than his health. It was he who suggested to me to continue my research in

formal methods with Prof. Amir Pnueli and showed me what it meant to pursue your goals

and never give up.

The research presented in this thesis probably would not have happened without the

guidance of my thesis advisor, Prof. Amir Pnueli. It is such a great honor to be given the

opportunity to work with the pioneer of the field. His academic insight always amazes me.

Being able to take his courses and to work with him on research problems are the highlights

of my academic life. As his former student now an accomplished scholar, Lenore Zuck,

once put it, “Amir is the best academic advisor that a graduate student can hope for”, could

not be more true. I almost regret my graduating from NYU for losing the guidance from

v

Amir and the opportunity of learning more about doing research from him.

I owe a thank-you to all my friends and colleagues who supported me on my academic

pursuit. In particular I would like to thank Lenore Zuck for her knowledge and insight in

formal methods which inspired many of the results in this thesis; I would like to thank my

colleagues Geert Janssen, Andreas Kuehlmann for stimulating discussions on formal ver-

ification and my IBM team Jason Baumgartner, Victor Rodriguez, Mark Williams, Viresh

Paruthi, Florian Krohm, Bob Kanzelman, Hari Mony, Fadi Zaraket, Anthony Hackner,

Travis Pouarz, Yee Ja, Scott Mack, Jim Swift and my former manager Linda Ryan-Doolittle

for their support of my education goals and their dedication to research and development

of formal methods. One positive facet of being a part-time Ph.D. student is that I am able

to witness the real problems that a verification engineer faces in the industrial world, which

provide motivation and guidance for academic research. I also would like to thank Prof.

Alan Siegel for his kind encouragement and many interesting perspectives on life and re-

search. I would deliver a special thank-you to the graduate student coordinator, Anina

Karmen, for her friendship and words of wisdom at those harsh times. And many thanks

go to my friends over the years, Yi Wang, Rong Lu, YuHua Lin, Mei-Ting Hsu, Jose Tierno

and Marianne Knirsch, whose friendship brighten the days of my life. I would like to thank

Prof. Benjamin Goldberg, Prof. Clark Barrett for being on my thesis committee and giving

me wonderful suggestions and support on my thesis writing. Also I would like to credit my

school work to IBM Corporation’s work-study program and to applaud this company’s far-

sighted vision to encourage and support its employees’ career development. Now it comes

to the last but not the least, I would like to thank other members of my family for always

standing by me: my children Brian and Kenneth who can not yet read this thank-you note

for being such a joy in my life and making everything meaningful; my mother-in-law Mar-

lene who sacrificed some of her weekend hours to help with kids to free me some extra

time for my school work.

To whom I might have forgotten to mention here, I owe you a sincere apology and thank

you!

vi

Abstract

Verification plays an indispensable role in designing reliable computer hardware and soft-

ware systems. With the fast growth in design complexity and the quick turnaround in design

time, formal verification has become an increasingly important technology for establishing

correctness as well as for finding difficult bugs. Since there is no “silver-bullet” to solve all

verification problems, a spectrum of powerful techniques in formal verification have been

developed to tackle different verification problems and complexity issues. Depending on

the nature of the problem whose most salient components are the system implementation

and the property specification, a proper methodology or a combination of different tech-

niques is applied to solve the problem.

In this thesis, we focus on the research and development of formal methods to uniformly

verify parameterized systems. A parameterized system is a class of systems obtained by

instantiating the system parameters. Parameterized verification seeks a single correctness

proof of a property for the entire class. Although the general parameterized verification

problem is undecidable [AK86], it is possible to solve special classes by applying a reper-

toire of techniques and heuristics. Many methods in parameterized verification require a

great deal of human interaction. This makes the application of these methods to real world

problems infeasible. Thus, the main focus of this research is to develop techniques that can

be automated to deliver proofs of safety and liveness properties.

Our research combines various formal techniques such as deductive methods, abstrac-

tion and model checking. One main result in this thesis is an automatic deductive method

for parameterized verification. We apply small model properties of Bounded Data Sys-

tems (a special type of parameterized system) to help prove deductive inference rules for

the safety properties of BDS systems. Another methodology we developed enables us to

prove liveness properties of parameterized systems via an automatic abstraction method

vii

called counter abstraction. There are several useful by-products from our research: A set

of heuristics is established for the automatic generation of program invariants which can

benefit deductive verification in general; also we proposed methodologies for the automatic

abstraction of fairness conditions that are crucial for proving liveness properties.

viii

Table of Contents

Dedication iv

Acknowledgements v

Abstract vii

List of Figures xii

List of Appendices xiv

1 Introduction 1

1.1 Overview of Verification of Parameterized Systems 1

1.2 Contribution and Outline of the Thesis . 5

1.3 A Word on Notation . 7

2 Background 10

2.1 Temporal Logic . 10

2.1.1 Linear Temporal Logic . 12

2.2 Fair Discrete Systems . 15

2.2.1 Parameterized Systems . 16

2.3 Deductive Verification Framework . 18

2.4 Data Abstraction . 22

3 Parameterized Verification using Invisible Invariants 25

3.1 Small Model Theorem . 25

3.1.1 Small Model Theorem for ����� -Assertions on a Single Index . . . 27

3.1.2 Small Model Theorem for ����� -Assertions on Multiple Types of

Indices . 32

ix

3.1.3 Bounded Data Systems . 35

3.1.4 Small Model Theorem for BDS systems with Signature � type ����
bool � . 37

3.1.5 Small Model Theorem for General Stratified BDS systems 38

3.1.6 Small Model Approach for Unstratified BDS Systems 40

3.1.7 Proving the Safety Property of Peterson’s Mutual Exclusion Algo-

rithm . 46

3.2 Automatic Generation of Invisible invariants 54

3.2.1 Generating Invisible Invariants with Universal Quantifiers 55

3.2.2 Generating Invisible Invariants with Existential Quantifiers 61

3.3 Verification of Waiting-for Properties of Parameterized Systems 64

3.4 Verification of General Safety Properties of Parameterized Systems 71

3.4.1 Construction of Temporal Testers 72

3.4.2 Invisible Invariants Method for General Safety Properties 74

3.5 Application of the Invisible Invariants Method to Clocked Systems 76

4 Parameterized Verification using Counter Abstraction 82

4.1 The Method of Counter Abstraction . 83

4.2 Derivation of Abstract Justice Requirements 89

4.2.1 Justice Suppressing Assertions . 89

4.2.2 Formal Characterization of Justice Suppressing Assertions 91

4.2.3 Proving Liveness Properties . 95

4.2.4 Proving Individual Accessibility 96

4.3 Derivation of Abstract Compassion Requirements 99

4.4 Implementing Counter Abstraction using TLV 103

4.5 Examples . 109

4.5.1 Szymanski’s Mutual Exclusion Algorithm 109

4.5.2 The Bakery Algorithm . 110

5 Conclusion and Future Work 113

5.1 Conclusion . 113

x

5.2 Future Work . 115

Appendices 117

References 124

xi

List of Figures

2.1 Program MUX-SEM . 17

2.2 The FDS Corresponding to Program MUX-SEM(N) 18

2.3 Rule INV for Proving General Invariance 19

2.4 Rule WAIT for Proving General Waiting-for 20

2.5 Rule NWAIT for Proving Nested Waiting-for 20

2.6 Rule INV-P for Proving General Safety Property 21

3.1 Parameterized Peterson’s Mutual Exclusion Algorithm 46

3.2 Heuristics A-1: Generating Invariants ���������	��
 55

3.3 Augmented Program MUX-SEM . 57

3.4 Heuristics A-2: Generating Invariants ���
���� ��������� �
 59

3.5 Heuristics A-k: Generating Invariants ���� � ��������� ������������� � ��������� �����
 60

3.6 Heuristics E-1: Generating Invariants � �������	��
 63

3.7 Heuristics E-k: Generating Invariants � � � �������!�"� � �����	� � �������!�"� �
 64

3.8 Heuristics NW-1: Generating Auxiliary ����� -assertions for Rule NWAIT . 67

3.9 Two-Process Peterson’s Mutual Exclusion Algorithm 67

3.10 Program RES-MP with Asynchronous Shared Variables 71

3.11 Fischer’s Mutual Exclusion Algorithm . 78

4.1 State Transition Graph of Abstract System MUX-SEM # for $%�'&(
 with &*),+ 86

4.2 Reachability Graph for - . 95

4.3 State Transition Graph of Abstract System MUX-SEM . for $%�	&/
 with &*)10 98

4.4 Pending States of MUX-SEM . with Respect to 2 99

4.5 Pending states of MUX-SEM . After Removal of All �'3 �547698
 -states . . 99

4.6 Program TERMINATE . 100

4.7 State Transition Graph of TERMINATE # for $%�	&/
 with &:)1; 100

4.8 Parameterized Mutual Exclusion Algorithm SZYMANSKI 109

xii

4.9 The Bakery Algorithm . 111

xiii

List of Appendices

Appendix A: Description of ����������	

. 117

Appendix B: Description of ����
������

. 119

Appendix C: TLV Rule File for Counter Abstraction . 120

xiv

Chapter 1

Introduction

1.1 Overview of Verification of Parameterized Systems

Verifying that a piece of hardware or software design functions as intended has always

been an important task for computer engineers. Methods and techniques to perform verifi-

cation tasks evolve over time. With the increasing presence and involvement of computer

hardware and software in daily life, checking the safety and reliability of these systems

has become essential and sometimes even critical. A bug in a system can cause not only

inconveniences such as data loss and service delays, but in some unfortunate cases disas-

trous consequences such as aviation accidents and nuclear plant malfunctions. The damage

cost of a bug and the expense for its fix can both be very expensive; Intel’s FPU bug, the

Y2K glitch, and network crippling virus attacks consumed millions of dollars as well as

production time. Therefore it is an imperative task for computer scientists and engineers

to develop advanced verification technologies that will support the development of reliable

systems despite the growing complexity of designs.

Formal verification has emerged as a promising verification method because of its

strength in areas where other verification methods are inadequate:

� It can provide a correctness proof by using methods that are relatively inexpensive in

comparison to exhaustive simulation.

� It can find tough bugs in cases where simulation fails due to complexity.

� It can be applied to software programs and hardware systems.

� It can verify infinite-state systems.

1

The key distinction between formal verification (or formal methods) and other verification

techniques lies in the utilization of mathematically-based formal languages, techniques

and tools to specify and verify hardware and software systems. It provides a mathematical

model for the system under study, specifies the properties (or rules) that the system should

comply with, and then applies mathematical techniques to check that the model satisfies

the properties.

According to their expressive power and approach towards formalization, formal meth-

ods fall into the following major categories: model checking ([CE81], [QS81]) and de-

ductive methods (we discount equivalence checking here due to its limited application to

hardware verification). To choose an appropriate proof method for a verification task, one

should consider the following aspects:

� Proving power. One must choose a method with sufficient proving power. For

example, model checking can only be applied to finite state systems, thus can not be

applied to an infinite-state system without first abstracting or reducing the system to

a finite-state one.

� Soundness and completeness of the proof method. A viable proof method must be

sound, i.e. every statement that it proves to be
�������

/�	��

� � must actually be true/false.

The completeness of the method indicates whether every statement is provable. An

incomplete method can cause the proof process to be nonterminating or simply inap-

plicable.

� The degree of automation. With the rapid advance of technology, most systems

are too complicated to be proven by hand. Software tools are deployed to fully or

partially automate the proof process. The degree of automation directly affects the

applicability of the method.

� The complexity of the method (assuming that the method can be automated). A

lower computational complexity greatly increases the scalability of the method.

2

� The diversity of the methodology. Due to the complexity of design and verifi-

cation, a successful verification job usually requires that we reduce the model size

by applying abstraction and other model reduction techniques to extract reasonably

sized subcomponents. Thus a viable proof methodology should consider the support

for a few major techniques of this nature, such as:

– Abstraction. Proofs for an abstracted system that can imply the validity of the

proofs on its concrete counterpart.

– Compositional proofs. Proofs for a large system that can be constructed easily

from the proofs of its components ([CLM98]).

– Inductive proofs. It supports uniform proofs for parameterized systems that

are described inductively.

Background on Uniform Verification of Parameterized Systems

The problem of uniform verification of parameterized systems is one of the most challeng-

ing problems in verification today. Given a parameterized system $%�'&/
%����� 4����	�
�
��� ��� & �
and a property
 , uniform verification attempts to verify $%�	&/
�� �
 for every &�� 4 . Apt

and Kozen proved that, in general, the parameterized verification problem is undecidable,

even with finite state components [AK86]. However, for restricted families of parame-

terized systems the problem is decidable. This is well illustrated in the work of German

and Sistla [GS92] and Emerson and Namjoshi [EN95], [EN96], where the systems under

consideration are composed of synchronously communicating processes. However their

methods to deal with asynchronous systems where processes communicate by shared vari-

ables turned out to be much more ad hoc; for instance [EK00] presents different algorithms

to deal with systems in which the guards are all disjunctive and systems in which the guards

are all conjunctive. Other factors that affect the decidability of the problem include system

topologies and property types. Most of the methods target safety properties and only a few

address liveness properties.

3

In contrast to putting restrictions on systems and properties to make the problem de-

cidable, another approach to the problem is to devise sound but incomplete methods in

the hope that they can be effective on certain types of systems. One of the promising

approaches to the verification of infinite-state systems (and a parameterized system is es-

sentially such a system, due to the unbounded value of the parameter &), is the method

of finitary abstraction in which we abstract an infinite-state system into a finite-state one,

which can then be model-checked. A general theory of finitary abstraction which jointly

abstracts a system together with the property to be proven is presented in [KP00c, KP00a].

This method can be applied to the verification of arbitrary LTL properties, including live-

ness properties. A few notable works proceeding in this direction include using explicit

induction [EN95] network invariants and implicit induction [LHR97], [WL89] network

invariants, abstraction and approximation of network invariants [CGJ95], and structural in-

duction that handles networks with parameterized topologies [CR00]. Most of these meth-

ods require the user to provide auxiliary constructs or abstract mappings for constructing

network invariants. In both the verification of Burn’s mutual exclusion protocol [JL98]

and Szymanski’s algorithm [GZ98, MAB � 94] the user has to provide abstraction functions

or lemmas. Another very useful technique used in parameterized verification is symmetry

reduction, which is studied extensively in [CEFJ96, CFJ93],[ES96, ES97]. The work in

[ID96] shows how to detect symmetries by inspection of the system description.

For the automatic incomplete approaches, a class of systems which includes bounded-

data systems may be analyzed by representing linear configurations of processes as a word

in a regular language [KMM � 97, ABJN99, JN00]. In many cases, the analysis procedure

diverges and special user-suggested acceleration procedures have to be applied, and this

in turn breaks the automatic nature of the process. Other works utilize symmetry reduc-

tion [GS97] and compositional methods [McM98] that combine automatic abstraction with

finite-instantiation.

Most approaches only deal with safety properties. Notable work in verifying liveness

properties of parameterized systems includes the PAX system [BLS01] which is based on

4

predicate abstraction [BBM95]. In [BLS01] parameterized systems are modeled as WS1S

systems [BBLS00]. However, the abstract space is determined by the assertions appearing

in the transition system and in the temporal property to be verified. As a result, the struc-

ture of the abstraction varies from case to case and the computation of the added fairness

requirements depends on a marking algorithm which has to be re-applied for each case

separately, searching for an appropriate well-founded ranking.

Even though the theory of linear abstraction, as presented in [KP00c], is aimed at veri-

fying liveness (and general LTL) properties, it admits that the general recipe of abstraction

is often too weak to provide a working finitary abstraction. In order to obtain a com-

plete method, [KP00c] suggests that we first augment the system under consideration by

an auxiliary monitoring module and then abstract the composed system. While this may be

theoretically satisfactory, no method is provided for designing the augmenting monitor.

1.2 Contribution and Outline of the Thesis

The main goal of this thesis research is to develop automatic formal methods for verifica-

tion of parameterized systems. Uniform verification of parameterized systems is a theoret-

ically challenging problem with a broad application base such as protocol verification and

array verification in hardware systems. Automatic formal methods can further the cause by

making it applicable to real world problems. Like most formal methods in this area, our

study is limited to special classes of parameterized systems due to the undecidability of the

general problem. However it distinguishes itself from previously proposed methods in the

following aspects:

� The main focus is on automatic formal methods. As noted before, the degree of au-

tomation is an important characteristic of a formal method. Algorithmic verification

makes the application of a formal method to real world problems more attractive.

Formal methods that utilize abstraction usually require the user to come up with ab-

stract mapping or auxiliary constructs, this is the major road block to automation.

The acceleration procedures ([PS00]) that apply to systems by representing linear

5

configuration of processes as a word in a regular language are automatable but of-

ten diverge, and in consequence require special acceleration schemes from the user,

which again breaks the automatic process. Our methods seek to avoid such short-

comings.

� Our studies of invisible invariant methods produced encouraging results towards

automatic deductive verification of parameterized systems. The achievements and

lessons learned shed light on the task of automating deductive verification.

� We tackled the problem of automatic verification of liveness properties of param-

eterized systems using counter abstraction. Verification of liveness properties is a

much harder problem than verifying safety properties in the context of parameter-

ized systems. Our results demonstrated a viable approach and various methods for

abstracting fairness conditions in a parameterized system.

Contribution

Here is a list of the main contributions of the thesis:

� Extended the small model theorem to multi-indexed stratified and unstratified BDS

systems.

� Applied the method of invisible invariants to test cases such as Bakery (stratified

BDS), Peterson (unstratified BDS), Fischer (real time programs).

� Generalized the method of invisible invariants to waiting-for formulas, and to general

safety properties.

� Developed the method of counter abstraction.

� Developed methods for abstracting justice requirements using justice-suppressing

assertions, and methods for abstracting compassion fairness requirements.

� Implemented and applied counter abstraction to test cases such as Bakery and Szy-

mansky.

6

Outline

The organization of the thesis is as follows:

� Chapter 1 is a general introduction to parameterized verification and related work.

� Chapter 2 provides basic concepts and background materials necessary for the reader

to understand the main results in this thesis.

� Chapter 3 describes the method of invisible invariants. We present the small model

theorems for various Bounded Data Systems. Then we discuss in detail different

heuristics in automatic generation of inductive assertions.

� Chapter 4 presents the method of counter abstraction. The focus is on the safe and

automatic abstraction of fairness conditions. We demonstrate the implementation

and the application of this method on various examples.

� Chapter 5 summarizes the results and discusses possible future research areas.

1.3 A Word on Notation

Most notations are introduced throughout our presentation as needed. Here is a list of

frequently used logical notations and expressions to start with:

– Quantified expressions are written in the format � ������� �

 , where
�

is the

quantifier (e.g., � � �),
�

the bound variable,
�

the range, and
 the expression being

quantified. When the range
�

of
�

is clear from the context, it may be dropped, re-

sulting in the abbreviated form � ��� �

 . To make the expression succinct sometimes

we abbreviate � ��� � � ���� 6

 simply as � ��� ��	� �

– For the pre-condition and post-condition of a transition, we use the logic expression,

2 6
 � 2�� , where
 is the logic representation of the entire transition relation

and � � represents the evaluation of the assertion � using the next state values of its

variables. And we refer to � � as the primed version of � .

7

– ��� 4���� ����� � is used to denote the asynchronous composition of processes ��� 4�� and

����� � which allows the processors to interleave their transitions. For the synchronous

composition of the processes we use the notation ��� 4�� � � ����� � which requires all

processors to execute their transition steps synchronously.

– For an assertion
 ���
 and transition relation
 ��� ��� �
 , we define the
 -successor of

 , denoted by
��
 , by the formula

 �
 �
	��
 � ��
�������� ��
 ���
 6
 ��� ��� �
�

The operation 	��
 � ��
�� is the syntactic replacement of each primed occurrence � �
by its unprimed version � . We can also define the
 -successors of
 through iterated

 -successor computation,

��
�� �
��
��
 � �
��

��
 � ���
��

��

��
 � �������

which for finite-state systems is guaranteed to terminate.

Acronyms are used in this thesis as a succinct way of referring to commonly used terms,

such as temporal logics, software languages, tool sets, or mathematical representations.

Typically acronyms use the small-caps font, such as LTL, CTL. Here are a few commonly

used acronyms:

– BDD stands for Binary Decision Diagram ([Bry86]). It is a canonical binary tree rep-

resentation of a boolean function. BDD was initially used in the SMV model checker

[McM92] by Ken McMillan and later widely adopted as an efficient technique to

symbolically represent assertions.

– TLV stands for Temporal Logic Verifier. It is a verification tool set [PS96] based on

the SMV system and with programmable user interface.

– SPL stands for Simple Programming Language. It is a simple concurrent program-

ming language introduced in [MP95].

8

– SCS stands for Strongly Connected Subgraph, which refers to a directed subgraph

where any two nodes in the subgraph are connected by some path. In other literature

it might also be named Strongly Connected Component (SCC). In general we only

consider non-singular (or non-trivial) SCSs, i.e. excluding the case that the subgraph

consists of a singleton node with no edges. One needs to take extra care to distinguish

a singular SCS from a special SCS which consists of a single node with a self-looping

edge.

In the thesis there are quotations from TLV program scripts and the SPL programs. For

TLV programs we use a distinct font, and for SPL programs we usually typeset using framed

figure. In the SPL programs we put all the SPL keywords in bold-face, such as local, while.

9

Chapter 2

Background

2.1 Temporal Logic

Temporal Logics are special modal logics that use modalities A � E � F � G � X and U to spec-

ify time-dependent properties such as that a designated state will eventually be reached or

some bad state will never occur in a valid computation. It was first introduced by Pnueli in

1977 ([Pnu77]) to reason about concurrent programs. Corresponding to the different syn-

tactic rules for combining temporal modalities with boolean connectives there are different

temporal logics, each with its unique expressive power and possibly distinctive semantics.

Commonly used ones are LTL (Linear Temporal Logic) and CTL (Branching Time Logic or

Computation Tree Logic), both sublogics of CTL � .

Definition 1 CTL � is a temporal logic which includes two classes of formulas: state formu-

las and path formulas. CTL � formulas are composed of path quantifiers A � E and temporal

operators F � G � U � X as well as boolean connectives. The rules of forming state formulas

(S1 – S3) and path formulas (P1 – P2) are as follows:

S1. An atomic proposition � is a state formula.

S2. If
 ��� are state formulas, then so are
 6 � ���
 .

S3. If
 is a path formula then A
 is a state formula.

P1. A state formula
 is also a path formula.

P2. If
 ��� are path formulas, then so are
 6 � , �
 .

P3. If
 ��� are path formulas then so are X
 and
 U � .

10

Notice that we don’t mention the modalities E, F, G in the above definition because

they can be obtained from the three basic modalities A, X and U using logical operations:

� E � = � A ���
� F � = true U �
� G � = � F ���

The semantics of a temporal formula are defined with respect to a Kripke structure � .

A Kripke structure is a nondeterministic finite state machine whose states are labeled with

boolean variables, which represent an evaluation of the various predicates in that state. It

may be extended by including fairness constraints. The semantics of most temporal logics

are defined over a Kripke structure.

Definition 2 (Kripke Structure) Let � � be a set of atomic propositions. A Kripke

Structure � over � � is defined by a four tuple ��� ��� ��� �
	
 , where

� � is a nonempty set of states,

� ���
����� is a transition relation that is total, i.e. for every state � � � there is a

state � � � � such that � ������� �
 ,
� � ��� � ����� is a function that labels each state with the set of atomic propositions

true in that state,

� 	���� is the set of initial states.

An infinite path in the graph of a Kripke structure is called a fullpath, e.g.
� �

��������� � �������
 , denotes a fullpath starting at an initial state ��� followed by � � and so on, where

any two consecutive states in the fullpath ��� ����� � � must satisfy the transition relation. We

write � ��� � �
 ���,� � � �

 to mean that state formula
 (path formula p) is true in structure

� at state � (fullpath
�

). When � is understood, we write simply � � �
 � � � �

 . We

leave the detailed definition of the semantics of path and state formulas for a given temporal

logic to the later sections as needed.

11

Sublogics of CTL � are defined either by restrictions on the operators allowed, or by re-

strictions on the ways in which the operators can be combined. Here are a few commonly

used sublogics of CTL � .

– LTL (Linear Temporal Logic) is obtained by leaving out (S2) and replacing (P1) by:

P1 � . If
 � � � , then
 is a path formula.

This effectively allows only state formulas of the form A � where � is a path formula

in which the only state subformulas permitted are atomic propositions. In conse-

quence the path quantifier A is often omitted in LTL notations.

– CTL (Computation Tree Logic) is obtained by restricting the kinds of path formulas

allowed, that is by leaving out (P1), (P2) and replace (P3) with:

P3 � . If
 ��� are state formulas then X
 and
 U � are path formulas.

This ensures that path quantifiers A, E are always attached to a single temporal op-

erator. For example, AG �
�� AF �
 is a CTL formula, whereas AG �
�� F �
 is

not.

– ACTL � is obtained by considering only positive formulas, built up from the literals

(propositions or negated propositions), without negation, and using only the A path

quantification operator. The dual logic is known as ECTL � .

– CTL ��� X is obtained by leaving out the next operator. This makes the logic insensitive

to stuttering (repetitions of the same state).

2.1.1 Linear Temporal Logic

For the specification of reactive systems we use temporal logic, in particular we choose LTL,

linear temporal logic, for our studies. To comply with the prevalent notations used in LTL,

we use the temporal operators � ��� instead of the CTL � operators G, F. In LTL, a temporal

12

formula is constructed from state formulas to which we apply the boolean operators � and

� , and the following basic temporal operators:

�
– Next � – Previous

�
– Until � – Since

Additional temporal operators can be defined as follows:

�
 � � � ��� �

�
 � � � �

�� � � �
�� �
 � ��

�
 � � � ��� �

�
 � �

�
�

�� � � �
�� �
�� �

Another useful derived operator is the entailment operator, defined by:

�
 � ��

	 � � �
 � ��

We refer to
� � � � � � � , and � as future operators and to � ���7� � � � , and � as past

operators. A temporal formula that contains no future operators is called a past formula. A

temporal formula that contains no past operators is called a future formula. A state formula

(assertion) is both a past and a future formula.

To define the semantic meaning of LTL formulas, we use linear computation sequences

instead of a computation tree which is more suited for defining CTL semantics. A model

for a temporal formula
 is an infinite sequence of states � ��������� � ������� , where each state ��

provides an interpretation for the variables mentioned in
 . Given a model � , we present

an inductive definition for the notion of a temporal formula
 holding at a position �)�� in

13

� , denoted by � � � �
 � �
 .

� ��� �
 � �
 	 � �
�� �
 � (
 is a state formula)

� ��� �
 � � �
 	 � � � � �
 �� �

� ��� �
 � �
 � � 	 � � � � �
 � �
 or � ��� �
 � � �

� ��� �
 � � �
 	 � � � � � � 4
 � �

� ��� �
 � �
 � � 	 � ��� ���) � � � �����
 � � � 6 � ��� � ��� �	�
��� � � �"��
 � �

� ��� �
 � � �
 	 � � � � and � � � ��� 4
 � �

� ��� �
 � �
�� � 	 � ��� ��� �7� � � �����
 � � � 6 � ��� � �) � �
��� � � �"��
 � �

If � � � ��
 � �
 , we say that
 holds on � . A formula is called satisfiable if it holds on

some model, and it is called temporally valid if it holds on all models.

Temporal formulas for specifying program properties can be arranged in a hierarchy

that identifies several classes of formulas with distinctive expressive power. The following

are canonical forms for these classes of LTL formulas (where
 �
 � and � � are past formulas):

– �
 is a canonical safety formula.

– �
 is a canonical guarantee formula.

–
����� � � �
 � � � � � � is a canonical obligation formula.

– � �
 is a canonical response formula.

– � �
 is a canonical persistence formula.

–
 ���� � � � �
 � � � � � � � is a canonical reactivity formula.

Formulas that don’t belong to the safety class are called progress formulas.

Among all classes of temporal formulas we are particularly interested in verifying prop-

erties that can be specified by safety and response formulas. In general a safety property can

be expressed in the form �
 for past formula
 . An invariance formula is a special form of

14

a safety formula where
 is a state formula. Another interesting subclass of safety properties

is the class of nested waiting-for formulas with canonical form
 � ��� � ����� � �
�
� � � � � �
(
 � � � � � � ��������� ��� are state formulas). It can be shown that a nested waiting-for formula can

be transformed to a safety formula � � for some past formula � . For example one can

show that the simple waiting-formula
 � � � � is equivalent to the canonical safety for-

mula �/� � � � �
 � �
 . Waiting-for formulas are very useful for expressing a rich class of

precedence properties such as order preservation of messages and bounded overtaking in

communication protocols.

A response property is a special class of progress properties which can be expressed

by a formula
 � � � for past formulas
 and � (it is equivalent to the canonical form

� �,� � �

 � �
). In particular we are interested in cases where both
 and � are state

formulas.

2.2 Fair Discrete Systems

In the previous section we discussed temporal logic LTL as our chosen formalism for spec-

ifying system properties. In this section we address the formalization of reactive systems.

The computation model we use for reactive systems is the model of fair discrete system

(FDS), a slight variation on the fair transition systems (FTS) model of [MP95].

An FDS
� � � � ��� �
 ���/�
	 � consists of the following components:

– � : A finite set of typed system variables, containing data and control variables. The

set of states (interpretations) over � is denoted by � .

– � : The initial condition, an assertion (state formula) characterizing the set of initial

states.

–
 : A transition relation, an assertion
 ��� � � �
 , relating the values of present states to

the values of next states (which we denote as the primed version of the states).

– � �
��� � �������!��� ��� : A set of justice (weak fairness) requirements. A justice require-

15

ment � � � is an assertion, intended to guarantee that every computation contains

infinitely many � -states (states satisfying �).

– 	 � � �
 � � � � �!��������� �
 � � � � � � � A set of compassion (strong fairness) requirements. A

compassion requirement �
 � � � � 	 is a pair of assertions, intended to guarantee that

every computation containing infinitely many
 -states also contains infinitely many

� -states.

A state
�

is called a
�

-successor of a state � if
 � ��� � �
 holds (
� � is the primed version of state

�
). We require that every state � � � has at least one

�
-successor. This is often ensured

by including in
 the idling disjunct � � � � (also called the stuttering step). In such cases,

every state � is its own
�

-successor.

A computation of an FDS
� � � � ��� �
 ���(�
	 � is an infinite sequence of states � �

������� � ����� ��� � � � satisfying the following requirements:

Initiality: � � is initial, i.e., � � � � � .

Consecution: For each � � � � 4 ��� � � , the state �
 � � is a
�

-successor of ��
 .

Justice: For each � � � , � contains infinitely many � -states.

Compassion: For each �
 � � � � 	 , if � contains infinitely many
 -states, then it also con-

tain infinitely many � -states.

For an FDS
�

, we denote by 	��

 � �
 the set of all computations of
�

. For a given pro-

gram P (or its computational model
�

), if the formula
 holds on all possible computations

in � (or
�

), then we say that the formula is � -valid (or
�

-valid).

2.2.1 Parameterized Systems

The parameterized systems we consider normally consist of a parallel composition of &
symmetric processes, all executing the same program which may refer to the id of the ex-

ecuting process. In addition, the process programs may access a set of global shared vari-

ables and each other’s local variables. Access to the local variables of the other processes

16

can be done under existential or universal quantification. For example we may express the

fact that process � holds the biggest ticket � � � � by using a universally-quantified assertion:

� � �� �%� � � � � � � � � � ; similarly we may express the condition that only when there exists a

process at location � can process � have access to location � through the existential guard:

� � �� � ��� � � ��� � .

A simple example of such a system is a mutual exclusion program MUX-SEM as shown

in Fig. 2.1. Each of the processes is executing exactly the same program and there are

in & � integer where & � 4
local � � boolean where � � 4

�
��� �

��� � � � �

�����
�

loop forever do���
�
� � noncritical4 � request �
� � critical� � release �

	�

�

	

�

Figure 2.1: Program MUX-SEM

only references to the single shared variable � . The program is written in the simple pro-

gramming language SPL [MP95, MAB � 94]. The semaphore instructions “release � ” and

“request � ” stand, respectively, for � � �94 and � when � � 4 do � � � � � which represents

an atomic operation. The keyword local means that variable � is local to the block.

There are several different ways to view a parameterized system $%�'&/
 . One way views

$%�'&(
 as a single FDS, where the parameter & is considered an input variable which retains

its value throughout the computation. We prefer to consider $%�'&(
 as a representation of an

infinite family of systems, one for each value assumed by & . In Fig. 2.2, we present the

family of FDS’s MUX-SEM(N) corresponding to program MUX-SEM .

17

� � ���� &:� integer
� � boolean� � array � 4 � � & � of � � � 4 � � � � �

�5� � 6 & � 4 6 ��� � � 4 � � & � � � � � ��� �

 � � � � � 4 � � & �
��������������
� � � � � ��� � � � � 6 � � � �
� � � � ��� � 6 � � � � ���54 6 � � � �
� � � � ��� 476 � �54 6 � � � � ��� � 6�� � � �
� � � � ��� � 6 � � � � ��� � 6 � � � �
� � � � ��� � 6 � � � � ��� � 6 � � � 4

� ��������������6 � � �� � ��� � � � ��� � � � � 6 & � & �

� ��� � � � � �� � � � � � 4 � � & �
	�� � � � � � �� � � � � � 4 � � & �
	
	 � � � � � � ���54 6 � � � � � ��� � � � � � � 4 � � & �
	

Figure 2.2: The FDS Corresponding to Program MUX-SEM(N)

2.3 Deductive Verification Framework

Given a reactive system (or a program) � and a temporal formula 2 , program properties

are verified using formal deduction based on a set of inference rules ([MP95]). The set of

inference rules are provided for each class of temporal formulas. Furthermore, it is shown

that this deductive verification framework is complete [MP95] for proving temporal prop-

erties, that is, every correct property of a system can be formally proven. Another powerful

feature of deductive verification is that it can be applied to any reactive system, be it finite

or not. This sometimes makes it the only viable choice for verifying infinite systems be-

cause other popular methods such as model checking are no longer applicable.

There are several obstacles to the application of deductive verification in practice. The

main drawback of the method is that it often needs user guidance or ingenuity to find aux-

iliary assertions in order to complete the proofs. Secondly, proving inference rules in most

cases is not fully automatic; the computational cost can be high as well, especially in the

verification of infinite systems. In this thesis we make some efforts to overcome these dif-

ficulties and propose effective methodologies to perform automatic deductive verification

18

on restricted classes of verification problems. Though our main focus is on proving safety

properties, the methods have been shown to be extendable to liveness properties [FPPZ04]

as well by the recent research work performed by the ACSys group at NYU.

Now we look at a few important inference rules which we will encounter in our later

discussion on proving safety properties.

Invariance Rule

An invariance formula is a special safety formula of the form �
 where
 is an assertion

(a state formula with no temporal operators). To apply deductive verification on invariance

formulas, we need to first find one “auxiliary” assertion 2 and then establish the validity of

the set of premises listed in rule INV (Fig. 2.3).

For assertions 2 �
 �
I1 � � � 2
I2 �52 6
 � 2��
I3 �52 �

�

Figure 2.3: Rule INV for Proving General Invariance

Rule INV claims that if the implications listed in premises I1–I3 are � -state valid (state

valid over program �), then �
 is � -valid, i.e.,
 is a � -invariant. An assertion 2 satisfy-

ing premises I1, I2 of rule INV is called an inductive assertion. It can be shown that if
 is

a � -invariant, then there always exists an inductive assertion 2 stronger than
 . For a finite

state program � , a trivial (and strongest) inductive assertion is
� ��� � � which represents all

the reachable states of the program.

Simple Waiting-for Rule

A simple waiting-for formula is a special safety formula of the general form
 � � � �

where
 � � � � are assertions. The deductive verification of general waiting-for formulas

19

needs one auxiliary assertion 2 in rule WAIT (Fig. 2.4).

For assertions
 � � � � � 2 �
W1 �
 � 2 � �

W2 �52 � �
W3 �52 6
 � 2�� � � �

 � � � �

Figure 2.4: Rule WAIT for Proving General Waiting-for

Rule WAIT claims that if the implications listed in premises W1–W3 are � -state valid,

then
 � � � � is � -valid. Note that the justice requirements are not needed to prove

the general waiting-for properties because the weak-until operator � doesn’t require the

eventual fulfillment of
�
.

Nested Waiting-for Rule

A nested waiting-for formula is a safety formula of the form
 � ��� � ����� � �
�
� � � � � �
where
 � � ����������� ��� are assertions. The deductive verification of nested waiting-for formu-

las calls for
 � 4 auxiliary assertions 2 � �������!� 2 � in rule NWAIT (Fig. 2.5).

For assertions
 � ��� ��� � ��������� ��� � and 2 ��� 2 � ��������� 2 � �
N1 �
 � � �

 � � 2

N2 �52 � � � � for � � � � 4 ������� �

N3 �52 � 6
 � �
�� � 2��
 for � � 4 ������� �

 � � � � � � � � �
�
� � � � � �

Figure 2.5: Rule NWAIT for Proving Nested Waiting-for

Rule NWAIT claims that if the implications listed in premises N1–N3 are � -state valid,

then
 � � � � � � � � �
�
� � � � � � is � -valid. Typically one can choose 2 � � � � , however

we still need to find the other
 auxiliary assertions 2 � ������� � 2 � .

20

Verifying General Safety Properties

A general safety property can be specified by a formula of the form �
 for some past

formula
 . In [MP95] an invariance rule INV-P is presented for verifying past formulas. It

can be viewed as the (past) extension of the rule INV (Fig. 2.6).

For past formulas 2 �
 �
P1 � � � ��2
 �
P2 �52 6
 � 2��
P3 �52 �

�

Figure 2.6: Rule INV-P for Proving General Safety Property

The differences between rule INV-P and rule INV are:

–
 � 2 are no longer state formulas (assertions), instead they are past formulas.

– the use of the entailment operator (�) in premise P3 instead of the implication op-

erator (�) as in premise I3.

– the use of the formula �'2
 � , the initial version of formula 2 ([MP95]), in premise P1.

– the extended definition of 2 � as the past primed version of 2 in premise P2.

In rule INV’s I3 we use implication instead of the entailment operator due to the fact that

�(��2 �

 is � -valid if and only if 2 �
 is � -state valid for assertions 2 and
 .

The initial version ��2
 � is a state formula that expresses the truth-value of 2 at position 0,

which can be defined inductively for past formulas. Similarly the primed version of a past

formula 2 can be defined inductively as well.

The application of rule INV-P requires generation of the auxiliary past formula 2 which

is out of the scope of this thesis. Here we explore other methods to perform the deductive

verification of general safety properties. Our method utilizes temporal testers to build a

combined model of the system and the property, and turns the problem of verifying the

21

safety problem �
 where
 is a past formula into the problem of verifying an invariance

formula in the combined system. We will leave further elaboration of the method to Chap-

ter 3.

In summary, deductive verification of safety properties is performed by checking the � -

state validity of the premises in the corresponding inference rules for the target properties.

This method theoretically is complete, which means that any correct safety property can

be verified using the deductive verification framework. However in practice deductive ver-

ification can be very expensive in computational costs and often requires human guidance.

The two main challenges faced by automatic deductive verification are:

– automatic generation of auxiliary assertions, and

– automatic and efficient discharge of proof obligations, i.e. the premises of inference

rules.

In Chapter 3 we will address these challenges and lay out a sound (but incomplete)

methodology for automatic deductive verification of a restricted class of parameterized

systems.

2.4 Data Abstraction

One useful observation that has been made by researchers in formal methods is that, often,

to verify a property of a complex system, one can omit a lot of details of the system behav-

ior and instead verify the property on a smaller abstract version of the original system. This

observation leads to the concept and effective technique of abstraction ([CGL92]), without

which the application realm of formal methods would be much more limited. Formally

speaking, abstraction is a general and effective method in formal verification to contain the

complexity of verification problems. It has been widely applied in verification of param-

eterized systems. Only with the essential help of abstraction does it become possible to

apply formal techniques such as model checking to verify infinite state systems.

22

There are many interesting and powerful abstraction techniques such as network invari-

ants, predicate abstraction etc. Most of the abstraction techniques require user assistance

in providing key elements and mappings. Since our goal is to pursue automatic verification

methods we want to avoid techniques with this undesirable feature, and this leads us to con-

sider one particular abstraction technique called finitary abstraction. A general theory of

finitary abstraction which jointly abstracts a system together with the property to be proven

is presented in [KP00c, KP00a]. The idea behind finitary abstraction (inspired by [CC77])

is to reduce the problem of verifying that a given concrete system satisfies its (concrete)

specifications, into a problem of verifying that some finite-state abstract system satisfies

its finite-state (abstract) specifications. In cases where an infinite data domain of a system

is abstracted into a finite data domain we refer to the method as data abstraction.

Given an FDS
�

and a property � , finitary abstraction requires the user to define a

finitary abstraction mapping � from the variable domain � in FDS
�

to a finite abstract

variable domain � # in FDS
� # . A safe abstraction “recipe” will automatically abstract

the concrete FDS
�

into a finite-state abstract FDS
� # and the property � into a finitary

abstract property � # . It should be guaranteed that
� # � � ��# implies that

� � � � (but

not necessarily vice versa). The following is a brief description of this general abstraction

method (please refer to [KP00b] for additional details):

Given an FDS
� � � � ��� �
 ���(�
	 � , and an abstraction scheme � given by a set of abstract

variables ��� and a set of expressions
� # such that � ����� � � # ���
 . Let
 ����
 be a

(concrete) assertion. Define

� � �

 � ���
�
� � � � # ���
 6
 ���
��

� � �

 � ��� ��� � � � # ����

 6 � �
�
� � � � # ���
 �
 ����
 � �

For a given abstract state $, � � �

 holds over $ if
 holds over some concrete state �
that is � -abstracted into $. The abstraction � � �

 holds over $ if $ is an abstraction of

some concrete state and
 holds over all concrete states � that are � -abstracted into $. The

abstractions � � and � � can be generalized to (positive form) temporal formulas ([KP00b]).

23

To abstract the temporal formula � we apply the abstraction � � to all of its contained

assertions and denote the resulting temporal formula by � # .

The abstract system that corresponds to
�

under � is
� # � � � # � � # �
 # ��� # �
	 # �

where:

� # � � � � ��

 # � � � � �

� # � � � � � �
 � � � � �
	 # � � � � � �

 � � � � ��
 � � �
 � � � � 	 �

where � � � �

 � ��� � � � �
�
� � � � # ���
 6 � �� � � # ��� �
 6
 ��� � � �
 � �

It is proven in [KP00b] that this abstraction method is sound. That is, if
� # � � � # then� � � � . Since formula � is an arbitrary temporal formula, this provides a sound abstrac-

tion method for verifying liveness as well as safety properties. In fact this method is also

relatively complete. It has been shown that for every system
�

and temporal property 2 ,

such that
� � � 2 there exists a (progress) monitor � � whose (synchronous) composition

with
�

does not constrain the computations of
�

and a finitary state abstraction mapping � ,

such that � � � ��� �
 # � � 2 # (the formal definition of the synchronous composition operator
� � can be found in Subsection 3.4).

In order to automate the data abstraction we need to find an abstract mapping � , where-

after the data abstraction method proposed in [KP00b] can automatically abstract the sys-

tem and property. One main goal of ours is to use data abstraction to automatically prove

liveness properties of parameterized systems. Two steps are necessary to achieve this goal:

devising an automatic abstract mapping method and ensuring that our data abstraction

method can automatically abstract strong enough fairness conditions that are crucial in

proving liveness properties for the abstract system. Our approach and results will be re-

ported in Chapter 4 of this thesis.

24

Chapter 3

Parameterized Verification using Invisible

Invariants

3.1 Small Model Theorem

In order to prove, using deductive methods, that � & � $ �	&/
 � � � , where � is a temporal

formula, we need to discharge a set of premises in the form of assertions. Here we focus

on the special case where � is an invariance formula of the form � 2 , where 2 is a state

formula or a waiting-for formula such as
 � � � � �
 for state formulas
 � � � � .

Let us start by considering the problem of verifying invariance properties of a parame-

terized system. The general deductive rule for proving invariance formulas is rule INV as

illustrated in the previous chapter (see Fig. 2.3). For a parameterized system we need to

establish the truth of premises I1, I2, I3 for every & � 4 . Since all the premises of rule

INV refer to the parameter & we make a slight distinction in notation for the premises as

shown the diagram below. In summary, given a parameterized system $%�'&/
 with transition

relation
 and initial condition � and the property � � � 2 , we wish to prove the premises

for the set of inference rules for all &�� 4 . The following is the inference rule INV for an

instance of the parameterized system, $%�'&/
 :

With parameter & � and given assertions 2 � ��� �
I1 � � � ��� �
I2 ��� � 6
 � ��� ��
I3 ��� � � 2 �

�12 �

25

The auxiliary assertion � � is inductive if it satisfies both I1 and I2.

Since our goal is to establish the truth of premises I1, I2 and I3 for all & � 4 , one

approach is to treat the premises as theorems and apply mathematical reasoning to prove

each of the premises separately. In this chapter we consider an alternative approach based

on the notion of a small model property.

Definition 3 (Small Model Property) For a given formula � , a parameterized system has

the small model property if we can find a small integer � such that if � & � �/� $%�'&(
 � � �
then � & � 4 � $%�'&(
 � � � . The integer � is sometimes referred to as the cutoff value.

The small model property provides a way to establish the correctness of a logical for-

mula by checking its validity on a finite number of small instances. The derivation of

the bound � is highly dependent on the verification method being used. For example in

Namjoshi and Emerson’s work [EN95] of verifying parameterized token ring networks,

they establish the cutoff value for a token ring network based on their abstraction of the

symmetric ring structure. This cutoff value is then used to model check the small instances

of networks to establish correctness for the entire family. In their work they apply the small

model property to a temporal formula of the form �
 . In the deductive verification frame-

work our main verification obligation is to discharge the premises (typically state formulas)

of the inference rules. Therefore, we apply the small model theorem only to the premises

of rule INV. Based on the special form of the state formula we want to discharge, the cutoff

value can be derived accordingly from its data signature and logical composition. So when

verifying the same token ring network the cutoff value � derived by our method may be

different from the cutoff value derived in Namjoshi and Emerson’s method.

In order to establish the main small model theorem for the class of parameterized

systems which we named Bounded Data Systems (BDS), we first need to establish small

model properties for a few special logical forms which represent what we encounter in the

premises of inference rules for deductive verification of BDS systems. The foremost is the

small model property for a special form of assertion called an ����� -assertion on a single

26

index. The methodology and theoretical consequences can be extended to derive small

model properties for other types of logic formulas.

3.1.1 Small Model Theorem for ����� -Assertions on a Single Index

Definition 4 (� -assertion and � � � -assertion) An � -assertion on a single index is con-

structed according to the following syntactical definition (for simplicity we will refer to it

as an � -assertion):

– An index term is an index variable �
 . The set of index variables usually includes the

special variables 4 and & .

– An atomic formula is a boolean variable
�
� , a boolean term � � � � , where � is a boolean

array and � is an index term, or a comparison
� � � �

� where
� � and

�
� are index terms.

– A boolean combination of atomic formulas is a boolean � -assertion.

– A boolean � -assertion is an � -assertion.

– Quantifying an � -assertion over index variables results in an � -assertion.

An � -assertion of the form � �� � �� � � where � is a boolean � -assertion is called an ����� -

assertion (where AE is used to symbolize the quantifiers � � and also indicates the order

of quantification). An ����� -assertion is said to be index-closed if it does not contain any

free index variables, except possibly 4 and & .

Corollary 5 � -assertions are closed under boolean operations and quantifications over

index variables. That is, the resulting assertion can be transformed into the standard form

of an � -assertion with universal and existential quantification of a boolean � -assertion

over index variables.

Due to this corollary the � -assertions through this chapter do not necessary assume their

standard syntactic forms, that is, we admit � -assertions in the form of 2 6 � and � � where

2 and � are general � -assertions.

27

Definition 6 Let 2 be an � -assertion. A model � � �
 over the vocabulary of 2 is an

interpretation of the assertion where:

– Each boolean variable
�
 is assigned a boolean value.

– Each index variable �
 is assigned a value from � 4 � � � � . The special variables 4 and &
are assigned the values 4 and � , respectively.

– Each array variable �
 is assigned a boolean array of size � .

In general, we don’t assign values to index variables which appear quantified in 2 . For

example, a model � � �
 for 2 � ��� � � �) � � � � � � ���� � � � is:

& � � � � � � � � 4 � 4

Given an � -assertion 2 and a model � � �
 , we can evaluate 2 over � � �
 and find out

whether � � �
 satisfies 2 . An � -assertion 2 is said to be valid if it is satisfied by every

model.

Definition 7 Let � � �
 be a model over the range � 4 � � � � , and �
� � 4 ��������� � � . We denote

by � � �
 � � �� � � a variant model which interprets the index variable � as � , and interprets

all other constructs in the same way as � � �
 .

The relation � � �
 � � 2 denotes that model � � �
 satisfies assertion 2 . And it has the

following properties:

1. � � �
 � � � 6�� 	 � � � �
 � � � and � � �
 � ��� .

2. � � �
 � � � � 	 � It is not the case that � � �
 � � � .

3. � � �
 � � ��� �����	�
 	 � � � �
 � � �� � � � � ���	��
 for all �
� � 4 � � � � .

4. � � �
 � � � � �����	�
 	 � � � �
 � � �� � � � � ���	��
 for some �
� � 4 � � � � .

Theorem 8 (Small Model Theorem for ����� -assertion)

Let 2 � ��� � �������!�"� � � � � �������!� � � � � be an index-closed � � � -assertion. 2 is valid if and

only if it is satisfied by all models � � �
 for � � � � � .

28

Proof: It is sufficient to show that if the assertion 2 is satisfiable by all models � � �

for � � � � � then it is valid. We can establish that by showing that if the negation

-7� � � 2
 � � � � ���������"� � � � � ��������� � � � � � has a satisfying model � � �
 of size � � � � �
then it also has a satisfying model of size � � � . By induction we only need to prove that

every satisfying model of size � � � � � can be reduced to a satisfying model of size � � 4 .

Let � � �
 be a satisfying model (for -) of size � � � � � . According to property (4) of

the model relation we can derive a variant model � � �
�� � � �� � � �������!��� � �� � � � which as-

signs to 4 �"� � ���������"� � � & values ranging in the set 4 � � � and satisfies � � � ��������� � � � � � where

� � � � � ���������"� � � � � . This set of values can contain at most � � � � � �
 distinct values.

Thus there exists a value
� � � 4 � � � � which doesn’t belong to this set. Now let us construct

a new model �	�	� � � 4
 for - as follows:

(We write � � � � to denote the interpretation of term
�

in model � .)

– � � � � ��� � � � � for each boolean variable
�

.

– � � � & ��� � � 4

– For each index term
�
, ��� � � ��� if ��� � � � � �
 then � � � � else � � � � � 4 .

– For each boolean array � , � � � � ��� � 	 � if 	 � � then � � � � � 	 � else � � � � � 	 � 4�� .

Now we show that if the original model satisfies a boolean � -assertion then the reduced

model satisfies it too. It is an important step towards establishing the small model theorem.

Lemma 9 (model reduction for a boolean � -assertion)

Given a boolean � -assertion ����� � ������� �"� � � � � �������!� � �
 with index terms � � ����������� � and � � ���������
� � , and a satisfying model � � �
 for � such that � � � � � ����������� � � � � , � � � � � ����������� � � � � �
� 4 � � � � � � � � , we claim that the constructed reduced model � �	� � � 4
 satisfies � as well.

29

Proof: To prove the lemma it is sufficient to show that

� � �
 � � � �� � � � � � ���������"� � �� � � � � � � � � �� � � � � � �������!� � � �� � � � � � � � �
���	� � ������� �"� � � � � �������!� � �

	 �
�	��� � � 4
 � � � �� �	� � � � � �������!�"� � �� �	� � � � � � � � �� � � � � � � �������!� � � �� �	� � � � � � � �

���	� � ������� �"� � � � � �������!� � �

Since � is a boolean � -assertion it is made of boolean combinations of atomic formulas.

The proof is based on structural induction. We start by examining the effect of model

reduction on all possible cases of atomic formulas.

– For a boolean variable
�

, � � � � ��� � � � � .

– For an atomic formula
� � � �
 where

� ��� �
 are index terms and � � � � � ��� � �
 � �� � ,
�	� � � � � � �	� � �
 ��� � � � � � � � � 6 � � �
 � � �
 6 � � � � � � � � � �
 �
 �

� � � � � � � � � � � �
 �
 6 ��� � � � � � � � �
 ��� 4
 �
� � � � � � � � 6 � � �
 � � �
 6 � � � � � ��� 4 � � � �
 ��� 4

� � � � � � � � � �
 �

– For a boolean array variable � � � � � ,
�	� � � � � �	� � � � � � � � � � � � �	� � � � � ��6 ���	� � � � � � �
 �

� � � � � �	� � � � � � 4 � 6 ��� � � � � �) �

� � � � � � � � � � � � 6 � � � � � � � �
 �

� � � � � � � � � � � 4 � 4�� 6 ��� � � � � � �
 � � � � � � �� �

� � � � � � � � � � � �

This shows that the model reduction preserves the truth of all atomic formulas. Using

the properties of model relations, in particular, � � �
 � � � 6 � � ��� � �
 � � �
 6 ��� � �
 � �
�
 and � � �
 � � ��� � �%� � � �
�� � �
 , it is trivial to show that the model reduction pre-

serves the truth of the boolean � -assertion � .

30

That is � � �
 � � ���	� � ����������� � � � � ��������� � �
 	 � � � � � ��4
 � � ����� � ���������"� �
� � � ������� � � �

where � � � � � ����������� � � � � , � � � � � �������!��� � � � � � � 4 � � � � � � � � .

Now we can prove that � � �
�� � - � � � ��� � �,4
 � � - by applying the properties of

the model relation and Lemma 9,

� � �
 � � -
� � � � �
 � � � � � �������!�"� �

� � 4 � � � � � � � �������!� � � � � 4 � � � � � � ����� � ���������"� � � � � ��������� � �

Def. 7� � � � �
�� � � �� � � �������!�"� � �� � � � � � � � � �������!� � �1� � ����� � ���������"� � � � � �������!� � �

for some � � �������!� � �
� � 4 � � � � � � � �� � ��� � ������� ��� � � � 4 � � � � �

� � �
�� � � �� � � �������!�"� � �� � � � � � �� � � �������!� � � �� � � � � �
� ����� � ���������"� � � � � �������!� � �
� � ��� � ������� ��� � � � 4 � � � � � � � � �

� � �
�� � � �� � � �������!�"� � �� � � � � � �� � � �������!� � � �� � � � � �
� ����� � ���������"� � � � � �������!� � �

Lemma 9	 � ��� � � ������� ��� �� � � 4 � � � � 4�� �
�	�	� � � 4
�� � � �� � � � ����������� � �� � � � �

� � �� � � � �������!� � � �� � �� � � �
� ����� � ���������"� � � � � �������!� � �

where � � � � �	� � � � � ��������� � � �

� �	� � � � �
and � � � � �	� � � � � ����������� �� � �	� � � � �

� � �	�	� � � 4
�� � � �� � � � ����������� � �� � � �
� � �

� � � ��������� � � � � 4 � � � � 4 � � � ����� � ���������"� � � � � ��������� � �

where � � � ��������� � �� � � 4 � � � � 4��

Def. 7� � � � � � � 4
 � � � � � ����������� � � � � ��������� � � � � ����� � ���������"� � � � � ��������� � �
� � � � � � � 4
 � � -
Corollary 10 Let 2 � �'� � � ����������� � � � � ��������� � �9� �
 � � � � � � �������!� ��� ���
 be an index-

closed � -assertion with boolean � -assertions � and � . We have that 2 is valid if and only

if it is satisfied by all models � � �
 for � � � � �
� � .

The proof can be obtained by applying the same method of model reduction for a model

31

� � �
 where � �
� � �
� � for the negated formula � 2 .

3.1.2 Small Model Theorem for ����� -Assertions on Multiple Types of

Indices

Now we would like to allow multiple finite domain data types for indices. The main com-

plication comes from introducing array types 	 �
 � type � �� type
 .

Definition 11 Suppose that we have
 types of indices, where type � � � 4 � � & � � � � 4 � � �

 , for & � ��� � . An � -assertion on
 types of indices satisfies the following semantics:

– An index term of type type
 is an index variable �
 � � type
 (usually with the special

terms 4 and &
), or an index term 	 �
 � � � where 	 is an array that maps from type � to

type
 and � is an index term of type � .

– An atomic formula is a boolean variable
�
� , or a boolean term � � � � , where � is a

boolean array and � is an index term, or a comparison
� � � �

� where
� � and

�
� are

index terms of same type, or one of them is the constant 4 .

– A boolean combination of atomic formulas is a boolean � -assertion.

– A boolean � -assertion is an � -assertion.

– Quantifying an � -assertion over index variables forms an � -assertion.

An � -assertion of the form � �� � ����� �� � � �� � �������!� �� � ��� where � is a boolean � -assertion

is called an � � � -assertion. An ����� -assertion is said to be index-closed if it does not

contain any free index variables.

Definition 12 Let 2 be an � -assertion on
 types of indices. A model � � � � ��������� � �

over the vocabulary of 2 is an interpretation of the assertion where:

– Each boolean variable
�
 is assigned a boolean value.

– Each index variable �
 of type type � � � 4 � � & � � is assigned a value from � 4 � � � � � . The

constants 4 and & � are assigned the values 4 and � � .

32

– Each boolean array variable �
 which maps from type � ��� 4 � � & � � to the boolean

domain is assigned a boolean array of size � � .

– Each index array variable �
 � type � �� type
 is assigned an array of type � 4 � � � � � ��
� 4 � � �
 � .

In order to develop the small model theorem for ��� � -assertions on multiple types of

indices we need to introduce the notion of a stratified � -assertion.

Definition 13 An � -assertion on multiple types of indices type � �������!� type � is called a

stratified � -assertion if every non-boolean array of the type type � �� type
 satisfies �	� � .

Theorem 14 (small model theorem on stratified � � � -assertions)

Let 2 � � �� � ������� �� � � �� � ������� ���� � � be an index-closed stratified ����� -assertion. 2 is valid

if and only if it is satisfied by all models � � � � ��������� � �
 for � � � � � � ������� � � � � � �� where
� � � � � �� � � � � , and for � � � �������!�
 � � ��

� � � ���� � � ��
 ��� � � �
 � � ���
 � ��� �

 where ��
 � represents

the number of arrays of type type
 �� type � .

Proof: We start by performing model reduction on type � indices. We show that we can

reduce a satisfying model � � � � � � ����������� � �
 of size � � � � �� � � � � for the negated ����� -

assertion � 2 to a satisfying model � � � � � 4 � � ����������� � �
 .

In addition to the model reduction that is used for proving the small model theorem

on a single index (Theorem 8) we also need to define the reduction for an index array of

type � �� type � for � � 4 :

– For an index array 	 � � � type � �� type � ,
�	� � 	 � � � � ��� � if � � � then � � 	 � � � ��� � else � � 	 � � � ��� � 4��

where
��� � 4 � � � � � is an uninterpreted value for the type � vector �� � . We can proceed to show

that this model reduction preserves the truth of a boolean � -assertion using a proof similar

to that of Lemma 9. The additional atomic formulas we need to consider here are the

comparison of type � (� � 4) index terms where a type � �� type � array term is involved.

33

– For an atomic formula 	 � � ��� � � �
where

�
is a type � index variable and � is a type �

index term.
�	� � 	 � � � � �	� ��� � � � �	� � � �

� � � � 	 � � � � �	� ��� � � � � � � �
 6 ��� � ��� � � �
��
� � � 	 � � � � �	� ��� � � 4�� � � � � �
 6 � �	� ��� �) �

� � � � 	 � � � � � ��� � � � � � � �
 6 ��� ��� � � �
��
� � � 	 � � � � � ��� � � 4 � 4�� � � � � �
 6 ��� ��� � � �

� � � 	 � � � � � ��� � � � � � � �

– For an atomic formula 	 � � ��� � � � � � � ����� � where � � � ��� are type � index terms.

�	� � 	 � � � � �	� ��� � � � � �	� � � � � � � �	� ����� � �
� � � � 	 � � � � �	� ��� � � � � � � � � � � � �	� ����� � �
 6 ��� � ��� � � � �
 6 ���	� ����� � � �
��

� � � 	 � � � � � � ��� � � � 4�� � � � � � � � � � � ����� � �
 6 � � � ��� � �) �
 6 ��� � ����� � � �
��
� � � 	 � � � � � � ��� � � � � � � � � � � � � � ����� � � 4��
 6 � � � ��� � � � �
 6 ��� � ����� �) �
��
� � � 	 � � � � �	� ��� � � � 4�� � � � � � � � � �	� ����� � � 4 �
 6 ���	� ��� � �) �
 6 ���	� ����� �) �

� � � � 	 � � � � � ��� � � � � � � � � � � � � ����� � �
 6 � � ��� � � � �
 6 ��� ����� � � �
��
� � � 	 � � � � � ��� � � � 4 � 4�� � � � � � � � � � ����� � �
 6 ��� ��� � � � �
 6 ��� ����� � � �
��
� � � 	 � � � � � ��� � � � � � � � � � � � � ����� ��� 4 � 4 �
 6 ��� ��� � � � �
 6 ��� ����� � � �
��
� � � 	 � � � � � ��� � � � 4 � 4�� � � � � � � � � � ����� ��� 4 � 4��
 6 ��� ��� � � � �

6 ��� ����� � � �

� � � 	 � � � � � ��� � � � � � � � � � � � � ����� � �

After having proven that the reduced model satisfies a boolean � -assertion, and by using

the properties of the model relation, we can deliver the same proof (as in Theorem 8) that

the reduced model ���	� � � � 4 � � ���������!� � �
 satisfies the � -assertion ��2 .

Therefore we can keep reducing the model on type � indices until we reach the cutoff

value � � � � � �� � � , where, we obtain the model � � � � � � � ���������!� � �
 that satisfies the negated

����� -assertion � 2 .

Next we perform the model reduction on type � indices. We can treat type � the same

way as we treat type � . The only difference is that the possible interpretations we need to

34

provide for type � index terms include not only the vector �� � but all the type � �� type � index

terms as well. The total number can reach � �� � � � � � � � � � � , which is the cutoff value for type �

indices. Subsequently we can derive the cutoff values for type � �������!� type � , which turn out

to be � ��
� � � �� � � � ��
 � � � � �
 � � � �
 � � � �

 where �
 � represents the number of arrays of type

type
 �� type � for � � � �������!�
 .

3.1.3 Bounded Data Systems

Previously when introducing the definition (Def. 3) of the small model property we pointed

out that the calculation of the cutoff value for a parameterized system depends on a few crit-

ical factors, i.e., the system characteristics, the type of property we want to verify and the

verification methodology. Here our goal is to verify invariance properties of parameterized

systems using deductive methods, therefore we want to apply small model properties to

help discharge the premises of the deductive inference rules, in particular rule INV in this

case. We will define a special yet important class of parameterized systems called Bounded

Data Systems (BDS) for which we can derive small model properties based on the data type

signatures of BDS systems. The definition of a BDS system lays out the necessary condi-

tions to ensure that the premises of the inference rules are in the categories of � -assertions

with well-established small model theorems.

Definition 15 A bounded-data system (BDS) $ � � � ��� �
 � consists of

– scalar data types type � ��������� type � – where type � (often denoted as bool) is the set

of boolean or finite-range scalars, and type � ��������� type � are a set of scalar data types

where each type � includes integers in the range � 4 � � & � � for some & � � 4 . We refer to

& � �������!� & � as system parameters.

– � : a set of system variables of the following types,
� � ��������� ��� � bool
� � � �������!� � ���� � type �
	 � � ��������� 	 � � � � array type � of bool
� �
� ��������� � �
� � 	 � array type � of type
 � 4 � ��� � �

35

A state of the system $ provides a type-consistent interpretation of the system vari-

ables � . For a state � and a system variable � � � , we denote by � � � � the value

assigned to � by the state � . The set of states over � is denoted by � .

– � ����
 : the initial condition, whose characteristic function can be expressed as a

negated � � � -assertion on type � �������!� type � ,

� � �� ����������� ����� ��� � �������!� � � � ������� �"� � �	�� ��� � � �� � ��������� �� � �
 � �� � �������!� �� � � �� � ��������� �� �

type � type �

–
 ��� ��� �
 : the transition relation relates the values � of the variables in a state � � �
to the values � � in an $ -successor state � � � � . In particular it can be written in the

form of a negated ��� � -assertion:

� � �� ������� � � ����� ��� � �������!� � � � �������!� � � �
�� ��� � � �� � �������!� �� � � � � �� � ��������� �� � � �� � ��������� �� �

type � type �

Without loss of generality we assume that � � ��� � ��������� � � ��� � . And we refer to
� � ��������� � � as the type measures of the BDS system.

In summary the class of BDS systems is a special class of FDS systems with restricted data

types and special logical forms for initial conditions and translation relations, and no fair-

ness requirements. We don’t consider the fairness requirements here because our primary

focus is to prove invariance properties. When extending this methodology to prove liveness

properties we need to add fairness components to construct a fair BDS system [FPPZ04].

BDS systems are distinguished by their signatures, which determine the types of vari-

ables allowed, as well as the assertions allowed in the transition relation and initial condi-

tion. Whenever the signature of a system includes the type type � �� type
 , we assume by

default that it also includes the types type � and type
 .

36

3.1.4 Small Model Theorem for BDS systems with Signature
�
type ����

bool �
This class of BDS systems allows the following data types:

– Boolean and other finite domain variables (note the finite domain variables can be

easily encoded as a set of boolean variables).

– The type � variables whose domains are � 4 � � & � .

– Parameterized arrays which map from � 4 � � & � to a boolean or to a finite domain.

Recall the rule INV for proving invariance property � 2 of BDS systems:

With parameter & � and given assertions 2 � ��� �
I1 � � � ��� �
I2 ��� � 6
 � ��� ��
I3 ��� � � 2 �

�12 �
For BDS systems with signature � type � �� bool � their initial conditions and transition

relations assume the form of negated ����� -assertions, therefore we can calculate the cutoff

values using Corollary 10 to help discharge premises I1 and I2. Without loss of generality

we assume the common case where I2 is the most complicated formula to discharge and

has the highest cutoff value.

Theorem 16 Let $%�'&(
 be a parameterized BDS system of signature � type � �� bool � with

type measure � and type � variables � � ��������� � � . Let � � �12 where 2 � � �� � � � ��
 with

� �� � � 	 be an invariance property to be verified and let � � � �� �
 � ��
 with � �� � � 	 be

an auxiliary assertion in rule INV. Then the premises of rule INV are valid over $%�	&/

for all & � 4 if and only if they are valid over $ �	&/
 for all & � 4 � & � & � , where

& � � � � � 	 � � � � is the cutoff value.

37

Proof: We only need to prove that if rule INV is proven valid for $%�	&/
 (for 4 �1& � & �)
then it is valid for all & � 4 . From now on we adopt the notation �� � � to mean a type � vector

of size � . Given � � � �������
 � ��
 by rule INV we have the following inference rule:

I1 � ��� �� � � �� �
 � ��"� ��

 � � ������
 � ��
 � where � � �

I2 � � � ������
 � ��
�
 6 ��� �� � � ���� � � � �� � ��

 � � ����
�
 � � ��

I3 � � � ������
 � ��
�
 � � ����
� � � ��

�12

Since I2 is not a index-closed formula we may need to interpret all the type � index

variables � � ��������� � � as well as their primed version. By Corollary 10 we have that I2 is

valid if and only if it is satisfied by all models � � �
 for � � � � � � � ��	 � �
 , that is the

cutoff value to discharge I2 is � � � 	 � � � � . Similarly we can obtain the cutoff values

to discharge I1 and I3 to be � � � 	 � � � � . Since we assume that � � � , therefore we

choose the maximum value � � � � � 	 � � � � to be the cutoff value to discharge all the

premises I1- I3.

Definition 17 A bounded-data system is said to be par-deterministic if for any type � index

variable � , all atomic formulas involving its primed version � � is of the form � � �
	 for some

unprimed type � index term 	 .

For a par-deterministic BDS system the cutoff value can be tightened to & � � � � 	 � � �
� , which turns out to be the case for most common parameterized systems. Furthermore if

we know the constant index terms 4 � & are not explicitly referred to in the assertions, then

we can further tighten the cutoff value to & � � � � 	 � � .

3.1.5 Small Model Theorem for General Stratified BDS systems

General BDS systems allow array types type � �� type
 and as a consequence have � -

assertions on multiple types of indices in the deductive inference rules. To apply small

model theorems on such systems we need to define the category of stratified BDS systems.

38

Definition 18 Consider a BDS system with � parameterized types type � �������!� type � (as al-

ways type � is reserved for bool). This system is called stratified if for each array type in

the system type � �� type
 (��� � �� �) we have �	� � .

The class of stratified BDS systems allows the following data types:

– Boolean and other finite domain variables (note the finite domain variables can be

easily encoded as a set of boolean variables).

– Variables of type � . Let ��� be the number of type � variables in the system.

– Parameterized arrays which map from type � to boolean or finite domain.

– Parameterized arrays which map from type � to type
 � � � � � �
 . Let � �
 be the

number of type � �� type
 arrays in the system.

Theorem 19 (small model theorem for stratified BDS systems)

Let $%�'& � �������!� & �
 be a stratified BDS system with � types and type measures � � ��������� � �
(�) 4), to which we wish to apply the proof rule INV with the assertions 2 and � each hav-

ing the form � �� �� � ������� � �� ���� �
 � �� � ��������� �� �
 . Also assume the number of type � index variables

in $%�'& � ���������"& �
 is �
� . Then the premises of rule INV are valid over $%�	& � �������!� & �
 for all

& � ������� � & � � 4 iff they are valid over $%�'& � ���������"& �
 for & � & �� ��������� & � & �� where

& �� � � � � � � � � 	 � � � , and for every � � � �������!� � , & �� � ��� �
� � � � � 	 � � �
 � � � � �
 � � ��� �
 � � & �

where �
 � represents the number of arrays of type type
 �� type � .

Proof: Similar to the arguments used to prove the small model theorem for a BDS system

with a single index type, we can apply the small model theorem for ����� -assertions on

multiple types of indices on I2 (and I1, I3) to obtain the maximum of the cutoff values.

For a par-deterministic BDS system the cutoff value can be tightened to & �� � � � � � � �
	 � � � , and for every � � � ������� ��� , & �� � � �
� � � � � 	 � � ��
 � � � � �
 � � ���
 � � & �

 .

In particular the small model theorem for BDS systems with signature � type � �� bool �
is a special case of the small model theorem for general stratified BDS systems. All such

39

theorems are sound but incomplete. The incompleteness comes from the fact that we do

not always succeed in finding an inductive auxiliary assertion of a desired special logical

form. In the later part of this chapter we will devote our discussion to the issue of automatic

generation of auxiliary assertions used in deductive verification.

3.1.6 Small Model Approach for Unstratified BDS Systems

After the success of the small model theorem with stratified BDS systems, one may wonder

why the theorem failed to work for unstratified BDS systems. The answer to the question

might provide insights to the core of the problem and lead us to a possible partial remedy.

In the derivation of small model theorem for stratified BDS systems (as well as strati-

fied ����� -assertions) our methodology relies on the partial order indicated by the stratified

array structure. We first derive the cutoff value for type � variables, then we use that to

derive the cutoff value for type � variables and so on till we reach the cutoff value for type �
variables. Furthermore, if there exists an array type type � �� type
 then we know that the

cutoff value for type � is less than the cutoff value for type
 , i.e. & � � &
 except for the

special case where there is no type
 variables then we might have & � � &
 . The ascend-

ing order of array type indices used in the definition of stratified systems is only used to

simplify our reasoning about stratified structures. In general the necessary requirement for

stratified array structure calls for a topological order among types such that there exists

no cycle in the array structure. One can always rename the types to satisfy the additional

ascending order requirement.

However for an unstratified BDS system one can always find a cycle in the array struc-

ture such as type � � �� type � � � type � � �� type � ����������� type � � �� type � � . If we apply the

same method to derive the cutoff values then often we have the cutoff values & � � � & � � �
����� � & � � � & � � which leads to a contradiction.

Therefore in theory we do not have a straight-forward generalization of the small model

40

property from stratified BDS systems to general BDS systems with unstratified array struc-

ture. However this does not imply that we cannot find a sound but restricted small model

approach for unstratified BDS systems. We studied the verification of the safety property of

Peterson’s mutual exclusion algorithm with simple unstratified array structures, and defined

a small model approach for deductive verification of unstratified BDS system. In the fol-

lowing sections we first present this small model approach and then illustrate its application

to Peterson’s mutual exclusion algorithm.

Small Model Theorem via Instantiation

Our main focus here is to search for a small model theorem to discharge the premises

I1– I3 in rule INV for general BDS systems, in particular, unstratified BDS system. As

stated previously the cutoff value usually comes from discharging the most complicated

verification condition I2 of the following general form:

I2 � � � �� ����� ��

 6 �'� �� � �� � � � �� � ��

 � � � �� ��� � � ���

First we apply skolemization and remove all the existential quantifications on the left-hand

side of the implication and all the universal quantification on the right-hand side of the

implication leading to an equivalent statement:

� � �� ����� ��

 6 � � �� � � � �� � � ��

 � � � � � �� �

for some constant vector �� ��� ���� .

A deductive proof normally instantiates the remaining universal quantifications for ��
and �� by concrete terms. Most often the concrete terms are taken from the (now) free

variables, namely, �� � and ���� . So we suggest replacing the universal quantification over

�� and �� by a conjunction in which each conjunct is obtained by instantiating the relevant

variables (�� or ��) by a subset of the free variables �� � and �� � . The conjunction should be taken

over all such possible instantiations. The resulting quantifier-free formula is not equivalent

41

to the original formula but the validity of the new one implies the validity of the original

one.

I2 � � �
�

�
���� ����
	 �� ���
��� ��

 6 �

�
�� ��� ��
�
	 �� ���

� � �� ��� ��

 � � � � � �� �

We have transformed our original proof obligation I2 into a new quantifier-free formula

I2 � via partial instantiation. For a quantifier-free formula, we have again the property of

model reduction, which can be used to formulate the appropriate decision procedure for an

unstratified BDS system. If the quantifier-free formula is true for all the possible instantia-

tions of �� � and ���� in the small models then the verification condition I2 � is true and in turn

implies that I2 is true.

We can apply similar partial instantiation to transform I1 and I3 into quantifier-free

formulas. And we denote the newly obtained inference rule as rule INV*, where we obtain

a stronger set of (quantifier-free) premises than the premises in rule INV. Next we are going

to establish a small model theorem for quantifier-free � -assertions.

Definition 20 An � -assertion is a simple � -assertion if we restrict our definition of the

index term to allow only 	 �
 � � � where 	 is an array which maps from � 4 � � & � � to � 4 � � &
 � and

� is an index variable (that is we don’t allow � to be an arbitrary index term thus excluding

forms like 	 �
 � 	 � � � � � �).

This definition does not change the expressive power of � -assertions because we can con-

vert the term 	 �
 � 	�� � � � � � to 	 �
 � � ��6 � � 	�� � � � � which abides by the syntactic forms required

of a simple � -assertion.

Although general BDS systems with unstratified array structures allow self-indexing

array types, i.e. type � �� type � , however for the simplicity of our presentation we disallow

such array types, and replace it with two array types type � �� type � and type � �� type �
by introducing a “cloned” type type � .

Lemma 21 Let � � ���������"� � be boolean simple � -assertions on
 types of indices. Let 2 �
� �
�
�� � 	������ 	 �� � � � �	� � �������!�"� �
 be a quantifier-free simple � -assertion obtained from � � ������� �"� �

42

using boolean connectives with all type � variables given values from �� � � � , a vector of size
� � consisted of free type � variables. Let ��
 � be the number of arrays of type type
 �� type � .
Then 2 is valid iff it is satisfied by all models � � � � ��������� � �
 where � � � � � � � ��
 �
� � �
�� ���
��� � � �
 � � � �
 � ��

 for 4 � � �
 .

Proof: It is sufficient show that any model � � � � ��������� � � ��������� � �
 that satisfying the

negated assertion ��2 with size � � (� � � 4 � ��
 �) greater than the cutoff value can be re-

duced to a model � � � � � �������!� � � � 4 �������!� � �
 .

A model � for a quantifier-free simple � -assertion only needs to interpret the free in-

dex variables and the array elements indexed by these index variables. In this case such

terms of type � include �� � � � and 	
 � � � � where � � �� � � � and possibly the constant terms 4 � & � .
Thus the maximum number of these type � index terms is � �

� � � � � �
�� ���
��� � �
 � � �
 � ��
 ,
where ��
 � is the number of type
 �� type � arrays.

Let � � � � ��������� � � �������!� � �
 be a model of � 2 with � � � � �
� � � � � �
�� ���
��� � �
 � � � �
 �

��
 , then we can find an integer
�

such that 4 � � � � � and there is no type � index term

assigned the value
�

in model � . Now let us construct a reduced model � �	� � � ��������� � � �4 ��������� � �
 which also satisfies the quantifier-free simple � -assertion ��2 :

– �	� � � ��� � � � � for a boolean variable
�

.

– �	� � � ��� � � � � for any index variable
�

whose type is not type � .

– �	� � � ��� � � � � for an array ��� type � �� type
 where ��� � �� � .

– � � � & � ���
� � � 4 .

– For a type � index term
�
, �	� � � ��� if ��� � � � � �
 then � � � � else � � � � � 4 .

– For an array � � type � �� type � where �%�� � ,

�	� � � ��� � 	 � if � � � � � � 	 � � �
 then � � 	 � � � � else � � 	 � � � � � 4 .

– For a boolean array � � type � �� bool,

�	� � � ��� � 	 � if 	 � � then � � � � � 	 � else � � � � � 	 � 4 � .

43

– For an index array �
� type � �� type
 (� �� �),

� � � � ��� � 	 � if 	 � � then � � � � � 	 � else � � � � � 	 � 4�� .
Note that unlike stratified � -assertions this model reduction doesn’t have to follow the

order of an array structure since 2 is a simple � -assertion. Now we show that all the

atomic formulas are preserved by this model reduction.

– For a boolean variable
�

, � � � � ��� � � � � .

– For a boolean array � � type � �� bool (� �� �) and an index variable
�

of type � ,
�	� � � � � �	� � � � ��� � � � � � � � � � � .

– For a boolean array � � type � �� bool and an index variable
� � type � ,

�	� � � � � �	� � � � ��� � � � � � � � � � � � 6 ��� � � � � � �
 �
� � � � � � � � � � � 4�� 6 � �	� � � �) �

� � � � � � � � � � � 6 ��� � � � � �
 �
� � � � � � � � � � 4 � 4���6 ��� � � � � �

� � � � � � � � � � � ��� � � � �� �

– For an atomic formula ��� �
where index terms ��� � are of type � and � �� � , ��� � can

be: index variables, or array terms of type type
 �� type � � � �� �
 , or array terms of

type type � �� type � .
For the first two cases it is trivial that ��� � � ��� � � � � and �	� � � ��� � � � � . For the third

case suppose
� � � � 	 � where ��� type � �� type � and 	 � type � , then we have:

�	� � � � � �	� � � � � �	� � 	 � �
� � � � � � �	� � 	 � � 6 � �	� � 	 � � �
 �

� � � � � � � � 	 � � 4�� 6 ��� � � 	 �) �

� � � � � � � � 	 � � 6 ��� � 	 � � �
 �

� � � � � � � 	 � � 4 � 4 � 6 � � � 	 � � �

� � � � � � � � 	 � � � � � 	 � �� �

� � � � �

In all cases the interpretation of such index terms is unchanged in both models.

Therefore �	� � � � � �	� � � ��� � � � � � � � � � .

44

– For an atomic formula ��� �
where index terms ��� � are of type � , ���

�
can be type � in-

dex variables, or array terms which maps from type � to type � �	�%�
� �
 . In all possible

cases we have:
� � � � � � � � � � ��� � � � � � � � 6 � � � � � �
 6 ��� � � � � � � � �
 �

� � � � � � � � � � � �
 6 � � � � � � � � � � � 4
 �
� � � � � � � 6 � � � � � �
 6 ��� � � � � 4 � � � � � � 4

� � � � � � � � � �

This concludes the proof of preservations of atomic formulas in a simple � -assertion ��2 .

By structural induction and the properties of model relation, it implies that � �	� � � �������!� � � �4 ��������� � �
 satisfies � 2 . Similar reductions can be carried out on other types of indices.

For simplicity and without loss of generality, we assume that for an unstratified BDS sys-

tem, the initial condition � and the transition relation
 are written as simple � -assertions;

each has ��� and � � �) � ��
 existentially quantified type � variables respectively.

Theorem 22 (small model theorem for unstratified BDS systems)

Let $%�	& � ��������� & �
 be an unstratified BDS system with � index types and type measures
� � ��������� � � (�) 4), to which we wish to apply the modified proof rule INV* with the simple

� -assertions 2 and � each having the form � �� �� � �������!� �� �� � � ��� �� � ��������� �� �
 . Also assume the

number of type � index variables in $%�'& � �������!� & �
 is �
� . Then the premises of rule INV*

are valid over $%�	& � �������!�"& �
 for all & � ���������"& � � 4 iff they are valid over $%�'& � ���������"& �

for & � & �� ��������� & � & �� where for every � � 4 ������� ��� , & �� � ��� ��� � � � � 	 � � ��
 �
� � �
�� � �
��� � ��� �
 � � ��� �
 � �
 � 	
 � �
�
 where �
 � represents the number of arrays of type

type
 �� type � .

Proof: Without loss of generality, we assume that the upper bound comes from discharging

I2 � , the most complicated verification condition in rule INV*. To simplify the notation we

use type
 variable vectors ��
 � � 4 � &
 � ��
 � ��
 � � ��
 � � with � ��
 � � �
 � � ��
 � � � �
 � � ��
 � � � 	
 for
� � � 4 � � � � . Here is the simple quantifier-free � -assertion for I2 � :

�
�
 � � �

�

� 	������ 	 �
 � � �
� �

��� �� � �������!� �� �
 6
�

�� � � �
�

� 	������ 	 �� �
� �
� �

� � �� �� ��������� �� �� � �� � ��������� �� �
 � � � � � �� �� ������� � �� ��

45

Here we might need to interpret the primed version of ��
 and other array terms. Applying

Lemma 21 on I2 � we obtain the bound & �� � ��� �
� � � � � 	 � � ��
 � � � �
�� ���
��� � ��� �
 � � ��� �
 �
�
 � 	
 � ��
�
 for � � 4 ����������� .

For a par-deterministic BDS system we can tighten the bound to & �� � � ��� � � � �
	 � � �
 � � � �
�� ���
��� � � �
 � � � �
 � �
 � 	
 � ��

 for � � 4 ������� ��� . Thus we have obtained

a sound (but incomplete) small model property for deductive verification of unstratified

BDS systems using a partially instantiated inference rule INV*. Next we apply this new

verification methodology on the well-known Peterson’s mutual exclusion algorithm.

3.1.7 Proving the Safety Property of Peterson’s Mutual Exclusion Al-

gorithm

Gary Peterson’s famous algorithm for two-process mutual exclusion was first published in

1981, he also gave an algorithm to deal with mutual exclusion for more than two processes.

In Fig. 3.1 we present a version of Peterson’s mutual exclusion algorithm for & processes

where & � 4 (written in the SPL language).

in
���

integer where
�����

type �	��
 � �
���������������������� ������� �
local ! � array �	�"
 of

���������
where !$# �% � array

���&�����
of �	�"

�
��� � � � � �'���

()))))))))))*

loop forever do())))))))*
+ � � noncritical+ � �-, ! � � �/. % �
�0�213� # ,4��. � 1+
�
�

while ! � � �657� do8 + � � await % � ! � � ���:9#;�=<?>�@ 9#A� � ! � @ �65 ! � � �+CB �-, ! � � �/. % � ! � � �EDF�0�21:� # , ! � � ��DG��. � 1 H+CI �
critical+CJ � ! � � � # �

KMLLLLLLLLN

KMLLLLLLLLLLLN
Figure 3.1: Parameterized Peterson’s Mutual Exclusion Algorithm

Each process is in the noncritical section at location O � . At O � process ��� � � occupies level 1

46

by assigning � � � � � 4 . Since ��� � � is the most recent process gaining access to level 1, � � 4 �
is assigned to � at the same time. The loop at O�� controls when process ��� � � can advance to

a higher level, and the end of the loop condition is satisfied when process ��� � � reaches level

& and subsequently gains access to the critical section. Inside the loop, O � dictates that ��� � �
can advance to the next level only when either there is another process which gains access

to the current level after ��� � � , or all other processes are at lower levels than ��� � � . Finally

when process ��� � � gets out of the critical section, it assigns � � � � � � at O J . In location O B we

have the atomic assignment � � � � � ��� � � � � � � 4��
 � � � � � � � 4 ���
 that advances process ��� � � to

the next level. If one wants to break this assignment into two assignments, then extra care

must be taken to make sure that the assignment � � � � � � � � � � � 4 precedes the assignment

� � � � � � � 4�� � � � . Otherwise the program will no longer be correct and mutual exclusion can

be violated.

We are particularly interested in the above Peterson’s algorithm because it contains a

simple unstratified array structure � � � � � � � � � ��� and � ��� � � ��� � ��� � and provides an

interesting case of an unstratified BDS system. In order to use deductive methods to prove

the safety property that no two processes are in the critical section at the same time, our

main obligations are to discharge the premises I2 and I3 in the rule INV. In the next two

sections we demonstrate how to apply our methodologies to accomplish these two tasks.

Discharging the Verification Condition I2

In Peterson’s Algorithm (Fig. 3.1) we have two types of indices, � � � with range � 4 � � & � and

� � � ��� with range � � � � & � , and two arrays � � � � � �� � � � ��� and � ��� � � ������ � � � . The

transition relation
 can also be written as a simple � -assertion of the form � � � ��� � ��� B ������� �
� �	� �"� � ��� B ��� ��� B
 for ����� � � ��� � and � ��� � ��� B ��� � � ��� . We would like to prove the verification

condition I2: 2 6
 � � 2�� . where 2 is a simple � -assertion of the form: ��� � ��� � ��� � ��� � � �
where � � �"� � are of type ��� � and � � ��� � are of type � � � ��� . The intuition behind why we need

two ��� � indices and two � � � ��� indices for 2 comes from the observation of transitions at

location O � and O B . Those statements affect the levels � � � � � � � and � � � � � � � � 4 and the

processes � ��� � � and � ��� � � . In a later section on heuristics for the automatic generation of

47

invariants we will discuss in detail how to generate this auxiliary invariant 2 , which turned

out to be like the following inductive invariant:

��� � ��� � ��� � ��� � � � � � � � � ��� � � 6 � � � � � 6 � � � � ��� � � � � � ��� � ��� � � � � � � � ��� � �

In order to explain this invariant clearly, we need to introduce the concept of a level being

contested. We say level � � is contested if � � � �� � �
� � � � � �) � � 6 � � � � �) � � . Alternatively one

may use an equivalent definition, only seemingly stronger, which says level � � is contested

if � � � �� � � ��� � � � � � � � ��� � � 6 � � � � � 6 � ��� � � � � �
 . By using the following program invariant:

� � � �� � � ��� � � � � � � � ��� � � 6 � � � � � 6 � ��� � ��� � � � � � � � �� � � � � � � � ��� � �

we see that for � � �� � � we have � � � � � � � � �
) � � and � � � � ��� � � which implies that level � � is

contested.

Now we can interpret the invariant 2 as follows: if level � � � � � �
 is contested (when

� � �� � �) then it is occupied by process � � � � � � � � �
 , i.e. � � � � ��� � � ; if level � � � � � �
 is

not contested (� � � � �) then the levels � � and � � must point to the same process, that is

� � � � � � � � � � � �
 � � � .

In both the transition relation
 and the assertion 2 (also observable from the program),

atomic formulas assume the following forms (for ��� � variables � � �"��� and � � � ��� variables

� � �����):
� � � ��� �
� � � � � � ��� �
� � � ��� � 4 �
� � � ��� �
� � � ��� �
� � � � � � ���

which meet the requirements of simple � -assertions with the exception of the atomic for-

mula � � � ��� � 4 . We argue that adding this atomic formula to � -assertions will not change

48

the small model theorems that we established because the crucial model reduction step we

use in our proofs preserves the truth of such atomic formulas. To be more convincing, there

is a translation of a formula with the form � � � ����� � � � � ��� � 4�6 � �� � � � ��� ��� � � ��
 to the

following equivalent � -assertion:

� � � ����� � ��� � � � 6 � � � � � � ��� � � � � �	
 6 � �� � � � � � ����� � ��

So for simplicity we admit the notation � � � ��� � 4 as an atomic formula.

We first apply skolemization and partial instantiation on the premise I2 and arrive at

the following stronger quantifier-free simple � -assertion, I2 � :
(to simplify the notations we have � � � � � � � �"� �� ��� �� � �

� � � � � � � ��� �� ��� �� ��� �B �)
I2 � �

�
� ��� �

����� �
� � 	 � � ��� �

���	� � �"� � ��� � ��� �
 6
�

� �	� ��

� � ����
� ��� ��� � � �� 	 � �� �

� �	� �� ��� �� ��� �B �"�����'
 � � � � �	� � � ��� �� ��� � � ��� ��

Applying the small model property for the above quantifier-free simple � -assertion,

we get � � � 4 (for � ��), � � � � (for � �� ��� �B) and 	 � � � (for � � � �"� ��), 	 � � � (for � � � ��� ��) and

therefore we only need to prove the truth of the above quantifier-free simple � -assertion

for small models � � � � � � �
 where � � � � � � � 	 � � � � � � � � 	 � � ��
�
 � 4�4 � � � �
� � � � 	 � � � � � � � � 	 � � ��
�
 � 4 4 . We can further tighten the bounds in this particular

test case by exploiting the following facts obtained from simple observations:

– The constant ��� � terms 4 � & are not used as array indices therefore we can reduce

the bounds for both ��� � and � � � ��� by 2.

– Due to the relations between � � � ��� terms � � � � ��� ��� and between ��� � terms � ��� � � � � �
we can reduce the small model bounds for both types of indices by at least 1.

Thus it is sufficient to prove the formula I2 � for small models � � � � � � �
 where � � �
� � � � � �

, which we successfully achieved using TLV, the Weizmann Institute programmable

model checker [PS96].

49

Discharging the Verification Condition I3

The verification condition I3 states:

� ��� � �"� ����� � ��� �
�����	� � �"� ����� � ��� �
�
 � � � � � ���� ��� �%� � � � � ��� & 6 � � � � � � &(

That is, the assertion 2 � ��� � �"� ����� � ��� ��� � implies that no two (distinct) processes can oc-

cupy level & at the same time, which in turn implies the mutual exclusion safety property.

Since I3 is an unstratified simple � -assertion, we first applied the small model method that

we used on I2. However the method failed to prove the truth of I3. Recall that we say level

� is contested if � ���� � � � � � �) � 6 � � � �) � . The invariant 2 guarantees that if level � � is

contested then it is occupied by process � � � � � � � � �
 , i.e. � � � � ��� � � . In this case, the only

valid counter-example to I3 requires the scenario that all levels are contested and occupied

by distinct processes and there are two processes on the highest level. This explains why

partial instantiation of the universal quantification failed to deliver such a scenario.

However, intuitively we know that I3 has a small model property, which might require a

different model reduction technique. Mathematically I3 can be proved by using induction:

if there is a model � �'&/
 (where & � & � for a small integer & �) which violates I3 then

we can construct a smaller model � �'& � 4
 which also violates I3. In consequence, if we

can show that I3 holds for all & where & � & � then by induction I3 holds for all & � & � .
Our next focus is to define a model reduction method that reduces a counter-example of

size & into a counter-example of size & � 4 for I3.

A counter-example to I3 is a model of the following assertion (negated I3):

� ��� � �"� � ��� � ��� � �����	� � �"� � ��� � ��� �

 6 � � � �� � ��� � � � � � ��� & 6 � � � � ��� &(

As usual we skolemize � � � � � and get:

� ��� � �"� � ��� � ��� �
�����	� � �"� ����� � ��� �
�
 6 � � � � �� ��� & 6 � � � �� ��� &(

50

for some � �� � � �� � � 4 � � & � .

The mathematical induction step is formalized as follows (� is a counter-example model):

� ��� � ��� � ��� � ��� � � � � ���	� � �"� � ��� � ��� �
 � 6 � �� ���� �
�
6 � � � � � � �� ��� & 6 � � � � � � �� ��� &/
 6
 �

� � � ��� � �"� � ��� � ��� �
�
�

� � ���	� � �"� ����� � ��� �
 �
 6 � � � � � �
�
�

� � � � � � � � � & � 4 6 �

� � � � � � � � � & � 4

for some reduction
 � yet to be defined. By applying skolemization to the right-hand side,

we get:

��� � �"� ����� � ��� � � � � ����� � �"� ����� � ��� �
 � 6 � � � � � � �� ��� & 6 � � � � � � �� ��� & 6
 � � �
�

� � ��� � � � � ��� � � � � �
 � 6
�

� � � � � � �� � � & � 4 6 �

� � � � � � �� ��� & � 4

for all � � � � ��� � � � � � � � 4 � � & � 4�� and for some � �� ��� �� � � 4 � � & � 4�� and � �� � � �� � � 4 � � & � .

In order to define the reduction relation
 � we need to use the following proposition:

��� � �"� � ��� � ��� � �����	� � �"� � ��� � ��� �
 6 � � � �� ��� & 6 � � � �� � � &
� � � ��� � � & � � � � � � ��� � 6 � � � ��� � 6 � �� � � �� � � �� �

(Note that � � � � is initially assigned to 0, once it is assigned a non-zero value then it will

remain non-zero.)

Applying instantiation to the right-hand side and we have the special case:

��� � �"� ����� � ��� �
�����	� � �"� ����� � ��� �
 6 � � � �� ��� & 6 � � � �� ��� &
� � � � 4���� � � 6 � � � � � � 4 6 � � �� � � �� � � �� �

for some � � � � 4 � � & � . That means that � � 4�� always points to a process index in the range

51

� 4 � � & � which is different from � �� � � �� . In other words:

��� � ��� � ��� � ��� � ������� � �"� � ��� � ��� �
 6 � � � �� ��� & 6 � � � �� ��� & 6 � � 4���� � �
� � � � � � ��� 4 6 � � �� � � �� � � �� �

We replace the universal quantification on the left-hand side by partial instantiation and

obtain a much weaker assertion:

��� � �� �"� � � 4 � &(
 6 ��� � �� �"� � � 4 � &(
 6 � � � �� ��� & 6 � � � �� ��� & 6 � � 4�� � � �
� � � � � � ���54�6 � � �� � � �� � � �� �

The validity of the above proposition is proved using TLV. This in turn allows us to

perform the following reduction:

– Remove the process � � to which � � 4 � � � � �
 points (it is guaranteed that � � is not a

process at the highest level, in particular � � �� � �� � � ��).

– Reduce all the levels bigger than 4 by 1, and all the process indices higher than � � by

1.

Formally the reduction
 � is defined as follows:

–
�

� � � ��� � � � � for each boolean variable
�

.

– For each � � � ��� variable � ,
�

� � � ��� � � � � � 4 for � � � � � 4 else � .

– For each ��� � variable � ,
�

� � � ��� � � � � � 4 for � � � � � � � else � � � � .

– For each array � : � � � �� � � � ��� ,

�

� � � � � � 	 � if 	 � � � 6 � � � � � 	 � � 4 then � � � � � 	 ��� 4
elsif 	 � � � 6 � � � � � 	 � � 4 then � � � � � 	 �
elsif)1� � 6 � � � � � 	 � 4�� � 4 then � � � � � 	 � 4���� 4
else � � � � � 	 � 4 � �

52

– For each array ��� � � � ��� �� ��� � ,

�

� � � ��� � � � if � � � � � � � 4�� � � � then � � � � � � � 4���� 4
else � � � � � � � 4��

Applying the partial instantiation to the deduction formula we get

� � ��� � � � � � � � � � � �
 � 6 � � ��� � � � � ��� � � � � � � 4
 � 6

� � ��� � � � � ��� � � � 4 � � �
 � 6 � � ��� � � � � ��� � � � 4 � � � � 4
 � 6

� � ��� � � � � � � 4 � � � � � �
 � 6 � � ��� � � � � � � 4 � � � � � � � 4
 � 6

� � ��� � � � � � � 4 � � � � 4 � � �
 � 6 � � ��� � � � � � � 4 � � � � 4 � � � � 4
 � 6

� � ��� � � � 4 � � ��� � � � � �
 � 6 � � ��� � � � 4 � � ��� � � � � � � 4
 � 6

� � ��� � � � 4 � � ��� � � � 4 � � �
 � 6 � � ��� � � � 4 � � ��� � � � 4 � � � � 4
 � 6
� � ��� � � � 4 � � � � 4 � � � � � �
 � 6 � � ��� � � � 4 � � � � 4 � � � � � � � 4
 � 6

� � ��� � � � 4 � � � � 4 � � � � 4 � � �
 � 6 � � ��� � � � 4 � � � � 4 � � � � 4 � � � � 4
 � 6

� � � � � � �� � � & 6 � � � � � � �� � � & 6
��
�

� �
�

� � ��� � � � � ��� � � � � �
 ��6
�

� � � � �
�� �� ��� & � 4�6 �

� � � � �
�� �
�
� � & � 4

where in particular
�� �� ��� �� � � � �� � � �
 and

�� �
�
� � �

�
� � � �� � � �
 , and
 �� is a quantifier-free

simple � -assertion representing only the part of the model reduction relation from � to
�

�
that is necessary for obtaining

�

� � ��� � � � � ��� � � � � �
 � . Now we can apply the small model

method to prove the above quantifier-free simple � -assertion, which turns out to be true for

all models � �'&/
 where & � 0 . Thus we conclude that the induction formula is valid for

all � �	&/
 where & � 4 . Having established the soundness of the induction formula, we

only need to prove I3 on small instances of Peterson’s algorithm $ �	&/
 , and conclude by

induction that I3 holds for all $ �	&/
 where & � 4 .

53

3.2 Automatic Generation of Invisible invariants

For an assertion to be an invariant of a given program, it can be implied by the reachable

states, that is
� ��� � � � � � � � � � � � � �

However an invariant is not necessarily inductive. Although it always satisfies the first INV

rule I1, it may violate the second INV rule I2. We can always strengthen an invariant by

excluding the states that violate I2, and derive a stronger invariant which lies between the

reachable states and the original invariant. Repeating this process we can ultimately reach

an inductive invariant for a finite state system, given the fact that this process is bounded

by the strongest inductive invariant which is the set of reachable states itself.

Inductive invariants are essential for deductive verification. Their presence is ubiqui-

tous in the inference rules. The successful application of rule INV requires an auxiliary

inductive invariant which implies the property. In the remaining part of this chapter we

dedicate our discussion to the problem of defining algorithms and heuristics to generate

assertions that can serve as candidates for inductive invariants.

The problem of automatically constructing invariants from the program description has

been intensively investigated in [KM76], [GW75], [BLS96], [GS96]. Here our focus is

not on arbitrary algorithms for generating assertions. The types of inductive invariants we

hope to generate also need to satisfy the logical form requirements imposed by small model

properties for BDS systems. This restricts our study mainly to heuristics for deriving asser-

tions of certain given logical forms. Such a restriction turned out to be not too limiting at

all, instead assertions with these simple logical forms are usually very useful and in many

cases sufficient for proving interesting properties.

The word “invisible” in the name invisible invariants refers to the fact that due to the

automatic generation of these assertions we never “see” or even know their exact logical

formula except for the logical forms that they assume.

54

3.2.1 Generating Invisible Invariants with Universal Quantifiers

Since for any program invariant we have
� ��� � � � � � � � � � � � � , or equivalently � � ��� � � 6

� � � � � � � � �
 � � ��� � � , one can view the derivation of such invariants as a process of ex-

tracting useful conjunctive subformulas from
� ��� � � . For the requirements of small model

theorems we mainly are interested in subformulas with special logical forms. We start with

state formulas involving only universal quantifiers, and later move on to heuristics for de-

riving formulas of other logical forms. These heuristics can be useful for general deductive

verification if not for automatic parameterized verification.

Generating Assertions of the Form ���������	��

The intuitive idea behind this heuristic comes from the observation that usually an invariant

of the form ��� � ���	��
 describes the common behavior of individual processes in a parame-

terized system. With a large enough instance $ �	&/
 of a parameterized system (with & no

less than the cutoff value computed by the small model theorem), we calculate the reach-

able states for the system $%�'&(
 and project that onto a single process � � in the hope that

the result will capture the behavior as described by ���	� �
 . By applying universal quantifi-

cation we can obtain an assertion with the desired logical form. Here is the heuristic for

generating a (possibly inductive) assertion of the form ���������	��
 :

1. Compute the assertion
� ��� � � � � � �
 � which characterizes all the reachable

states of system $%�'& �
 , a small instance of the parameterized BDS system (usu-
ally we use the cutoff value for & �).

2. Project
� ��� � � onto a single index, say index � � , by projecting away all the

references to variables subscripted by indices other than � � . This usually results
in a quantifier-free formula, � � � .

3. Generalize � � � to assertion � � by generalizing the index � � to � .
4. Finally apply universal quantification to obtain an assertion ���������	��
 .

Figure 3.2: Heuristics A-1: Generating Invariants ��� �������

55

In the second step, projecting away a set of variables is performed by using the BDD

existential quantification operation. In our implementation we build a relation for each

variable which we do not project away, for example � � � � � 	 � � � �
 � 	 � � � � . Let � ��� � � �

be the conjunction of these preservation relations, then � � � is given by 	��
 � ��
�������� �
� ��� � � ���
 6 � ��� � � �
�
 , the successor operation.

The second step sometimes might require slight modifications when a parameterized

system is not very symmetrical. In such cases, a typical modification is that we first project
� ��� � � on to a set of different indices, � � �"� � �������!�"� � , and obtain formulas - � �"- � ����������- � .
Then � � � can be defined as - � �(- � � � � � � � � � ����� �(- � � � � � ��� � where - � � � � � � � � is the

operation which renames the index � � to ��� . We will illustrate the usage of such heuristics

in later examples. All these techniques have produced many good experimental results.

As a heuristic, the algorithm in Fig. 3.2 does not guarantee the successful generation of

an inductive invariant. However if
� ��� � � contains a universal quantified subformula, that

is,
� ��� � � � � ��� � � 6 ��� � ���	��
 then the algorithm is likely to obtain a program invariant of

the form ����� ���	��
 . The key lies in the projection operation performed in the second step.

The following observations give supportive reasons for our selection of heuristics:

– The projection of a universally-quantified formula ����� ���	�
 onto the index � � often

gives us �������
 .

– The projection of an existentially-quantified formula � � �����	��
 onto the index � �
usually gives us the tautology true due to the symmetry of the processes in a param-

eterized system. In the case of a not very symmetrical parameterized system, the

modified step 2 may also produce the tautology true.

– The projection of ��� �����	��
 6 � � � 2 � �
 onto � � usually yields ���	���
 (a natural conse-

quence of the first two observations), which effectively “filters” out the existentially-

quantified subformula and preserves the content of the universally-quantified subfor-

mula.

56

Example: generating assertion ��� �����	��
 for the parameterized program MUX-SEM

Here is an example of how to apply the heuristic of Fig. 3.2 to the parameterized system

MUX-SEM shown in Fig. 2.1. To generate the assertion with a singly-indexed universal

quantifier for MUX-SEM, we first calculate the reachable states for $%�	;�
 and get

� ��� � � � � � � � � �
B
��� � � � � � � � � � � � �
�
 � 4

We then project
� ��� � � onto index 1 and obtain:

��� 4
 � � � � � 4�� � � � � � � � � � � ��

By generalizing 1 to � we get

�����
 � � � � � � � � � � � � � � � � � ��

Although the resulting assertion ��� � � � � � � � � � � � � � � � � ��
 is an invariant, it is not an

inductive one.

Example: generating inductive assertion ��� �����	��
 for the augmented MUX-SEM

In the above example we generated a non-inductive assertion ���������	��
 for program MUX-SEM .

This example shows how we can generate an inductive invariant ���
� ���	��
 by augmenting

program MUX-SEM with a global variable � � � � � � � � � � � (Fig. 3.3).

in & � integer where & � 4
local � � boolean where � � 4
local � � � � � � � � � � � � � 4 � � & �

�
� � �

��� � � � �

�����
�

loop forever do���
�
� � noncritical4 � � request � ; � � � � � � � � � � � � � � �
� � critical� � release �

	�

�

	

�

Figure 3.3: Augmented Program MUX-SEM

57

So at location 4 we use an atomic operation to record the process index � whenever pro-

cess ��� � � enters its critical section. To generate an assertion with a singly-indexed universal

quantifier for the augmented MUX-SEM, we first calculate the reachable states for $%�'+�
 :

� ��� � � � � � � � � �
I
��� � � � � � � � � � � � �

 �54
 6

� 6 � ��� � � � � � � � � ���

We then project
� ��� � � onto index 1 and obtain:

��� 4
 � � � � � 4�� � � � � � � � � � � � 6 last � � � � � � � � 4

By generalizing 1 to � we get

���	��
 � � � � � � � � � � � � � � � � � � 6 last � � � � � � � � ��

The resulting assertion ��� � � � � � � � � � � � � � � � � 6 � � � � � � � � � � � � �
 turns out to be an

inductive one and implies the safety property of mutual exclusion. This technique of aug-

menting a parameterized system with auxiliary global variables has also been successfully

applied in the case of German’s Cache Protocol [PRZ01], a most successful application

of the invisible invariant method, to generate an inductive assertion ��� � ���	�
 . The above

observation might suggest to us the following conjecture:

Conjecture 1 If a parameterized system $ �	&/
 has an inductive assertion of the form

����� ����������� � � ���	�����������!�"� �
 then we can always derive an inductive assertion ��� � �������!�"� � �
� ����������������� �
 where
 � � by augmenting the system $%�	&/
 with auxiliary global vari-

ables.

Generating Assertions of the Form ���
���� �����	��� �

Now we would like to define a heuristic for generating invariants of the form ��� �� � �
���	��� �
 . It is a slight modification of the previous heuristic of Fig. 3.2:

58

1. Compute the assertion
� ��� � � � � � �
 � which characterizes all the reachable

states of system $%�'& �
 , a small instance of the parameterized BDS system.

2. Project
� ��� � � onto two disjoint indices, � � �� � � , by projecting away all the refer-

ences to variables subscripted by indices other than � � � � � . This usually results in
a quantifier-free formula, � � � 	
 � .

3. Generalize � � �
	
 � to � � 	
 by generalizing the index � � to � and the index � � to � .

4. Apply universal quantification to obtain an assertion ���
���� ��������� �
 .

Figure 3.4: Heuristics A-2: Generating Invariants ������ � ��������� �

In step 2 we can usually project on any pair of two disjoint indices. However in some

cases when the system is not very symmetrical it might be necessary to project on several

pairs of disjoint indices and rename the results to that of a single pair � � � � � , and then to

take the disjunction of the renamed results to obtain the final quantifier-free formula � � �
	
 � .
This modification of step 2 is very similar to the modification suggested for the previous

heuristic in Fig. 3.2.

Example: generating assertion ��� �� � ��������� �
 for MUX-SEM

To generate an assertion with doubly-indexed universal quantification for MUX-SEM, we

first calculate the reachable states for $%��+�
 and get

� ��� � � � � � � � � �
I
��� � � � � � � � � � � � �
�
 � 4

We project
� ��� � � onto index 1 and 2 and obtain:

��� 4 � ��
 � �
� � � 4�� � � � � � � � � � � � ��
 6 � ��� � � � � � 4 �6 � ��� � � � � � � � � � � � � ��
 6 � � 4�� � � � � 4 ���

Finally we generalize 1 to � and 2 to � and get:

������� �
 � �
� � � � � � � � � � � � � � � � ��
 6 � � � � � � � � 4 �6 � � � � � � � � � � � � � � � ��
 6 � � � � � � � � 4 ���

59

The generated assertion ��� �� � ��������� �
 turns out to be an inductive invariant which suffices

to prove the mutual exclusion safety property for MUX-SEM .

Generating Assertions with Multi-indexed Universal Quantifiers

The general assertions we would like to generate are of the form � �� � ��������� �� � ����� �� � ������� � �� �

where �� � denotes a vector of disjoint indices of type type � . Consequently, assertions of the

form ��� �� � � ���	� � �
 can be viewed as a special case where � � � are two disjoint indices

of the same type. The following heuristic shown in Fig. 3.5 is a natural extension of the

heuristic in Fig. 3.4.

1. Compute the assertion
� ��� � � � � � �
 � which characterizes all the reachable

states of system $%�	& �� ��������� & ��
 , a small instance of the parameterized BDS sys-
tem (usually & �� ��������� & �� are the bounds calculated by the small model property).

2. Project
� ��� � � onto type � indices 4 ������� � �� � � for all

� � 4 ����������� , where � �� � � repre-
sents the size of the vector �� � , by projecting away all the references to variables
subscripted by other indices. This usually results in a quantifier-free formula

�

� .

3. Generalize
�

� to assertion ��� �� � ��������� �� �
 by generalizing type � index � to � �
 .

4. Apply universal quantification to obtain an assertion � �� � �������!� ������������� � �������!� �����
 .

Figure 3.5: Heuristics A-k: Generating Invariants � �� � ��������� ���� �������� � ������� � �����

In practical test cases these heuristics can often generate an assertion of the desired

form which turns out to be a program invariant. It is especially true when the program

indeed contains such an invariant of the desired logical forms. In cases where the generated

assertion is not an inductive invariant, it still can serve as a good program invariant to assist

in the proofs of various properties.

Example: Generating Invariants for Peterson’s Mutual Exclusion Algorithm

Although the small model property for unstratified BDS systems differs from that of strat-

ified BDS systems, the procedures for generating auxiliary inductive assertions remain the

60

same. Consider Peterson’s mutual exclusion algorithm in Fig. 3.1. In order to prove the

safety property of mutual exclusion for this system, we need an inductive assertion of the

following form:

2 � ��� � �"� ����� � ��� � � � �����	� � ��� ����� � ��� �

It is an assertion with only universal quantifications over two type ��� � variables and

two type � � � ��� variables. To generate an inductive assertion of the form ��� � �"� ����� � ��� � �
���	� � ��� ����� � ��� �
 we use the proposed heuristics on system $%��+�
 and $%�'0�
 . For $%�'+�
 we first

project the reachable states on processes 1, 2 and on the levels 3, 4 and follow the heuristics

to generate the invariant. The resulting assertion turned out to be not inductive. It is not

difficult to see that the projection on the level pair (3, 4) might capture different aspects of

the system behavior than the projection on the level pair (2, 3) or the leval pair (2, 4). So we

modify our heuristics to project the reachable states on level pairs (2, 3), (3, 4) and (2, 4),

and then take the disjunction of the projection results for each value pair after renaming.

During the generalization step we conjunct the results for all possible value pairs. This

modification worked and generated an inductive invariant of the desired form for $%��+�
 . For

system $%�	0�
 it turned out that it is sufficient to project only on level (3, 4) and to follow the

usual generalization procedure. The generated invariant is shown to be inductive for $%�'0�

as we hoped. However the computational complexity in the case of $%�'0�
 is so high that we

need to provide a good initial BDD variable ordering in order to finish the computation.

3.2.2 Generating Invisible Invariants with Existential Quantifiers

The small model theorems we have established before assume that the properties and the

inductive invariants are logical formulas with only universal quantification. However the

same methodology can easily be extended to handle properties and invariants with existen-

tial quantification. In this section we discuss heuristics for generating assertions with only

existential quantifiers.

It is a common mathematical practice to transform a new problem into the realm of

problems where there are known solutions. The main observation here suggests that an

61

assertion with only existential quantification can be written as the negation of an assertion

with only universal quantification. We hope that we can derive our new heuristics from the

known heuristics of generating assertions with only universal quantifiers.

Generating Invariants with Singly-indexed Existential Quantifiers

Let us first look at a special case where
� ��� � � assumes the form � � � 2 ���
 . Here is a simple

procedure to generate an assertion with existential quantifiers:

– Compute
� ��� � � for $%�	& �
 .

– Take the negation of
� ��� � � and project it onto a single index � � and get �������
 .

– Take the negation of ���	� �
 and generalize the index � � to � .
– Apply existential quantification and obtain an assertion � ��� � �����
 .
The key step is to take the negation of

� ��� � � which gives us an assertion with a universal

quantifier. This enables the next projection step to extract the needed subformula.

Unfortunately, the above procedure does not work in general cases where
� ��� � � as-

sumes a more complicated form. In the simple case where
� ��� � � � ��� � 2 �	��
 6 � � � ��� �
 ,

if we follow the procedure and take the negation of
� ��� � � then project on a single index � � ,

the most likely result is the constant true. The loss of information originates in the nega-

tion of
� ��� � � where we lose the conjunctive form and get the disjunction of two negated

subformulas. The heuristic as shown in Fig. 3.6 provides a remedy to such situations and

renders a much more general procedure for generating invariants of the form � � ����� �
 .

If
� ��� � � � ��� ��2 �	�
 6 � � ����� �
 this procedure actually generates an invariant � � � � � � � �

�	��� �
�� � 2 � �

 . One can check the validity of this invariant by showing that � � � � 6 � � � � �
� ��� � � where � � � � is the generated assertion ��� � 2 ���
 .

62

1. Compute assertion
� ��� � � for the reachable states of system $%�'& �
 , a small

instance of the parameterized BDS system.

2. Compute a universally-quantified invariant � � � � � � �� � 2 � ���
 .
3. Compute

� �
 ��� � ��� � � � � � 6 �
� ��� � � .

4. Project
� �
 ��� � � on the index � � and obtain

� �
 � � . Let � � � � � �
� �
 � � .

5. Generalize � � � to � � by generalizing � � to � .
6. Apply existential quantification to obtain the assertion � � �����	��
 .

Figure 3.6: Heuristics E-1: Generating Invariants � ���������

Example: generating assertion � � �����	��
 for program MUX-SEM

Here is an example of how to apply the heuristic of Fig. 3.6 to MUX-SEM shown in Fig. 2.1.

We first calculate the reachable states for $%��+�
 and get

� ��� � � � � � � � � �
I
��� � � � � � � � � � � � �
�
 � 4

The inductive invariant � � � � was generated in the previous example, � � � � � ��� �� � �
� � � � � � � � � � � � � � � ��
 6 � � � � � � � � 4 �
 6 � � � � � � � � � � � � � � � ��
 6 � � � � � � � � 4 �
 .
Then we compute �

� ��� � � 6 � � � � and get

� �
 � ��� � � � � � � � � � � 4 � 6 � � � ��
�
 �

Next we project
� �
 onto index 1 and take its negation and obtain

��� 4
 � � � � � � 4�� � � � � 4 � 6 � � ��
 �

We generalize ��� 4
 to ���	��
 by generalizing 1 to � , and get

�����
 � � � � � � � � � � � � � � � �54
 �

63

Using disjunction we obtain the existentially quantified assertion � ��� � � � � � � � � � � � � �54 ,
or equivalently � � � � � � ��� � � � � � � � � � .
Generating Invariants with Multi-indexed Existential Quantifiers

The following heuristic is a generalization of the heuristic in Fig. 3.6 for generating asser-

tions of the form � � � ���������"� � ������� � ���������"� �
 where � � ����������� � are of the same index type.

1. Compute assertion
� ��� � � for the reachable states of system $%�'& �
 , a small

instance of the parameterized BDS system.

2. Compute a universally-quantified invariant � � � � � � �� � 2 � ���
 .
3. Compute

� �
 ��� � ��� � � � � � 6 �
� ��� � � .

4. Project
� �
 ��� � � on disjoint indices 4 �������!��� to obtain

� �
 . Let
�

� � � �
� �
 .

5. Generalize
�

� to ����� � ���������"� �
 by generalizing � to �
 for ��� 4 �������!� � .

6. Apply existential quantification to obtain � � � �������!�"� � �����	� � �������!�"� �
 .

Figure 3.7: Heuristics E-k: Generating Invariants � � � �������!�"� � �����	� � �������!�"� �

3.3 Verification of Waiting-for Properties of Parameter-

ized Systems

So far we have discussed automatic deductive verification of invariance properties (the

property assume the form of �
 for a state formula
) of parameterized systems using the

method of invisible invariants. In this section we study another important class of safety

properties which can be described by general waiting-for formulas. One example of such a

property is bounded-overtaking, which measures in some sense the fairness of a system.

Typical properties for bounded overtaking are described by nested waiting-for LTL for-

mulas
 � � � � � � � � ������� � � � � . For parameterized systems the nested waiting-for

64

properties often assume the form of a quantified temporal formula, such as 2 � ��� � � �

 ����� �
 � � ���	��� �
 � ������� � �	��� �
 � � � ����� �
 . In order to show that the parameterized sys-

tem modeled by FDS
�

satisfies 2 , we need to apply the following transformation:

� � � ��� � � �
 ����� �
 � � ���	��� �
 � ����� � � �	��� �
 � � � �	� � �
 	 �
����� � � � � �
 ����� �
 � � ���	� � �
 � ������� � �	��� �
 � � � ����� �

If the system is symmetric then we can arbitrary choose the indices ��� � to be 4 ��� and in-

stead prove
� � �
 � 4 ����
 � � � � 4 � ��
 � ������� � � 4 ����
 � � � � 4 � �
 . In general for rule INV we

have two extra parameters � � � , which we need to take into consideration when calculating

the cutoff value using the small model theorem.

The deductive method to verify nested waiting-for formulas is as follows:

1. Generate auxiliary assertions 2 � � 2 � ������� � 2 � .

2. Check that the premises for the inference rule NWAIT hold:

For integers ��� � � and assertions
 ����� � � � ����������� � � and 2 ��� 2 � ��������� 2 �
�
N1 �
 � � �

 � � 2

N2 �52 � � � � for � � � � 4 ������� �

N3 �52 � 6
 � �
 � � 2��
 for � � 4 ���������

 � � � � � � � � �
�
� � � � � �

There are two techniques to automatically generate 2 ’s: forward propagation and back-

ward propagation.

Forward propagation:

To generate an auxiliary assertion 2 for a simple waiting-for formula
 � � � � , the

forward propagation method computes

2 � � 	 � � ����� � � ���
 6 �
� �
 6 �

� �

65

Here the forward propagation starts from states
 6 �
�
, then computes all the

�
-free

states that are reachable and obtains the auxiliary assertion 2 . Finally the inference rule

checks that those states in 2 must satisfy � .

Backward Propagation:

The backward propagation method on the other hand first computes the states � � � and

then checks
 � � � � �
 . In consequence, backward propagation calculates a bigger set

of states than forward propagation.

Here is how we compute the auxiliary assertion 2 for
 � � � � �
 using backward

propagation:

2 � �%� � ��� � � � 6 �
�

 or

2 � �%��� � � 6 ��
 � � � � 6 �
�
�
 �

To calculate � � ��� � � � 6 �
�

 we use the
 � � ��� � ����� � � � operator, i.e. �

��� � � � 6 �
�
 �

 � � ��� � ����� � � ��� � � 6 �
� �
�6 �

�
 .

For nested waiting-for formulas such as
 � ��� � � � � � � �
 the forward method can

not easily be generalized to generate auxiliary assertions. However, backward propagation

easily computes the assertions in an iterative manner, that is it first computes 2 � � � � � 2 �
where 2 � � � � and then computes 2 � � � � � 2 � .

In order to apply small model theorem on rule NWAIT we need to ensure that the 2 � ’s are

����� -assertions. As we have noted before, due to the quantification over the waiting-for

formula for a parameterized system, we have the additional parameters from the instantia-

tion of the quantified variables � � ������� �"� � . Fig. 3.8 is the heuristic for generating auxiliary

assertions 2 ���������!� 2 � of the form � � ������� � ������� �"� � ���
 .

66

1. Compute the assertion 2 ���������!� 2 � using the backward propagation method for
system $ �	& �
 , a small instance of the parameterized BDS system.

2. Project 2
 (for ��� � ���������
) onto a distinct index � � , in addition to the indices
� � ���������"� � , by projecting away all the references to variables subscripted by in-
dices other than � � ���������"� � � � � . This usually results in a quantifier-free formula,
2
 �	� � ����������� � ��� �
 .

3. Generalize 2
 ��� � ���������"� � ��� �"
 to assertion 2
 ��� � ���������"� � � �
 by generalizing the
index � � to � .

4. Apply universal quantification to obtain � � � 2�
 ��� � ���������"� � � �
 .

Figure 3.8: Heuristics NW-1: Generating Auxiliary ����� -assertions for Rule NWAIT

Case Study 1: Checking 1-Bounded Overtaking for Peterson’s Algorithm

We verified a two-process Peterson’s algorithm (see Fig. 3.9) using both forward and back-

ward propagation in TLV [PS96], a verification tool set built at the Weizmann Institute.

local � � array � 4 � � � of boolean where � � �
� � � 4 ��� �

�

��� � ��� �
� � �

��������
�

loop forever do�����
�
O � � noncriticalO � � � � � � � ���
 � � � 4 �"�
O � � await � �� � � � � �� � � � � � � �O � � criticalO B � � � � � � �

	

�

	

�

Figure 3.9: Two-Process Peterson’s Mutual Exclusion Algorithm

First we implemented in TLV the deductive inference rule for checking nested waiting-

for formulas (see Fig. 2.5) and added it to the TLV rule files. The procedure nwait takes as

parameters the assertion
 , and the assertion arrays � and
 � � , both of size � ��� � � , and then

checks the validity of premises N1, N2, N3 in sequence and returns a counter-example

after encountering the first violated premise and sets the return code � 	 � � ����� to 0.

67

Proc nwait(p, &q, &phi, asize, success);

Let success := 1;

--
-- N1: p -> phi[0] | ... | phi[asize-1] --
--
Print "Checking Premise(nwait) N1\n";
Let j := asize;
Let all_phi := 0;
While (j)
Let j := j - 1;
Let all_phi := all_phi | phi[j];

End -- while (j)
Let counter := p & !all_phi;
If (counter)
Print "Premise N1 is not valid.

Counter-example =\n";
Print counter;
Let success := 0;

Else

-- N2: phi[i] -> q[i] for i = 0, ..., asize-1 --

Print "Premise N1 is valid. Checking Premise N2.\n";
Let j := asize;
While (j)
Let j := j - 1;
Let counter := phi[j] & !q[j];
If (counter)
Print "Premise N2 is not valid at ", j, ".

Counter-example =\n";
Print counter;
Let success := 0;
Let j := 0; -- For quick exit immediately.

End -- if
End -- Done checking N2
If (success)
--
-- N3: phi[i] & rho -> phi[0]’ | ... | phi[i]’ --
--
Print "Premise N2 is valid. Checking Premise N3.\n";
Let i := asize - 1;

68

While (i)
Let j := i;
Let lower_phis := phi[j];
While (j)
Let j := j - 1;
Let lower_phis := lower_phis | phi[j];

End -- done calculating phi[0] | ... | phi[i]
Let counter := phi[i] & total & !next(lower_phis);
If (counter)
Print "Premise N3 is not valid at phi", i, ".

Counter-example =\n";
Print counter;
Let success := 0;
Let i := 0; -- For quick exit immediately

Else
Let i := i - 1;

End
End -- Done checking N3
If (success)
Print "Premise N3 is valid.\n

* * * Assertion p is invariant.\n";
End

End -- Done N2, N3.
End -- Done N1, N2, N3.

End -- Proc nwait

The temporal formula for 1-bounded overtaking of the two-process Peterson’s algorithm is

as follows:

��� 4�� � � � � � � � � �%� ����� � � � � � � �
 � ����� � � � � � � � � � � ����� � � � � � � �
 � ��� 4�� � � � � � �
We apply backward propagation to automatically generate the needed auxiliary assertions

 � � � � � �������!�
 � � � � � to be used by procedure nwait. In order to satisfy the premise N3 we

need to first generate the inductive auxiliary assertion invc which can be computed using

heuristics A-K shown in Fig. 3.5. The variable total represents the transition relation
 .

Print "Check for 1-bounded overtaking rule using deduction\n";
Let p := (P[1].loc = 2) & invc;
Let q[0] := (P[1].loc = 3) & invc ;
Let q[1] := !(P[2].loc = 3) & invc;
Let q[2] := (P[2].loc = 3) & invc;

69

Let q[3] := !(P[2].loc = 3) & invc;

Let phi[0] := q[0];
Print "-- Calculate phi[1] = q[1] W q[0]";
Let phi[1] := invc & !predecessors(!q[0] & !q[1],

total & q[1] & !q[0]);
Print "Done.\n\n";
Print "-- Calculate phi[2] = q[2] W phi[1]";
Let phi[2] := invc & !predecessors(!phi[1] & !q[2],

total & q[2] & !phi[1]);
Print "Done.\n\n";
Print "-- Calculate phi[3] = q[3] W phi[2]";
Let phi[3] := invc & !predecessors(!phi[2] & !q[3],

total & q[3] & !phi[2]);
Print "Done.\n\n";

Let phi[1] := phi[1] & !phi[0];
Let phi[2] := phi[2] & !phi[1] & !phi[0];
Let phi[3] := phi[3] & !phi[2] & !phi[1] & !phi[0];

Call nwait(p, q, phi, 4, success);

The entire computation is automatic and takes only a few seconds to complete.

Case Study 2: Checking 1-Bounded Overtaking for the RES-MP Resource Allocator

Algorithm

Next we verified a parameterized resource sharing protocol RES-MP as shown in Fig. 3.10.

The 1-bounded overtaking property states that

������ � � � � O � � � � � � �
� O B � � � � �

� O B � � � � � �
� O B � � � � �

� O B � � �
We implemented the same algorithm in TLV as was given in the Peterson’s case for

automatic generation of the auxiliary assertions. Then we use the heuristics in Fig. 3.8 to

generate the auxiliary ����� -assertions. Using the same deductive inference rule procedure

nwait, we successfully proved the 1-bounded overtaking property for algorithm RES-MP.

70

in &:� integer where & � 4
local � � array � 4 � � & � of boolean

� � �

����������
�

local
�
: integer where

� � 4
loop forever do�����

�

 � � if � � � � � then goto
 I

 �
� � � � � � � �

 � � await � � � �

 B � � � � � � � �

 I � � � � ��� 4

	

�

	

�

�
��� �

� � � � � �

����������
�

loop forever do�������
�

O � � noncriticalO �
� � � � � � � 4O � � await � � � � �O B � criticalO I � � � � � � � 4O J � await � � � � �

	�

�

	�

�

Figure 3.10: Program RES-MP with Asynchronous Shared Variables

3.4 Verification of General Safety Properties of Parame-

terized Systems

General safety properties can be expressed in the form �
 where
 is a past formula. We

consider two approaches for performing deductive verification of such formulas. The first

approach builds a general tester for the negated safety formula and combines the tester with

the system, then shows that the combined system is infeasible, i.e. that there is no valid

computation for the combined system. This formulation can be summarized as follows:

– Let �
 be the safety property where
 is a past formula. Build a tester � for the

negation of the property, that is � �
 .

– Synchronously compose the tester � with the original program
�

to obtain
� � ��� .

– Prove that
� � ��� is infeasible, i.e., doesn’t have a valid computation run.

71

The second approach builds a general tester for the past formula
 in the safety prop-

erty �
 and synchronously composes the tester with the original system, then applies the

method of invisible invariants to check a safety property for the combined system. This

formulation can be summarized as follows:

– Let �
 be the safety property where
 is a past formula. Build a tester � for
 .

– Synchronously compose the tester � with the original program
�

.

– Show that
� � � � satisfies the safety property � � for some state formula � derived

from
 via the statification transformation (defined in the following section).

The first method can be applied to general temporal formulas, however it requires the

use of fairness conditions in the proof. Therefore we choose to use the second method

which doesn’t require fairness conditions. It is a sound and complete method for proving

general safety properties.

3.4.1 Construction of Temporal Testers

Let 2 be a temporal formula with vocabulary
�

for which we wish to construct a temporal

tester. A formula
 � 2 is called a principally temporal subformula if the main operator of

 is temporal.

Let
� ��2
 denote the set of principally temporal subformulas of 2 . Define a set of

variables ��� ��� ��� �
 � � ��2
 � . We introduce a statification transformation - , mapping

subformulas of 2 into boolean formulas over
� � ��� , as follows:

- ���
 �
������� �����
�
� for a state formula �
� - �

 for � � �

- �

 � - � �
 for � �
�� �
�	�

for � � � ��2

The tester �
� is given by

��� � � � � � � � � � �
�
����� � � � �
 �

72

Since we are constructing the temporal tester for a past formula 2 , we only need to

consider the following basic cases:

– The FDS
� � � � for � � �
 is given by

� � ��� � �
� � �

�	�

 � � �� � - �

� � �

	 � �

– The FDS
� � � � for � �
 � � is given by

� � ��� � �
� � �	� � - � �

 � � �� � - � �
 � � ��- �

 � 6 �	�

� � �

	 � �

– The FDS
� � is given by

� � ��� ���
� � - �'2

 � 4
� � �

	 � �

Other temporal testers can be derived from these basic forms.

73

Synchronous Parallel Composition of Fair Discrete Systems

Given two FDSs
� � � ��� � � � � �
 � ��� � �
	 � � and

�
� � � � ����� ���
 ��� � ���
	 � � , the FDS

� �
� � � � � � resulting from the synchronous composition of the two FDSs is defined to be:

� � � � � � �
� � � � 6 � �

 �
 � 6
 �
� � � � � � �
	 � 	 � � 	 �

3.4.2 Invisible Invariants Method for General Safety Properties

For parameterized systems the general safety properties often assume the form of quan-

tified temporal formulas, such as ��� � � � �12 �	��� �
 . So we need to apply the following

transformation:

� � � ����� � � �12 �	� � �
 	 � ����� � � � � � � � 2 ����� �
�

	 � ����� � � � � � ���
� � � 	
 � � � � - � � � 	
 �	

If the system is symmetric then we can arbitrary choose the indices ��� � to be 4 � � and instead

prove
� � � �
� � � 	 � � � � � - � � � 	 � � . In general cases for rule INV we have two extra parameters

��� � , which we need to take into consideration when calculating the cutoff value using the

small model theorem.

Notice that the initial conditions and transition relations of the temporal testers only

consist of unquantified assertions, thus the synchronous composition of a BDS system with

the temporal testers should still satisfy the requirements of a BDS system to which we can

apply small model theorems.

74

Example: Prove 1-Bounded Overtaking for Algorithm RES-MP

Here we apply the second approach for proving safety properties on algorithm RES-MP.

The 1-bounded overtaking property we wish to prove is expressed by the following waiting-

for formula:

��� � � � �(� � � � � � � � � � � � �
� � � � � � � � � �� ;�
 � � � � � � � � � � � ;�
 � � � � � � � � � � �� ;�
 � � � � � � � � � � � ;�
�

which translates to the equivalent past formula:

��� � � � �(� � � � � � � � � � ; � �
� � � � � � � � � � ;�
 � � � � � � � � � � �� ;�
 � � � � � � � � � � �� �
 � � � � � � � � � � � ;�

 �

Since the system is symmetric, we can choose � � 4 � � � � . Let us define � � � � ��� � � � � � �
; , � � � � ��� � � � � � �� ; , � � � � � 4�� � � � � �� �

and
� � � � � 4 � � � � � � ; . We build temporal testers

for the following past formulas:

1.
� � � � � � � � � � �

2.
�
� � � � � � ��� � � � � �
 �

3.
� � � � � � � ��� � � ��� � � � � �

 �

After synchronously composing the above testers with the original program

� � � � � � � � � � � � � � � �

we can prove the invariance property �12 � 4 � �
 � �/�
 for� � � � , where
� � � � � � � � � � � � � � � � is a statified variable representing the past formula

� � � � � � � � � � � .

75

3.5 Application of the Invisible Invariants Method to Clocked

Systems

In order to apply the invisible invariant method to hardware verification we need to use

real-time system models which can capture the metric aspect of time in a reactive system.

The model must be able to measure the elapsed time between two events. Clocked transi-

tion system (CTS) is such a computational model for real-time systems [KMP00].

A CTS system � � � � � � �
 � 3�� consists of the following components:

– � : A finite set of system variables. The set � � � � �
is partitioned into

� �
� 	 � �������!� 	 � � the set of discrete variables and

� � � � � ��������� � � � the set of clocks.

Clocks always have the type real. The discrete variables can be of any type. We

introduce a special clock � � �
, representing the master clock, as one of the system

variables.

– � : The initial condition, an assertion (state formula) characterizing the set of initial

states. It is required that

� � � � � ����� � �
� � � � � �

i.e., all the clocks are set to zero at all initial states.

–
 : A transition relation. An assertion
 ��� � � �
 , referring to both unprimed (present)

and primed (next) versions of the state variables, relating a state � � � to its successor

states. In case � � �
, it is required that
 � � � � � , i.e., the master clock is not

modified by any process transition.

– 3 : The time-progress condition. It is an assertion over � . The assertion is used to

specify a global restriction on the progress of time.

Let �,� � � � � �
 � 3�� be a CTS. We define the extended transition relation
 � associated

with � as

 � ��
 �
 � � � � �

76

where
 � � � � is given by:

 � � � � ����� �������
 6 � � � � 6 � � � � � � �

and �����
 is given by

�����
 ��� � � 6 � � � � � ���
 ��3�� � � � � �

Let
� � � 	 � ��������� 	 � � be the set of discrete variables of � and

� � � � � ������� � � ��� be the

set of its clocks. Then, the expression
�
� � � � � is an abbreviation for � � � � � � � � �
 6

�
�
� 6 � � � � � � � � �
 , and 3�� � � � � �
 is an abbreviation for 3�� 	 � �������!� 	 �
� � � � � ��������� � � � �
 .
A run of � is a finite or infinite sequence of states � � ������� � ������� satisfying:

– Initiality: ��� � � � .

– Consecution: For each � � � � � � � �
 �
 � � is a
 � -successor of ��
 .

A computation of � is an infinite run satisfying:

– Time Divergence: The sequence ��� � � � ��� � � � � ������� grows beyond any bound.

A CTS � is called non-Zeno if every finite run of � can be extended into a computation.

In many cases, the time-progress condition 3 has the following special form 3 ��
 � � � �
 � �
� � � � ��
 where the assertions
 � and � � do not depend on the clocks and

� � � �
is some

clock.

Case Study: Program Fischer

In Fig. 3.11 we present Fischer’s Mutual Exclusion Program in SPL language. Given a

program � written in SPL language, the real-time version of � requires for each location

� of � an upper and lower bound on the length of time during which an execution can

stay at location � without taking a transition. These bounds are often denoted by ��� � � � � � for

� � � � � � � ��� . Let’s assume that each location has the same time bounds ��� � � � � � . It can

77

� � integer where � # �
�
� � � � � � �6���

())))))))))))))))*

� �
loop forever do())))))))))))*

�	�
noncritical

� �
skip

� �
while � 9#F� do())))*

� �
await � # �

� � � � #F�
� �

skip
� �

if � #A� then
� �

critical
� � � � # �

KMLLLLLLLLLLLLN

KMLLLLLLLLLLLLLLLLN
Figure 3.11: Fischer’s Mutual Exclusion Algorithm

be shown that in order to have the program function correctly we must have � � � � � � � � �
to avoid race conditions. We implemented the algorithm using TLV as follows. Without

loss of generality we choose � � �
and

� � + . The following is an SMV program of

Fischer with three processes. First we declare the time progress constraints Low, High,

Prog, the global clock T and local clock array t[1], ..., t[N], together with other

program variables.

MODULE main
DEFINE
N := 3;
Low := 3; -- The time bound is [Low, High] uniformly
High := 5; -- require 2Low > High for the protocol to work
Prog := P[1].prog & P[2].prog & P[3].prog;

VAR
x: 0..N;
t: array 1..N of 0..6;
T: 0..7;

P[1] : process proc(1,x,t[1],Low,High);
P[2] : process proc(2,x,t[2],Low,High);
P[3] : process proc(3,x,t[3],Low,High);
Idle : process MI;
tick : process Tick(Prog,t,T,Low,High);

Next we define process proc so that we can instantiate its parameters to obtain indi-

vidual processes P[1], P[2], P[3].

78

MODULE proc(id,x,my_t,Low,High)
DEFINE
prog := my_t < High; --Time progress condition for local clock

VAR
loc: 1..9;

ASSIGN
init(loc) := 1;
init(x) := 0;
init(my_t) := 0;

next(loc) := case
my_t < Low : loc;
loc = 1 : {1,2};
loc in {2,5,6,9} : (loc mod 9) + 1 ;
loc = 3 & x != id : 4;
loc = 3 : 9;
loc = 4 & x = 0 : 5;
loc = 7 & x = id : 8;
loc = 7 : 3;
loc = 8 : 3;
1 : loc;

esac;
next(x) := case

loc = 5 & next(loc) = 6 : id;
loc = 9 & next(loc) != loc : 0;
1 : x;

esac;

next(my_t) := case
my_t >= Low : 0; -- reset local clock
1 : my_t;

esac;

Last, we define the process Tick which advances the global clock T as well as the

local clocks t[1], t[2], t[3].

MODULE Tick(Prog,t,T,Low,High)

ASSIGN

init(T) := 0;

79

next(t[1]) := case
Prog: t[1] + 1;
1 : t[1];

esac;

next(t[2]) := case
Prog: t[2] + 1;
1 : t[2];

esac;

next(t[3]) := case
Prog: t[3] + 1;
1 : t[3];

esac;

next(T) := case
Prog: (T + 1) mod 8;
1 : T;

esac;

JUSTICE T = 0, T != 0

To generate the invariants with universal quantifiers in the form of ��� � � � ���	� � �
 , we

followed the previous heuristics by projecting the reachable states on indices 4 ��� and then

generalizing to the form ��� � � �����	� � �
 . Here is how we implement the procedure in TLV:

----- Calculate reach -------------
Print "Calculating reachable states.\n";
Let reach := successors(_i, total);

------Project on index 1, 2 -------------
Let proji1 := (next(P[1].loc) = P[1].loc)

& (next(P[2].loc) = P[2].loc)
& (next(x)=1 <-> x = 1) & (next(x) = 2 <-> x = 2)
& (next(x) = 0 <-> x = 0) & (next(t[1]) = t[1])
& (next(t[2]) = t[2]);

Let inv_12 := succ(proji1, reach);

------Generalize inv_12 to invc = \forall i, j: inv_ij ----
To gen_inv;
Let invc := 1;

80

Let i := 1;

While (i <= N)
Let proj1i := (next(P[i].loc) = P[1].loc)

& (next(x) = i <-> x = 1)
& (next(x) = 0 <-> x = 0) & (next(t[i]) = t[1]);

Let j := 1;
While (j <= N)
If (j != i)
Let proj1i2j := proj1i & (next(P[j].loc) = P[2].loc)

& (next(x) = j <-> x = 2)
& (next(t[j]) = t[2]);

Let invc := invc & succ(proj1i2j, inv_12);
End
Let j := j + 1;

End
Let i := i + 1;

End
End

Note that we didn’t preserve the global variable � in our computation, the main reason

is that since � doesn’t participate when a process is making a move its value is always

preserved. It also turned out the invariant we generated � � � � is the same as the reachable

states
� ��� � � . This example demonstrates that the invisible invariant method is applicable

to the real time models and that the only extra variables we need to take into consideration

are the “local” clock variables.

In summary, parameterized verification using invisible invariants can be applied to BDS

systems for proving general safety properties (and can be extended to liveness properties

by adding fairness requirements). One important feature of this method is that the entire

process is fully automatable. The heuristics for generation of invisible invariants provide

automatic approaches to obtain important invariants not only in the context of parameter-

ized verification but in the general context of formal methods.

81

Chapter 4

Parameterized Verification using Counter

Abstraction
In this chapter we study an entirely different approach to the parameterized verification

problem, the use of abstraction. Abstraction is a powerful method to deal with complexity

issues in formal verification. It is natural to choose abstraction as a verification methodol-

ogy for parameterized systems in the hope that it can reduce otherwise intractable problems

into tractable ones that verify much simpler systems which, in the best cases, are finite state

systems.

Generally speaking, abstraction works as follows: Given a concrete system � and an

abstraction relation � � � � � � ��� which maps states in the concrete system � to states in

the abstract system, a valid and safe abstraction of system � should satisfy the following

requirements:

– For each computation �7� � ����� � ������� of the concrete system � , there exists a compu-

tation � # � $ ��� $ � ������� of the abstracted system � # , such that � ������� $ ��
 holds for every

� � � � 4 ������� .

– For a temporal property 2 , there exists an (effectively desirable) corresponding ab-

stracted temporal property 2 # such that if 2 # is � # -valid then 2 is � -valid.

If an abstraction can successfully reduce the parameterized original system to a finite state

system then we can apply formal techniques such as model checking to prove temporal

properties on the abstracted system.

Although there are many powerful abstraction paradigms, most of them suffer from

the same weakness: the need for human ingenuity and assistance. The lack of automatic

82

abstraction methods has seriously hindered the use of abstraction-based methods in param-

eterized verification. This predicament motivates the search for abstraction methods that

are sound and automatic. After inspecting various abstraction methods, we found that fini-

tary abstraction requires less ad-hoc human assistance in comparison with other methods.

For an FDS
�

and a property � , once the user defines a finitary abstraction mapping � from

the variable domain � of a concrete FDS
�

to a finite abstract variable domain � # , a safe

abstraction “recipe” will automatically abstract the FDS
�

into a finite-state abstract FDS� # and the property � into a finitary abstract property � # . It is guaranteed that
� # � � � #

implies that
� � � � (but not vice versa). In the following sections we will present counter

abstraction, a special finitary abstraction method which can be automated to perform pa-

rameterized verification.

4.1 The Method of Counter Abstraction

To better illustrate the ideas behind counter abstraction, we use a running example through-

out our discussion of the method. The test case we chose is the parameterized program

MUX-SEM with a semaphore � shared among & processes (see Fig. 2.1). The property we

are most interested in proving is the liveness property which states that if a process is at

location 4 then it will eventually have access to location � , the critical section. As for all pa-

rameterized systems the explicit state transition graph for MUX-SEM grows exponentially

with parameter & . From the state graph point of view, an effective abstraction maps a state

in the original concrete system to an abstract state and compresses the original state graph

to a much more compact finite state graph. For parameterized systems such an abstraction

has to satisfy one additional requirement: an abstraction has to converge with the growth

of the parameter & .

The basic idea of counter abstraction is to “count” the number of processes in each of

the local program locations provided that all processes execute the same program. For each

program location � � 4 ��� � � in a local process we introduce the abstract variables � � � � � � � ��� � �

respectively and keep the shared variable � in the abstract system. In order to make the ab-

83

straction finitary we keep in � � the number of processes currently executing at location O�� ,
if this number is � or 4 , and let � � � � for all bigger counts.

The effect of counter abstraction can be viewed through the following transforma-

tions of an explicit state graph of a concrete parameterized system $%�'&(
 into the counter-

abstracted state graph:

Stage-1 Compression

– Relabel the nodes in the concrete system by using the abstract variables in the abstract

system.

For example, for an instance of MUX-SEM , $%��+�
 , all concrete states which represent

that only one process is at location � (critical section) while the other processes are at

location � (noncritical section), are relabeled by the same abstract state: � � � ; � � � �
� � � � �54 � � � � � � � � � .

– Merge all the nodes with the same label into a single node as follows:

Any outgoing edge from an old node will become an outgoing edge from the new

merged node. Any incoming edge to an old node node will become an incoming

edge into the new node. Remove all the redundant edges so that between any given

two nodes � and
�

there is at most one unidirectional edge from � to
�

.

Stage-2 Compression

– Apply further abstraction on the new abstract graph from Stage-1 by relabelling each

of its nodes currently labeled using the abstract variables � ��� � � � � � � � � � � as follows:

For any � � if � � � 4 , reassign it to � � � � , else keep its original value (either 0 or 1).

A note on notation: Originally we choose to assign � � to � ; however to be consis-

tent with our implementation where we choose the number 2 to symbolically repre-

sent � , we will use 2 in place of � in the sequel.

– Apply the same merge procedure as outlined in Stage-1 compression and obtain the

final state transition graph of the abstract system.

84

For optimization we can combine the relabelling steps from the stage 1 and 2 compression

into one single step. In the case of MUX-SEM the above transformations will converge to

a finite state graph for the abstract system of the parameterized system $%�'&(
 for &) + .

The abstract state transition graph is shown in Fig. 4.1. The edge label on a transition in

the graph represents the number of transitions it corresponds to in the concrete system; and

the final states with double circles represent that some process is in the critical section.

Counter Abstraction using Data Abstraction

An effective way to define counter abstraction is based on the finitary data abstraction

method [KP00a].

Let
� � ��� ��� �
 � � � 	 � be an FDS, and � denote the set of states of

�
. Let � � � � � #

be a mapping of concrete states � into abstract states � # . We say that � is a finitary ab-

straction mapping, if � � is a finite set. We wish to derive the finite abstract system
� #

and the abstract property � # . If we can model check that
� # � � � # then we can infer that� � � � .

For the case of parameterized systems we assume that each process has a finite number

of locations � and there are a finite number � of shared finite-domain variables. For each

local program location � we introduce an abstract variable, ��� . The abstract mapping
� �

for

counter abstraction is given by

��� � ���� ��
� � ��� � � 4 � � & � ��� � � � �� O
4 � � � � � 4 � � & � � � � � � ��� O 6 ��� ���� � � ��� � � � � �� O
� otherwise

� ������ for O � � ������� ���

8
 � �
 for � � 4 ������� ���

where � � � � denotes the program counter for process � . Here ��� � � if there are no processes

at location O , ��� � 4 if there is exactly one process at location O , and ��� � � if there are two

or more processes at location O .
85

0200, 1 1

0210, 0

5

0201, 0 5

1200, 1

5

5

5

5

5

1210, 0

20

1201, 0

20

20

2200, 1

20

20

20

20

20

50

2110, 0

20

2210, 0

30

2000, 1 1

2100, 1

5

2001, 0

5

5

2101, 0

20

20

5

2010, 0

5

20

20

2201, 0

60

5

5

20

20

20

60

60

30

30

60

30

30

Figure 4.1: State Transition Graph of Abstract System MUX-SEM # for $%�'&(
 with &:),+

86

For example the abstract state of program MUX-SEM will have the form �'� � � � � � � ��� � � ,
where ��� �"� � �"� � �"� � � � � � � � � are the values of � � ������� � � � , and �

� � � � 4 � is the value of � .

With the definition of the (counter) abstract mapping we can apply the safe data ab-

straction proposed in [KP00a] to calculate the abstract
� # .

– The initial condition is calculated as follows:

� # � � � � ��
 � ��� � ��� �
� � # ���
 6 � ���

For MUX-SEM where the initial condition for the concrete system is � ��� � � � � & � � �
 6
� � � ��
 , the calculation yields � # � � � � � ��
 6 � � � � ��
 6 � � � � ��
 6 � � � �
��
 6 � � �54
 as the initial state ��� � � � � 4
 in the abstract system.

– The transition relation is calculated as

 # � � � � �

 � ��� � � � � ��� �
� � # ���
 6 � ��

� � # ��� �
 6
 ��� ��� �

and results in the transition relation for the abstraction system:

 # � � � � � ��
 6 � � � � � � ��� 4
 6 � � � � � � � � 4
 6
 � ����� � � � � � � �

� � � � � ��
 6 � � � 4
 6 � � � � � � � � 4
 6 � � � � � � �

� 4
 6 � � � � ��

6
 � ����� � ��� � �

� � � � � ��
 6 � � � � � � ��� 4
 6 � � � � � � � � 4
 6
 � ����� � � � � � � �

� � � � � ��
 6 � � � ��
 6 � � � � � � � � 4
 6 � � � � � � � � 4
 6 � � � � 4

6
 � ����� � � � � �

�
 � ����� � � � � � � � ��� � � � �

where the
�

and � operations are defined as follows:

� � � 4
� if � � � � then � � � 4 else �

87

� � � 4
� if � � � 4 then � else � 4 ��� �
Note that � operation is partially defined on domain � 4 ��� � , i.e., excluding � . And

� � 4 produces the set of values � 4 � � � .
– Abstracting the justice requirements as suggested in [KP00a]:

� # � � � � � �

� � � � �
renders in the case of MUX-SEM: � # � � � � � � ��� � �
 � � � � � � � � �
 ��� � � 4 � � & � � where

� � � � �
� � �
 � � � � � � � � � � � � � � � � ��� � �
 � � � � � � � � � � �

– Abstracting the compassion requirements using the recipe:

	 # � � � � � �

 � � � � ��
 � � �
 � � � � 	 �
gives us 	 # � � � � � �
 � � � �
 � � � � � � � � �
 � ��� � � 4 � � & � � where:

� � �
 � � � �
 ����6 � � � � � �
� � � � ��
 � � � � � � � � �
 � � � � � � � � � � �

Unfortunately these abstract fairness conditions are too weak for proving the liveness

property of MUX-SEM because the justice states include all the reachable states because all

reachable states satisfy � � � � � � � , thus admitting all viable runs as a legitimate compu-

tation, even those where there is one process “stuck” in the critical section (observable as

a self loop on the state � � �74 � � ��
). In other words, any liveness property that is not valid

for system MUX-SEM without the justice requirement � can not be proven by an abstrac-

tion which abstracts � into � � � �
 as above. We need to develop stronger abstraction of

fairness conditions in order to prove liveness properties.

88

4.2 Derivation of Abstract Justice Requirements

4.2.1 Justice Suppressing Assertions

The concept of justice suppressing assertion comes from the observation that for any ab-

stract state ��# if we know all the concrete states that are mapped to � # violate the same

concrete justice requirement � then we can safely add the justice requirement ��� # to the

abstract system. Here is the formal definition:

Definition 23 Let 2 be an abstract assertion, i.e., an assertion over the abstract state vari-

ables ��� . We say that 2 suppresses the concrete justice requirement � if, for every two

concrete states � � and ��� such that � � is a
 -successor of � � , and both � ��� �
 and � � � �
 satisfy

2 , � � � � � � implies � � � � � � .

In the MUX-SEM example the abstract assertion 2 � � � � 4 suppresses the concrete

justice requirement � � � � � � �� � . Here is the reasoning: Assume two states � � and ��� such

that � � is a successor of � � and both are counter-abstracted into abstract states satisfying
� � � 4 . This implies that both � � and � � have precisely one process executing at location

� . If � � satisfies � � � � � � � �%� ��
 then the single process executing at location � within

� � must be ��� � � . Since � � is a successor of � � and also has a single process executing at

location � , it must also be the same process ��� � � , because it is impossible for ��� � � to exit

location � and another process to enter the same location all within a single transition.

Definition 24 The abstract assertion 2 is defined to be justice suppressing if, for every

concrete state � such that � ���
 � � 2 , there exists a concrete justice requirement � such that

� � � � � and 2 suppresses � .

For example, the assertion � � � 4 is justice suppressing, because every concrete state

� whose counter-abstraction satisfies � � � 4 must have a single process, say ��� � � , execut-

ing at location � . In that case, � violates the justice requirement � � � � � � �� � which is

suppressed by 2 .

Theorem 25 (Safe Abstraction of Justice Requirements)

Let
�

be a concrete system and � be an abstraction that we apply to
�

. Assume that

89

2 � ��������� 2 � is a list of justice suppressing assertions. Let
� # be the abstract system ob-

tained by following the data abstraction recipe described in Section 4.1 and then adding

� � 2 � �������!��� 2 � � to the set of abstract justice requirements. If
� # � � � # then

� � � � .

Thus, we can safely add � � 2 � �������!��� 2 � � to the set of justice requirement, while preserving

the soundness of the method.

The proof of the theorem is based on the key observation that every abstraction of a

concrete computation must contain infinitely many ��2 -states for every justice suppressing

assertion 2 . Therefore, the abstract computations removed from the abstract system by the

additional justice requirements can never correspond to any abstraction of concrete com-

putations, and it is safe to remove them.

Theorem 25 is very general (not just restricted to counter abstraction) but it does not

provide us with guidelines on how to generate justice suppressing assertions. For the case

of counter-abstraction, we can have the following simple heuristics as our guidelines (later

in this chaper we will give a more formal formulation of the generation of such assertions):

G1. If the concrete system contains the justice requirements � � � � � � � O�
 , then the asser-

tion � � �54 is justice suppressing.

G2. If the concrete system contains the justice requirements �%� � � � � � O 6 ��
 , where � is

a condition on the shared variables (that are kept intact by the counter-abstraction),

then the assertion ��� � 4 6 � is justice suppressing.

G3. If the concrete system contains the justice requirements �%� � � � � � O�
 and the only

possible move from location O is to location O � 4 , then the two assertions � � �
� 6 � �

� �
� � and ��� � � 6 ���

� �
� 4 are justice suppressing.

G4. If the concrete system contains the justice requirements �%� � � � � � O 6 ��
 , where � is

a condition on the shared variables, and the only possible move from location O is to

location O � 4 , then the assertions � � � � 6 ���
� �

� � 6 � and ��� � � 6 � �
� �

� 4 6 �
are justice suppressing.

90

Example 1 According to the above guidelines we can add the following justice properties

of MUX-SEM # . Since for MUX-SEM we have the justice �%� � � � � � ��
 , and since every

move from location 2 leads to location 3, then by G1 and G2 the assertions � � � 4 , � � �
� 6 � � � � , and � ��� � 6 � � � 4 are all justice suppressing and their negation can be

added to � # . Similarly, the justice requirement �%� � � � ��� �
 leads to the justice suppressing

assertions � � � 4 , � � � � 6 � � � � , and � � � � 6 � � � 4 . The concrete compassion

requirement � � � � ��� 4 6 � � � � � ��� � � implies that the concrete assertion �%� � � � � � 4 6��

is a justice requirement for system MUX-SEM. We can therefore add �%� � � � 4/6 �
 to the

abstract justice requirement by G3. Since every move from location 1 leads to location 2,

by G4 we can also add �%� � � � � 6 � � � � 6 �
 to the abstract justice requirements.

In the next section we discuss the formal characterization of the abstract justice require-

ments which encompasses all the rules specified in the guidelines above.

4.2.2 Formal Characterization of Justice Suppressing Assertions

By the definition of justice suppressing assertions (Def. 24) we can characterize justice-

suppressing assertions using the following characteristic functions.

Theorem 26 Assertion 2 suppresses justice requirement � if and only if it satisfies the

assertion � 	

 � �'2 ���
 :
� 	

 � �'2 ���
 � � � � ��� � � 2 � � # ��� �

 6 2 � � # ��� �
�
 6
 ��� � � � �
 6 � � ��� �
 � � � ��� �
 �

Theorem 27 An assertion 2 is justice-suppressing if it and only if satisfies � 	

 �'2
 �

� 	

 �'2
 � � � � 2 � � # ����
�
 � � � � � � ���
 6 � 	

 � �'2 ���
 �
Justice-suppressing assertions have a few interesting properties which are useful in

forming such assertions.

Lemma 28 (anti-monotonicity) .

Given two assertions 2 � and 2 � , if 2 � � 2 � , then � 	

 �'2 �
 � � 	

 �'2 �
 .

91

Lemma 29 (monotonicity for disjoint unions) .

If two justice-suppressing assertions 2 � and 2 � are disjoint and there exists no transition

that leads from a state in 2 � to a state in 2 � or vice versa, then their union 2 � � 2 �
forms another justice-suppressing assertion. In other words, � 	

 ��2 �
 6 � 	

 ��2 �"
 � �
� 	

 ��2 � � 2 �
 .

In Lemma 29 it is crucial that there are no transitions that link the states between the

two justice-suppressing assertions. The absence of this requirement could give rise to the

following scenario: a concrete state � � violates only one justice requirement � and there is

a transition from � � (which satisfies 2 � � � ��� �

 6 � � ��� �
) to a concrete state � � satisfying

2 � � � � � �
�
 6 � �����
 . Therefore 2 � � 2 � does not suppress the justice requirement � and fails

the requirement of a justice suppressing assertion. Since the union of two justice suppress-

ing assertions is not guaranteed to be justice suppressing, there might not exist a weakest

justice suppressing assertion for a given system.

In some cases we can relax the requirement of two justice suppressing assertions be-

ing disjoint and still achieve the safe union of two assertions. For example, if two justice

suppressing assertions 2 � � 2 � suppress the same set of justice requirements and if any tran-

sition from a state in 2 � to a state in 2 � (and vice versa) keeps the same justice requirement

suppressed, or more precisely, satisfies the following assertion (which can be viewed as an

extension to the definition of � 	

 � ��2 ���
):

� 	

 � ��2 � � 2 ��� �
 � � � � � � � � 2 � � � # ��� �

 6 2 � � � # ��� �

 6
 ��� � � � �
 6 � � ��� �
 � � � ��� �

then the union of 2 � and 2 � is also a justice suppressing assertion.

Lemma 30 (monotonicity for safe unions) .

Given two justice-suppressing assertions 2 � and 2 � , if the following conditions are satis-

fied:

– Both 2 � and 2 � suppress the same set of justice requirements � � .

– For any � � � � we have � 	

 � �'2 � � 2 �����
 and � 	

 � ��2 ��� 2 � ���
 .

92

then their union 2 � � 2 � forms another justice-suppressing assertion, that is, � 	

 �'2 �
 6
� 	

 ��2 �
 � � � 	

 �'2 � �/2 �
 .

In particular, Lemma 29 can be viewed as a special case of Lemma 30.

Although there are no general formulas for computing justice-suppressing assertions,

we still can derive many interesting justice suppressing assertions in special cases. The

following theorem is an example of deriving a set of justice-suppressing assertions, each of

which includes a single state.

Theorem 31 The following assertion � $%��� � ���
 defines a set of abstract states such that

each state � in the set constitutes a justice-suppressing assertion:

� $ ��� � ���
 � � � � � �
� � # ���
 � ��� � � � � � � ���
 6 � 	

 � ��� � ���
�

According to Theorem 25, for each state in � $%��� � � �
 we can safely add � � as a jus-

tice requirement to the abstract system. One simple consequence of the justice requirement

� � is the effective removal of all self-loops on abstract state � in � $%��� � ���
 . A self-loop

on abstract state � means there exists a computation in the concrete system such that every

state ��� in the computation maps to � and � � � � � � for some justice requirement � because �
is justice-suppressing. However, this shows that this computation is unjust, therefore there

can’t be any self-loop on � .

Using Lemma 29 we can combine the single states in � $%��� � ���
 which don’t have

any transitions among them into a single assertion when possible. Also, given any justice-

suppressing assertion, we can always apply Lemma 28 to obtain a stronger assertion which

is guaranteed to be justice-suppressing. As a consequence we may assume that any justice-

suppressing assertion only contains the states that are in � $ ��� � ���
 .

We can derive stronger justice suppressing assertions using the components � � �������!��� �
of the concrete justice requirements � � � � � ����� � � � as shown in the following Lemma:

93

Lemma 32 Let � � � � � ����� � � � be the set of concrete justice requirements. Define

� 	

 � � ��2
 � � � � 2 � � # ���
�
 � � � � � � � � � ����
 6 � 	

 ��2 � ���

Then we claim � 	

 � � ��2
 � � 	

 ��2
 .

For program MUX-SEM, we can partition the justice requirements for the concrete sys-

tem into three subgroups:

– � � : the justice requirements on location 2. That is, � �%� � � � ��� ��
 � ��� � � 4 � � & � � .
– � � : the justice requirements on location 3. That is, � �%� � � � ��� �
 � ��� � � 4 � � & � � .
– ��� : the justice requirements derived from the compassion requirements 	 . That is,

� �%� � � � ��� 4 6 � � ��
 � ��� � � 4 � � & � � .

We can derive � $ ��� � �����
 � � $%��� � � � �
 ��� $%��� � ��� �
 using Theorem 31:

1. � $%��� � �����
 � � �*� � �
� � # ���
 � � � � � � � � � � 4 6 � � ��
 6 � � � � � � � � � �

�� # ��� �
 6
� �

� � # ��� �
 6
 ��� � � � �
 6 � � � � ���54�6 � � � ��
 � � � � � ��� 4 6 � � � ��

2. � $%��� � ��� �
 � � � � � �
� � # ����
 � � � � � � � ��� � 6 � � � � � � � ��� �

� � # ��� �
 6
� �

� � # ��� �
 6
 ��� � � � �
 6 � � � ��� � � � � � ��� ��

3. � $%��� � ��� �
 � � � � � �
� � # ����
 � � � � � � � ��� � 6 � � � � � � � ��� �

� � # ��� �
 6
� �

� � # ��� �
 6
 ��� � � � �
 6 � � � ��� � � � � � ��� �

It can be shown that all the states in � $%��� � ��� �
 are connected through “safe” transitions,

therefore � $%��� � ��� �
 is justice-suppressing by Lemma 30. The same holds for � $ ��� � �����

and � $%��� � ��� �
 . Finally we take their negations � � $ ��� � �����
 � � � $%��� � ��� �
 ��� � $%��� � � � �

as justice requirements and this turns out to be sufficient for proving liveness properties for

the counter-abstracted system.

94

4.2.3 Proving Liveness Properties

Safety properties such as mutual exclusion for the counter-abstracted system usually can be

checked easily by inspecting every state in the (finite) counter-abstracted graph (as shown

in the state graph of MUX-SEM). The liveness property one usually associates with the pa-

rameterized systems is individual accessibility, such as ��� � �(� � � � � � 4 � �1� � � � � � ��

in our example. Unfortunately, counter-abstraction does not allow us to observe the behav-

ior of an individual process. Therefore, the property of individual accessibility cannot be

expressed and verified in a counter-abstracted system. In Section 4.2.4 we show how to

extend counter-abstraction to handle individual accessibility properties.

There are, however, liveness properties that are expressible and verifiable by counter

abstraction. Such are live-lock freedom (or communal accessibility) properties of the form

�9� �(��� � � � � � �
�*4 � �,��� � � � � � �
� ��
�
 , stating that if some process is at locationO � , then eventually some process (not necessarily the same) will enter � . The counter-

abstraction of such a property is � # � �/� � � � � � �1� � � � ��
�
 . Model checking that � #
holds over $ � � # can be accomplished by standard model checking techniques of response

properties. E.g., the procedure in [LP85] suggests extracting from the state-transition graph

the subgraph pending states and showing that it contains no infinite fair path. A pending

state for a property
 � � � is any state which is reachable from a
 -state by a � -free path.

Example 2 Consider the system MUX-SEM # of program MUX-SEM and the abstract live-

lock freedom property - � �(� � � � � � �,� � � � ��
�
 . In Fig. 4.2, we present the subgraph

of pending states for the property - over the system MUX-SEM # .

� � � � � � � ��� ���

� � � � � � � � � ���

� � � � � � � ��� ���

� � � � � � � � � ���

� � � � � � � ��� ���

� � � � � � � � � ��� � � � � � � � � � ���

� � � � � � � ��� ��� � � � � � � � ��� ���

� � � � � � � � � ���

Figure 4.2: Reachability Graph for -

95

To show that this graph contains no infinite fair path we decompose the graph into

maximal strongly connected components and show that each of them is unjust. A strongly

connected subgraph (SCS) $ is unjust if there exists a justice requirement which is vio-

lated by all states within the subgraph. In the case of the graph in Fig. 4.2 there are ten

maximal SCS’s. Each of these subgraphs is unjust towards the abstract justice requirement

�%� � � � � 6 �
 derived in Example 1.

We conclude that the abstract property �/� � � � � � �,� � � � ��

 is valid over system

MUX-SEM # and, therefore, the property �(��� � ��� � � ��� 4 � �1��� � ��� � � ��� �
�
 is valid over

MUX-SEM .

4.2.4 Proving Individual Accessibility

As previously indicated, individual accessibility cannot be directly verified by standard

counter abstraction because the abstraction cannot observe individual processes. To prove

individual accessibility for the generic process ��� � � , we abstract the system by counter

abstracting all the processes except for ��� � � , whom we leave intact. We then prove that

the abstracted system satisfies the liveness property (the abstraction of which leaves it un-

changed, since it refers to � � � � that is kept intact by the abstraction), from which we derive

that the concrete system satisfies it as well.

The new abstraction, which is “counter abstraction save one”, is denoted by � . As

before, we assume for simplicity that the processes possess no local variables except for

their program counter. The abstract variables for � are given by � � �������!� ��� � � � � � � � � 3 �
� � � � � � � 8 � ��������� 8 � and the abstraction mapping

� . is given by

� � � ���� ��
� � � � � � 4 � � & � � � � � ��� � � � �� O4 � � � � 4 � � & � � � � � ��� � � � � O 6 � � �� � � � � � � � � � � �� O
� otherwise

� ������ for O � � �����������

3 � � � � �
8 � � � � for � �54 �������!���

96

We obtain
 . as usual. For � . , we include all the justice requirements obtained by the

recipe of [KP00b] and the guidelines of subsection 4.2.1, along with all the requirements

in � that relate to ��� � � . For 	 . we take all the requirements in 	 that relate only to ��� � � .

Without loss of generality we will show � � � � � 4 � � � � � � � � . We change the

compression/abstraction procedure to single out process 0 and then compress/abstract the

rest of the system $ �	&/
 . The abstract transition graph (Fig. 4.3) converges after &) 0
(instead of &) + when proving the safety property). In the abstract graph the edge labels

represent the number of transitions they correspond to in the concrete system; the square

states represent the states when process 0 is in the trying stage; the target states marked by

double ovals represent the states when process 0 enters the critical section.

To prove 2 � �(�'3 � 4 � �,�	3 � �
�
 , consider the subgraph of
� . that consists of

all the abstract states that are reachable from a �'3 � 4
 -state by a �'3 � ��
 -free path, and

show, as before, that this subgraph contains no infinite fair path.

Example 3 Consider the system MUX-SEM . and the liveness property 2 .,� �/� �'3 �
4
 � �1�'3 � ��
�
 . The subgraph of pending states is presented in Fig. 4.4. Each state in

this graph is labeled by a tuple which specifies the values assigned by the state variables

� � ��� � � � � ��� � � � 3 � 8 � .

Unlike the previous case, this system has the compassion requirement ��3 �54�6 8 � 3 � � �
associated with ��� � � . Since the subgraph contains no state satisfying 3 � � , no fair path

can pass infinitely often through any state satisfying 3 �*4 6 8 . Therefore, as a first

step, we remove from the graph all states satisfying 3 � 4 6 8 . This leads to the graph

presented in Fig. 4.5.

This graph consists of ten maximal SCS’s, each of which is unjust towards the abstract jus-

tice requirements �%� � � �54
 or �%� � � � 4
 , derived according to rule 1 of the guidelines of

subsection 4.2.1.

97

C0200, 0 1

E0200, 0

1

1

N0200, 1

1

C1200, 0

5

5

E1200, 0

5

5

5

N1200, 1

5

C2000, 0 1

C2100, 0

5

E2000, 0

1

5

C2200, 0

20

E2100, 0

5

1

5

N2000, 1

1

20

50

E2200, 0

20

5

20

N2100, 1

5

20

50

N2200, 1

20

1

N0210, 0

5

T0200, 1

1

5

5

N1210, 0

20

T1200, 1

5

1

5

T2000, 1

1

5

20

N2010, 0

5

T2100, 1

5

20

50

N2110, 0

20

N2210, 0

30

T2200, 1

20

5

N0201, 0

5

T0210, 0

5

5

5

T0201, 0

5

1

1

5

5

5

5

5

20

20

N1201, 0

20

T1210, 0

20

20

20

20

T1201, 0

20

5

5

5

20

20

20

20

20 20

20

N2001, 0

5

5

N2101, 0

20

T2001, 0

5

1

1

5

20

20

N2201, 0

60

T2101, 0

20 5

5

20

T2010, 0

5

5

5

20

20

20

60

T2110, 0

20

5

5

20

5

5

5

20

30

60

30

T2201, 0

30 20

20

60

60 30

30

T2210, 0

30

20

20

60

20

20

20

50

3060

30

30

60

30

30

Figure 4.3: State Transition Graph of Abstract System MUX-SEM . for $ �	&/
 with &*)10

98

��� � � � � � � � ��� � � ����� ��� �	� ��� ��
 ��

����� ��� �	� ��� ��
 ��
����� ��� ��� �	� ��
 ��

����� ��� ��� �	� ��
 ��
 ����� ��� �	� ��� ��
 ��

����� �	� ��� �	� ��
 ��

����� ��� �	� ��� ��
 ��

����� ��� �	� ��� ��
 ��
 ����� �	� ��� �	� ��
 ��
 ����� �	� ��� ��� ��
 ��
 ����� ��� � � ��� ��
 ��

����� �	� ��� �	� ��
 ��
 ����� �	� ��� �	� ��
 ��
 ����� ��� ��� �	� ��
 ��

Figure 4.4: Pending States of MUX-SEM . with Respect to 2

��� � � � � � � � � � � � ��� � � � � � � � ��� � � ��� � � � � � � � � � � � ��� � � � � � � � � � � � ��� � � � � � � � � � � �

��� � � � � � � � � � � � ��� � � � � � � � ��� � � ��� � � � � � � � ��� � � ��� � � � � � � � ��� � ���� � � � � � � � ��� � �

Figure 4.5: Pending states of MUX-SEM . After Removal of All �	3 �54 698
 -states

We conclude that the abstract property �(���	3 � 4
 � �,�	3 � ��
�
 is valid over

MUX-SEM . and, therefore, �(��� � � � ���54
 � �,� � � � ��� ��

 is valid over MUX-SEM.

4.3 Derivation of Abstract Compassion Requirements

In subsection 4.2.1 we showed how to derive additional justice requirements for a counter-

abstracted system. We now turn to abstract compassion requirements that do not always

correspond to concrete compassion requirements. Here we derive abstract compassion

requirements which reflect well-founded properties of some of the concrete data domains.

Consider program TERMINATE presented in Fig. 4.6.

99

in &:� integer where & � 4�
��� �

��� � � � �
�
� � skip4 � �

Figure 4.6: Program TERMINATE

Here the execution of the command skip does nothing but advancing the program counter,

and the empty instruction at location 1 only allows stuttering, that is, process ��� � � will be

stuck at location 1 forever. The liveness property we would like to establish for this program

is given by the formula 2 � �,� ����� � � � � � 4
 , stating that eventually, all processes reach

location 1. The counter abstraction for all $%�'&/
 where &) ; is given by the following

graph Fig. 4.7, representing system TERMINATE # :

�������
	 ��������	 �����
��	 ���
����	 ��������	
Figure 4.7: State Transition Graph of TERMINATE # for $ �	&/
 with &*) ;

In this graph, each state � is labeled by the values state � assigns to the abstract variables
� � and � � . The abstracted property 2 # is given by �,� � � � ��
 . However, this property is

not valid over TERMINATE # , even when we take into account all the justice requirements

derived according to subsection 4.2.1. These justice requirements force the computation to

eventually exit states � � � � � , ��� � 4 � , and � 4 � � � , but they do not prevent the computation from

staying forever in state � � ��� � .

To obtain a fairness requirement which will force the computation to eventually exit

state � � � � � we augment the system with two additional abstract variables and a correspond-

ing compassion requirement that governs their behavior.

Definition 33 Let $ � � � � � � � �
 ���(�
	 � be an FDS representing a concrete parameterized

system, where the locations of each process are � � � � � � . We define an augmented system

100

� � � � � � � � � �
 � ��� � �
	 � � as follows:

� � � � � � from � to � � � 4 � � � � �
� � � � 6 � from � � 4
 6 � to � � 4

 � �
 6 ���� � � � � 4 � � & � � O � �� O �
� � � � � � � � � � � ��� O � 6 � � � � ��� O � 6
� from � � O �
 6 � to � � O �

� ��� � � 4 � � & � ��� � � � ��� � � � � 6 � from � � � 4
 6 � to � � � 4

�����
� � � �
	 � � 	 � � � from � O � to � O � �	O � � � � � � � �

Thus, system $ � � is augmented with two auxiliary variables, from and to. Whenever a

transition causes some process to move from location O � to location O � �� O � , the same

transition sets from to O � and to to O � . Transitions that cause no process to change its lo-

cation set both from and to to � 4 . For every O � � � � � � � , we add to $ � � � the compassion

requirement � from � O � to � O � . This compassion requirement represents the obvious

fact that, since the overall number of processes is bounded (by &), processes cannot leave

location O infinitely many times without processes entering location O infinitely many times.

Comparing the observable behavior of $ � � and $ � � � , we can prove the following:

Theorem 34 Let � be an infinite sequence of � -states. Then � is a computation of $ � � iff

it is a � -projection of a computation of system $ � � � .

proof: Note that this compassion requirement is a global requirement on the entire pa-

rameterized system $ � � � . It is not hard to show that the � -projection of a computation of

system $ � � � is a computation of $ � � . For a computation � of system $ � � we can construct

a computation � � in $ � � � by augmenting each state with the variables � � �
 and
�
� . We

can show that this computation satisfies the compassion requirement � � � �
 � ��� � � � � �
due to the boundedness of the finite number of processes & . So � � is a fair computation of

$ � � � . It is obvious that the � -projection of � � is � . Thus, the augmentation of $ � � does

not change its observable behavior.

101

Consequently, instead of counter-abstracting the system $ � � , we can counter-abstract

$ � � � . We denote by $ � �

 � �'$ � � �
 # the counter abstraction of the augmented system

$ � � � . In the presence of the auxiliary variable from, we can derive an even sharper justice

requirement. We can replace the guidelines of subsection 4.2.1 by the following single rule:

G5. If the concrete system contains the justice requirements �%� � � � � � O 6 ��
 , where � is

a condition on the shared variables and process indices other than � , then we may add

to $ � �

the justice requirement from � O � �%� ��� � � 6 � #
 , where � # is the counter

abstraction of � .
Reconsider program TERMINATE . Applying the augmented abstraction, we obtain the fol-

lowing abstraction TERMINATE

, where each state � is labeled by the values � assigns to

the variables � � ��� � � � from � to � (symbol “ � ” stands for � 4):

����� ��� �	� ��
 ����� ��� �	� ��
 �
��� ��� �	� ��
 ���	� ��� �	� ��

����� ����������
 ����� ����������
 ����� ����������
 ����� ����������
 ����� ����������

This system is augmented by the additional justice requirement � from � ��
 � � � � � ��

(generated according to G5) and the compassion requirement � from � � � to � � � .

A detailed analysis of the SCSs in the above graph reveals that all of them with the ex-

ception of � � � � � � � � � � � are unfair. For instance, subgraphs � � � � � � � � � � � , � � � � 4 � � � � � � ,

and � � 4 ��� � � � � � � violate the justice requirement � from � ��
 � � � � � �
 . And subgraph

� � � ��� � � � 4 �!� � � ��� � � � � � � violates the compassion requirement � from � � � to � � � . The

standard remedy for this is to remove the state satisfying from � � , namely � � � � � � � 4 �
this leaves us with the SCS � � � ��� � � � � � � which violates the justice requirement � from �
��
 � � � � � ��
 . The remaining SCS’s (� � � � 4 � � � 4 � � , � � 4 � � � � � 4 � � , and � � � � � � � � 4 � �) are

singleton subgraphs which are not connected to themselves so the fair run cannot visit them

more than once.

102

It follows that every fair run traversing the subgraph of TERMINATE

must eventually

reach state � � � � � � � � � and remain there forever. It follows that TERMINATE

satisfies

�,� � � � ��
 and, therefore, that the concrete system TERMINATE satisfies ��� � �,� � � � � �� ��
 .

4.4 Implementing Counter Abstraction using TLV

In this section we describe how to implement counter abstraction using TLV, the pro-

grammable model checker from Weizmann Institute of Science in Israel. TLV is a verifica-

tion tool set designed by Elad Shahar [PS96] based on the SMV system [McM92] with all

the model checking algorithms removed. It provides an interpretive, weakly typed script-

ing language which uses BDDs to represent expressions in propositional logic. One great

benefit of TLV is that it allows the user to program his own procedures and functions for

formal verification tasks such as model checking and deductive verification using simple

and intuitive scripting language. For this reason we choose it as our tool for the devel-

opment of new verification paradigms. In the following sections we will describe some

implementation details. For clarity we use a distinctive font to distinguish the TLV scripts

from the rest of the text.

Implementing Counter Abstraction Mapping

Suppose we have the concrete system CS which consists of Nproc MP processes P[1],

..., P[Nproc] , and the shared variable y. Each process MP has Nloc locations.

CS: system conc-muxsem(Nloc,Nproc);
MODULE conc-muxsem(Nloc,Nproc)
VAR
P : array 1..Nproc of process MP(y,Nloc);
y : boolean;

We would like to use counter abstraction to obtain the abstract system AS with the shared

variable YY.

AS: system abs-muxsem(Nloc);
MODULE abs-muxsem(Nloc)

103

VAR
YY : boolean;
C : array 0..Nloc of 0..2; -- abstract (counter) variables

To implement the abstract mapping we count the number processes in each location

using the function how-many.

Func how-many(jloc);
Local count := 0;
For (k in 1..Nproc)
Let count := count + (CS.P[k].loc=jloc);

End
Return count;

End

The procedure prepare is used to implement the abstract mapping and store it in the variable

abst.

To prepare;

--Load the TLV rule file for counter abstraction
Load "auto-abs.tlv";

Let abst := (YY = y); --here YY = AS.YY, y = CS.y
For (i in 0..Nloc)
Print "\n Computing abstraction of C[",i,"]\n";
Let sum := how-many(i);
Let abst := abst & (AS.C[i] = case

sum=0 : 0;
sum=1 : 1;
1 : 2;

esac);
End

End -- To prepare;

Implementing Data Abstraction in TLV

In the sequel we present the main functions and procedures defined in the TLV rule file

auto-abs.tlv for automatic counter abstraction (see Appendix 5.2 for the entire script).

Before abstracting the concrete system, we need to first define “expanding” abstraction and

104

“contracting” abstraction in TLV. Let vars1 be the set of present concrete variables, and

all vars1 be the set of all present and next-state concrete variables. The function abs-

assert implements the expanding � � abstraction for an assertion phi:

Func abs-assert(phi);
Local result := (phi & abst) forsome vars1;
Return result;

End

Similarly the contracting � � abstraction is defined as:

Func cont-abs-assert(phi);
Local result := !abs-assert(!phi);
Return result;

End

The � � � abstraction for a transition relation rho is defined using function abs-trans:

Func abs-trans(rho);
-- abst is the abstract mapping,
-- and abstp is the prime (or future) version of abst
Local result := (rho & abst & abstp) forsome all_vars1;
Return result;

End

Now we can perform the data abstraction on the concrete FDS
�

to obtain the abstract

FDS
� # . The procedure abs-sys abstracts the initial condition, the transition relation, the

justice and compassion requirements of the concrete system s[1] into the corresponding

components of the abstraction system s[2] according to the data abstraction recipe in

[KP00b].

To abs-sys;
Print "\n Start abstraction\n";
Let vars1 := _s[1].v;
Let all_vars1 := set_union(vars1,prime(vars1));
Let abstp := prime(abst);

--abstract the initial condition
Let conci := _s[1].i;
Let _s[2].i := abs-assert(conci);

105

--abstract the transition relation, since the transition
--relation is represented by tn disjunctive partitions, we
--abstract each partition separately.
Let _s[2].tn := _s[1].tn;
For (i in 1.._s[1].tn)
Print "\n Abstract transition t[",i,"]\n";
Let conct := _s[1].t[i];
Let _s[2].t[i] := abs-trans(conct);

End -- For (i in 1.._s[1].tn)

--abstract the justice requirements using KP formulation
Let _s[2].jn := _s[1].jn;
For (i in 1.._s[1].jn)
Print "\n Abstract justice requirement J[",i,"]\n";
Let concj := _s[1].j[i];
Let _s[2].j[i] := abs-assert(concj);

End

--abstract the compassion using KP formulation
Let _s[2].cn := _s[1].cn;
For (i in 1.._s[1].cn)
Print "\n Abstract compassion requirement PQ[",i,"]\n";
Let _s[2].cp[i] := cont-abs-assert(_s[1].cp[i]);
Let _s[2].cq[i] := abs-assert(_s[1].cq[i]);

End
End -- To abs-sys;

Implementing Counter Abstraction of Justice Requirements

The justice and compassion requirements for the abstract system obtained using the above

data abstraction method proposed in [KP00b] are too weak for proving accessibility in pa-

rameterized systems such as MUX-SEM . We need to strengthen the abstract justice require-

ments by computing justice suppressing assertions and then adding their negated forms to

the abstract justice requirements. There are two possible methods for generating justice

suppressing assertions.

The first one is by implementing heuristics G1 – G4:

– Scan all the justice requirements stored in s[1].t[] for patterns �%� � $ � ��� � � � � � � �

106

�	
 and �%� � $ � ��� � � � � � � � � 6 �!
 where � is a condition on the shared variables.

– If we find a match in the first pattern, then we add the justice requirement �%� ��$ � � � � � �
4
 by G1, and �%� � $ � � � � � � � 6 � $ � � ��� � 4�� � ��
 by G3 if the only possible move

from location � is to location � � 4 .

– If we find a match in the second pattern, then we add the justice requirement �%� ��$ � � � � � �
4�6 ��
 by G2, and �%� � $ � � � � � � � 6 � $ � � ��� � 4�� � � 6 ��
 by G4 if the only possible

move from location � is to location � � 4 .

The second method is to compute the candidates for justice suppressing assertions ac-

cording to the formula provided in Theorem 31. We implement a function calcJ which

takes the parameters cjust and jcount and calculates an assertion aJ which represents

� $%��� � ���
�
�� � �
 . The parameter cjust picks the justice requirement � � 	 � � in a concrete

process. The parameter jcount counts the total number of justice requirements for a

concrete process.

Func calcJ(cjust, jcount);
Local accum := 0;
Local curj := cjust;

-- Combine the disjunctive partitions of the transition
-- relation into a single one.
Local trans_cur := 0;
For (i in 1.._s[1].tn)

Let trans_cur := trans_cur | _s[1].t[i];
End

-- Calculate JS(V_A, J_cjust)--------------------------
-- The loop-k is used to cycle through the number cjust
-- justice requirement for process 1..Nproc

For (k in 1..Nproc)
Local temp := trans_cur & abst & abstp & !(_s[1].j[curj])

& prime(_s[1].j[curj]);
Let temp2 := !(temp forsome all_vars1);
Let accum := accum | !(_s[1].j[curj]) & temp2;
Let curj := curj + jcount;

End

107

Local aJ := !((abst & !accum) forsome vars1);
Return aJ;

End -- Func CalcJ

Similarly we implement a function calcJCwhich takes the parameters ccomp and ccount

and calculates an assertion aJ which represents � $%��� � ����������� � �
 , where ��������� � � represents

the justice requirement obtained from the compassion requirement � � �

 . The parameter

ccount counts the total number of compassion requirements for a concrete process.

Func calcJC(ccomp, ccount);
Local accum := 0;
Local curc := ccomp;
Local trans_cur := 0;

For (i in 1.._s[1].tn)
Let trans_cur := trans_cur | _s[1].t[i];

End

-- Calculate JS(V_A, J_(C_ccomp))----------------------
-- The loop-k is used to cycle through the number ccomp
-- compassion requirement for process 1..Nproc

For (k in 1..Nproc)
Local temp := 0;
Let temp := (trans_cur & abst & abstp & (_s[1].cp[curc])

& !prime(_s[1].cp[curc])) forsome all_vars1;

Let accum := accum | (_s[1].cp[curc]) & !temp;
Let curc := curc + ccount;

End

Local aJ := !((abst & !accum) forsome vars1);
Return aJ;

End -- Func CalcJC

The assertions calculated using the functions calcJ and calcJC include the jus-

tice suppressing states, and often the assertions themselves are justice suppressing by

Lemma 30 or Lemma 29. Adding these fairness conditions to the abstract system can

be crucial for proving liveness properties of parameterized systems.

108

4.5 Examples

We applied the counter abstraction methods to several interesting parameterized systems

for which few methods had succeeded proving their liveness properties.

4.5.1 Szymanski’s Mutual Exclusion Algorithm

Our first test case is a slight variation from the mutual exclusion algorithm due to B. Szy-

manski [Szy88]. The original algorithm used two local boolean variables: � and � in each

process. However, since the values of these variables can be determined by the location

of the process owning them, it is possible to represent the algorithm using pure locations,

which is the version presented in Fig. 4.8.

in
���

integer where
�����

�
��� � � � � �'���

())))))))))))))))))*

loop forever do())))))))))))))*

� �
noncritical�	�
await > @ ��� � @ ����������� � . ���

� �
skip

� �
if � @ �	� � @ �
��� ��. � �

then goto
+&B

else goto
+�I

�$�
await � @ ��� � @ ����� � ��� ���

� �
await > @ ��� � @ ��9��� � . ���

� �
await > @ � @ 5 � ��� � @ ����������� � �

� �
critical

KMLLLLLLLLLLLLLLN

KMLLLLLLLLLLLLLLLLLLN
Figure 4.8: Parameterized Mutual Exclusion Algorithm SZYMANSKI

Strictly speaking, the algorithm is not symmetric since the instruction in location O J
depends on the id of the executing process � . Furthermore, the waiting-for condition in O J ,
� � � � �5��� � � � � � � � � � � � can not be tracked by counter abstraction. In order to express

this condition in our abstracted system we need to introduce an additional abstract variable

���
�� to our abstraction mapping. We define

���
�� �
�

� � � � � � � � �) � � � �7�

� � � � � � � � � �

109

This variable maintains the location of the process with the minimal index among those in� � ��� ; lmin is 0 when there are no processes in locations
� � ��� . Once the abstraction map-

ping of this variable is defined, the abstract transition relation is automatically computed

using data abstraction. Without additional justice abstraction the counter abstracted system

trivially establishes the safety property of mutual exclusion of the Szymanski algorithm as

presented in Fig. 4.8.

In order to prove the live-lock freedom property - � ��� � � � � � � � 4
 � �,��� � � � � � � �
��
 , ����������	

contains the abstract justice requirements from � O�� � � � ���
 for each ab-

stract transition � departing from location O �� � , where � � ���
 is the enabling condition

for � . Consider, for example, the transition corresponding to a process moving from lo-

cation 0 to location � . The enabling condition for the corresponding abstract transition is
� J � � 6 �
 � �/� 0 . Consequently, we include in the abstract FDS the justice requirement

from � 0 � �%� � J � � 6 �
 � � � 0�
 . In addition, we included in the abstracted system

the compassion requirements � from � O � to � O � , for each O � � �������!��� . Using the ab-

straction � ��������	

, we were able to verify the property - ensuring freedom from live-lock.

We present the resulting abstract FDS � ��������	

, following the recipe of Section 4.3 in Ap-

pendix 5.2. Note that the auxiliary variable �
 � � is essential only for the proof of mutual

exclusion. Live-lock freedom can be established without this auxiliary variable.

To prove individual accessibility, we applied � abstraction to � � ��� ��	 � . Some book-

keeping was needed to maintain the value of lmin to store the location of the non-
�

process

whose index is minimal among those in locations
� � ��� (including

�
.)

4.5.2 The Bakery Algorithm

Consider a variant of Lamport’s Bakery Algorithm for mutual exclusion presented in Fig. 4.9.

An interesting feature of the algorithm is that the infinite data domain–processes choose

“tickets” whose values are unbounded. To counter abstract ����
�� � � , we used a variable

�
 � � , with a role similar to the one used in � � �
 � � � � � . Here �
 � � is the location of the

110

in
� �

integer where
�����

local ! � array
�
���������

of integer where y = 0

�
� � � � � � � ���

()))))))))*
local � ! : integer
loop forever do())))*

� �
noncritical�	� � ! � # ,������ �

 � � ! � @ �21 DF�
� � ! � � �'� #�� !
� �

await >�@ 9#A� � � � @ ��9# �	� , ! � @ � # � < , ! � � �/. � 1�
 � �
� , ! � @ �/. @ 1 1
�$�

critical; ! � � �'� # �
KMLLLLN
KMLLLLLLLLLN

Figure 4.9: The Bakery Algorithm

process � whose � � � � � � �
 is (lexicographically) minimal among those in locations � � � ; . The

system ����
������

is described in Appendix 5.2. The mutual exclusion property of the proto-

col, �/� � B � ��
 , as well as the live-lock freedom property, �(� � � � � � � � � B � ��
�
 were

easily established in TLV (the Weizmann Institute programmable model checker [PS96]).

To establish the individual accessibility property, � � � �
�*4 � �1� � � � �
� ;�
 , we applied

� abstraction to ����
�� � � � . As in the case of � � �
 � � � � � , some bookkeeping was needed

to maintain the value of �
 � � to store the location of the non-
�

process whose index is

minimal among those in locations � � � ; (including
�
.)

Conclusions

In Table 4.1 we give the user run-time (in seconds) results of our various experiments. All

verifications were carried out in TLV.

MUX-SEM (sec) ����������� (sec) ����������� (sec)
Mutual Exclusion and Live-lock Freedom 0.02 0.69 0.12
Mutual Exclusion and Individual Accessibility 0.03 95.87 1.06
(abstraction)

Table 4.1: Counter Abstraction Run Time Results

These results are encouraging because they demonstrate that a sound abstraction method,

counter abstraction, can automatically abstract and prove safety as well as liveness proper-

ties of parameterized systems. In particular we present the derivation of additional fairness

111

conditions (both weak and strong) which enable us to perform automatic verification of

interesting liveness properties of non-trivial parameterized systems. The abstraction and

derivation are both automated using TLV, and this distinguishes this abstraction method

from others. Further research performed by the ACSys group at NYU demonstrated the

successful application of counter abstraction on some interesting probabilistic protocols

[APZ03]. Still, applying this method to real world problems can hit complexity hurdles.

For example if each process in the parameterized system consists of both a lot of locations

and shared variables then the complexity of counter abstraction can quickly exceed the

capacity of a software tool, such as TLV.

112

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In the previous chapters we described automatic approaches toward the problem of param-

eterized verification. In the invisible invariants method we established the small model

property for Bounded Data Systems and reduced parameterized verification into model-

checking inference rules for small instances of BDS systems. In order to automate the

whole process we proposed various heuristics to automatically generate inductive assertion

candidates. This approach has been successfully applied to many well-known protocols to

check safety properties ranging from invariance to waiting-for formulas. Further research

done by the NYU Verification group has shown that by adding justice requirements to the

BDS system, this approach can be successfully applied to liveness properties as well.

For stratified BDS systems the invisible invariant method is sound but incomplete. Thus,

for certain correct safety properties we might not be able to generate an inductive assertion

with desired logical form for the small model property. The major difficulty in the method

is the automatic generation of the needed auxiliary inductive assertions. The heuristics we

have proposed in this thesis cover formulas of simple logical forms. The heuristics don’t

guarantee the generation of the right inductive assertions, and failure in proving a safety

property leaves two possible scenarios:

– The property is not true.

– We failed to generate the right set of inductive assertions.

Normally we first try to rule out the second scenario by using different heuristics to gener-

ate new assertions or by strengthening the assertions to make them inductive.

113

We have also extended the invisible invariant method to verify unstratified BDS sys-

tems, which is illustrated by verifying the safety property of Peterson’s Mutual Exclusion

Algorithm. We presented a sound method and demonstrated its successful application to

Peterson’s Algorithm.

Applying small model properties is a powerful strategy in parameterized verification

because it often reduces the problem to finite-state domain and produces sound verifica-

tion methods. In this thesis we use small model properties for deductive verification of

parameterized systems. The bounds obtained from the small model properties allow us

to apply efficient verification techniques such as model checking to discharge verification

conditions in deductive methods. This mixed approach is powerful because the expressive

power of deductive methods allows us to model and solve problems with an infinite state

space and the model checking technique allows us to quickly and automatically discharge

proof obligations in small instances. This is a perfect example of the appropriate combina-

tion of methods in formal verification to solve complex verification problems. The cutoff

values computed using small model properties for BDS systems are sometimes compared

with the cutoff values obtained using other methodologies. These comparisons are only

meaningful in a restricted context because most small model theorems are only valid for

a given verification method. Arguably the bound can reflect some intrinsic properties of

the parameterized system itself and might suggest that the entire system behavior can be

captured using small instances of the parameterized system.

The second approach, counter abstraction, defines a special “counter” abstraction re-

lation which counts the number of processes at all program locations using three values

� � 4 and � � � . Safe data abstraction ([KP00b]) is performed on the concrete parameter-

ized system to obtain a finite abstract system. Usually such an abstract system is sufficient

for proving safety properties about resource-sharing; such as mutual exclusion. However,

the abstract justice and compassion requirements obtained using the [KP00b] data abstrac-

tion are often too weak to prove liveness properties, such as communal accessibility. We

strengthen the abstract justice requirements by adding the negation of justice-suppressing

114

assertions as new justice requirements. This effectively breaks many loop conditions on

abstract states, especially many self-loops on a single state, and proves sufficient for prov-

ing liveness in many test cases. This justice-strengthening procedure is safe, it guarantees

that the resulting new system is still a valid abstraction of the concrete system.

We also studied how to abstract the compassion requirements that are needed in proving

many liveness properties. Like many other abstractions, counter abstraction will sometimes

group and “collapse” too many concrete states into an abstract state and introduce loops due

to the abstraction procedure itself and not any true computation. An augmented counter

abstraction method is proposed by adding two auxiliary variables
�
����� � �
 to record the

location change of the current transition. This allows us to “split” some otherwise super

abstract states and break unwanted loops introduced by the abstraction.

Counter abstraction can be used to prove “communal” properties about the entire sys-

tem. In order to prove properties for an individual process we can preserve one single

process in the system and counter abstract the rest of the system; this method works well

in checking individual liveness properties.

5.2 Future Work

The method of invisible invariants has demonstrated an interesting automatic method for

verifying parameterized systems. Heuristics developed for generating inductive assertions

can be applied in the general deductive verification context. We should continue the study

of developing heuristics for the automatic generation of inductive assertions for more com-

plicated logical forms. Other approaches for generating inductive assertions should also be

explored. Also we should put the entire method in a general automatic framework, which

can automatically and systematically apply different heuristics to generate auxiliary asser-

tions, and discharge the premises for various inference rules. Extension of this method

to other temporal formulas is a very interesting and promising area to look into. Despite

115

our success in various test cases it is clear that we still need to work hard to contain the

complexity issue. Our current tool set needs to incorporate more advanced reachability

algorithms in order to tackle the complexity issue.

There are several interesting applications of counter abstraction, such as proving the

liveness of Szymanski algorithm and the Bakery algorithm. It has been successfully ap-

plied in probabilistic verification as well. In many test cases, auxiliary variables are often

introduced to encode program conditions that are necessary to guarantee an abstraction

strong enough to prove the target properties. However, the addition of these auxiliary

variables is often ad-hoc. We should look into techniques to automate these procedures.

Besides the justice-suppressing assertions we should find other “safe” ways to abstract and

strengthen the justice requirements. Abstracting compassion requirements is still mostly

an open problem. Unlike justice, a lot of compassion requirements are global requirements

which often require the use of additional auxiliary variables to encode some program condi-

tions and to memorize the execution history, all of these being computationally expensive.

These challenges must be addressed when considering the abstraction of compassion re-

quirements. Finally, just as in the invisible invariant method we need a flexible general

framework under which the automatic abstraction can be performed. It should be general

enough to accommodate abstract relations other than counter abstraction and to provide a

systematic way to strengthen the fairness requirements for proving the liveness properties.

In a word, the work has just begun.

116

Appendix A: Description of ���������
	
�

The transition system � ��������	

 � � � ��� �
 ���(�
	 � is defined as follows (Each statement of

the form � � �� �������!� � ��
 � � � � � �������!� � �
 is an abbreviation for � �� � � � 6 ����� 6 � ��
�

� � 6 � � � � � � � � ��������� � ��� � � � � � .):

� � � � ����������� �
� � � � � � � � � �
 � � � � � � � � ��� � � from � to � � � 4 � ��� � �
� � � � � � 6 � O � � 4 � ��� � � ��� � � 6 �
 � �/� � 6 from � � 4 6 to � � 4

 � � � � � � � �
 � � � � � � 6 � � � � � � � from � to
 � � � � ��� 4 � � � � 4 � � � 4

� � � � � � � � � 6 � � � � I � � J � �
� � ��
 6
� � � � � ��� from � to
 � � � � � � 4 � � �

� 4 � 4 � �

� � �
� � � � � ��
 6 � � ��� � � � from � to ���
 � �
 � � � � � � 4 � � � � 4 � � � � � �

� � �
� � � � � ��
 6 � � ��� � � � from � to
 � � � � ��� 4 � � � � 4 ��� � �

� � � B � � � � � � 6 � � � � � � ��
 6 �
 � � �� � 6

� � � � � B � from � to
 � � � � � � 4 � � B � 4 � � �";�

� � � B � � � � � � 6 � � � � � � ��
 6 �
 � �(� � 6

� � � � � B � from � to ���
 � �
 � � � � � � 4 � � B � 4 � � �"; �";�

� � � B � � � � � � 6 � � � � � � ��
 6 �
 � �(� � 6 � � � 4
 6

� � � � � B � from � to ���
 � �
 � � � � � � 4 � � B � 4 � � �"; � �

� � � I � � � � � � 6 � � � � � � ��
 6 �
 � � �� � 6

� � � � � I � from � to
 � � � � � � 4 � � I � 4 � � � +

� � � I � � � � � � 6 � � � � � � ��
 6 �
 � �(� � 6

� � � � � I � from � to ���
 � �
 � � � � � � 4 � � I � 4 � � � + � +

� � � I � � � � � � 6 � � � � � � ��
 6 �
 � �(� � 6 � � � 4%6

� � � � � I � from � to ���
 � �
 � � � � � � 4 � � I � 4 � � � + � �

117

� � B � � � B � � 6 � I � � J � �
� � ��
 6 �
 � � �� ; 6
� � B � � I � from � to
 � � � � B � 4 � � I � 4 �"; � +

� � B � � � B � � 6 � I � � J � �
� � ��
 6 �
 � �(� ; 6
� � B � � I � from � to ���
 � �
 � � � � B � 4 � � I � 4 ��; � + � +

� � B � � � B � � 6 � I � � J � �
� � ��
 6 �
 � �(� ; 6 � � � � 6
� � B � � I � from � to ���
 � �
 � � � � B � 4 � � I � 4 ��; � + �";�

� � I � � � I � � 6 � � � � B � ��
 6 �
 � � �� + 6
� � I � � J � from � to
 � � � � I � 4 � � J � 4 � + � 0�

� � I � � � I � � 6 � � � � B � ��
 6 �
 � � � + 6
� � I � � J � from � to ���
 � �
 � � � � I � 4 � � J � 4 � + � 0 � 0�

� � I � � � I � � 6 � � � � B � ��
 6 �
 � � � + 6 � I � 4 6
� � I � � J � from � to ���
 � �
 � � � � I � 4 � � J � 4 � + � 0 � 0�

� � J � � � J � ��
 6 �
 � �(� � 6 � � J � � � � from � to
 � � � � J � 4 � �
� � 4 � 0 � ��

� � � � � � � � ��
 6 � � � � I � � J � �
� �54%6

� �
� � � ��� from � to ���
 � �
 � � � � � 4 � � � � 4 � � � � � ��

� � � � � � � � ��
 6 � � � � I � � J � �
� � 476 � � � � 6

� �
� � � ��� from � to ���
 � �
 � � � � � 4 � � � � 4 � � � � � �

� � � � � � � � ��
 6 � � � � I � � J � �
� � 476 � B � � 6

� �
� � � ��� from � to ���
 � �
 � � � � � 4 � � � � 4 � � � � �";�

� � � � � � � � ��
 6 � � � � I � � J � �
� � 476 � I � � 6

� �
� � � ��� from � to ���
 � �
 � � � � � 4 � � � � 4 � � � � � +�

� � � � � � � � ��
 6 � � � � I � � J � �
� � 476 � J � � 6

� �
� � � ��� from � to ���
 � �
 � � � � � 4 � � � � 4 � � � � � 0�

� � � � � � � � ��
 6 � � � � I � � J � �
� � 476 �
� � 4%6

� �
� � � ��� from � to ���
 � �
 � � � � � 4 � � � � 4 � � � � � ��

� � � from � O � � � � � O � � 4 � � �"; � + � 0 ��� � 	 � � from � � � � � � B �

� � from � � � � � � I �
	 �

�
�
� � �
� from � O � to � O �

118

Appendix B: Description of � ������� �
�

The transition system ����
������

� � � ��� �
 ���/�
	 � is defined as follows:

� � � � ���������!� � B � � � � � � � � �
 � � � � � � � � � ; � � from � to � � � 4 � � ; � �
� � � � � � 6 � O � � 4 � � ; � � � � � � 6 �
 � � � � 6 from � � 4 6 to � � 4

 � � � � � � � �
 � � � � � � � � from � to
 � � � � � � 4 � � � � 4 � � � 4
�

� � � � � � � � ��
 6 �
 � � �� � 6 � � � � � ��� from � to
 � � � � � � 4 � � �
� 4 � 4 � ��

� � � � � � � � ��
 6 �
 � � � � 6
� � � � � � � from � to ���
 � �
 � � � � � � 4 � � �

� 4 � 4 � � � ��

� � � � � � � � ��
 6 �
 � � �� � 6 � � � � � � � from � to
 � � � � � � 4 � � � � 4 � � � �

� � � � � � � � ��
 6 �
 � � � � 6

� � ��� � � � from � to ���
 � �
 � � � � � � 4 � � � � 4 � � � � � �

� � � � � � � � ��
 6 �
 � � � � 6 � � � 4%6

� � ��� � � � from � to ���
 � �
 � � � � � � 4 � � � � 4 � � � � � ��

� � � � � � � � � 6 �
 � � � �
 6

� � � � � B � from � to ���
 � �
 � � � � � � 4 � � B � 4 � � �"; �";�

� � B � � � B � ��
 6 � �

� � � � � B �54 6
� � B � � � � from � to ���
 � �
 � � � B � 4 � � � � 4 ��; � � � ��

� � B � � � B � ��
 6 � � � � 6
� � B � � � � from � to ���
 � �
 � � � B � 4 � � � � 4 ��; � � � �

� � B � � � B � ��
 6 � � � � 6
� � B � � � � from � to ���
 � �
 � � � B � 4 � � � � 4 ��; � � � �

� � B � � � B � ��
 6 � B � 4%6
� � B � � � � from � to ���
 � �
 � � � B � 4 � � � � 4 ��; � � �";�

� � � from � O � � � � � O � � 4 � � ; �
	
	 �

B
�
� � �
� from � O � to � O �

119

Appendix C: TLV Rule File for Counter Abstraction

-- Auto-abs.tlv
-- Auxiliary file for abstracting an FDS
--

Func abs-assert(phi);
Local result := (phi & abst) forsome vars1;
Return result;

End -- Func abs-assert(phi);

Func cont-abs-assert(phi);
Local result := !abs-assert(!phi);
Return result;

End -- Func cont-abs-assert(phi);

Func abs-trans(rho);
Local result := (rho & abst & abstp) forsome all_vars1;
Return result;

End -- Func abs-assert(phi);

-- Automatic Data Abstraction According to KP[00]

To abs-sys;
Print "\n Start abstraction\n";
Let vars1 := _s[1].v;
Let all_vars1 := set_union(vars1,prime(vars1));
Let abstp := prime(abst);

Let conci := _s[1].i;
Let _s[2].i := abs-assert(conci);

Let _s[2].tn := _s[1].tn;
For (i in 1..._s[1].tn)
Print "\n Abstract transition t[",i,"]\n";
Let conct := _s[1].t[i];
Let _s[2].t[i] := abs-trans(conct);

End -- For (i in 1..._s[1].tn)

Let _s[2].jn := _s[1].jn;

120

For (i in 1..._s[1].jn)
Print "\n Abstract justice requirement J[",i,"]\n";
Let concj := _s[1].j[i];
Let _s[2].j[i] := abs-assert(concj);

End -- For (i in 1..._s[1].jn)

Let _s[2].cn := _s[1].cn;
For (i in 1..._s[1].cn)
Print "\n Abstract compassion requirement PQ[",i,"]\n";
Let _s[2].cp[i] := cont-abs-assert(_s[1].cp[i]);
Let _s[2].cq[i] := abs-assert(_s[1].cq[i]);

End -- For (i in 1..._s[1].cn)

End -- To abs-sys;

Func concs(st);
-- Concretize abstract state "st"
Local r := (st & abst) forsome vars2;
Return r;

End -- Func concs(st);

To check_counter;
-- Check for counter example. If there exists one, print concrete version
Let vars2 := _s[2].v;
If(exist(ce[1]))
Print "\n Concrete counter-example follows:\n";
Local L := length(ce);
Let cce[1] := concs(ce[1]) & _s[1].i;
Local ic := 1;
While (ic<L)
Local nxst := succ1(cce[ic],1) & concs(ce[ic+1]);
If(nxst)
Let ic := ic+1;
Let cce[ic] := nxst;

Else
Break;

End -- If(nxst)
End -- While (ic<L)
Let cce[ic] := fsat(cce[ic],vars1);
Let jc := ic - 1;
While (jc>0)
Let cce[jc] := fsat(pred1(cce[jc+1],1) & cce[jc],vars1);
Let jc := jc - 1;

121

End -- While (jc>0)
-- Print counter example.
For (i in 1...ic)
Print "\n---- State no. ", i," =\n", cce[i];

End -- For (i in 1...ic)
End -- If(exist(ce))

End -- To check_counter;

--
--Functions for abstracting justice suppressing assertions
--

Func calcJ(cjust, jcount);
Local accum := 0;
Local curj := cjust;

-- Combine the disjuctive partitions of the transition
-- relation into a single one.
Local trans_cur := 0;
For (i in 1.._s[1].tn)

Let trans_cur := trans_cur | _s[1].t[i];
End

-- Calculate JS(V_A, J_cjust)--------------------------
-- The loop-k is used to cycle through the number cjust
-- justice requirement for process 1..Nproc

For (k in 1..Nproc)
Local temp := trans_cur & abst & abstp & !(_s[1].j[curj])

& prime(_s[1].j[curj]);
Let temp2 := !(temp forsome all_vars1);
Let accum := accum | !(_s[1].j[curj]) & temp2;
Let curj := curj + jcount;

End

Local aJ := !((abst & !accum) forsome vars1);
Return aJ;

End -- Func CalcJ

Func calcJC(ccomp, ccount);
Local accum := 0;
Local curc := ccomp;
Local trans_cur := 0;

122

For (i in 1.._s[1].tn)
Let trans_cur := trans_cur | _s[1].t[i];

End

-- Calculate JS(V_A, J_(C_ccomp))----------------------
-- The loop-k is used to cycle through the number ccomp
-- compassion requirement for process 1..Nproc

For (k in 1..Nproc)
Local temp := 0;
Let temp := (trans_cur & abst & abstp & (_s[1].cp[curc])

& !prime(_s[1].cp[curc])) forsome all_vars1;

Let accum := accum | (_s[1].cp[curc]) & !temp;
Let curc := curc + ccount;

End

Local aJ := !((abst & !accum) forsome vars1);
Return aJ;

End -- Func CalcJC

123

References
[ABJN99] P.A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global conditions

in parametrized system verification. In CAV’99, LNCS 1633, pages 134–145, 1999.

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state

concurrent systems. Information Processing Letters, 22(6), 1986.

[APR � 01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with

automatically computed inductive assertions. In CAV’01, LNCS 2102, pages 221–234,

2001.

[APZ03] T. Arons, A. Pnueli, and L. Zuck. Parameterized verification by probabilistic ab-

straction. In Andrew D. Gordon, editor, FoSSaCS, volume 2620 of Lecture Notes in

Computer Science, pages 87–102, Springer, 2003.

[BBM95] N. Bjørner, I.A. Browne, and Z. Manna. Automatic generation of invariants and in-

termediate assertions. In
�����

Intl. Conf. on Principles and Practice of Constraint Pro-

gramming, volume 976 of Lect. Notes in Comp. Sci., pages 589–623. Springer-Verlag,

1995.

[BCG86] M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks with many

finite state processes. In Proc. 5th ACM Symp. Princ. of Dist. Comp., pages 240–248,

1986.

[BBLS00] K. Baukus, S. Bensalem, Y. Lakhnesche, and K. Stahl. Abstracting WS1S Systems to

Verify Parameterized Networks. In S. Graf and M. Schwarzbach, editors, TACAS’00,

volume 1785. Springer, 2001.

[BLS96] S. Bensalem, Y. Lakhnesche, and H. Saidi. Powerful Techniques for the Automatic

Generation of Invariants. In Proceedings of the 8th International Conference on Com-

puter Aided Verification, 1996.

[BLS01] K. Baukus, Y. Lakhnesche, and K. Stahl. Verification of parameterized protocols.

Journal of Universal Computer Science, 7(2):141–158, 2001.

124

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.

on Computers, C-35(8), 1986.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings

of the 4th Annual Symposium on Principles of Programming Languages. ACM Press,

1977.

[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of synchronization skele-

tons for branching time temporal logic. In Logic of Programs: Workshop, Yorktown

Heights, NY, May 1981, volume 131 of Lecture Notes in Computer Science. Springer-

Verlag, 1981.

[CEFJ96] E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic

model checking. Formal Methods in System Design, 9(1/2), 8 1996.

[CFJ93] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model

checking. In C. Courcoubetis, ed. Proc. CAV ‘93, vol. 697 LNCS, pp. 450-461,

Springer-Verlag, 1993.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using abstrac-

tion and regular languages. In 6th International Conference on Concurrency Theory

(CONCUR’95), pages 395–407, 1995.

[CGL92] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In Proc.

of Principles of Prog. Lang., 1992.

[CLM98] E.M. Clark, D.E. Long, and K.L. McMillan. Compositional model checking. In Proc.

of the 4th Symp. on Logic in Computer Science, pages 353–362, June 1989.

[CR00] S.J. Creese and A.W. Roscoe. Data independent induction over structured networks.

In Proc. of the Int. Conf. on Parallel and Distributed Processing Techniques and Ap-

plications (PDPTA’00), Las Vegas, June 2000. CSREA Press.

[EK00] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In

17th International Conference on Automated Deduction (CADE-17), pages 236–255,

2000.

125

[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc. 22th ACM Conf.

on Principles of Programming Languages, POPL’95, San Francisco, 1995.

[EN96] E.A. Emerson and K.S. Namjoshi. Automatic verification of parameterized syn-

chronous systems. In CAV’96, LNCS 1102, 1996.

[ES96] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in

System Design, 9(1/2), 8 1996.

[ES97] E. A. Emerson and A. P. Sistla. Utilizing symmetry when model checking under

fairness assumptions. ACM Trans. Prog. Lang. Sys., 19(4), 1997.

[FPPZ04] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In Proc.

of the
� � � International Conference on Verification, Model Checking, and Abstract

Interpretation (VMCAI), volume 2937 of LNCS, 2004.

[GS96] S. Graf and H. Saïdi Verifying Invariants Using Theorem Proving In Proceedings of

the 8th Conference on Computer-Aided Verification, August 1996.

[GS92] S.M. German and A.P. Sistla. Reasoning about systems with many processes. J. ACM,

39:675–735, 1992.

[GS97] V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits

symmetry. In CAV’97, LNCS 1254, 1997.

[GW75] S.M. German and B. Wegbreit. A synthesizer of inductive assertions. In IEEE Trans.

On Software Engineering, 1:68-75, March 1975.

[GZ98] E.P. Gribomont and G. Zenner. Automated verification of szymanski’s algorithm. In

B. Steffen, editor, TACAS’98, LNCS 1384, pages 424–438, 1998.

[ID96] C.N. Ip and D. Dill. Verifying systems with replicated components in Mur � . In

CAV’96, LNCS 1102, 1996.

[JL98] E. Jensen and N.A. Lynch. A proof of burn’s � -process mutual exclusion algorithm

using abstraction. In TACAS’98, LNCS 1384, pages 409–423, 1998.

[JN00] B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying

infinite-state systems. In TACAS’00, LNCS 1785, 2000.

126

[KM76] S. Katz and Z. Manna A heuristic approach to program verification. In proc. 3rd Int.

Joint Conf. on Artificial Intelligence, Stanford, CA, 1976.

[KMM � 97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking

with rich assertional languages. In CAV’97, LNCS 1254, pages 424–435, 1997.

[KMP00] Y. Kesten, Z. Manna, and A. Pnueli. Verification of Clocked and Hybrid Systems. In

Acta Inf., 36(11):837–912, 2000.

[KP00a] Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of practical

formal verification. Software Tools for Technology Transfer, 2(1):328–342, 2000.

[KP00b] Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of practical

formal verification. Software Tools for Technology Transfer, 4(2):328–342, 2000.

[KP00c] Y. Kesten and A. Pnueli. Verification by finitary abstraction. Information and Compu-

tation, a special issue on Compositionality, 163:203–243, 2000.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized

linear networks of processes. In 24th ACM Symposium on Principles of Programming

Languages, POPL’97, Paris, 1997.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy

their linear specification. In Proc. 12th ACM Symp. Princ. of Prog. Lang., pages 97–

107, 1985.

[LS97] D. Lesens and H. Saidi. Automatic verification of parameterized networks of processes

by abstraction. In 2nd International Workshop on the Verification of Infinite State

Systems (INFINITY’97), 1997.

[MAB � 94] Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. Chang, M. Colón, L. De

Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover.

Technical Report STAN-CS-TR-94-1518, Dept. of Comp. Sci., Stanford University,

1994.

[McM92] K.L. McMillan. Symbolic Model Checking, An approach to the state explosion prob-

lem. PhD Thesis, School of Computer Science, Carnegie Mellon University, Pitts-

burgh, PA, May 1992.

127

[McM98] K.L. McMillan. Verification of an implementation of Tomasulo’s algorithm by com-

positional model checking. In CAV’98, LNCS 1427, pages 110–121, 1998.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-

Verlag, New York, 1995.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the Eighteenth An-

nual Symposium on Foundations of Computer Science, pages 46-57. IEEE, New York,

Theoretical Computer Science, 13:45-60, 1981.

[PRZ01] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible

invariants. In TACAS’01, volume 2031, pages 82–97, 2001.

[PS96] A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic verifi-

cation. In CAV’96, LNCS 1102, pages 184–195, 1996.

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification. In

CAV’00, LNCS 1855, pages 328–343, 2000.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CÆSAR. In Proc. of Fifth ISP, 1981.

[Szy88] B. K. Szymanski. A simple solution to Lamport’s concurrent programming problem

with linear wait. In Proc. 1988 International Conference on Supercomputing Systems,

pages 621–626, St. Malo, France, 1988.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In J. Sifakis, editor, Automatic Verification Methods for Finite

State Systems, volume 407 of Lect. Notes in Comp. Sci., pages 68–80. Springer-Verlag,

1989.

128

