
A New Strongly Polynomial Algorithm

for Computing Fisher Market Equilibria

with Spending Constraint Utilities

by

Zi Wang

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2016

Advisor: Richard Cole

Second Reader: Chee Yap

Abstract

This thesis develops and analyzes an algorithm to compute equilibrium prices for a Fisher market

in which the buyer utilities are given by spending constraint functions, utility functions originally

defined by Devanur and Vazirani [5].

Vazirani gave a weakly polynomial time algorithm to compute the equilibrium prices [10].

More recently Végh gave a strongly polynomial algorithm [11]. Here we provide another strongly

polynomial algorithm, which arguably is conceptually simpler, although the running time is not

always better.

iii

Acknowledgments

I would like to thank Professor Richard Cole for his invaluable guidance in all academic respects.

This thesis would not have been possible without his ingenious ideas. I also want to express

my gratitude to the department of computer science for the generous support from the M.S.

Thesis/Research Fellowship. Last but not least, I owe my deepest gratitude to my parents for

their continued support.

iv

In memory of Ahui (2001 – 2014)

My beloved dog and adolescent friend

纪念阿灰

v

Table of Contents

Abstract iii

Acknowledgments iv

Introduction 1

1 Description of the Problem 2

2 A Weakly Polynomial Algorithm 5

3 Correctness and Complexity of the Weakly Scaling Algorithm 10

4 A Strongly Polynomial Algorithm 14

5 Correctness of the Strongly Polynomial Algorithm 21

6 Complexity of the Strongly Polynomial Algorithm 30

Bibliography 33

vi

Introduction

Market equilibria are one of the fundamental topics in economics. Their study was initialized by

Walras in 1874 [12]. The proof of their existence was given by Arrow, Block, and Hurwitz, and

Nikaido and Uzawa [8, 2, 1]. Subsequently, there has been a large body of work concerned with

the properties of the equilibria: their multiplicity, their stability, and their computability. Over

the last 15 years or so, computer scientists have investigated their computational complexity.

Early on it was shown that a variant of the problem for indivisible goods was NP-complete [4].

This led to the search for classes of markets and buyer utility functions for which computing

equilibrium prices was in P. The first major result was by Devanur et al. [6] who showed that

in Fisher markets, when the utilities were linear functions, there is a (weakly) polynomial time

algorithm. Other works gave polynomial time algorithms when the utility functions were CES

functions and Leontief functions, again for Fisher markets [7].

Devanur and Vazirani generalized the linear utilities to spending constraint utilities, argu-

ing that they captured multiple natural settings, and they generalized their weakly polynomial

algorithm for linear utility functions to this larger class [5].

Subsequently, Orlin [9] gave a strongly polynomial algorithm for the linear utility case. A

variant of this algorithm was developed by Cole and Gkatzelis [3] for the spending restricted set-

ting. It is this variant that provides the starting point for the algorithm in this paper. Végh [11]

also gave a strongly polynomial algorithm for a variety of min-cost network flow problems, in-

cluding a problem obtained as a reduction from the equilibrium computation for the spending

constraint utilities.

In contrast to Végh’s work, the present work tackles the algorithmic problem directly. We

obtain a running time of O(rm2n+ rm log n[n log n+m]), whereas Végh achieves O(rn3 + r2[r+

n log n] log r). In general, n = O(m) = O(r) and m = O(n2), thus which bound is better depends

on the relative sizes of r2 log r and m2n.

However, our hope is that the more direct approach taken in this work will facilitate extension

of this methodology to other equilibrium problems for which strongly polynomial algorithms are

not yet known, in particular for exchange markets, in which agents have linear utilities.

1

1
Description of the Problem

Definition 1.1. A Fisher market1 consists of divisible goods G and agents B, called buyers.

Let n = |B| + |G|. There is a fixed endogenous supply of each good (which WLOG is chosen

to be 1 unit). A buyer i has a fixed endowment of ei units of money. Each agent has a utility

function, with the characteristic that the agent has no desire for its money, i.e. each agent seeks

to spend all its money on goods. Suppose we assign a price pj to each good j, then a (possibly

non-unique) demand of agent i is a bundle of goods (xi1, xi2, . . . , xi|G|) that maximizes her utility

subject to the budget constraint:
∑
j∈G pjxij ≤ ei. A market demand x for a good j is the total

(possibly non-unique) demand for that good; xj =
∑
i∈B xij . This is viewed as a function of the

price vector p = (p1, p2, . . . , p|G|). Prices p provide an equilibrium if the resulting markets can

clear, that is there exists a market demand at these prices such that for all j, xj = 1 if pj > 0

and xj ≤ 1 if pj = 0. For notational convenience, we define an excess demand for good j as

zj = xj − 1. The equilibrium condition is that every excess demand for positive priced goods be

zero. Prices p form an equilibrium if there exists market demands at these prices that clear the

market.

The Fisher market is actually a special case of an Exchange economy. (To see this, view the

money as another good, and the supply of the goods as being initially owned by another agent,

who desires only money.)

In this thesis, we consider Fisher markets with spending constraint utilities. For each i ∈ B

and j ∈ G, fij is a utility function which depends on the spending that i has assigned to j. In

our problem, fij is a decreasing step function. We call each step of fij a segment. Suppose fij

has segments s1
ij , s

2
ij , ..., s

k
ij (strictly speaking, k is a function i and j) in left to right order, i.e.

shij has range (ah, bh] with bh = ah+1 for h < k, and a1 = 0. Let s be one of the segments for

fij . Suppose that s has range (a, b], 0 ≤ a < b ≤ ei and fij(x) = c for x ∈ (a, b]. We define

capacity(s) = b − a and utility(s) = c. Finally, m denotes the number of edges, that is of pairs

(i, j) with utility(s1
ij) > 0, where s1

ij denotes the first segment between i and j, and r denotes

1In much of the Computer Science literature the term market has been used to mean what is called an economy

in the economics literature.

2

CHAPTER 1. DESCRIPTION OF THE PROBLEM

the number of segments. These edges of pairs (i, j) with utility(s1
ij) > 0 form a bipartite graph

on B × G, which we call the Interest Network. di denotes the degree of vertex i in the Interest

Network. It will be convenient to have n, m and r be powers of 2 and to assume n < m ≤ r,

which we do henceforth without loss of geneality.

For each segment s, σ(s) denotes the spending on that segment, while qij denotes the spending

of buyer i on good j. q denotes the vector qij . The surplus cash of buyer i is defined as

ci(q) = ei −
∑
j∈G qij . The oversold amount of good j is bj(p,q) = −pj +

∑
i∈B qij . Naturally,

buyer i will accrue utility from segments s1
ij , s

2
ij , . . . in turn, as she increases her spending on

good j. Given p, q, we partition the segments into three categories: working segments, fulfilled

segments and unused segments. If qij lies in the range of segment shij , s
h
ij is called a working

segment. The higher utility segments, sgij , g < h, are called fulfilled segments. The lower utility

segments, slij , h < l, are called unused segments. Let F be the set of fulfilled segments. A segment

s is said to be maximum bang per buck (MBB) for i if s /∈ F and it maximizes utility(skij)/pj

for all skij /∈ F . A segment is sub-MBB if its utility to price ratio is lower than that of the MBB

segments. A segment is filled if its spending equals its capacity. Henceforth, we will drop the

superscript k from the segment name when no ambiguity will result.

An equilibrium is reached if the following conditions are satisfied:

• For j, k ∈ G and i ∈ B, if sij and sik are working segments, then utility(sj)/pj = utility(si)/

pi, in other words, all working segments are MBB.

• Every buyer has spent all her money: Σj∈Gqij = ei.

• Every good has been fully sold: Σi∈Bqij = pj .

The task is to find the equilibrium prices.

The working network is the graph with vertices B ∪G and edge set consisting of the working

segments. Let ewi be the money that i spends on her working segments. Let qwj = pj −

Σs∈Fj
capacity(s), where Fj is the set of filled segments incident to j; qwj is called the working

price of j.

Assumption 1.1. The capacity of each segment, the initial money of each buyer and the utilities

of all segments are integral. This can always be achieved with suitable scaling.

3

CHAPTER 1. DESCRIPTION OF THE PROBLEM

Definition 1.2. An equilibrium is simple if the partially, i.e., not fully filled working segments

in the equilibrium solution form an acyclic graph. We also call the set of fulfilled and working

segments in a simple equilibrium a simple equilibrium set.

Our algorithm will maintain the property that the set of partially filled working segments

forms an acyclic graph.

4

2
A Weakly Polynomial Algorithm

In this chapter, we will describe a weakly polynomial algorithm. Our algorithm is motivated by

the following lemma.

Lemma 2.1. There is a polynomial time algorithm to test if a set of segments is a simple

equilibrium segment set.

Proof. LetW denote the working network. For each i ∈ B, if sij ∈W and sik ∈W , utility(sij)/pj

= utility(sik)/pi. For each connected component C in W , Σi∈C∩Bewi = Σj∈C∩Gpwj . The RHS

can be expressed in terms of a single price and consequently the value of all the pwj can be

deduced and so can the price vector. If a good j has no working segment incident to it, then pj

equals the sum of the spending on all the fulfilled segments incident to j.

We conclude that if we identified all the filled and working segments, we could derive the

equilibrium prices. Further, given a candidate collection of filled and working segments, we could

check whether the equilibrium has been reached, namely assuming the candidate collection yields

an equilibrium, we compute the equilibrium prices as just described and check that the resulting

prices yield spending that matches the capacity constraints of the candidate collection.

To specify our algorithm, we need the following definition.

Definition 2.1. Let ∆0,q0,p0 represent the initial ∆,q,p respectively. A spending q is ∆-

feasible if

1. ∀ i ∈ B, ci(q) ≥ 0;

2. ∀ j ∈ G, if pj > p0
j , then bj(p,q) ≥ dj∆;

3. All spending is on MBB and fulfilled segments, and for all i, j, qij is a multiple of ∆;

4. ∀ i ∈ B and ∀ j ∈ G, qij ≥ 0 and pj ≥ 0;

A ∆-feasible spending is ∆-optimal if ∀j ∈ G, dj∆ ≤ bj(p,q) ≤ (dj + 1)∆, and ∀i ∈ B,

0 ≤ ci(q) ≤ ∆.

5

CHAPTER 2. A WEAKLY POLYNOMIAL ALGORITHM

We will refer to our algorithm as the Weakly Scaling algorithm. The basic idea of the algorithm

is to compute a ∆-optimal spending for an initial ∆ = ∆0, and then for ∆0/2, ∆0/4,. . . until

some sufficiently small ∆ = ∆fin is reached. Given a ∆-optimal spending, in the ∆ scaling phase,

it is converted to a ∆/2-feasible spending by reducing the spending on some or all goods by ∆/2.

Then the PriceIncrease algorithm given below is used to find a ∆/2-optimal spending. Again,

the algorithm is initialized with a ∆0-feasible spending and the PriceIncrease algorithm is used

to find a ∆0-optimal spending.

Price Increase Algorithm

The weakly scaling algorithm uses a subroutine, PriceIncrease, that takes p,q,∆ as inputs. It

uses the following residual working network, W (p,q), which has vertex set B ∪G, forward arcs,

from B to G, and backward arcs, from G to B. Let sij be an MBB segment with range (a, b];

then there is a corresponding forward arc with capacity b−qij , and a backward arc with capacity

qij − a.

Next, we give an example of how to update the capacity in step 7 of PriceIncrease. Suppose

the range of the new MBB segment is (b, c]; then the capacity of the forward arc is set to c − b

and the capacity of the backward arc is set to 0.

Rescaling

In the weakly scaling algorithm, to ensure that all spending is in units of ∆, we will round up

the segment boundaries to be the multiples of ∆. We call these rounded segments the ∆-shift

segments.

Given that the capacities of all the ∆-shift segments are multiples of ∆, one can easily verify

that the PriceIncrease algorithm preserves ∆-feasibility.

After finding the ∆-optimal spending, the scaling algorithm will use another subroutine,

Rescale, to halve ∆ and find a new ∆-feasible spending.

Changing the segments from ∆-shift to ∆/2-shift segments could result in a segment with a

lower utility to price ratio being assigned spending. This would violate our invariants regarding

the segments. To restore the invariants, we will return each ∆/2 spending that is now on a sub-

MBB segment. In order to have this money available as needed, good j needs a reserve of dj∆/2

money for this phase, and this is why they are oversold by dj∆ at the start of the ∆-scaling

6

CHAPTER 2. A WEAKLY POLYNOMIAL ALGORITHM

Algorithm 1: The PriceIncrease(p, q,∆) algorithm.

1 Compute a ∆-optimal spending q at prices p

2 while the spending is not ∆-optimal do

3 for each i ∈ B with ci(q) > ∆ do

4 let R be i’s reachable set in W (p,q)

5 increase the prices of goods in R in proportion until:

6 if a new MBB segment sij appears then

7 update the capacity on the edge (i, j) in W (p,q)

8 if there exists a good j such that bj(p,q) = dj∆ then

9 perform an augmentation by one ∆ unit from i to j

10 for each g ∈ G with bg(p,q) > (dg + 1)∆ do

11 let R be g’s reachable set in W (p,q)

12 increase the prices of goods in R in proportion until:

13 if a new MBB segment sij appears then

14 update the capacity on the edge (i, j) in W (p,q)

15 if there exists a good j such that bj(q) = dj∆ then

16 perform an augmentation by one ∆ unit along the path in W (p,q) from g to j

17 Return p,q

7

CHAPTER 2. A WEAKLY POLYNOMIAL ALGORITHM

phase.

Initialization

Let ∆0 = maxi∈B{ei/2m}. Let f1
ij denote the first non-empty ∆0-shift segment of fij . Let

Uij = utility(f1
ij) and UiG = Σj∈GUij . If ei < 2m∆0, we may have to keep buyer i from

participating in the algorithm initially. She will not participate until ei ≥ 2m∆. In addition,

we set the initial prices low enough to ensure that every good can be fully oversold by di∆0

(and for goods that no participating buyer desires, this means the price is set to zero initially).

Setting p0
ij = Uijei/2UiG would make all the goods MBB for buyer i, and the prices would be

low enough that buyer i could afford to buy them all and spend the remaining money to make

sure they are oversold by dj∆0. Setting p0
j = maxi∈B{Uijei/2UiG} ensures that between them,

the participating buyers can afford to buy all the goods in full, and each good j can be oversold

by dj∆0. The goods are then allocated arbitrarily to buyers for which they are MBB. However,

the spending between i and j could exceed the capacity of f1
ij . Then we need to decrease j’s

price and retuen the spending to i in a manner analogous to PriceIncrease to ensure that all the

non-filled segments are MBB.

When a buyer i joins the computation, the algorithm will compute the prices pi induced by i

and i’s spending. Then the price is recomputed as follows: pj ← max{pj ,pij} and the spending

is adjusted accordingly. If the price of good j is defined by a newly participating buyer i, the

spending on j by all the other buyers will be released and j will be oversold by dj∆ to i.

Let W r(p,q) be the network W (p,q) with the directions of all the segments reversed.

Algorithm 2: The Initialization algorithm.

1 compute the ∆-shift segments of all the fij

2 while there is a sub-MBB segment sij has spending do

3 Let R be j’s reachable set in W r(p,q)

4 decrease the prices of goods in R in proportion until:

5 if there exists a good g such that bg(p,q) = (dg + 1)∆ then

6 perform an augmentation by one ∆ unit along the path from g to i in W r(p,q)

7 Return p,q

8

CHAPTER 2. A WEAKLY POLYNOMIAL ALGORITHM

The Scaling Algorithm

Algorithm 3: The Weakly Scaling algorithm.

1 Let ∆ = maxi∈B{ei/2m}; p = maxi∈B{Uijei/2UiG}; for each good j over-allocate good j

by dj∆ to MBB buyers

2 (p,q)← Initialization(∆,p,q)

3 compute the ∆-shift segments of all the fij

4 (p,q)← PriceIncrease(p,q,∆)

5 E′ = {sij : σ(sij) > 8mn∆}

6 while E′ is not a simple equilibrium segment set (See Lemma 2.1) do

7 (p,q)← Rescale(p,q,∆)

8 ∆← ∆/2

9 introduce new buyers, update p and the spending

10 (p,q)← PriceIncrease(p,q,∆)

11 E′ ← {sij : σ(sij) > 8mn∆}

12 Return E′

9

3
Correctness and Complexity of the

Weakly Scaling Algorithm

Lemma 3.1. In the Initialization procedure, each new buyer causes at most 4m augmentations

to reset the prices for the goods she buys.

Proof. When a buyer i participates in the market, 2m∆ ≤ ei < 4m∆. Thus, the spending

returned to the buyer during Initialization is at most 4m∆, and 4m augmentations suffice.

We call the execution of the algorithm before ∆ is halved in the Weakly Scaling algorithm a

∆-phase.

Lemma 3.2. When no new buyers are introduced, each ∆-phase performs at most m augmen-

tations and changes the spending on any segment by at most (m+ 1/2)∆.

Proof. Define Θ(∆) = Σi∈Bbci((q))/∆c and Φ(∆) = Σj∈Gbbj(p,q)/∆c. At the end of PriceIn-

crease in the previous scaling phase, Θ(∆) + Φ(∆) = Σj∈Gdj = m. Note that this equality holds

at the start of the current ∆-phase.

After ∆ is halved, but before the call to the PriceIncrease algorithm, Θ(∆) + Φ(∆) = 2m.

At the end of PriceIncrease, Θ(∆) + Φ(∆) = m. Note that each augmentation that starts from

a buyer decreases Θ(∆) by 1. When an augmentation starting from a good is performed, Φ(∆)

is decreased by at least 1. Thus, the total number of augmentation is at most m.

Since each augmentation changes the spending by ∆, During PriceIncrease, the spending

changes by at most m∆. Also, the spending on each segment could change by ∆/2 during

rescaling. Therefore, each ∆-phase changes the spending on any segment by at most (m+1/2)∆.

Lemma 3.3. In line 9, each newly introduced buyer induces at most (4m − 1) augmentations

and changes the spending by at most (4m− 1)∆.

Proof. When a buyer i participates in the market, 2m∆ ≤ ei < 4m∆. As i will use up bei/∆c∆

of her money, she will perform at most (4m− 1) augmentations and change the spending by at

most (4m− 1)∆.

10

CHAPTER 3. CORRECTNESS AND COMPLEXITY OF THE WEAKLY SCALING
ALGORITHM

Definition 3.1. A segment s is ∆-abundant if σ(s) ≥ 8mn∆.

Lemma 3.4. If s is ∆-abundant, then it will continue to be ∆-abundant at the start of each

subsequent ∆-phase in the Weakly Scaling algorithm.

Proof. As s is abundant, σ(s) ≥ 8mn∆. By Lemmas 3.2 and 3.3, qij is reduced by at most

[(4m− 1)(n− 1) +m+ 1/2]∆ ≤ (4m− 1)n∆ in each ∆-phase, as there are at most n− 1 buyers.

In each ∆-phase, a working segment loses at most ∆/2 spending due to rounding on the boundary

of the segment. Thus the value σ′(s) of σ(s) at the start of the next ∆-phase is lower bounded

as follows: σ(s)′ ≥ σ(s)− (4mn− n)∆−∆/2 ≥ (8mn− 4mn)∆ ≥ 8mn(∆/2).

Let Umax be the maximum utility of all the segments and let δ = 1/n(Umax)n.

Lemma 3.5. Suppose that the network of working segments that are not filled is acyclic. Then

each segment with non-zero spending will have at least δ spending at the equilibrium.

Proof. For filled segments, which by assumption have integral capacities, the spending is an

integral multiple of δ. For the working segments, let C be a component of W , i ∈ C ∩ B and

j, k ∈ C ∩ G. If sij ∈ C and sik ∈ C, utility(sij)/pj =utility(sik)/pk. By Assumption 1.1, the

utilities and capacities of all the segments are integral; thus for each i ∈ C ∩ B, ewi is integral.

Also, as the sum of the prices for goods in C equals the sum of spending for buyers in G, each

price can be written in units of 1/Πsij∈C utility(sij), and for all i ∈ C ∩ B, ewi can be written

in units of 1/Πsij∈Cutility(sij). As the working network is acyclic, it must have at least one

leaf. Each leaf is either a buyer or a good. If the leaf is good j, the spending on the incident

segment is pwj and if the leaf is buyer i, the spending is ewi . Note that either of these values can

be written in units of 1/Πsij∈C utility(sij), and is therefore at least δ. We then remove the leaf

and by processing the reduced graph recursively, we deduce that the claim also applies to the

remaining working segments.

Lemma 3.6. For ∆k ≤ δ/16mn, the set of abundant segments form a simple equilibrium segment

set and consequently induce an equilibrium pricing.

Proof. Suppose that the loop in the Weakly Scaling algorithm were run indefinitely (i.e. without

a stopping condition). By Lemma 3.2, once 8m∆k ≤ (min segment capacity − ∆k), the set of

11

CHAPTER 3. CORRECTNESS AND COMPLEXITY OF THE WEAKLY SCALING
ALGORITHM

used segments (fulfilled and working segments) for each (buyer, good) pair will be essentially

unchanged; only one segment can enter and leave the set of used segments, possibly repeatedly.

Since the changes to the spending on each segment tends to 0 as k → 0, there is a limit spend-

ing on each used segment. Further, this limit spending forms an equilibrium. By Lemma 3.5,

each used segment in this equilibrium has at least δ spending. Therefore, these segments are

abundant once ∆k ≤ δ/(16mn), and further no other segments will become abundant. Thus,

for ∆k ≤ δ/(16mn), the set of abundant segments E′ is a simple equilibrium segment set (c.f.

Definition 1.2 & Lemma 2.1).

Lemma 3.7. Each augmentation can be implemented in O([n log n+m]) and each ∆-phase can

be implemented in O(m[n log n+m]) time if no new buyers are introduced.

Proof. By Lemma 3.2, in each ∆-phase, there are at most m augmentations. In the remainder

of this proof, we show how to implement a single augmentation in O(n log n+m) time, yielding

the bound in the lemma.

We show how to find an augmentation for a buyer i who has ∆ or more money to spend.

The method is to raise the prices of the goods reachable from i in the residual working network,

stopping when one of the goods, j say, in its reachable set has bj reduce to 0. At this point we

can perform an augmentation from i to j (which increases bj to ∆ and increases i’s spending by

∆).

Maintaining the reachable set and identifying when bj = 0 entails maintaining a set of critical

values at which (i) the reachable set grows, or (ii) bj = 0.

Note that the prices of the reachable goods are being increased by a common multiplier x, so

we can express the time at which events (i) and (ii) occur in terms of values of x.

The reachable set grows when a new edge becomes MBB. For each component C outside the

current reachable set R, there is one segment from R to C that will be the first to become MBB.

The value of x at which this segment becomes critical is the critical value for C.

For each good j in R we need to keep the value of x at which bj = 0.

The above critical values are stored in a Fibonacci heap F .

The next event of type (i) or (ii) is found by a delete min on F . If the event is the discovery

of a new MBB edge, this causes R to grow, with two effects: the new outgoing edges from R need

12

CHAPTER 3. CORRECTNESS AND COMPLEXITY OF THE WEAKLY SCALING
ALGORITHM

to be considered as they may reduce the critical values for some component C still outside R.

Over the course of the processing for this augmentation each edge induces at most one decrease

key, for a total of at most m decrease keys.

For the goods newly added to R, their critical values need to be added to F , at a cost of

O(log n) per good. This is a total cost of O(n log n).

There are at most n deletions, costing O(n log n) in total. Thus, the overall cost is O(n log n+

m), as claimed.

Lastly, the augmentation itself is performed by traversing the path from i to j in R. As R is

acyclic, it has size O(n) and this traversal can be carried out in O(n) time. Moreover, checking

whether a new abundant segment emerges takes time O(m).

Theorem 3.2. The Weakly Scaling algorithm has at most O(log(emax) + log n + n log(Umax))

∆-phases and takes O(m(n log n+m)[log(emax) + log n+ n log(Umax) + n]) time.

Proof. The first claim follows from the fact that ∆0 = maxi∈B{ei/2m} ≤ emax/m and the final

value of ∆, ∆fin satisfies ∆fin ≥ 1/16mn2Unmax. The second claim follows from Lemmas 3.2 and

3.7. In addition, by Lemmas 3.3 and 3.1, each buyer will induce another O(m) augmentations,

which take time O(m[n log n+m]) per buyer.

13

4
A Strongly Polynomial Algorithm

Lemma 3.4 guarantees that once a segment becomes abundant, it will remain abundant. However,

this depends on repeatedly halving ∆; our new algorithm needs not follow this sequence of

halvings. Nonetheless, we will ensure that once a segment becomes abundant it will remain

abundant. Thus, our goal will be to incrementally identify all the abundant segments (See also

Lemmas 2.1 and 3.4). In this chapter, we will give a strongly polynomial algorithm to do this.

It will be convenient to have ∆0 = 2i for some integer i. This is achieved by rounding down

maxi∈B ei/2di to the nearest integer power of 2. As we will be doing this rounding repeatedly, we

define rd(x) = 2i, where 2i ≤ x < 2i+1, i an integer. Our algorithm will maintain the following

property.

Property 4.1. For each segment s, there is a critical scaling factor ∆s such that s is introduced

at the start of the ∆s-scaling phase. For each buyer b, we also define a critical scaling factor

∆b = rd(eb/2m), which indicates the phase at which b is introduced.

Consider a segment s with range (a, b]. Suppose that (j − 1)2i ≤ a < j · 2i ≤ b < (j + 1)2i,

where j is an odd integer. Then ∆s = 2i. The rounding of s will expand s at its left boundary

and potentially shrink it at its right boundary, so that at the ∆-phase its boundaries take the

nearest integer multiple of ∆.

To calculate ∆s, we proceed as follows. We define a′ = a/∆0, b′ = b/∆0. Then find the

binary representation of a′ and b′. Let i be the first bit in which a′ and b′ disagree. If i is in the

integral part (i > 0), then k = 0; otherwise (i < 0), k = −i. To find this i, compute c = a′ ⊕ b′

and then i = blog cc.

We also need to modify the definition of abundance, Definition 3.1, for the strongly polynomial

algorithm.

Definition 4.1. A segment is ∆-short if it has been introduced by the start of the ∆-scaling

phase and its capacity is less than ∆/2. A segment is ∆-long if it has been introduced by the

start of ∆-scaling phase and its capacity is at least ∆/2.

In the algorithm, we first identify all the critical scaling factors and sort them in descending

14

CHAPTER 4. A STRONGLY POLYNOMIAL ALGORITHM

order. If ∆k is a critical scaling factor and ∆k+1 is the next one in sorted order, when we are

at the ∆k-scaling phase and ∆k+1 is not far from ∆k, specifically, ∆k/∆k+1 ≤ 512m2n2, we will

run the Weakly Scaling algorithm, reaching the ∆k+1-scaling phase in O(log n) scaling phases.

Otherwise, for each edge, as we shall see, the sequence of segments has the property that every

∆k-short segment is adjacent to ∆k-long segments. For each ∆k-long segment, following O(log n)

scaling phases after its introduction, it will either be abundant or never become fully filled. If

one segment cannot be fully filled, then all the subsequent segments of the same edge will not be

assigned any spending, and then there is no need to consider the subsequent segments further.

When ∆k+1 is far from ∆k, between the ∆k-scaling phase and the ∆k+1-scaling phase, no

new segments are introduced. We will then use the FindNext approach, as in Orlin’s method, to

either find a new abundant segment or to quickly reach ∆k+1. In the former case, for each edge,

we will need to consider at most 2 segments, one short and one long. One of them will become

abundant within O(log n) phases.

Let A(∆) denote the set of ∆-abundant working segments. We call the network defined by

B ∪ G and A(∆) the ∆-network. Let N(p, s) be the network with MBB segments as forward

arcs and the abundant working segments as backward arcs, without rounding.

Let C ⊂ B ∪ G. Then the surplus of C is defined as s(C,p) = Σi∈B∩Cewi − Σj∈G∩Cqwj . A

component C of the ∆-network is ∆-fertile if either (1) C consists of a single buyer i from B

and ei ≥ ∆/4n, or (2) C ∩ G 6= ∅ and s(C,p) ≤ −∆/4n. A ∆-network is ∆-fertile if any of

its components is ∆-fertile. Procedure FindNext will either make the ∆-network fertile, thereby

ensuring that a new abundant segment will emerge in the next O(log n) scaling phases, or it will

update ∆ to ∆u, which is 512m2n2∆k+1 (see line 14 of the Strongly Polynomial algorithm, and

lines 11 and 12 of the FindPrice algorithm).

The strongly polynomial algorithm follows.

The FindNextDelta and FindNext Procedures

The goal of these procedures is to make the abundant network fertile. If any abundant component

has a large negative surplus, then the abundant network is in fact already fertile. Otherwise, we

will be increasing prices in a suitable abundant component C, which we call the root component,

and in all the other abundant components reachable from C, so as to make one of these compo-

15

CHAPTER 4. A STRONGLY POLYNOMIAL ALGORITHM

Algorithm 4: The strongly polynomial algorithm.

1 For each segment s and buyer b, compute the critical scaling factor and sort all factors in

descending order ∆1 ≥ ∆2 ≥ . . . ≥ ∆r+|B|

2 Initialize k = 0

3 Let ∆ = maxi∈B{ei/2m}; p = maxi∈B{Uijei/2UiG}; for each good j over-allocate good j

by dj∆ to MBB buyers

4 (p,q)← Initialization(∆,p,q)

5 ∆← ∆0

6 (p,q)← PriceIncrease(p,q,∆)

7 E′ = {sij : σ(sij) > 32mn∆}

8 while E′ is not a simple equilibrium segment set and k ≤ (r + |B|) do

9 if ∆/∆k+1 > 512m2n2 and the ∆-network is not fertile then

10 ∆max ← FindNextDelta(p,q,∆)

11 if ∆max/512m2n2 > ∆k+1 then

12 ∆u ← ∆max

13 else

14 ∆u ← 512m2n2∆k+1

15 (p,q,∆′)← FindNext(p,q,∆u,∆)

16 ∆← ∆′

17 E′ ← {sij : σ(sij) > 32m∆}

18 else

19 (p,q)← Rescale(p,q,∆)

20 ∆← ∆/2

21 while ∆ ≤ ∆k+1 do

22 k ← k + 1 (update k)

23 introduce new buyers and update p

24 (p,q)← PriceIncrease(p,q,∆)

25 E′ ← {sij : σ(sij) > 32m∆}

26 Return E′

16

CHAPTER 4. A STRONGLY POLYNOMIAL ALGORITHM

nents fertile, component D say. We will stop the price increase at a point when s(C,p) is still

large enough to cover all the negative surplus of the components reachable from C, and yet we

can guarantee that there is a reachable component D which is fertile.

Algorithm 5: The FindNext(p,q,∆u,∆) algorithm.

1 (p,q,∆′)← FindPrice(p,q,∆u,∆)

2 (p,q)← PriceDecrease(p,q,∆′)

3 (p,q)← PriceIncrease(p,q,∆′)

4 Return (p,q,∆′)

The strongly polynomial algorithm runs the two subroutines FindNextDelta and FindNext

in turn. FindNextDelta finds a new smaller value for ∆ at which some component D is fertile.

FindNext begins by calling FindPrice, which finds prices that are close to the ∆-optimal prices

p; then it finds the ∆-optimal prices by applying PriceDecrease and PriceIncrease in turn.

We will be computing the spending on the segments in FindNextDelta and FindPrice as a

linear function of the multiplier x by which the prices have been increased. The spending is

computed as follows: we first assign spending equal to the negative surpluses via the segments

connecting the root component C to each reachable component with negative surplus. This can

be done by sending money from C along the MBB segments. If the MBB segments between

the components form a cycle, we break the cycle by ordering the segments and disregard the

segments with lower priority until the higher priority segments become fully filled.

We then assign spending within the abundant components. The idea is to spend as much

money as possible on each good, and thus in each component C̃ to leave unspent money equal

to the surplus of the components reachable from C̃. Each leaf good will receive spending from

the parent buyer equal to its working price. Each leaf buyer will spend as much of her money on

the parent goods as she can. Then these leaves are removed and the process is iterated.

Once the spending on segment s reaches its capacity, s will be filled and the capacity will

be deducted from the working money of s’s incident buyer and the working price of s’s incident

good. If as a result a root component splits into two or more components, we let C ′ denote the

component that s points from, and keep increasing the prices of goods that are reachable from

17

CHAPTER 4. A STRONGLY POLYNOMIAL ALGORITHM

Algorithm 6: The FindNextDelta(p,q,∆) algorithm.

1 for each abundant component C in the ∆-network do

2 Let pl = p

3 let v be any buyer in C and let R be v’s reachable set in N(pl,q)

4 increase local prices pl of goods in R in proportion and compute the corresponding

spending, until:

5 if a new segment becomes MBB then

6 update N(pl,q) and R, and go to Step 4

7 if the spending on a segment equals its capacity then

8 remove the segment from N(pl,q), update C, the working price and working

money, and go to Step 3

9 if s(C,pl) = 0 or s(D,pl) ≤ −s(C,pl)/(4n) for some component D in C’s reachable

set in the abundant network then

10 let ∆C = s(C,pl) and stop increasing

11 ∆max ← maxC ∆C

12 Return ∆max

18

CHAPTER 4. A STRONGLY POLYNOMIAL ALGORITHM

Algorithm 7: The FindPrice(p,q,∆u,∆) algorithm.

1 for each abundant component C in the ∆-network do

2 Let pC = p

3 while s(C,pC) > ∆u do

4 let v be a buyer in C and let R be v’s reachable set in N(p,q)

5 increase prices pC in R in proportion, until:

6 if a new segment becomes MBB then

7 update N(p,q) and R, and go to Step 4

8 if the spending on a segment equals its capacity then

9 remove the segment from the abundant network, update C, the working price

and money, and go to Step 3

10 For each good i, pi ← maxC p
C
i

11 ∆̃← ∆u/32mn

12 ∆′ ← rd(∆̃)

13 Return (p,q,∆′)

19

CHAPTER 4. A STRONGLY POLYNOMIAL ALGORITHM

C ′ (this is the updated C in line 8 of FindNextDelta and line 9 in FindPrice).

PriceDecrease

After spending as much money as possible on each good, we need to adjust the spending and

possibly the prices to ensure, (1) no good is undersold, (2) once we revert to ∆-shift segments, the

spending on each segment is a multiple of ∆. Moreover, we will need to restore the reserve of each

good as in the Weakly Scaling algorithm. To accomplish these goals, we will use a subroutine

PriceDecrease, similar to PriceIncrease.

Definition 4.2. A segment s is ∆-unrounded if the spending is not a multiple of ∆. A good j

is ∆-starved if bj(p,q) < dj∆.

Algorithm 8: The PriceDecrease(p,q,∆′) algorithm.

1 Compute the ∆′-shift segments of all the working segments

2 while there is a ∆′-unrounded segment sij do

3 return the overspent part from good j to buyer i

4 while there is a ∆′-starved good j do

5 Let R be j’s reachable set in W r(p,q)

6 decrease the prices of goods in R in proportion until:

7 if a filled segment sbg becomes MBB then

8 update the capacity on edge (b, g)

9 if there exists a good g such that bg(p,q) = (dg + 1)∆′ then

10 perform an augmentation by one ∆′ unit along the path from g to j in W r(p,q)

11 Return (p,q)

The updating capacity process on line 8 is similar to that in PriceIncrease but the new MBB

segment is filled here whereas it is empty in PriceIncrease.

20

5
Correctness of the Strongly Polynomial

Algorithm

To facilitate our proof, let p denote the prices when FindNext is called and ∆ be the scaling

factor at the start of the while loop iteration. We call each for loop iteration in FindNextDelta

and FindPrice a PushPrice procedure for the corresponding component and let pC be the prices

induced by each component C’s PushPrice procedure. Let p′ be the prices output by FindPrice.

p′
C is p′ restricted to a component C. Let ∆′ be the output scaling factor of FindPrice. Finally,

let σ′ denote the spending after FindPrice, and let σ denote the spending at the start of FindPrice.

Note that when a new buyer b participates the market, eb ≥ 2m∆, and the network is already

fertile.

In analyzing the period between the ∆ and ∆k+1 scaling phases, there are four cases to

consider:

Case 1: ∆/∆k+1 ≤ 512m2n2.

The next critical scaling factor ∆k+1 is reached after O(log n) scaling phases.

Case 2: ∆/∆k+1 > 512m2n2 and the network is not fertile at the start of the while iteration,

and ∆max, the output of FindNextDelta satisfies ∆max/∆k+1 > 512m2n2. Note that in this

case, ∆u = ∆max (see line 12 of the Strongly Polynomial algorithm) and consequently ∆′ =

rd(∆max/32mn) (see lines 11 and 12 of the FindPrice algorithm).

A new abundant segment will emerge in O(log n) scaling phases. Our proof of this is divided

into four parts.

Let ∆̄ = ∆′/4mn.

1. (Lemma 5.6) Any abundant segment remains abundant.

2. (Corollary 5.1) By the end of the ∆̄-scaling phase, each ∆k-short segment is adjacent to

∆k-long segments.

3. (Lemma 5.9) Any ∆k-long segment is either ∆̄-abundant or it never becomes filled subse-

quently.

21

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

4. (Lemma 5.13) A new abundant segment will emerge by the end of the ∆̄-scaling phase.

Case 3: ∆/∆k+1 > 512m2n2 and the network is not fertile at the start of the while iteration,

and ∆max, the output of FindNextDelta, satisfies ∆max/∆k+1 ≤ 512m2n2.

∆u is set to 512m2n2∆k+1. Following this, after another O(log n) scaling phases, we will

reach the next critical scaling phase, namely the ∆k+1-scaling phase. We also have to show that

our method for updating the spending maintains the abundance of the abundant segments, which

we do in Lemma 5.14.

Case 4: ∆/∆k+1 > 512m2n2 and the network is already fertile at the start of the while

iteration.

Let ∆̂ = ∆/64m2n2. Then, as we show in Lemma 5.15, by the end of the ∆̂-scaling phase, a

new abundant segment will emerge.

Case 2, Part I

It is convenient to extend the notation ei, pj , ci and bj to sets of buyers and goods respectively,

writing eB =
∑
i∈B

ei, pG =
∑
j∈G

pj , cC =
∑

i∈C∩B
ci and bC =

∑
j∈C∩G

bj .

Lemma 5.1. When FindNext is called, eB − pG ≤ 2m∆.

Proof. Note that in this case no new buyers are introduced. A participating buyer i holds up

to ∆ unspent money at the end of the ∆-scaling phase, and these buyers contribute at most

Σi∈B1∆ to eB−pG. Each good j can be oversold by at most (dj +1)∆, so all the goods together

contribute at most Σj∈G(dj + 1)∆ to eB − pG. Thus, eB − pG ≤ (|B| + Σj∈G(dj + 1))∆ ≤

(|B|+m+ |G|)∆ ≤ 2m∆.

Lemma 5.2. ∆max ≤ 4m∆ and ∆′ ≤ ∆/8n.

Proof. By Lemma 5.1, before calling FindNext, the available money eB − pG ≤ 2m∆. The

available money at the end of FindPrice is at least ∆max−n∆max/4n ≥ ∆max/2. Thus ∆max/2 ≤

2m∆ and so ∆max ≤ 4m∆. Recall that ∆′ = rd(∆max/32mn); thus ∆′ ≤ 4m∆/32mn ≤

∆/8n.

22

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

Lemma 5.3. Each call to PriceDecrease performs at most 2m augmentations and increases the

surplus of the whole network by at most 3m∆′.

Proof. At the end of FindPrice/start of PriceDecrease, each good is fully sold. Each good j is

incident to at most dj unrounded segments, which causes a return of at most dj∆
′ spending.

Further, each good needs to be oversold by dj∆
′, so the total number of augmentations during

PriceDecrease is at most Σj∈G(dj+dj) = 2m. Within each augmentation, the total price decrease

for a good is at most ∆′ and over the course of the PriceDecrease process each price may decrease

by an additional amount strictly upper bounded by ∆′. Thus, the total price decrease during

PriceDecrease is at most (2m+ |G|)∆′ < 3m∆′.

Let α denote the available money eB − p′
G after FindPrice.

Lemma 5.4. |σ′(sij)− σ(sij)| ≤ 5m∆− α for sij ∈ A(∆), the set of ∆-abundant segments.

Proof. Let’s first consider a flow decomposition. Let σ̂ be the unrounded spending and q̂ the

corresponding spending on the edges which is obtained from pw and which satisfies the following:

1. if sij is a working segment and sij /∈ A(∆), then σ̂(sij) = 0;

2. if s(C,p) ≥ 0, then cC(q̂) = s(C,p) and bC(p, q̂) = 0;

3. if s(C,p) < 0, then bC(p, q̂) = s(C,p) and cC(q̂) = 0.

Let γ = σ − σ̂.

As the spending when FindNext is called is not ∆-fertile, s(C,p) ≥ −∆/4n and so bC(p, q̂) ≥

−∆/4n. We show the following claims:

1. |γ(sij)| ≤ 3m∆.

σ̂ differs from σ due to the following factors: (1) up to ∆ unspent for each buyer i; (2)

up to (dj + 1)∆ overspending on each good j; (3) the negative surpluses of abundant

components; (4) rounding on the working segments. Thus, |γ(sij)| ≤ [Σi∈B1 + Σj∈G(dj +

1) + n/4n + m]∆ ≤ (|B| + m + |G| + 1/4 + m)∆ ≤ 3m∆. This difference was brought

about by augmentations (including spending returns) which change the spending on any

abundant segment by at most 3m∆.

23

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

2. |σ′(sij)− σ̂(sij)| ≤ 2m∆− α.

The calculation of σ′ from the spending being computed in FindNextDelta and FindPrice is

similar to how σ̂ is obtained from pw (except that there is spending on the non-fertile MBB

segments between abundant components). By Lemma 5.1, before the call to FindNext,

eB − pG ≤ 2m∆, and as the available money after calling FindNext, eB − p′
G = α,

Σj∈Gpj ≤ Σj∈Gp′
j ≤ Σj∈Gpj + (2m∆− α), and so |σ′(sij)− σ̂(sij)| ≤ 2m∆− α.

Therefore, if sij ∈ A(∆), |σ′(sij)−σ(sij)| ≤ |σ′(sij)−σ̂(sij)|+|σ̂(sij)−σ(sij)| ≤ 5m∆−α.

Lemma 5.5. The execution of FindNext changes the spending on each abundant segment by at

most 6m∆.

Proof. Recall that by Lemma 5.2, ∆′ ≤ ∆/8n. By Lemma 5.3, PriceDecrease performs at most

2m augmentations. Therefore, after PriceDecrease, the spending on each abundant segment

decreases by at most 2m∆′ < m∆/4. Also, the available money before calling PriceDecrease

is α = eB − p′
G, and by Lemma 5.3, PriceDecrease increases the surplus of the whole network

by at most 3m∆′ ≤ 3m∆/8. Hence, PriceIncrease can remove surplus of at most 3m∆/8 + α.

Note that PriceDecrease only increases the surplus and PriceIncrease only decreases it. Thus,

by Lemma 5.4, at the end of PriceIncrease, compared to the spending before calling FindNext,

the spending on each abundant segment changes by at most 5m∆− α+m∆/4 + 3m∆/8 + α ≤

6m∆.

Lemma 5.6. Each sij ∈ A(∆) remains abundant after FindNext.

Proof. Recall that by Definition 3.1, σ(sij) ≥ 8mn∆ if sij ∈ A(∆). Then by Lemma 5.5, the

spending at the end of PriceIncrease is at least 8mn∆−6m∆ > 2m∆. By Lemma 5.2, ∆ ≥ 8n∆′,

thus the spending at the end of FindNext is at least 2m∆ ≥ 16mn∆′ > 16m∆′.

Case 2, Part II

Lemma 5.7. If ∆k/∆k+1 > 2, then during every ∆α-scaling phase with ∆k ≥ ∆α > ∆k+1,

every ∆k-short segment is adjacent to ∆k-long segments.

Proof. We will show that at the start of the ∆k-scaling phase, no two ∆k-short segments are

adjacent to each other; and as no new segments appear until the ∆k+1-scaling phase, every

24

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

∆k-short segment must be adjacent to ∆k-long segments.

Suppose that at the start of the ∆k-scaling phase, a ∆k-short segment s1 with range (a1, b1]

is adjacent to another ∆k-short segment s2 with range (a2, b2], and a2 ≥ b1. As s1 and s2 are

introduced by the start of the ∆k-scaling phase, for some integer j, (j−1)∆k < a1 < j∆k ≤ b1 ≤

a2 < (j + 1)∆k ≤ b2. By Definition 4.1, b1 − a1 < ∆k/2 and b2 − a2 < ∆k/2. Therefore, there

must exist a segment s3 with range (a3, b3] and b1 ≤ a3 < (j + 1/2)∆k ≤ b3 ≤ a2. Consequently,

s3 will be introduced at the start of the ∆k/2-scaling phase. This contradicts the assumption

that ∆k > 2∆k+1.

Corollary 5.1. At the end of the ∆̄-scaling phase, every ∆k-short segment is adjacent to ∆k-long

segments.

Proof. Recall that ∆̄ = ∆′/4mn = rd(∆max/32mn)/4mn > ∆max/512m2n2 ≥ ∆k+1.

Case 2, Part III

Lemma 5.8. When calling FindNext, if the unspent part of a segment s is at least 8mn∆, then

at the end of FindNext, the unspent part is at least 8mn∆′.

Proof. Recall that by Lemma 5.2, ∆′ ≤ ∆/8n. When calling the FindNext subroutine, the

segment might be abundant or not. If s is abundant, then by Lemma 5.5, the spending changes

at most 6m∆, and by Lemma 5.2, ∆ ≥ 8n∆′; thus the unspent part is at least 8mn∆− 6m∆ =

2m∆ > 2m · 8n∆′ > 8mn∆′.

The spending on a segment s is unchanged from the start of the while loop iteration of the

strongly polynomial algorithm up to the point FindNext is called. Thus, if the spending on

s is not abundant when calling FindNext, then it connects abundant components. As in this

case (Case 2) the abundant network is not fertile, each component C has s(C,p) > −∆/4n.

Thus, the spending computed during FindPrice satisfies σ(s) ≤ n∆/4n = ∆/4. By Lemma 5.3,

PriceDecrease performs at most 2m augmentations. Therefore, after PriceDecrease, the spending

on each abundant segment increases by at most 2m∆′ ≤ m∆/4. By Lemma 5.1, the available

money before calling PriceDecrease is at most 2m∆, and by Lemma 5.3, PriceDecrease increases

the surplus of the whole network by at most 3m∆′ ≤ 3m∆/8. Hence PriceIncrease can remove

surplus of at most 3m∆/8+2m∆. Thus, by Lemma 5.4, at the end of PriceIncrease, the spending

25

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

on each abundant segment is at most ∆/4 + m∆/4 + 3/8m∆ + 2m∆ < 3m∆. As when calling

FindNext, the unspent part on s is at least 16m∆, the capacity of s is at least 16m∆. At the

end of FindNext, the unspent part is at least 13m∆ > 8mn∆′.

Lemma 5.9. At the start of the ∆̄-scaling phase, any ∆k-long segment is either ∆̄-abundant or

it never becomes fully filled.

Proof. ∆ ≤ ∆k. Also, recall that by Lemma 5.2, ∆/∆′ ≥ 8n, and ∆̄ = ∆′/4mn; thus ∆k ≥

∆ > 32mn2∆̄. By Definition 4.1, if a segment s is ∆k-long, then its capacity is at least ∆k/2 >

16mn2∆̄. Also, as the Interest Network is a simple bipartite graph, m ≤ n2/4.

If the spending on s, σ(s) ≥ 8mn∆̄, then s is abundant. Otherwise, the unspent part of s

is greater than (16mn2 − 8mn)∆̄ > 8mn∆̄. We will show that at the start of each subsequent

∆λ-scaling phase, the unspent part of s is always at least 8mn∆λ.

As in the Weakly Scaling algorithm, at the end of a scaling phase, the scaling factor drops

from ∆ to ∆/2. Thus we need to show that at the end of the ∆-scaling phase, the unspent part

is at least 8mn∆/2 = 4mn∆. By Lemmas 3.2 and 3.3, and taking of a possible ∆ change due to

rounding, the change in spending on each segment is at most [(4m−1)(n−1) +m+ 1/2 + 1]∆ ≤

(4m− 1)n∆; thus, the unspent part is at least [8mn− (4m− 1)n]∆ > 4mn∆.

During the execution of FindNext, the scaling factor drops from ∆ to ∆′, then we need to show

that at the end of FindNext, the unspent part is at least 8mn∆′. This is shown by lemma 5.8.

Case 2, Part IV

If a segment becomes filled during FindNext, it has to be removed. If the segment is within the

abundant component, its removal splits its component into two parts, and if there is no other

unfilled MBB segments available to reconnect the parts, we have to process the now divided

component. We call the component that s points to the leaf component, and the component that

s points from the stem component.

Lemma 5.10. When a segment s becomes filled, the sum of the surpluses of the components that

are reachable from s’s leaf component is 0 (the sum includes the leaf component).

Proof. Note that until s is filled the spending sent along s equals the negative surplus; this

remains true at the moment s is filled.

26

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

Lemma 5.11. At the end of FindPrice, either there is an abundant component H consisting of

a single buyer with s(H,p′) = ∆max or there exists an abundant component H with s(H,p′) ≤

−∆max/4n.

Proof. As specified in the stopping conditions in FindNextDelta, there exists some component

D such that s(D,p′) = ∆max. If D consists of a single buyer, we are done. Otherwise, there

is a component C such that s(C,pC) = ∆max. As ∆max > 0, by the stopping conditions of

FindNextDelta, C has a reachable component with s(D,pC) ≤ −∆max/4n. Note that p′
D ≥ pC ,

and consequently s(D,p′
D) ≤ −∆max/4n. The only issue is that if during the execution of

FindPrice some segment s inside D is filled and this results in D being split, then we need to

argue that the surplus of one of the resulting components is still small enough.

To see this, note that the sum of surpluses of the components that s pointed to is 0. Further,

each tree of components that D pointed to has non-positive surplus. Thus, s’s leaf component Dl,

has non-negative surplus, which implies that s’s stem component Ds, has surplus s(Ds,p
′
Ds

) ≤

−∆max/4n.

Lemma 5.12. A the end of FindPrice, either there is an abundant component H consisting of

a single buyer i with ewi ≥ 32mn∆′ or there exists an abundant component H with s(H,p′) ≤

−8m∆′.

Proof. Recall that ∆′ = rd(∆max/32mn). The lemma follows from Lemma 5.11.

Lemma 5.13. Before the end of the ∆̄-scaling phase, there will be a new abundant segment.

Proof. Recall that ∆̄ = ∆′/4mn. By Lemma 5.12, at the end of FindPrice, there is an abun-

dant component C that either consists of a single buyer i that has surplus s(C) ≥ 32mn∆′ =

128m2n2∆̄, or C has surplus s(C) ≤ −8m∆′.

Case 1: C consists a single buyer i with s(C) ≥ 128m2n2∆̄.

At the end of the ∆̄-scaling phase, as the spending is ∆̄-optimal, i’s unspent money is at most

∆̄. Since i is incident on at most n edges, at least (128m2n2 − 1)∆̄/n > 64m2n spending will go

on one edge e comprising previously non-abundant segments at the end of the ∆̄-scaling phase.

Case 2: There is an abundant component C with surplus s(C) ≤ −8m∆′.

27

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

By Lemma 5.3, PriceDecrease could increase C’s surplus by at most 3m∆′. Therefore, at

the end of PriceDecrease, s(C) ≤ −8m∆′ + 3m∆′ = −5m∆′ = −20m2n∆̄ ≤ −16m2n∆̄. Since

all the goods are at least fully sold at the end of the ∆̄-scaling phase, there will be an edge e

with new spending at least 16mn∆̄ from i ∈ B \ C to j ∈ C ∩ G. This new spending goes to

an edge, and more specifically, segments of this edge, that connect two abundant components.

Consequently, these segments are not abundant at the start of this process.

We will show that this spending of at least 16mn∆̄ is allocated to at most two of e’s segments,

which were not previously abundant; hence one of these segments receives at least 8mn∆̄ spending

and is therefore abundant now.

By Corollary 5.1, every ∆k-short segment is adjacent to ∆k-long segments. By Lemma 5.9,

any ∆-long segment is either ∆̄-abundant or it never becomes fully filled. On the edge e, either

the first segment receiving this spending is ∆-long, and never becomes filled; or the first segment

is ∆-short, followed by a ∆-long segment that never becomes filled. Thus one of these two

segments will receive at least 8mn∆̄ spending and becomes abundant.

Case 3

Lemma 5.14. When ∆u is set to 512m2n2∆k+1, the previouly abundant segment remains abun-

dant after calling FindNext.

Proof. It is easy to verify that Lemmas 5.1, 5.3 and 5.4 still hold. As ∆u = 512m2n2∆k+1 and

∆/∆k+1 > 512m2n2, ∆u < ∆ and thus ∆′ = ∆u/32mn < ∆/32mn.

FindNext has three subroutines: FindPrice, PriceDecrease and PriceIncrease. By Lemma 5.4,

the spending on each abundant segment changes by at most 5m∆ − α after FindPrice. By

Lemma 5.3, PriceDecrease performs at most 2m augmentations. Therefore, after PriceDecrease,

the spending changes by at most 2m∆′ ≤ 2m∆/32mn < ∆/16n. Also, the available money before

calling PriceDecrease is α, and by Lemma 5.3, PriceDecrease increases the surplus of the whole

network by at most 3m∆′ ≤ 3m∆/32mn < ∆/8n. Hence, PriceIncrease can remove surplus of

at most ∆/8n+ α, which is the upper bound of the change in spending on each segment. Note

that PriceDecrease only increases the surplus and PriceIncrease only decreases it. In total, at the

end of PriceIncrease, compared to the spending before calling FindNext, the spending on each

abundant segment changes by at most 5m∆− α+ ∆/16n+ ∆/8n+ α ≤ 6m∆.

28

CHAPTER 5. CORRECTNESS OF THE STRONGLY POLYNOMIAL ALGORITHM

By Definition 3.1, a segment s is abundant if σ(s) ≥ 8mn∆. Then, at the end of FindNext,

as ∆ > 32mn∆′, the spending on s is at least 8mn∆− 6m∆ ≥ 2m∆ > 8mn∆′.

Case 4

Lemma 5.15. A new abundant segment will emerge no later than the ∆̂-scaling phase.

Proof. Recall that ∆̂ = ∆/64m2n2 and ∆/512m2n2 > ∆k+1. Since the network is fertile,

there is a component C such that either C is a single buyer and s(C) ≥ ∆/4n ≥ 16m2n∆̂,

or s(C) ≤ −∆/4n ≤ −16m2n∆̂. Then, there will be an edge e that receives at least 16mn∆̂

spending by the end of the ∆̂-scaling phase. At the end of the ∆̂-scaling phase, ∆̂ > 8∆k+1, so

no new segments have been introduced by the end of the ∆̂-scaling phase. By Lemma 5.7, any

∆k-short segment is adjacent to ∆k-long segments.

A ∆k-long segment s has capacity at least ∆k/2 ≥ ∆/2 = 32m2n2∆̂. By Lemmas 3.2 and 3.3,

during the ∆-phase, the change in spending on each segment is at most [(4m− 1)(n− 1) +m+

1]∆ ≤ (4m − 1)n∆. Thus in a sequence of successive rescalings, starting at the ∆̂-phases, the

spending on each segment changes by at most 2(4m − 1)n∆̂ < 8mn∆̂. We claim that by the

end of the ∆̂-scaling phase, the ∆k-long segment s is either ∆̂-abundant or will never become

fully filled. If s is already abundant, we are done; otherwise, the unspent part is more than

32m2n2∆̂ − 8mn∆̂ ≥ 24m2n2∆̂ and the spending on s can increase by at most 8mn∆̂. Then s

will not be fully filled while the ∆-network remains fertile (which is part of the case 4 condition).

The rest of the proof of this lemma is similar to the proof of Lemma 5.13.

29

6
Complexity of the Strongly Polynomial

Algorithm

Lemma 6.1. FindNextDelta and FindPrice can be implemented to run in O(m2n) time.

Proof. We first consider one for loop iteration. There are two types of critical events: (i) a new

segment becomes MBB; (ii) an MBB segment becomes filled. Each segment becomes MBB or

filled only once during each call to FindNextDelta and FindPrice. Note that by Lemma 5.10,

when a ∆k-long segment is about to be filled, one of the tree of components it points to has a

negative surplus of at least −∆/2n. Therefore, on each edge e we only need to consider at most

three segments, the already abundant segment, the immediately following ∆k-short segment if

any, and the immediately following ∆k-long segment.

Let R denote the reachable set of the component that induces the for loop iteration. As the

spending is acyclic, given the prices it can be computed in O(n) time. The price at which a

segment becomes MBB or filled can be expressed in terms of a multiplier x.

We deal with type (i) events with a list L1 to store the critical values at which the currently

non-MBB edges become MBB. We also keep a pointer to the minimum value in L1. The size of

L1 is O(m).

We deal with type (ii) events by storing the critical values at which an MBB segment becomes

filled in a list L2 and keep a pointer to the minimum value in L2.

When a segment becomes MBB, we delete the edges that are MBB and insert the new

candidate MBB edges, and then find the new minimum value in L1, which takes time O(m);

we will also need to recalculate the spending, delete the current L2, and build a new list L2 of

critical values, which takes time O(n). In total, it takes O(m) time to deal with a new MBB

segment.

When an MBB segment becomes filled, we delete the edges that are not incident to the

components reachable from the current search root, and find the minimum value in L1, which

takes time O(m); we will also recalculate the spending, delete the current list and build a new

list L2 of critical values, which takes time O(n). In total, it takes O(m) time to deal with a filled

30

CHAPTER 6. COMPLEXITY OF THE STRONGLY POLYNOMIAL ALGORITHM

segment. Note that as a new MBB segment may lead to a recalculation of the spending, MBB

segments may become filled when a new MBB segment emerges.

Therefore, each for loop iteration can be implemented to run in time O(m2). As there are at

most n components, the for loop iteration is executed at most n times and thus FindNextDelta

and FindPrice takes time O(m2n).

Theorem 6.1. The Strongly Polynomial algorithm takes time O(rm2n+ rm[n log n+m] log n).

Proof. We need to bound the cost of the O(r + |B|) = O(r) events that a buyer or a segment is

introduced, or a segment becomes abundant, which drives the strongly polynomial algorithm as

specified in the correctness argument. We need to consider four cases:

Case 1: ∆/∆k+1 ≤ 512m2n2.

The next critical scaling factor ∆k+1 is reached after O(log n) scaling phases. By Lemma 3.7,

the O(log n) scaling phases take time O(m[n log n+m] log n).

Case 2: ∆/∆k+1 > 512m2n2 and the network is not fertile at the start of the while iteration,

and ∆max, the output of FindNextDelta satisfies ∆max/∆k+1 > 512m2n2.

FindNextDelta and FindNext are run, following which O(log n) scaling phases are needed to

obtain a new abundant segment.

FindNextDelta takes time O(m2n), as shown in Lemma 6.1.

FindNext consists of three subroutines: FindPrice, PriceDecrease and PriceIncrease. Find-

Price takes time O(m2n), as shown in Lemma 6.1. By Lemma 5.3, each PriceDecrease per-

forms at most 2m augmentations. By Lemma 3.7, PriceDecrease can be implemented to run in

O(m[n log n+m]) time.

At the end of FindPrice, each component has a surplus of at most ∆u, so the total network

has a surplus of at most n∆u. By Lemma 5.3, the surplus is further increased by at most 3m∆′ by

PriceDecrease. The total surplus of the network after PriceDecrease is at most n∆u + 3m∆′. As

∆u = O(mn∆′), and each augmentation in PriceIncrease decreases the surplus of the network by

∆′, the total number of augmentations performed by PriceIncrease is O(mn2). We now present

an efficient implementaion of this PriceIncrease procedure.

Let µ = M/n, where M denotes the total available money over all the participating buyers.

The implementation starts with PriceDecrease using the scaling factor ∆ = rd(µ). After this,

31

REFERENCES REFERENCES

in turn we repeatedly halve ∆, run PriceIncrease, and Rescale until ∆ = ∆′. As in the Weakly

Scaling algorithm, each scaling phase needs O(m[n log n+m]) time and the total number of scaling

phases is O(log n). Thus, this implementation of the PriceIncrease takes time O(m log n[n log n+

m]).

Therefore, the FindNext subroutine takes time O(m2n + m log n[n log n + m]). Lastly, the

remaining O(log n) scaling phases take time O(m log n[n log n+m]). Overall, Case 2 takes time

O(m2n+m log n[n log n+m]).

Case 3: ∆/∆k+1 > 512m2n2 and the network is not fertile at the start of the while iteration,

and ∆max, the output of FindNextDelta satisfies ∆max/∆k+1 ≤ 512m2n2.

FindNextDelta and FindNext are run, following which O(log n) scaling phases are needed to

reach the next critical scaling phase. The running time is O(m2n + m log n[n log n + m]), as in

Case 2.

Case 4: ∆/∆k+1 > 512m2n2 and the network is already fertile at the start of the while

iteration.

After O(log n) scaling phases, a new abundant segment emerges. These phases take time

O(m[n log n+m] log n).

Between two critical events, we also need to check the relation between ∆ and ∆k+1, whether

the network is abundant, and whether a new abundant segment emerges, which in total take

time O(m).

Therefore, the total time for the Strongly Polynomial algorithm is O(rm2n+rm log n[n log n+

m]).

References

[1]Kenneth J. Arrow, H. D. Block, and Leonid Hurwicz. “On the Stability of the Competitive

Equilibrium, II”. In: Econometrica 27.1 (1959), pp. 82–109.

[2]Kenneth J. Arrow and Leonid Hurwicz. “Competitive Stability under Weak Gross Substi-

tutability: The ”Euclidean Distance” Approach”. In: International Economic Review 1.1 (1960),

pp. 38–49.

32

REFERENCES REFERENCES

[3]Richard Cole and Vasilis Gkatzelis. “Approximating the Nash Social Welfare with Indivisible

Items”. In: Proceedings of the 47th Annual ACM on Symposium on Theory of Computing

(STOC). ACM. 2015.

[4]Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. “On the Complexity of Price Equi-

libria”. In: J. Comput. Syst. Sci. (Sept. 2003).

[5]Nikhil R. Devanur and Vijay V. Vazirani. “The spending constraint model for market equi-

librium: Algorithmic, existence and uniqueness results”. In: In Proceedings of 36th Annual

ACM Symposium on Theory of Computing (STOC). ACM. 2004.

[6]Nikhil R. Devanur et al. “Market Equilibrium via a Primal–dual Algorithm for a Convex

Program”. In: J. ACM 55.5 (Nov. 2008).

[7]Lisa Fleischer et al. “A Fast and Simple Algorithm for Computing Market Equilibria.” In:

WINE. 2008.

[8]Hukukane Nikaidô and Hirofumi Uzawa. “Stability and Non-Negativity in a Walrasian Tâtonnement

Process”. In: International Economic Review 1.1 (1960), pp. 50–59.

[9]James B. Orlin. “Improved algorithms for computing fisher’s market clearing prices: comput-

ing fisher’s market clearing prices”. In: Proceedings of the 42nd Annual ACM on Symposium

on Theory of Computing (STOC). ACM. 2010.

[10]Vijay V. Vazirani. “Spending Constraint Utilities with Applications to the Adwords Market”.

In: (2010).

[11]László A. Végh. “Strongly Polynomial Algorithm for a Class of Minimum-cost Flow Prob-

lems with Separable Convex Objectives”. In: Proceedings of the Forty-fourth Annual ACM

Symposium on Theory of Computing (STOC). 2012.

[12]Léon Walras. Éléments d’économie politique pure, ou théorie de la richesse sociale (Elements

of Pure Economics, or the theory of social wealth, transl. W. Jaffé). 1874.

33

